
Families of tori

Although SGA3 develops a rather general relative theory of tori, for Deligne’s purposes in §5 it is not at
all necessary to delve into such technology. What he truly needs to construct are some families of tori over
specific Q-schemes such that, on the level of geometric points with values in algebraically closed fields K,
we get certain explicit sets of tori (and auxiliary data) in a manner which is functorial in K. These can be
constructed without requiring the general relative theory of tori, as we shall explain.

Following standard notation, we write z(v) to denote ker ad(v), the centralizer of an element v in a Lie
algebra g. If g = Lie(G) for an algebraic group G, then in characteristic 0 or for semisimple v we have
z(v) = Lie(ZG(v)) where ZG(v) = {g ∈ G |Ad(g)(v) = v} is a k-smooth group (see 9.1 in Borel’s book). We
use this fact several times.

We make one further definition, simply for the purpose of explaining how some of the constructions below
admit stronger properties than we shall prove. A torus over a scheme S is a smooth affine commutative
group scheme T → S whose geometric fibers are tori in the sense of algebraic groups. If G→ S is a smooth
group scheme over a base scheme S and T ↪→ G is a closed subgroup scheme which is a torus over S, we say
T is a maximal torus in G/S if it is maximal on geometric fibers (in the sense of algebraic groups).

1. A universal torus

Let G be a reductive algebraic group over a field k (of any characteristic). Pick a maximal torus T0 in G
defined over k. Not all such tori are G(k)-conjugate (unless k is algebraically closed), but this won’t matter.
We let N0 = NG(T0) be the normalizer, and W0 = N0/T0 be the finite étale Weyl group. Since W0 splits
over a finite Galois extension k′, various quotients below by the W0-action may be readily proved to exist
by first working over k′ where W0 is a finite constant group, and then using Galois descent to get down to k
(the relevant quotients we need to work with will be made from finite étale groups acting on disjoint unions
of quasi-projective schemes over a field, so no fancy technology is needed to establish the existence of such
quotients and their basic properties).

Consider the universal conjugation map G×k G→ G×k G defined by (h, g) 7→ (ghg−1, g). This is clearly
an isomorphism. Thus, if we compose with the closed immersion T0 ×G ↪→ G×G obtained by base change
on T0 ↪→ G, we get a closed immersion. This composite closed immersion

(1.1) T0 ×G ↪→ G×G

is described by (t, g) 7→ (gtg−1, g). The map (1.1) is equivariant for right multiplication by T0 on the second
factor G on both source and target, so we may pass to the quotient to get a map

(1.2) T0 × (G/T0) ' (T0 ×G)/T0 → G× (G/T0).

This map is a closed immersion too, since it recovers the closed immersion (1.1) upon applying the faithfully
flat base change G→ G/T0 along the second factor.

The map (1.2) is equivariant for a free right action of the finite étale Weyl group W0 = NG(T0)/T0 via
(t, g) 7→ (n−1tn, gn) on the source and (g1, g2) 7→ (g1, g2n) on the target. Thus, passage to the quotient by
this action yields a map

(1.3) T → G× TorG

where TorG
def= G/N0. This map fits into the bottom row of the following commutative diagram:

(1.4) T0 × (G/T0) //

��

G× (G/T0)

��
T // G× TorG

The top map is (1.2), and the columns are finite étale W0-torsor maps. The rows respect this torsor structure,
so the diagram has to be cartesian. In particular, since the top arrow is a closed immersion we deduce the
same for the bottom row by descent. Thus, (1.3) is a closed immersion of TorG-group schemes.
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Since we are aiming to avoid using the relative theory of tori, we should record the property we really
need: the fibers of (1.3) over geometric points of TorG have a simple description. For any algebraically closed
field K/k, what is the fiber Tx over an element x ∈ TorG(K), with Tx viewed as a closed subscheme of GK?
Since formation of the quotient TorG = G/N0 commutes with arbitrary extension of the ground field and
non-empty algebraic schemes over an algebraically closed field have a rational point (by the Nullstellensatz),
we have (G/N0)(K) = G(K)/N0(K). Thus, x corresponds to a coset gN0/K with g ∈ G(K). The fiber Tx is
the torus gT0/Kg

−1 inside of GK . Although all of these tori are abstractly K-isomorphic as we vary g, they
are not the same torus inside of GK . In fact, as g varies over G(K)/N0(K) we get precisely all maximal tori
of GK without repetition: this is because of the general theorem that in a reductive algebraic group over an
algebraically closed field, all maximal tori are conjugate (here we are implicitly using the fact that a maximal
torus in an algebraic group over an algebraically closed field, such as T0 inside of G, remains maximal upon
base change to any larger algebraically closed field, a property which I leave as a delightful exercise; use the
“smearing out” method in the proof of Lemma 4.1).

The conclusion we draw is that the diagram

T //

$$IIIIIIIIII G× TorG

��
TorG

is a “universal torus” in the sense that for any algebraically closed field K/k, the fibers Tx ↪→ GK over all
x ∈ TorG(K) run over all maximal tori in GK without repetition. We will have no need for any stronger
property; however, the functoriality in K (which is obvious) is clear from our construction and is quite crucial
for Deligne’s arguments.
Remark 1.1. In fact, Grothendieck proved that the above construction represents the functor that assigns
to any k-scheme S the set of maximal tori in the S-group G×k S; that is, it is a universal maximal torus in
G. Grothendieck really proved a much more general result without requiring that the situation started life
over a field; see Cor. 1.10 in Exp. XII of SGA3.

2. Regular vectors and another family

Let V = Lie(G) be the Lie algebra of G, viewed as an affine space over k. Let n be its dimension. Consider
the adjoint representation ad : V → gl(V ) = End(V ) defined by v 7→ [v, ·]. This is a linear map of affine
spaces, with matrix entries determined by some universal polynomial expressions in the structure constants
of the Lie algebra (relative to a choice of basis of V ). Thus, if we form the characteristic polynomial of ad(v)
we get a degree n polynomial pv = Tn+an−1(v)Tn−1+· · ·+a0(v) whose coefficients aj(v) are (homogeneous)
polynomial functions on V (depending on the structure constants of the Lie algebra, and some determinantal
mess).

It might happen that a0 = 0, but in any case there is some least r ≤ n such that ar is nonzero (let
an = 1); note that this vanishing may be verified by just checking on k′-points for one infinite extension of k
(in case k was possibly finite), since a polynomial in several variables over an infinite field is zero if and only
if it vanishes at all rational points of the corresponding affine space. In terms of the Jordan decomposition
v = vss +vn, ad(vss) is the semisimple part of ad(v), so these have the same characteristic polynomial. Thus,
z(vss) has dimension equal to the multiplicity of 0 as a root of the characteristic polynomial of ad(v). Thus,
r is the minimal dimension of z(v) for variable semisimple v in Lie(G) (again, when k is finite this must be
interpreted in the sense of v varying over Lie(G) as an algebraic variety and not as a k-vector space).

The locus Lie(G)reg of regular vectors is defined to be the nonempty Zariski open locus in V = Lie(G)
where ar 6= 0. This definition makes sense for any algebraic group over k, but for later purposes it is
important to describe both r and the locus of regular vectors for reductive groups (such as our G). Since this
issue is not explicitly addressed in basic books such as by Borel and Springer, we give proofs for convenience
of the reader.
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Theorem 2.1. Let d be the dimension of maximal tori in the reductive group G. Then r above is equal to
d. Moreover, a vector v ∈ Lie(G) is regular and semisimple if and only if ZG(v)0

red is a maximal torus. In
fact, if k is infinite then such v can be found in Lie(T ) for any maximal torus T in G defined over k.

Using Proposition 9.1(2) in Borel’s book, for semisimple v it is automatic that ZG(v)red is k-smooth (in
Borel’s terminology, he says ZG(v) is “defined over k”, but this means the k-smoothness of the underlying
reduced closed subscheme). In characteristic zero, the same arguments (or an appeal to Cartier’s theorem
on smoothness of locally finite type group schemes in characteristic 0) gives the smoothness without any
restrictions on v.

Proof. Due to the fact that semisimple v have ZG(v)red automatically smooth, hence of formation compatible
with change of the ground field, for the proof of the lemma we may take k to be algebraically closed. By
11.8 in Borel, v ∈ g = Lie(G) is semisimple if and only if lies in t = Lie(T ) for some torus T in G, and
we can then certainly take T to be maximal. Since T is commutative of dimension d, we see that z(v)
contains the d-dimensional Lie(T ). For general (perhaps non-semisimple) v ∈ g, we have seen above that the
characteristic polynomial of ad(v) has 0 as a root with the same multiplicity as for ad(vss). Thus, r ≥ d.

It remains to find some semisimple v for which dim z(v) = d. Pick a maximal torus T and consider the
root space decomposition

(2.1) g = t⊕
⊕

α∈Φ(T,G)

gα,

with 1-dimensional root spaces gα for the pairwise distinct non-trivial roots α describing the adjoint repre-
sentation of T on g. A technical point for positive characteristic (trivially verified in characteristic zero) is
that the differential dα : t→ End(gα) of the adjoint action of T on gα is nonzero for each root α; this follows
from 13.19–13.21 in Borel’s book, for example. Thus, we can pick v ∈ t for which dα(v) 6= 0 for all α. It
follows that ad(v) acts by a non-zero scalar multiplier on each root line gα, so z(v) = t. This has dimension
d, so r = d.

Now we check that v ∈ Lie(G) is regular and semisimple if and only if ZG(v)0
red is a maximal torus. If v is

regular and semisimple, then not only is ZG(v)0
red is a connected k-smooth closed subgroup of G (as is true

for any v), but semisimplicity allows us to find a maximal torus T with v ∈ Lie(T ). Since T is commutative,
we therefore have an inclusion T ↪→ ZG(v) as closed subschemes of G, so T ↪→ ZG(v)0

red. To get equality for
this latter inclusion, we just need to know that the k-smooth ZG(v)red has dimension d. This dimension can
be computed via the Lie algebra, thanks to smoothness, and the regularity of v ensures that the Lie-theoretic
centralizer z(v) of v in Lie(G) has dimension d. Thus, it suffices to know that z(v) is the Lie algebra of the
group centralizer ZG(v)red; this Lie algebra computation follows from the semisimplicity of v (using 9.1(2)
in Borel’s book).

Finally, we prove that if ZG(v)0
red = T is a maximal torus, then v is regular and semisimple. We again

appeal to the root space decomposition (2.1) for g under the adjoint action of T , from which we see that
Lie(T ) is the full invariant subspace for the T -action on g. But v is T -invariant since T = ZG(v)0

red, so
therefore v ∈ Lie(T ). In particular, v is semisimple in Lie(G) (this is the easy direction of 11.8 in Borel).
But with v now known to be semisimple, the Lie-theoretic centralizer z(v) of v is the Lie algebra of the
smoothed group centralizer ZG(v)0

red. This latter group is T , of dimension d, so its Lie algebra z(v) is also
d-dimensional. This says that the semisimple v is regular.

To prove that affine linear subspace Lie(T ) inside of the affine space Lie(G) meets the Zariski open
Lie(G)reg for any maximal k-torus T in G when k is infinite, it suffices to consider the case of algebraically
closed k (since a non-empty Zariski open in an affine space over an infinite field must contain a rational
point). But all maximal tori are G(k)-conjugate for algebraically closed k and the regularity property of
v ∈ Lie(G) is invariant under the adjoint action of G(k), so the known existence of a regular vector lying in
the Lie algebra of some maximal torus implies the existence for any torus.

�
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Recalling Cartier’s theorem that locally finite type group schemes in characteristic zero are automatically
smooth, when k has characteristic zero we get a smooth closed subgroup ZG(v) inG for any vector v ∈ Lie(G).
The preceding theorem is important for our purposes due to its role in the proof of:
Corollary 2.2. If k has characteristic zero, then any regular v ∈ Lie(G) is semisimple and the centralizer
ZG(v) is connected. Thus, an arbitrary v ∈ Lie(G) is regular if and only if ZG(v) is a maximal torus.

Proof. The second part of the corollary is immediate from the first part, thanks to the preceding theorem.
Let v = vss + vn be the Jordan decomposition of an arbitrary vector v. Since ad(vss) is the semisimple
part of ad(v), vss is regular if and only if v is regular. Thus, when v is regular then ZG(vss)0 is a maximal
torus T (by the preceding theorem). Uniqueness of Jordan decomposition ensures that ZG(v) is contained
in ZG(vss), so ZG(v)0 is contained in T . Thus, Lie(ZG(v)0) is contained in Lie(T ). But because we are in
characteristic zero, the discussion in 9.1 in Borel ensures that the Lie algebra of ZG(v) (or equivalently, of
ZG(v)0) is exactly the Lie-theoretic centralizer z(v), which contains v. Thus, v ∈ Lie(T ). It follows that v
must be semisimple.

The remaining task is to prove that for regular (and hence semisimple) v, the centralizer ZG(v) is con-
nected. We may assume k is algebraically closed. Let T = ZG(v)0, a maximal torus. Clearly ZG(v)
normalizes T , so ZG(v) is intermediate between T = ZG(T ) and the normalizer NG(T ), so it corresponds to
a subgroup of the Weyl group W = W (T,G) = NG(T )/T , with this subgroup trivial precisely when ZG(v)
is connected (i.e., is equal to T ). Thus, the connectivity of ZG(v) says exactly that the action of W on
t = Lie(T ) has trivial stabilizer for the vector v. Thus, we must show that each non-trivial w ∈W moves v.
Using the Lie algebra decomposition

Lie(ZG)× Lie(G′) ' Lie(G),

it suffices to treat the group G′. The group G′ is semisimple, and in characteristic zero the Lie algebra of
a semisimple algebraic group is semisimple. Thus, we are faced with a problem concerning semisimple Lie
algebras g over an algebraically closed field of characteristic zero: for any Cartan subalgebra t in g (i.e., a
maximal commutative subalgebra whose elements are semisimple in g) with associated roots Φ ⊆ t∨ and
Weyl group W acting on t, we shall prove that a vector v ∈ t has α(v) 6= 0 for all α ∈ Φ if and only if
w(v) 6= v for all non-trivial w ∈ W . I am grateful to James Parson for suggesting the following elegant
argument.

It suffices to prove that the intersection of the non-vanishing loci of the operators w − 1 for non-trivial
w ∈ W coincides with the intersection of the non-vanishing loci of the roots α ∈ Φ. This is a purely linear
algebra assertion, so its truth is unaffected by extension of (or descent through) the ground field without
affecting the semisimplicity property. We may therefore descend to an algebraic closure of a finitely generated
subfield of k, and then can embed this into C to reduce to the case k = C. Every semisimple Lie algebra
over C arises from a unique “split form” g0 over R, and we can pick a split Cartan subalgebra t0 inside of
g0. Let Φ0 be the resulting set of roots and W0 the Weyl group.

The root system arising from the choice of t0 gives rise to a natural R-vector space XR equipped with a
positive definite inner product on which W0 acts faithfully through actions generated by reflections through
various “root hyperplanes” Hα indexed by the roots α ∈ Φ0. This R-vector space is W0-equivariantly
identified with t0 and the kernel hyperplane of the root functional α on t0 is exactly the hyperplane Hα.
Thus, the problem comes down to one about root systems: the elements of XR fixed by a non-trivial element
of W0 are exactly the points lying in the union of the root hyperplanes. Since reflections through the
hyperplanes are elements of W0 ⊆ Aut(XR), the part which requires an argument is to prove that a point
of XR not in any root hyperplane cannot be fixed by a non-trivial element of W0. But from the general
theory of root systems, the Weyl group action is simply transitive on the Weyl chambers (the connected
components of the complement of the union of the root hyperplanes). Thus, a point of this complement
cannot be fixed by a non-trivial element of W0. �

Definition 2.3. Let H → S be a smooth group scheme with identity section e, so e∗Ω1
H/S is a locally free

quasi-coherent sheaf with finite rank. We define the relative Lie algebra Lie(H) to be the vector bundle
corresponding to the dual of e∗(Ω1

H/S).
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The formation of the relative Lie algebra commutes with base change on S. One can show via a nice
functorial argument (given in the Néron models book, for example) that on any group scheme over any
base scheme at all, any relative cotangent vector along the identity section may be uniquely extended to a
left-invariant relative 1-form. For smooth schemes the relative Ω1 is a locally free sheaf of finite rank, so
for smooth group schemes we may dualize to conclude that any section of the relative Lie algebra may be
uniquely extended to a left-invariant vector field (which in turn may be identified with certain derivations
on the structure sheaf of the group). Thus, by using the usual bracket construction on vector fields, we can
naturally endow Lie(H) with a structure of sheaf (or bundle) of Lie algebras compatibly with base change
on S and functorially in H. When S = Spec(k), this is just the usual construction for algebraic groups.

As an example, we can take H = G × TorG as a smooth group over TorG, and we can form Lie(H).
This is rather boring, since it is just Lie(G) × TorG with its Lie bracket coming from Lie(G). That is, this
is just a “constant family” of Lie algebras parameterized by TorG. The example H = T → TorG is more
interesting, since it is a quotient of a constant family T0 ×k (G/T0) by the action of the finite étale Weyl
group W0 = W (T0, G) (so Lie(T )→ TorG is a “twisted” family of copies of Lie(T0)).

Functoriality with respect to the closed immersion T ↪→ G × TorG defines a closed immersion of Lie
algebras over TorG:

(2.2) Lie(T ) ↪→ Lie(G× TorG)

For an algebraically closed field K/k and g ∈ G(K), the fiber of this embedding over g ∈ G(K)/N0(K) is
the Lie algebra of gT0/Kg

−1 inside of the Lie algebra of GK for g ∈ G(K) representing g, or in other words
it “is” the image of Lie(T0) embedded into Lie(G) via the adjoint representation action Ad(g); the actual
embedding map on Lie(T0) depends on the choice of representative g modulo T0(K) = ZG(T0)(K), and there
is no canonical isomorphism Lie(Tg) ' Lie(T0)K .

Inside of Lie(G×TorG) ' Lie(G)×TorG there is the fiberwise dense open subset Lie(G)reg×TorG. Define
U to be the (fiberwise non-empty!) open locus in Lie(T ) over TorG which, via (2.2), lies in Lie(G)reg×TorG.
For an algebraically closed field K, an element u ∈ U(K) consists of a pair (T, v) where T is a maximal
torus in GK (this comes from the image of u in TorG(K)) and v ∈ Lie(T ) is a Lie vector along T which is
regular as an element in Lie(GK). Thus, one should think of U as another universal family: it classifies pairs
(T, v) over algebraically closed extensions K of k, functorially in K. A key point is that we have made these
arise from a geometric object U which we constructed over k. In fact, if one grants the stronger universal
property for T ↪→ G×k TorG as recorded at the end of §1, it is clear that U represents the functor that, to
any k-scheme S, assigns the set of pairs (T, v) where T is a maximal torus in G ×k S and v is a section of
Lie(T )→ S which is fiberwise regular when viewed as a section of Lie(G×k S) ' Lie(G)⊗k OS .

3. Hom functors of tori

We want to make a scheme that classifies morphisms between two tori. It will actually very much clarify
the situation to prove a genuine representability theorem in this case (not just to make a construction and
make a description of geometric points functorially in an algebraically closed field); this will be simplify the
task of keeping track of residue fields later on. To keep things simple, we will only consider the case of tori
which begin life over a field. This is adequate for our purposes, though one can prove much stronger results
by essentially the same methods, provided one knows more about the relative theory of tori from SGA3. Let
T and T ′ be two k-tori. Consider the functor Hom(T, T ′) on k-schemes whose value on S is the group of
S-group scheme maps TS → T ′S . I claim this is represented by a (very large) étale k-scheme. To keep the
picture clear, let us first consider the case in which T and T ′ are both split. For this we could even work
over Z, but we avoid this for simplicity. Suppose T = Gg

m and T ′ = Gg′

m over k. Let

H =
∐

m∈Matg′×g(Z)

Spec k,

and consider the map f : TH → T ′H whose component map fm : T → T ′ over the component Spec k indexed
by the matrix m is precisely the map in

Homk(Gg
m,G

g′

m) ' Matg′×g(Homk(Gm,Gm)) = Matg′×g(Z)
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corresponding to the matrix m.
Since we will be interested in tori that might not be split, for the present circumstances it seems most

efficient to actually prove the representability theorem lurking in the background. This stronger result will
enable us to descend to the non-split case without unpleasant tedium.

Theorem 3.1. The map f : TH → T ′H is universal. That is, for any k-scheme S and any map φ : TS → T ′S
of S-group schemes, there exists a unique map S → H under which the pullback of f is φ.

Proof. For each s ∈ S, the fiber map φs between split tori is given by some matrix m(s) ∈ Matg′×g(Z).
Hence, for each g′ × g integer matrix m we can form the locus Um in S consisting of those s ∈ S for which
m(s) = m, and we have a set-theoretic covering of S by the Um’s. I claim that Um is open in S and that
over each Um the map φ is actually given by the matrix m. Once this is shown, then it follows that the map
S → H sending Um to the point Spec k indexed by m does pull f back to φ and it is the only such map
S → H with this property.

Pick s ∈ S, and let R = OS,s be the local ring. Let m = m(s). Since m defines a map TS → T ′S , to show
that this map agrees with φ in a neighborhood of s (thereby proving openness of the various Um loci) it
suffices (by viewing OS,s as a direct limit of coordinate rings of open affines around s) to show that the two
maps agree over R. This would also show that φ|Um is given by m for each choice of g′ × g integral matrix
m. Thus, we are reduced to a problem for split tori over a local ring R: if two maps agree on the closed
fiber, they must be equal. By a direct limit argument, we can assume R is a local noetherian ring (express
R as a direct limit of localized noetherian subrings with local transition maps, and descend φ to some such
subring using that it is described using only finitely many elements of R). To check equality of two elements
in the coordinate ring of a torus, it suffices to check equality modulo each power of the maximal ideal of R
(look at the coefficient of a fixed monomial and use Krull’s intersection theorem). Thus, we may assume R
is an artin local ring.

With R an artin local ring, pick a positive integer n which is a unit in R, and consider the n-torsion
on the two split tori of interest. This is finite étale over R. Since R is an artin local ring, passing to the
quotient by its maximal ideal sets up an equivalence of categories between finite étale R-schemes and finite
étale schemes over the residue field. Thus, the equality of two R-torus map on the closed fiber implies that
the maps over R coincide on the finite étale n-torsion. The problem is therefore reduced to proving that two
maps Gg

m/R ⇒ Y over R which coincide on the closed subschemes Zn = µgn/R for all n > 0 invertible in R

must in fact be the same map. Over the residue field this is clear, as such torsion is dense in Gg
m over a field.

For the situation over R, since the Zn’s are R-flat we can use Grothendieck’s theory of relative schematic
density (see 11.10.10 in EGA IV) to infer the result in general. �

Now we improve the situation in Theorem 3.1 to handle non-split tori. Let T and T ′ be arbitrary k-tori,
and let F be the functor F (S) = HomS(TS , T ′S) on k-schemes. Let k′/k be a finite Galois extension over which
T and T ′ become split. By Theorem 3.1, the restriction F ′ of F to the category of k′-schemes is represented
by an enormous constant étale k′-scheme with components indexed by matrices. Let (f ′,H ′) denote the
universal structure over k′. For each σ ∈ Gal(k′/k), the pullback (σ∗(f ′), σ∗(H ′)) is also a universal family
representing F ′ on the category of k′-schemes (because σ is a k-map). Thus, Yoneda provides us with a
unique isomorphism ξσ : (f ′,H ′) → (σ∗(f ′), σ∗(H ′)) between these two universal families. The uniqueness
ensures the compatibility condition τ∗(ξσ) ◦ ξτ = ξτσ. In other words, we have Galois descent data on the
situation.

But each Galois orbit in H ′ is just a finite disjoint union of copies of Spec k′ (hence is affine), so the
descent problem has a (necessarily unique) solution H which we could even write down by hand if so
inclined. Explicitly, each matrix map m over k′ can be viewed as a map of split tori Tk′ → T ′k′ and as such
has a smallest field of definition k(m) ⊆ k′ containing k (here we work with fixed splittings on these two
k′-tori). In the Galois orbits of such a map (using the k-structures on T and T ′), we select one representative
and use a copy of its Spec k(m) as a component of H. In this way, we also see that we can make a unique
H-map f : TH → T ′H which induces the universal f ′ over H ′. Because (H, f) was made as a solution to the
descent problem, we can prove the following result which improves Theorem 3.1:
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Theorem 3.2. The map f : TH → T ′H is universal. That is, for any k-scheme S and any map φ : TS → T ′S
of S-groups, there is a unique map S → H under which the pullback of f is φ.

Proof. Let H denote the functor represented by H on k-schemes, so the structure f defines an element α
in F (H), where F is the Hom-functor for T and T ′ on the category of k-schemes. We want to show that α
is universal. That is, we wish to show that the map of functors ρ : H → F is an isomorphism. Recalling
how (H, f) was constructed by descending the universal structure on H ′ that represented F ′, the restriction
ρ′ : H ′ → F ′ to the category of k′-schemes is our earlier isomorphism. For any k-scheme S, Galois descent
identifies H(S) with the set of elements in H ′(S′) = H(S′) which are invariant under the action of Gal(k′/k)
(where S′ = k′ ⊗k S). Likewise, since the functor F classifies morphisms of schemes, Galois descent for
scheme maps ensures that F (S) is the set of Galois-invariant elements in F ′(S′) = F (S′).

Since the map H(S′) ' F (S′) is functorial in the S′ as a k-scheme and is an isomorphism since S′ is a
k′-scheme, we conclude by functoriality with respect to the k-action of Gal(k′/k) on S′ that the isomorphism
H(S′) ' F (S′) must be Galois-equivariant, so the map H(S)→ F (S) is identified with the induced bijection
on Galois-invariant subsets. Thus, we conclude that H(S) → F (S) is an isomorphism for any k-scheme S.
This is what we needed to prove. �

Corollary 3.3. The functor Hom(Gm,T ) on TorG-schemes is represented by a countable disjoint union of
finite étale TorG-schemes.

Proof. We first work over the finite étale W0-torsor Tor′G = G× (G/T0) over TorG = G× (G/N0). Arguing
as in our verification that (1.4) is cartesian, we get an isomorphism T ′ = T ×TorG Tor′G ' T0 × (G/T0)
with the base change on the k-torus T0 via the structure map for TorG as a k-scheme. For any map of
schemes S′ → S, the restriction of a representable functor HomS(·,M) to the subcategory of S′-schemes is
naturally identified with the representable functor HomS′(·,M×SS′) (i.e., restricting a representable functor
to a “slice subcategory” translates into base change on a representing object). Applying this to the functor
Hom(Gm, T0) on k-schemes and the base change Tor′G → Spec k, we conclude that for H as in the preceding
theorem (representing Hom(Gm, T0) on the category of k-schemes), H ×k Tor′G represents Hom(Gm,T ′) on
the category of Tor′G-schemes. Since H was made as a countable disjoint union of finite étale k-schemes, we
conclude thatH ×k Tor′G is a countable disjoint union of finite étale Tor′G-schemes.

There is a natural action of the finite étale Weyl group W0 = N0/T0 on Hom(Gm,T ′), hence on a
representing object H ×k Tor′G, over its free action on the smooth quasi-projective k-scheme Tor′G = G/T0.
Thanks to the freeness of the action on the base, the quotient of Hom(Gm,T ′) by this action is readily
checked to be a representing object for Hom(Gm,T ) on the category of TorG-schemes (the point is that the
quotient maps are finite étale, due to the freeness aspect of the W0-action). The end result has countably
many connected components, each finite étale over TorG, since this property descends from what we have
established over the finite étale cover Tor′G. �

4. The main construction

Now fix an algebraically closed extension K of k and a map h : Gm/K → GK (Deligne uses k = Q and
K = C, with h equal to what Deligne would call (h ◦ r)C). We are interested in studying pairs (T, s) where
T is a maximal torus in GF for an algebraically closed extension F of k and s : Gm/F → T is a map whose
composite Gm/F → GF is conjugate to h over some common extension of K and F (over k). To make sure
this problem is meaningful, we pick k-embeddings of an algebraic closure k into K and F and prove:
Lemma 4.1. Let K and F be algebraically closed extensions of an algebraically closed field k0. Let T be
a torus over k0 and hK : TK → GK and hF : TF → GF two maps of algebraic groups, with G a reductive
algebraic group over k0. Let F ′ be a common algebraically closed extension of K and F over k0. The property
of the F ′-base changes of hK and hF being G(F ′)-conjugate is independent of the choice of F ′.

Proof. The problem only depends on the G(K)-conjugacy class of hK and the G(F )-conjugacy class of hF .
Let T0 be a maximal torus in G over k0. Since all maximal tori in GF are G(F )-conjugate and all maximal
tori in GK are G(K)-conjugate, and moreover the maps hF and hK each factor through maximal tori over F



8

and K respectively, by applying suitable conjugations we may assume that these maps factor through T0/F

and T0/K respectively. But two k0-tori (such as T and T0) don’t acquire any new maps over an extension of
k0 since k0 is algebraically closed. Thus, with these modifications the maps hF and hK are defined over k0.
We are therefore reduced to the problem of proving that if h1, h2 : T ⇒ G are maps over k0 which become
conjugate over some algebraically closed extension F ′ of k0, then h1 and h2 are k-conjugate.

We use a standard direct limit trick via the Nullstellensatz. Write F ′ = lim−→Ai as a direct limit of finite
type k0-subalgebras. Pick g ∈ G(F ′) which conjugates h1/F ′ into h2/F ′ . We can pick large i so that g comes
from g′ ∈ G(Ai) and such that the two Ai-maps h2/Ai and g′h1/Aig

′−1 coincide (at the expense of enlarging
i a little bit we can certainly reach this situation). Now for the trick: reduce modulo a maximal ideal of Ai.
Such a quotient of Ai is the algebraically closed field k0 (Nullstellensatz!), so the resulting reduction of the
“smeared out” g′ provides an element in G(k′) which does the job. �

Motivated by this lemma, we make a definition:
Definition 4.2. For two algebraically closed fields K and F over k, with kK and kF the algebraic closures
of k in K and F respectively, maps Gm/K → GK and Gm/F → GF are geometrically conjugate relative to
k if there exists a k-isomorphism σ : kK ' kF such that the maps become conjugate over some (hence any,
by the preceding lemma) common algebraically closed extension of K and F over the isomorphism σ.

We must warn the reader to not forget that this definition merely requires conjugacy for some choice
of σ; not all choices will necessarily work (unless k happens to be separably closed, so algebraic closures
of k have no non-trivial k-automorphisms). For example, we might have K = F = k a common algebraic
closure of k, and then two maps h1, h2 : Gm/k ⇒ Gk are geometrically conjugate over k if and only if h1 is
G(k)-conjugate to σ∗(h2) for some σ ∈ Aut(k/k) (i.e., the Galois orbits of the conjugacy classes of h1 and
h2 coincide). To demand that this work for all σ would amount to requiring that h1 be G(k)-conjugate to
σ∗(h1) for all σ ∈ Gal(k/k), a condition which is far too strong (it is analogous to demanding that a reflex
field equal Q).

Recalling our fixed map h : Gm → GK , we would like to study triples (T, s, v) consisting of a maximal
torus T in GF for algebraically closed F/k, a map s : Gm/F → TF whose composite into GF is geometrically
conjugate to h over k, and a Lie vector v ∈ Lie(T ) which is regular in Lie(GF ). What we really want to do
is make a structure over k which geometrically realizes all such triples without repetition when passing to
F -points for any algebraically closed F over k.

Consider the product scheme P = HomTorG
(Gm,T )×TorG U , where U ⊆ Lie(T ) ' Lie(T0 ×k TorG) is

the fiberwise nonempty (over TorG) open locus from the end of §2; the F -points of U for an algebraically
closed field F/k classify pairs (T, v), where T is a maximal torus in GF and v ∈ Lie(T ) is regular in Lie(GF ).
We naturally have P as open inside of HomTorG

(Gm,T )×TorG Lie(T ). By Corollary 3.3 we conclude that
P is a countable disjoint union of smooth quasi-projective k-schemes of pure dimension equal to that of G.

For F algebraically closed over k, an F -point of P is a triple (T, s, v) where (T, v) is as above and
s : Gm/F → T is a map of F -tori. That is, the F -points of P are in bijection with such triples (T, s, v) over
F and this bijection is functorial in F . This is of course quite weak from the perspective of representable
functors, but it is good enough for our purposes. What we would like to study are those F -points of P
corresponding to triples (T, s, v) for which the composite s′ : Gm

s→ T → GF is geometrically conjugate to
the original h : Gm → GK over k. We wish to naturally cut out an open and closed subscheme Ph in P
whose geometric points are such triples.

Over the étale TorG-scheme H = Hom(Gm,T ), we have a universal map Gm ×k H → T ×TorG H ,
and we can compose this with the base change to H of canonical closed immersion T ↪→ G ×k TorG over
TorG. This provides us with a map

β : Gm ×k H → G×k H .

For any algebraically closed field F over k and x ∈H (F ) over T ∈ TorG(F ), the fiber βx : Gm → GF is the
map s′x arising from the F -map sx : Gm → T classified by x. We are interested in the locus Ph of points x
in H for which the map βx over k(x) is geometrically conjugate to h over k (this is a property which may
be checked by working over any algebraically closed extension of k(x)).
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We claim that Ph is open and closed in H . In fact, we claim something much more precise. There is
a natural map H → Hom(Gm, T0)/W0 obtained by passage to the W0-quotient on the natural smooth
projection

HomTor′G
(Gm,T

′) ' Hom(Gm, T0)×k (G/T0)→ Hom(Gm, T0),
and for algebraically closed F over k we have a natural bijection

(4.1) (Hom(Gm, T0)/W0))(F ) = HomF (Gm/F , T0/F )/W0(F ) ' HomF (Gm/F , GF )/G(F )

onto the set of G(F )-conjugacy classes of maps from Gm/F to GF (the final bijection in (4.1) uses the
G(F )-conjugacy of maximal tori in GF and the fact that centralizers of arbitrary tori in reductive groups
are again reductive; cf. Corollary 2 in §13.17 in Borel).
Remark 4.3. Due to (4.1), our étale k-scheme Hom(Gm, T0)/W0 is what Deligne calls Hom(Gm, G)/G, the
“scheme of G-conjugacy classes of homomorphisms Gm → G”. To put Deligne’s point of view in perspective,
we note (but will not use) that by Prop. 3.12 and Cor. 4.2 in Exp. XI of SGA3, for any smooth affine k-group
H the functor S 7→ HomS−gp(Gm,HS) on k-schemes is represented by a smooth affine k-scheme, usually
denoted Hom(Gm,H) (actually, Grothendieck proves something far more general concernings morphisms
from tori to other group schemes over any base, without reference to an initial ground field).

The significance of (4.1) is that it then says that in our situation, the functorial map of smooth affine
moduli schemes Hom(Gm, T0)→ Hom(Gm, G) induces a morphism of smooth quasi-projective quotients

Hom(Gm, T0)/W0 → Hom(Gm, G)/G

which is bijective on geometric points. In fact, as one might expect, this is an isomorphism. To see this, it
is enough to prove both sides are étale over the base. For the source this follows from our construction of
Hom(Gm, T0) as an étale k-scheme, though it can also be proved by pure thought using functorial criteria
and infinitesimal properties of tori. For the target, we just have to check unramifiedness (since the base is
a field, so flatness is automatic). This may be checked using points with values in an artin local ring with
algebraically closed residue field, and then Thm. 3.2 in Exp IX of SGA3 provides the necessarily conjugacy
result for maps from tori.

The reason we mention this fact is that we make frequent use of Hom(Gm, T0)/W0 below, where it would
really be more natural to work with Hom(Gm, G)/G as Deligne does; however, our slightly weaker foundation
(sans SGA3) and our concrete description of various constructions enables us to get by using the quotient
Hom(Gm, T0)/W0 without requiring that this quotient really has a stronger functorial interpretation (as a
quotient of a representing object for Hom(Gm, G) by the functorial G-action through conjugation).

Using (4.1), the map h is identified with a geometric point of the étale k-scheme Hom(Gm, T0)/W0; we
write z(h) = Spec k(z(h)) to denote the corresponding (open and closed) image point on Hom(Gm, T0)/W0.
The locus Ph is nothing more or less than the fiber over z(h) for the map

(4.2) P → Hom(Gm, T0)/W0

(so Ph has a natural structure of k(z(h))-scheme). We leave it as a pleasant exercise to check that this
description of Ph as a fiber is correct; the key is to use how we defined geometric conjugacy. Recalling how
H breaks up as a disjoint union of finite étale TorG-schemes, we see that the fiber Ph over z(h) is finite type
(not just locally finite type) over z(h), and of course it is also smooth over k (since it is open and closed in
P which is k-smooth).
Theorem 4.4. Assume k has characteristic zero. The composite map

π : Ph → Lie(T ) ↪→ Lie(G×k TorG) = Lie(G)×k TorG → Lie(G)

is étale and surjective onto Lie(G)reg.

Proof. Let k be the algebraic closure of k inside of the algebraically closed extension K over which h was
given. Replacing h with a G(K)-conjugate so that it factors through T0/K , and hence is defined over k,
we may assume h is given over k. Since a point of the étale k-scheme Hom(Gm, T0) is naturally identified
with an Aut(k/k)-orbit of k-points (where k is a fixed algebraic closure of k), a point of Hom(Gm, T0)/W0

is identified with a W0(k)-orbit of such Aut(k/k)-orbits.



10

By the regularity condition in the definition of π, it has image inside of Lie(G)reg. To check étaleness and
surjectivity, it suffices to work over k and to examine the map on k-points. More specifically, we consider
the map

(4.3) Lie(T0)×k (G/T0)→ Lie(G)

defined functorially by (v, g) 7→ Ad(g)(v). It suffices to prove that if Ad(g)(v) is a regular vector then this
map is étale at (v, g), and every regular vector in Lie(Gk) arises in the form Ad(g)(v). Since any regular
vector in Lie(G) is semisimple (as we are in characteristic zero, so Corollary 2.2 applies), any such vector
lies in the Lie algebra of a maximal torus. The G(k)-conjugacy of maximal tori thereby provides the desired
surjectivity of Ph(k) onto Lie(Gk)reg (we can always enhance a pair (gTg−1, v) with a suitable choice of s so
the triple comes from Ph(k)).

To prove that π is étale at (v, g) if Ad(g)(v) is regular, the k-smoothness of the source and target makes
the problem equivalent to the tangent space map dπ being an isomorphism at (v, g). Since (4.3) is equivariant
under the left action of G on G/T0 and the adjoint action of G on Lie(G), we can use transitivity of the
G-action on G/T0 to reduce to studying points (v, 1) with v ∈ Lie(T0/k) regular in Lie(Gk). The differential

dπ(v, 1) : Lie(T0/k)× Lie(Gk/Lie(T0/k)→ Lie(Gk)

is readily computed to be
(x, y) 7→ [v, y] + x.

The image of the set of points (x, 0) is the Lie algebra of T0, and the image of the set of points (0, y) with
y ∈ gα is gα since [v, y] = dα(v) · y with dα(v) 6= 0 since v is regular. Hence, the differential of π at (v, 1) is
clearly an isomorphism (using the root decomposition of the Lie algebra of Gk with respect to the maximal
torus T ).

�

Corollary 4.5. Assume k has characteristic zero. Let z = z(h) be the point on Hom(Gm, T0)/W0 over
which Ph is the fiber of P via (4.2). Then Ph is geometrically irreducible over k(z) and the étale surjection
π : Ph → Lie(G)reg is finite.

This corollary, coupled with the preceding theorem, completes the verification of Deligne’s Lemma 5.1.2
and various properties asserted in the discussion preceding that lemma. Of course, to make the translation
back to his picture one has to show that when our h is taken to be Deligne’s (h ◦ r)C (using k = Q and
K = C), then what we are calling k(z) is precisely Deligne’s reflex field E(G, h) (as an abstract finite
extension of k = Q, well-defined as a subfield of C only up to conjugation). But the reflex field was defined
as a “field of definition” of the G(C)-conjugacy class of Deligne’s hC, and this only depends on (h◦r)C since
by Deligne’s axioms h ◦w lands in the center of G. The bijection (4.1), functorial in F , provides everything
one needs to make the identification of our k(z) with E(G, h) in Deligne’s situation.

Proof. We first check finiteness, and then we prove geometric irreducibility. From the preceding theorem we
know that Ph is finite type (even quasi-projective, from the construction of P ) and is étale surjective over
Lie(G)reg). In particular, π is quasi-finite, separated, and étale. By making base change to sufficiently small
étale neighborhoods over k-points and using the structure theorem for quasi-finite separated étale maps over
a strictly henselian local ring, to establish finiteness of π it suffices to show that the étale fibers of π over
k-points of the target all have the same (necessarily finite) number of k-points.

Pick a regular vector v in Lie(Gk). The k-points of π−1(v) correspond bijectively to triples (T, s, v) where
the composite s′ of s : Gm → T and T ↪→ Gk is G(k)-conjugate to a point in the Aut(k/k)-orbit of h. Since
T is a maximal torus which centralizes the regular vector v, the characteristic zero hypothesis allows us to
apply Corollary 2.2 to conclude that v is semisimple. Thus, Tv

def= ZG(v)0
red is a maximal torus by Theorem

2.1 (and is equal to ZG(v) by Corollary 2.2, though we do not need this fact here). It follows that T = Tv,
so π−1(v) is is bijection with the set of maps s : Gm → Tv whose composite s′ : Gm → Gk is G(k)-conjugate
to some Aut(k/k)-twist of h. For any maximal torus T of Gk, define ΣT to be the set of maps s : Gm → T

for which s′ is G(k)-conjugate to an Aut(k/k)-twist of h. Thus, π−1(v) is in bijection with the set ΣTv . But
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all T ’s are G(k)-conjugate, and picking such a conjugation between two such tori T and T ′ obviously sets
up a bijection between ΣT and ΣT ′ . This concludes the proof of finiteness.

Next, we check the geometric irreducibility. Rather than work on the geometric fiber over a point z
in Hom(Gm, T0)/W0, it suffices to pick a point z′ over this on the étale k-scheme Hom(Gm, T0) and to
study the situation over a geometric point dominating k(z′). Pick a k-embedding of k(z′) into K. By
replacing h with a suitable G(K)-conjugate, we can assume it factors through T0/K , and the induced map
sh : Gm/K → T0/K has to descend to the universal morphism over k(z′). The map h therefore descends to
k(z′). Fix a k-embedding of k(z′) into k (thereby giving a k-embedding of the subfield k(z) into k). We
want to prove that Ph ×k(z) k is irreducible. Let us consider its k-points. Such points correspond to triples
(T, s, v) where T is a maximal torus in Gk, s : Gm/k → T is a map whose composite s′ : Gm/k → Gk is
G(k)-conjugate to an Aut(k/k(z))-twist of h, and v ∈ Lie(T ) is regular in Lie(Gk). It is crucial that we only
have Aut(k/k(z))-twists here and not merely Aut(k/k)-twists!

Since we have modified h to be defined over k(z′) and the Aut(k/k(z))-twists of h are geometrically
conjugate to h, we conclude that the triples of interest are (T, s, v) where T is the unique maximal torus
centralizing the regular semisimple v and s′ is G(k)-conjugate to h. To prove the geometric irreducibility
of Ph over k(z), we will use the smooth k-scheme H = HomTorG

(Gm,T ) of pairs (T, s) consisting of a
maximal torus T and a map s : Gm → T . There is a natural functorial left action of G on H covering its
transitive left action on TorG = G/N0, the orbits of which are the fibers of the smooth map

(4.4) p : H = HomTorG
(Gm,T )→ Hom(Gm, T0)/W0.

The geometric irreducibility of G over k therefore implies the geometric irreducibility of the fibers of p. Hence,
the G-orbits in H are pairwise disjoint open and closed subschemes which are geometrically irreducible over
their image point in the étale k-scheme Hom(Gm, T0)/W0.

There is a natural smooth projection from Ph to H whose image is the open and closed subscheme
p−1(z) which we have just shown to be geometrically irreducible over k(z). Thus, Ph → p−1(z) is a smooth
surjection with target which is smooth and geometrically irreducible over k(z). Since smooth surjections are
quotient maps, we conclude that Ph is geometrically irreducible over k(z) if and only if its geometric fibers
over p−1(z) are connected. The fiber of Ph over a geometric point (T, s) of p−1(z) is naturally isomorphic
to the locus in Lie(T ) consisting of vectors which are regular in Lie(G). This locus is a non-empty Zariski
open in the affine space Lie(T ), so it is connected.

�

5. An openness result and an application

Partly due to the connectivity conclusion in Corollary 2.2, Deligne needs to study smooth affine group
schemes T → Y with Y of finite type over R and T having torus geometric fibers. He needs the following
basic fact:
Theorem 5.1. The locus of y ∈ Y (R) for which Ty(R) is compact is open in the usual analytic topology on
Y (R).

Proof. Without loss of generality, we may assume T has constant fiber dimension d and Y (hence T ) is
separated. Fix a positive integer n. The multiplication map n : T → T over Y is fiberwise finite étale of
degree nd, so since T is Y -flat (even Y -smooth) we conclude that n : T → T is finite étale of degree nd.
Thus, T [n] → Y is finite étale of degree nd. I claim that an étale map of algebraic R-schemes induces a
local homeomorphism on topological spaces of R-points. Granting this, the induced map T [n](R)→ Y (R)
is a local isomorphism of topological spaces. Since fibers have size at most nd and the source and target are
Haudorff (being R-points of separated R-schemes), it follows that for any y ∈ Y (R) with fiber of size nd,
all nearby points in Y (R) have the same property.

It remains to prove the general fact that for an étale map Y ′ → Y between algebraic R-schemes, the map
Y ′(R) → Y (R) of topological spaces (with the usual analytic topology) is a local homeomorphism. If Y is
R-smooth then this can be proved using the structure theorems for smooth maps and étale maps, together
with the inverse function theorem from multivariable calculus. This is the only case Deligne requires. For
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the general case, one uses the point of view of real analytic spaces and the fact that the completion of the
analytic local ring is the completion of the algebraic local ring (or, as an alternative, by identifying R-points
with Gal(C/R)-invariant C-points, it suffices to treat the situation over C, where one may instead appeal
to the theory of complex analytic spaces).

�

The preceding theorem provide a class of open loci to which the following theorem is applied by Deligne
(the geometric irreducibility condition is verified in Deligne’s situation by applying Corollary 4.5). Here, for
the first time, we require special ground fields of characteristic zero:

Theorem 5.2. Let E be a number field. Consider a commutative diagram

W
f //

p

��

V

��
SpecE // Spec Q

with V a dense open in an affine space over Q, W reduced and geometrically irreducible over E, and f
quasi-finite and dominant. Let U ⊆ V (R) be a non-empty open set in the analytic topology. Let F/E be a
finite extension.

There exists v ∈ V (Q) ∩ U such that F ⊗E f−1(v) is the spectrum of a field.

The same method works with Q replaced by any number field and R replaced by its completion at any
place; for global function fields with positive characteristic, the theorem requires additional conditions of
étaleness which are automatic in characteristic zero.

Proof. Since f is a quasi-finite and dominant map between finite type integral schemes over a field of
characteristic zero, it is generically étale on W . Thus, by shrinking on both V and W we may assume f
is finite étale; this shrinking cannot be disjoint from U(R), since a proper Zariski closed set in an affine
space over Q cannot contain a non-empty analytic open set of R-points (hence, the shrinking does not harm
any of the hypotheses). Likewise, replacing W with W ×E F does not affect any of the assumptions or the
condition of f being finite étale. In particular, this base change does not affect the irreducibility because of
the hypothesis that W is geometrically irreducible over E. Thus, we may rename F as E so as to reduce to
finding v ∈ V (Q) ∩ U such that the étale k(v)-scheme f−1(v) is a single point (hence is the spectrum of a
field). We will no longer make use of geometric irreducibility; just irreducibility will be used.

By the primitive element theorem, we may write k(W ) ' k(V )[T ]/(g) for g ∈ k(V )[T ] a monic separable
polynomial. Shrinking V around its generic point, we may assume V = SpecA with A = Q[x1, . . . , xn][1/h]
and W = SpecB with B = A[T ]/(g) with g ∈ Q[x1, . . . , xn, T ] involving T and irreducible. Thus, it suffices
to show that inside of Rn, there is a dense set of point elements (q1, . . . , qn) ∈ Qn for which g(q1, . . . , qn, T ) ∈
Q[T ] is irreducible (for denseness allows us to find such a rational point which lies in the non-empty open
locus U ⊆ Rn). The classical Hilbert irreducibility theorem says that for irreducible g ∈ Q[X,T ] involving
T , there are infinitely many x ∈ Q for which g(x, T ) ∈ Q[T ] is irreducible; a mild strengthening is that the
set of such x’s is dense relative to any finite set of absolute values on Q (such as denseness in R). What
we need is the multivariable version. In the algebraic theory, one says that a field H is Hilbertian if for any
irreducible g ∈ H[X,T ] there are infinitely many x ∈ H such that g(x, T ) ∈ H[T ] is irreducible, and it is a
basic theorem that when H is Hilbertian then similar statements (with Zariski denseness conditions) hold
for g ∈ H[x1, . . . , xn, T ]. However, we require a stronger multivariable generalization over number fields (or
even just Q) in which one encodes a density condition relative to a given finite set of places. This is exactly
what is proved in Lang’s Diophantine Geometry book. �

6. A descent result

We end by proving a general form of Deligne’s Proposition 5.3:
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Theorem 6.1. Let K/k be an algebraically closed extension of a perfect field k, and let X be a k-scheme.
Let Y be a reduced closed subscheme of XK .

Assume there is given an indexed family of algebraic extensions ki of k inside of K with intersection k and
ki-schemes Mi and ki-maps vi : Mi → Xki such that vi : Mi ×ki K → XK factors through Y and has dense
image in Y . Then Y is defined over k in the sense that there exists a closed reduced subscheme Y0 ↪→ X
such that Y0 ×k K = Y inside of XK .

Proof. The problem is local on X, so we may assume X = SpecA is affine, with I the radical ideal of Y in
AK = K⊗kA. We want to prove that I = K⊗k I0 for a (necessarily unique) ideal I0 in A. We may likewise
assume each Mi is a disjoint union of affines SpecBi,α, so we are given ki-algebra maps ki⊗k A→ Bi,α such
that the map K ⊗k A→

∏
α(K ⊗ki Bi,α) has kernel equal to I. Since this map is Aut(K/ki)-invariant, we

conclude that I ⊆ K ⊗k A is Aut(K/ki)-invariant for all i. If I = K ⊗k I0 for a k-vector space I0 inside of
A, then I0 is an ideal since I is an ideal (and K is faithfully flat over k).

Thus, we are reduced to a problem in linear algebra: if V is a vector space over k and W is a K-subspace
of VK = K ⊗k V such that W is Aut(K/ki)-invariant for all i, then W = K ⊗k V ′ for a (necessarily
unique) k-subspace V ′ in V . Since each ki is perfect, so ki is the subfield of Aut(K/ki)-invariants in K, a
standard argument via writing nonzero elements of VK as sums of tensors in a minimal manner implies that
WAut(K/ki) 6= 0 when W 6= 0 and more specifically W = K ⊗ki WAut(K/ki) inside of VK = K ⊗ki (ki ⊗k V )
for each i. The problem is therefore to show that if W is a K-subspace in VK and W = K ⊗ki Wi for
ki-subspaces inside of ki ⊗k V for all i, then W = K ⊗k W ′ for a k-subspace W ′ inside of V .

Let k be the algebraic closure of k inside of K, so by faithful flatness we see that W is defined over k
compatibly with the Wi’s over ki, so we may assume K = k. The k-subspace W inside of Vk is Gal(k/ki)-
invariant for each i (with continuous Galois action for the discrete topology, since elements of Vk are finite
sums of elementary tensors. Thus, W is invariant under the closure of the subgroup of Gal(k/k) generated
by the subgroups Gal(k/k). This subgroup is obviously Gal(k/k) since ∩ki = k. Using the normal basis
theorem (or really, finite Galois descent for well-chosen subspaces of finite dimension), a discrete k-vector
space with a continuous action of Gal(k/k) is naturally the extension of scalars on its k-vector subspace of
Gal(k/k)-invariants. This says that W is defined over k as a k-subspace of Vk. �


