
Algbraicity properties of Heegner points

1. Motivation

Let K = Q(
√
D) ⊆ C be an imaginary quadratic subfield of C. Let N be a positive integer relatively

prime to D whose prime factors are split in K. We want to show how to use the main theorems of the
classical theory of complex multiplication to prove that Heegner points on X0(N)/Q with CM by the full
ring of integers of K have residue field isomorphic to the Hilbert class field H of K, and we will likewise apply
CM theory to compute the action on these points by Gal(H/K), as well as complex conjugation (which,
together with Gal(H/K), generates the generalized dihedral group Gal(H/Q)). Of course, from the purely
analytic point of view it is hard to “see” that the Heegner points for a Gal(H/Q)-stable subset inside of the
H-points of X0(N)/Q (let alone that they’re even H-points).

Since we only work here with Heegner points with CM by the maximal order, we correspondingly will
only state the main theorems of CM for the maximal order. If we were to work with more general Heegner
points (with CM by general orders) then we would need the general version of the main theorems of CM
and the residue fields on X0(N)/Q at the corresponding Heegner points would be isomorphic to certain ring
class fields of K (depending on the order in question) rather than the Hilbert class field. Our description
of the Galois action would also adapt in an essentially mechanical way. Thus, the underlying method for
handling the general case is basically the same as what we use here, but one has to deal with some additional
technical complications. Since Gross-Zagier only require these sorts of results for Heegner points with CM
by the maximal order, we tailor the exposition to this case.

Here we use the following notation. If Λ ⊆ C is a cocompact lattice (such as a fractional ideal of K), we
write j(Λ) to denote the j-invariant of the elliptic curve C/Λ. Also, if H ⊆ C denotes the Hilber class field of
K then we normalize the isomorphism Gal(H/K) ' ClK of class field theory so that a (non-zero) prime ideal
p of OK corresponds to the arithmetic Frobenius element at p (i.e., the unique element in the decomposition
group at p which induces x 7→ xNp on OH/P for any prime P of OH over p). This normalization for the
Artin isomorphism of class field theory is the one used in Lang’s Elliptic Functions, so our use of Lang as
a reference is the reason we follow this normalization (as opposed to the reciprocal normalization which is
preferred by Deligne). In general, we write σb ∈ Gal(H/K) to denote the element corresponding to the ideal
class of a fractional ideal b of K.

2. Main theorems of complex multiplication

As a general reference, we use Lang’s Elliptic Functions (2nd. edition) for the development of the classical
CM theory (including arbitrary orders in imaginary quadratic fields). His techniques rest on rather hands-on
arguments with elliptic functions and Weierstrass equations. In order to state the main theorems for CM,
we need to recall some general idelic notation.

Let K be a number field (only the imaginary quadratic case is relevant for us) and a a fractional ideal of
K. For any idele s of K, we let (s) denote the corresponding fractional ideal of K (with multiplicity ordv(sv)
at each v -∞). We have a canonical decomposition

K/a '
⊕
v-∞

Kv/av,

and multiplication by sv on the vth factor sets up an OK-linear isomorphism

s : K/a ' K/(s)a.
In the special case when s is a principal idele with generator α then this map is just the multiplication

map
α : K/a ' K/αa.

Another important special case is when sv is a unit for all v - ∞. This is the case when the Artin symbol
(s|K) ∈ Gal(Kab/K) acts trivially on the Hilbert class field of K (essentially by the idelic description of the
ideal class group and the idelic formulation of class field theory for K). In this case, (s)a = a but the map
s : K/a→ K/a is rather far from the identity in general (we will see that relative to an algebraic model for
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C/a over H, this action essentially corresponds to the action of (s|K) on (C/a)tors, whose coordinates all
lie in Kab).

Here is a special case of the first main theorem of complex multiplication (obtained from Theorem 2 in
§1, Theorem 5 in §3, and Remark 1 on p. 133, §3, all in Chapter 10 of Lang’s book).
Theorem 2.1. Let K ⊆ C be an imaginary quadratic subfield of C, and a a fractional ideal of K. Let
H ⊆ C be the Hilbert class field of K. Then

j(C/a) ∈ H

and this j-invariant generates H over K.
Moreover, for any fractional ideal b of K, we have

σb(j(a)) = j(ab−1).

If we had decided to use Deligne’s normalization for the Artin isomorphism, there would be b rather than
b−1 in the final identity of the theorem.
Corollary 2.2. For any fractional ideal a of K, the elliptic curve C/a admits a Weierstrass model over the
subfield H ⊆ C.

Proof. It is a basic fact from the theory of elliptic curves that an elliptic curve over an algebraically closed
field admits a Weierstrass equation whose coefficients lie in the subfield generated over the prime field by
the j-invariant. �

A special case of the second main theorem of CM is the following (extracted from Theorem 3 in §2 of
Chapter 10 in Lang’s book):
Theorem 2.3. Let K ⊆ C be an imaginary quadratic field, and H ⊆ C its Hilbert class field. Let ϕ : C/a '
A be an analytic isomorphism onto a Weierstrass model over C. Let σ ∈ Aut(C/K) be a K-automorphism,
and s an idele of K with (s|K) = σ|Kab . Let Aσ denote the Weierstrass model obtained from applying σ
to the coefficients, so the set-theoretic map (x, y) 7→ (σ(x), σ(y)) induces an isomorphism of abelian groups
A ' Aσ.

Then there exists a unique analytic isomorphism ψσ : C/(s)−1a ' Aσ such that the diagram

(1) K/a

s−1

��

// C/a '
ϕ // A

σ

��
K/(s)−1a // C/ab−1 '

ψσ

// Aσ

commutes. Here, the maps K/Λ→ C/Λ are the canonical inclusions.
If we had used Deligne’s normalization for the Artin isomorphism, then s−1 would be replaced with s in

both appearances on the left side of (1).
The proof of this theorem involves a detailed study of Weber functions which explicate torsion in terms

of Weierstrass theory. The point is that K/a is exactly the torsion subgroup of C/a (and likewise for the
bottom row using (s)−1a), so the commutativity of the diagram certainly requires an understanding of torsion
in terms of analytic Weierstrass models. It is perhaps also worth stressing that the proof of Theorem 2.3
proceeds in a series of stages, where one first proves a weaker result for arithmetic Frobenius elements away
from some “bad” finite set and then an indirect procedure extends things to the case of general σ.

Observe that uniqueness of ψσ (which Lang doesn’t mention) is immediate from the denseness of (C/Λ)tors

inside of C/Λ. Note that there is no meaningful way to fill in a middle arrow in (1) making a commutative
square on either the left or the right. Thus, it is only the retangle (1) which really makes sense.

In the special case where we choose the Weierstrass model to have coefficients in H (which can be done,
thanks to Corollary 2.2) and σ is the identity on H, then Aσ = A and σ|Kab = (s|K) for an idele s which is
a unit at all finite places. Thus, as we noted earlier, we then have (s)−1a = a for all fractional ideals a of K.
Putting this all together, we get the following consequence of the preceding theorem:
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Corollary 2.4. Let K ⊆ C be an imaginary quadratic subfield with Hilbert class field H. Let a be a fractional
ideal of K and ϕ : C/a ' A an analytic isomorphism onto a Weierstrass model with coefficients in H. For
any σ ∈ Aut(C/H) and idele s of K with σ|Kab = (s|K) and sv ∈ O×v for all v - ∞, there is a unique
analytic isomorphism ψσ : C/a ' A such that the diagram

K/a

s−1

��

// C/a '
ϕ // A

σ

��
K/a // C/a '

ψσ

// A

commutes, where the right vertical map is (x, y) 7→ (σ(x), σ(y)) (which carries A to itself since σ acts as the
identity on the coefficients in H).

Remark 2.5. Clearly ψσ = ϕ ◦ ξσ for an analytic automorphism ξσ of C/a, which is to say ξσ ∈ O×K ⊆ C.
This completes our overview of the classical CM theory.

3. Applications of CM theory to algebraicity

We let K be an imaginary quadratic subfield of C and a a fractional ideal of K. Let b be a (non-zero)
integral ideal of K, so the finite OK-module

(C/a)[b] ⊆ C/a

makes sense, and is the kernel of the natural finite projection map

C/a→ C/ab−1.

A special case of this situation is that described by a Heegner point. We want to prove the following theorem:

Theorem 3.1. With notation as above, and H ⊆ C the Hilbert class field of K, the situation

C/a→ C/ab−1

can be “defined over H”.

This can be interpreted in two (equivalent) ways. On the one hand, we can take this to mean that
projective models (even Weierstrass models) can be found for the two elliptic curves using H-coefficients in
such a way that the analytic projection map can be described (locally for the Zariski topology relative to
H-coefficients) in terms of polynomial equations with H-coefficients. But clearly such an ad hoc point of
view is inadequate for proving anything. In more sophisticated terms, we are claiming that there exists an
isogeny E → E′ of elliptic curves over H whose base change to C (and resulting analytification) is isomorphic
to the given analytic isogeny.

In order to verify statements of this sort, we will use the following basic fact which is a special case of
descent theory in algebraic geometry and was known even in the archaic pre-Grothendieck era. If you have
questions about the proof, just ask me (it is easier to describe in person than to write out here).

Lemma 3.2. Let F be a field and F ′/F an algebraically closed extension field. Let E be an elliptic curve
over F and π′ : E/F ′ → E′1 a separable isogeny of elliptic curves over F ′. Then there exists an isogeny

π : E → E1

over F whose base change to F ′ is isomorphic to π′ if and only if the finite subgroup

ker(π′)(F ′) ⊆ E(F ′)

is stable under the “coordinate-wise” action of Aut(F ′/F ) on E(F ′).

Now we can prove Theorem 3.1:
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Proof. By the algebraicity of the category of complex analytic elliptic curves, the analytic diagram

C/a→ C/ab−1

can be realized as the analytification of an algebraic isogeny between elliptic curves over C. Moreover,
we have already noted that C/a may be realized by a Weierstrass equation E with coefficients in H. Let
ϕ : C/a ' E(C) be an analytic isomorphism.

By the preceding lemma we just have to show that the subgroup ϕ(ab−1/a) in E(C) is stable under the
action of Aut(C/H). Choose σ ∈ Aut(C/H). In the notation of Corollary 2.2 and the subsequent remark,
we have

σ(ϕ(ab−1/a)) = ϕ(ξσ((ab−1/a))),
where ξσ is multiplication by some element in O×K . The right side is visibly ϕ((ab−1/a)), so we’re done.

�

We now use the arithmetic theory of modular curves, or more specifically the theory for realizing classical
analytic modular curves as arising from algebraic curves over Q. From now on, we write Y0(N) to denote
the canonical algebraic curve over Q (whose analytified base change to C is naturally analytically identified
with the classical analytic construction to now be denoted Y0(N)an). This is a smooth affine curve over Q.
It is an unfortunate fact of life that one cannot view Y0(N) as a fine moduli scheme. But at the very least,
from the theory that makes this algebraic curve over Q one obtains the following:
Theorem 3.3. Let F be a subfield of C and E → E′ a cyclic N -isogeny of elliptic curves over F . Then the
point on Y0(N)an corresponding to the analytic data E(C)→ E′(C) is induced by a point in Y0(N)(F ).

Combining this fact with Theorem 3.1, we obtain:
Corollary 3.4. Let K be an imaginary quadratic field, and N a positive integer all of whose prime factors
are totally split in K. Then all Heegner points on Y0(N)an arise from points in Y0(N)(H).

We have a generalized semi-direct product decomposition

Gal(H/Q) ' 〈c〉nGal(H/K),

where c is complex conjugation. The reason for the semi-direct product structure is because the isomorphism
Gal(H/K) ' ClK arising from class field theory is functorial in the abstract field K and the action of complex
conjugation on K induces inversion on the ideal class group of K. Indeed, for any fractional ideal b of K
we see that bb is a principal ideal generated by the norm of b. Hence, b represents the inverse ideal class to
that of b.

Since Gal(H/Q) acts on the set Y0(N)(H) (as Y0(N) is an algebraic curve over Q), it makes sense (by
Corollary 3.4) to ask how this group acts on Heegner points. Can the action be described in terms of the
analytic data ([a], n) which we have used to describe Heegner points? Of course the answer is yes. Let’s see
how it goes.

There are two actions on the set of Heegner points which we want to describe: the action of complex
conjugation c and the action of Gal(H/K). The latter will be approached using CM theory (which only
discusses automorphisms of C that fix the subfield K anyway), and the analysis of c will use the fortunate
fact that c acts continuously in a well-understood manner with respect to the analytic topology. Let’s begin
with the case of c, since it requires no arithmetic theory at all.
Theorem 3.5. For a Heegner point x = ([a], n) in Y0(N)(C), we have c(x) = ([a]−1, n).

Proof. Since [a] = [a]−1, one can be tempted the declare the entire result as essentially obvious because of
vague nonsense along the lines “oh, c is continuous so how could it be otherwise”, but that brief argument
fails to articulate the role of the definitions of the algebraic structures in question and hence is not actually a
proof of anything. But of course it is close to the real reason: the general simple behavior of the Weierstrass
function ℘Λ and the numbers g2(Λ), g3(Λ) with respect to complex conjugation (and the role of these in
explicating the algebraicity of the classical analytic theory of elliptic curves).

Now let’s carefully explain how to translate the naive intuition into a convincing proof. We first recall
that the identification of the set Y0(N)(C) with the classical analytic model Y0(N)an uses the canonical
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algebraicity of the category of elliptic curves over C. In other words, to identify ([a], n) with a point on the
algebraic curve Y0(N)(C) we need to give an algebraic model over C for the analytic situation

C/a→ C/n−1a.

We can equivalently (by the algebraic theory of isogenies and its compatibility with the analytic theory)
work with the specification of an algebraic model of the pair (C/a, n−1a/a). Then by the very definition of
how such an algebraic model gives rise to a point in Y0(N)(C) it follows that the action of c on such a point
corresponds to applying c to the coefficients of the defining equations of such an algebraic model over C.

Let us make this more specific. Using the Weierstrass function ℘a associated to the cocompact lattice a
in C, an algebraic model for C/a is provided by the equation

y2w = 4x3 − g2(a)x2w − g3(a)w3

where g2(Λ) and g3(Λ) are the habitual numbers attached to a compact lattice Λ in C:

g2(Λ) = 60
∑

λ∈Λ−{0}

1
λ4
, g3(Λ) = 140

∑
λ∈Λ−{0}

1
λ6
.

In this model, the finite subset n−1a/a corresponds to the set of points

{[℘a(z), ℘′a(z), 1] ∈ P2 | z ∈ n−1a/a}
where we understand the case z = 0 to correspond to [0, 1, 0]. If we apply c to the coefficients of the defining
Weierstrass equation then by continuity of c and the obvious identities

gj(Λ) = gj(Λ)

we arrive at the equation
y2w = 4x3 − g2(a)x2w − g3(a)w3.

Since X − aW, Y − bW are the defining equations of the point [a, b, 1] (while X = W = 0 are the defining
equations of the point [0, 1, 0]), we conclude by the continuity of c and the obvious identity

℘Λ(z) = ℘Λ(z)

that c carries the algebraic model of n−1a/a over to the set of points

{[℘a(z), ℘′a(z), 1] ∈ P2 | z ∈ n−1a/a}
This shows that applying c to an algebraic model over C for ([a], n) yields an algebraic model over C

corresponding to ([a], n) = ([a]−1, n). Since the subset Y0(N)(H) ⊆ Y0(N)(C) is given the intrinsic action
from c on H when we use complex conjugation on C (applied to the coefficients of the defining equations of
algebraic models over C), it follows that we have correctly described the action of c on Heegner points when
the latter are viewed as points in Y0(N)(H).

�

With the action of c on Heegner points understood, it remains to work out the action of Gal(H/K) ' ClK
on Heegner points ([a], n).
Theorem 3.6. Let σ ∈ Gal(H/K) correspond to a fractional ideal class [b] under the class field theory
isomorphism Gal(H/K) ' ClK . Then as points in Y0(N)(H) we have

σ([a], n) = ([ab−1], n).

Of course, we could describe the equality in this theorem purely in terms of ideal classes rather than in
terms of representative elements, but the distinction is minor and in practice we’ll certainly be computing
with representatives anyway. A more subtle point is to observe that the statement of the theorem certainly
depends on how we define the Artin isomorphism of class field theory, for which there’s always a question of
sign: does the ideal class of a prime ideal p correspond to an arithmetic of geometric Frobenius element at
p. We have made the convention to work with arithmetic Frobenius elements because this is the convention
uses in Lang’s Elliptic Functions (to which we have referred for the statements of the main theorems of CM).
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If we adopted Deligne’s preference to go with geometric Frobenius elements as the more basic concept, then
the equality in the theorem would have b rather than b−1 on the right side. Whatever.

Proof. We first choose an isogeny π : E → E′ of elliptic curves over H which induces a point in Y0(N)(H) ⊆
Y0(N)(C) = Y0(N)an that corresponds to the Heegner point data C/a→ C/an−1. We let

ϕ : C/a ' E(C), ϕ′ : C/an−1 ' E′(C)

denote corresponding compatible analytic isomorphisms making the diagram

C/a
ϕ //

��

E(C)

πC

��
C/an−1

ϕ′
// E′(C)

commute, where the left column is the canonical projection.
Fix a lifting of σ to a K-automorphism of C, again denoted σ, and choose an idele s of K for which

(s|K) = σ|Kab , so (s) = b by the definition of b (and our convention for normalizing the Artin isomorphism).
By Theorem 2.3, there are unique analytic isomorphism

ψσ : C/ab−1 ' Eσ(C)

and

ψ′σ : C/an−1 ' E′σ(C)

which fit into respective commutative diagrams of groups

K/a

s−1

��

// C/a '
ϕ // E(C)

σ

��
K/ab−1 // C/ab−1 '

ψσ

// Eσ(C)

and

K/an−1

s−1

��

// C/an−1
'
ϕ // E′(C)

σ

��
K/an−1b−1 // C/an−1b−1 '

ψ′σ

// E′σ(C)

Now consider the analytic diagram

(2) C/ab−1
'
ψ′σ //

��

Eσ(C)

(πσ)C

��
C/ab−1n−1 '

ψ′σ

// E′σ(C)

where the left column in the canonical projection. Here is the crucial point: this diagram commutes. To
check such commutativity, by continuity it suffices to compose everything back to the dense torsion subgroup
K/ab−1 ⊆ C/ab−1, and even to compose with the isomorphism

s−1 : K/a ' K/ab−1.
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But if we use the trivial commutativity of general diagrams

K/c //

��

C/c

��
K/c′ // C/c′

(for fractional ideals c ⊆ c′) and

K/c '
s−1

//

��

K/(s)−1c

��
K/c′

'

s−1
// K/(s)−1c′

(for fractional ideals c ⊆ c′), then everything fits together rather easily, thanks to the characterizing properties
of ψσ and ψ′σ when composed back to torsion. It is too painful for me to TeX the corresponding 3-dimensional
diagram which puts everything together, so we leave it as a pleasant exercise to see how the jigsaw puzzle
works.

With the commutativity of (2) settled, we look at what this diagram says! The left side of (2) is exactly
the data corresponding to the Heegner point ([ab−1], n). The right side of (2) is exactly the analytification
of the base change to C of the action of σ ∈ Gal(H/K) on the original H-model E → E′ in Y0(N)(H) for
our initial Heegner point ([a], n). Hence, the commutativity of (2) with analytic isomorphisms across the
horizontal directions says exactly that σ ∈ Gal(H/K) acting on Y0(N)(H) takes ([a], n) over to ([ab−1], n),
as desired.

�


