
Structure near the cusps

1. The setup

We fix a positive integer N and for any z ∈ P1(Q)∪h we let the point [z] ∈ X0(N) denote the Γ0(N)-orbit
of z. In case [z] is a cusp, we want to analyze the nature of isomorphism classes of pairs (E,CN ) which are
classified by points on Y0(N) which are “near” [z]. Let’s first consider what happens for z =∞, a punctured
neighborhood of which is represented by

{z ∈ h | Im(z) > M}/(z ∼ z + 1).

Via e2πi(·) this is analytically identified with the punctured disc {q ∈ C× | 0 < |q| < e−2πM}.
We know that distinct points in such a punctured disc correspond to distinct pairs (E,CN ) up to isomor-

phism, but these can be described in a manner which is analytically “nice” in q. Namely, the exponential
map e2πi(·) identifies C/[1, z] with C×/qZ and this carries the subgroup 〈1/N〉 over to the subgroup µN of
Nth roots of unity in C×. For 0 < |q| � 1, we conclude that

(C×/qZ, µN )

provides a “nice” formula which describes isomorphism class representatives for the structures classified on
Y0(N) by points near ∞.

In order to make this description more precise, it is convenient at this point to introduce the language of
relative Tate curves.
Lemma 1.1. Let ∆∗ = {q ∈ C× | 0 < |q| < 1}. The natural map of analytic ∆∗-groups

Z×∆∗ ↪→ C× ×∆∗

defined by (n, q) 7→ (qn, q) is a closed immersion for which the quotient map

C× ×∆∗ � (C× ×∆∗)/(Z×∆∗)

is a covering map. The quotient is proper over ∆∗ and admits a unique analytic structure with respect to
which the quotient map is analytic. As such, this analytic quotient is an analytic ∆∗-group whose fiber over
q ∈ ∆∗ is C×/qZ with its usual analytic group structure.

Proof. This situation is essentially that obtained by applying e2πi(·) to the more classical Weierstrass picture
of

Z2 × h ↪→ C× h

defined by (m,n; z) 7→ (mz+n; z). The C∞-isomorphism R2×h ' C×h defined by (x+ iy; z) 7→ (x+zy; z)
carries the “twisted” embedding of Z2 × h into C × h over to the “constant” embedding as Z[i] × h. This
makes the topological picture obvious, and since the “action” of Z×∆∗ on C××∆∗ is analytic, the descent
of the analytic ∆∗-group structure through the covering map is straightfoward to check.

�

We call the quotient constructed in the preceding lemma the standard Tate family

Tate1 → ∆∗.

This is a genuine analytic morphism which “interpolates” the classical Tate construction C×/qZ for varying
q ∈ ∆∗. If we pull back along the finite covering map ∆∗ → ∆∗ defined by q 7→ qM , we get another such
analytic ∆∗-group

TateM → ∆∗.

This has analytic fiber group C×/qMZ over q ∈ ∆∗. It can also be directly constructed by using Z×∆∗ ↪→
C× ×∆∗ defined by (n, q) 7→ (qnM , q) and arguing as in the proof of the preceding lemma.

In any case, we see that for all positive integers m there are natural closed immersions of ∆∗-groups

µm ×∆∗ ↪→ TateM
1



2

compatible with the finite covering maps TateM ′ → TateM for M |M ′, and there are canonical short exact
sequences over ∆∗ given by

0→ µm ×∆∗ → TateM [m]→ (Z/m)×∆∗ → 0,

inducing the classical short exact sequence for m-torsion of C×/qMZ on fibers. More importantly, there is a
canonical section

q : ∆∗ → Tate∗m[m]

defined by q 7→ (q mod qmZ, q), and this splits the exact sequence for m-torsion on Tatem.
A more sophisticated formulation of how we described the structures classified on Y0(N) near [∞] is to

say that if we restrict
(Tate1, µN ×∆∗)→ ∆∗

over a small punctured disc ∆∗r of radius r � 1 around the origin, then ∆∗r may be identified with a punctured
neighborhood of [∞] ∈ Y0(N) in such a manner that the fiber (C×/qZ, µN ) of our Tate family over q ∈ ∆∗r
is a representative for the isomorphism class which is classified by the point q when viewed in ∆∗r ↪→ Y0(N).

What is the analogous picture near the other cusps? No such picture is described by Gross-Zagier, but
it is actually essential in order to make an accurate translation between cusps on arithmetic and analytic
models of modular curves. Before we begin, we note that the description given in Gross-Zagier is incorrect.
For a reduced form fraction m/n with d = gcd(n,N), they define fd = gcd(d,N/d) and consider the element
m(n/d)−1 mod fd, upon noting that n/d ∈ (Z/fd)×. It is claimed that this construction is Γ0(N)-invariant
and leads to a (not very meaningful) description of the cusps on X0(N) as a bare set. However, for

γ =
(
x y
Nu v

)
∈ Γ0(N)

consider the reduced form fraction

γ(m/n) = (xm+ yn)/(Num+ vn)

for which the equality gcd(Num+ vn,N) = gcd(vn,N) = d holds (so at least d and fd are Γ0(N)-invariant
quantities).

Clearly
(Num+ vn)/d ≡ v(n/d) mod fd

and
xm+ yn ≡ xm mod fd,

so applying the same Gross-Zagier construction to γ(m/n) yields xv−1m(n/d)−1 mod fd. Hence, if this
construction were going to be well-defined, we’d need xv−1 ≡ 1 mod fd. But in fact xv − yNu = 1, so
xv ≡ 1 mod fd, whence we encounter problems in general if we follow Gross-Zagier here.

Such problems would go away if we had worked with (m(n/d))−1 mod fd, and one of our aims here is
to explain via geometry where such (corrected) formulas “come from”. The same method can be used
to conceptually classify the cusps on other standard modular curves. We again emphasize that the big
advantage of our geometric approach is that when we use the arithmetic theory, we can detect conceptually
which arithmetic cusps correspond to which analytic cusps in terms of our explicit upper half-plane models.
Without this sort of method, it is baffling to me how one would perceive (with any sense of rigor) the
dictionary between analytic and arithmetic cusps.

We must give a word of warning at this point concerning what will happen at other cusps. In certain
favorable cases, we will be able to write down a “universal family” over a punctured disc around a cusp. But
such descriptions typically require specifying a generator of the cyclic subgroup, and this cannot always be
done (essentially it only happens when the map X1(N)→ X0(N) is somewhere unramified over the cusp in
question). For squarefree N we will be in good shape at all cusps, but otherwise we will have to deal with
some mild complications.
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2. Relative Tate curve calculations

In order to streamline the subsequent discussion, it will be helpful to first give some examples of what we
seek to understand, and at the end it will be shown that the examples we give here constitute “all” of the
possible examples.
Definition 2.1. For any positive integer r, we let ζr = e2πi/r.

To get started, we choose d|N and define fd = gcd(d,N/d). Choose a unit u ∈ (Z/fd)× and fix u′ ∈ Z/N
lifting u with u′ mod d a unit. The section q1/fd of TateN/dfd → ∆∗ is not globally well-defined, but the
∆∗-subgroup

(1) 〈ζu
′

N q
1/fd〉 ↪→ TateN/dfd

is well-defined. Indeed, for any q ∈ ∆∗ and any fdth root q1/fd of q, since N/fd is divisible by d we compute

(ζu
′

N q
1/fd)N/fd = ζufdq

(d/fd)(N/dfd) ≡ ζufd mod q(N/dfd)Z,

so this subgroup contains µfd . Thus, the choice of fdth root really doesn’t matter: we get a well-defined
∆∗-subgroup.

It may seem that this formula was pulled out of thin air, but we’ll see in the next section how one can be
naturally led to such families. It simplifies the exposition to explicate these examples before we launch into
the geometric analysis near cusps on X0(N).

Of course, when fd = 1 then the subgroup in (1) even has a global generator given by the section ζu
′

N q.
In general this doesn’t happen, but that’s OK. Observe that the ∆∗-subgroup we’ve constructed is cyclic of
order N on fibers. Indeed, to see that

ζu
′

N q
1/fd ∈ C×/q(N/dfd)Z

has exact order N , it suffices to raise to the (N/d)th power and to check that ζu
′

d has exact order d. But
recall the requirement that u′ mod d ∈ Z/d should be a unit. That condition takes care of what we need.
We conclude that the structure

(TateN/dfd , 〈ζ
u′

N q
1/fd〉)→ ∆∗

is an analytic elliptic curve over ∆∗ endowed with a relative cyclic subgroup of exact order N .
Let’s show that, up to ∆∗-isomorphism, this data does not depend on the choice of lifting u′ ∈ Z/N

of u ∈ (Z/fd)× (subject to the condition u′ mod d is a unit in (Z/d)×). We first give a more workable
description of the data with which we’re working. Consider the elliptic curve TateN/d → ∆× endowed with
the section ζu

′

N q. For ζ ∈ µfd , the map

C× ×∆∗ → C× ×∆∗

defined by (t, q) 7→ (t, ζq) covers the action q 7→ ζq on ∆∗ and although it moves the section ζu
′

N q to the
section ζu

′

N ζq, the ∆∗-subgroup 〈ζu′N q〉 contains

(ζu
′

N q)
N/d = ζu

′

d q
N/d ≡ ζu

′

d mod q(N/d)Z,

so since u′ mod d is a unit it follows that µd ×∆∗ lies in this ∆∗-subgroup and hence our action of µfd on
C× × ∆∗ covering its standard action on ∆∗ allows us to descent everything throught the quotient map
∆∗ → ∆∗ defined by q 7→ qfd . The descended quotient is exactly the structure

(TateN/dfd , 〈ζ
u′

N q
1/fd〉)

considered already.
What happens if we change the choice of u′ ∈ Z/N lifting u ∈ (Z/fd)×? For any (N/d)th root of unity

ζ = ζdsN we have
ζu
′

N q = ζu
′−ds

N (ζq),
and the action (t, q) 7→ (t, ζq) on C× ×∆∗ preserves the “lattice”

{(qN/d, q) | q ∈ ∆∗}
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defining the quotient TateN/d, so we see that the pullback of TateN/d → ∆∗ by the automorphism q 7→ ζq

on the base ∆∗ is isomorphic to TateN/d → ∆∗ in a manner which carries ζu
′

N q back to ζu
′−ds

N q. Of course
u′ − ds ∈ Z/N is still the same as u′ modulo d (in particular, it is a unit mod d), but as we run through all
such ζ’s we get all other choices of u′ which lift the same unit modulo d. Moreover, this all clearly commutes
with the µfd-action whose quotient defines the actual structure over ∆∗ in which we are most interested
(using q1/fd). To summarize, up to reparameterization (q ↔ ζq) on the base disc our construction (up to
isomorphism) depends only on our lift of u to a unit in (Z/d)×.

But even the lifting to (Z/d)× doesn’t matter (i.e., only the original choice of u ∈ (Z/fd)× matters).
Indeed, since it is just the subgroup rather than the specific generator in which we are interested, we can
consider other generators (ζu

′

N q)
r for r ∈ (Z/N)× with r ≡ 1 mod N/d (so qr ≡ q mod q(N/d)Z). The resulting

generator ζu
′r

N q ∈ C×/q(N/d)Z has root of unity coefficient with exponent u′r ∈ Z/N whose image modulo d
is u′r mod d with u′ ∈ (Z/d)× a unit and r mod d running through all unit values modulo fd = gcd(d,N/d)
since the only constraint on r is r ≡ 1 mod N/d. We conclude that, up to reparameterization q ↔ ζq on the
base disc, the Tate family example we can construct depends (up to isomorphism) only on the choice of d|N
and u ∈ (Z/fd)×.

3. Local cusp calculations

Since we have already described the relative picture near [∞] ∈ X0(N), in order to carry this over to
the other cusps, let’s now choose m/n ∈ Q a reduced-form fraction (we even allow for the possibility that
[m/n] = [∞] ∈ X0(N)). This choice will be fixed for the rest of this write-up. Choose a matrix

γ =
(
m m′

n n′

)
∈ SL2(Z)

such that γ(∞) = m/n, so we have the relationship

γ−1Stabm/n(Γ0(N))γ = Stab∞(γ−1Γ0(N)γ).

Since γ−1Γ0(N)γ is a subgroup of SL2(Z), its stabilizer at ∞ is a subgroup of

Stab∞(SL2(Z)) = {±1} ·
(

1 1
0 1

)Z

.

Thus, there is a unique natural number d′, a priori depending on m/n and γ, such that Stab∞(γ−1Γ0(N)γ)
is equal to one of the following distinct types of groups:(

1 d′

0 1

)Z

,

(
−1 d′

0 −1

)Z

, {±1} ·
(

1 d′

0 1

)Z

.

These all have the same image in PSL2(Z). Since unipotence is a conjugation-invariant property of a matrix,
and cyclicity is a conjugation-invariant property of a subgroup, we see that the above three types of cases
are independent of the choice of γ and d′ is independent of γ and is even unaffected by left multiplication on
γ by Γ0(N). Thus, d′ is intrinsic to [m/n] ∈ X0(N). In fact, since the analytic map j : X0(N)→ P1 defined
by the classical j-function is just the composite of the natural map X0(N)→ X0(1) followed by the j-map
j : X0(1)→ P1 which is unramified at ∞, we see that d′ is intrinsic because it is the ramification degree at
[m/n] ∈ X0(N) for the map j : X0(N)→ P1.

Note that right now we have not explained how to directly compute d′ in terms of m,n,N . We begin by
using “moduli” reasoning to prove the following lemma:
Lemma 3.1. With notation as above, let d = gcd(N,n). Then d′ = (N/d)/fd where fd = gcd(d,N/d).

From this lemma, we see that the simplest situation is when fd = 1. When N is squarefree this always
happens.

Proof. For z’s “near” m/n in h, we have the associated data (C/[1, z], 〈1/N〉), with two such pairs isomorphic
if and only if the corresponding z’s are in the same orbit for Stabm/n(Γ0(N)). Using the coordinates given
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by γ−1, we see that the formula (C/[1, γ(z)], 〈1/N〉) equally well describes such data in terms of which
“nearness to [m/n]” in X0(N) becomes “nearness to ∞” in some punctured disc

{Im(z) > M}/(z ∼ z + d′).

More specifically, due to how d′ was defined, and using the bijection between Γ0(N) \ h and isomorphism
classes of pairs (E,CN ), to study the moduli data near [m/n] ∈ X0(N) is to study the data

(C/[1, γ(z)], 〈1/N〉)
(nz+n′)
' (C/[1, z], 〈(nz + n′)/N〉)

for Im(z)� 0, with z ∼ z + d′.
Since d = gcd(n,N), we can write

n = dn0, N = dN0,

where gcd(n0, N0) = 1. By definition of d′, for z with large imaginary part and r ∈ Z there exists an
isomorphism

(C/[1, z + r], 〈(n(z + r) + n′)/N〉) ' (C/[1, z], 〈(nz + n′)/N〉)
if and only if r ∈ d′Z. We’ll find another way to classify such r’s, and this will lead to the determination of
d′ as advertised.

Since the lattices [1, z + r] and [1, z] coincide for r ∈ Z and, for Im(z) > 1, do not admit endomorphisms
by Z[ζ3] or Z[ζ4], it follows that the only isomorphisms C/[1, z + r] ' C/[1, z] are ±1. Since subgroups are
invariant under inversion, we conclude

r ∈ d′Z⇔
〈
n(z + r) + n′

N

〉
=
〈
nz + n′

N

〉
mod [1, z]⇔ nr

N
∈
〈
nz + n′

N

〉
mod [1, z].

This latter condition says exactly nr ≡ a(nz + n′) mod [N,Nz] for some a ∈ Z. That is, we have

nr ≡ au′ mod N, an ≡ 0 mod N

for some a ∈ Z.
Since d = gcd(n,N) and n = dn0 with gcd(n0, N/d) = 1, the condition an ≡ 0 mod N says

a ≡ 0 mod N/d,

so the condition on r becomes exactly nr ∈ 〈n′ ·N/d〉 mod N . That is, nr = (N/d)r′ with r′ ∈ 〈n′〉 mod d,
yet the condition

(2)
(
m m′

n n′

)
∈ SL2(Z)

forces gcd(n′, n) = 1, so gcd(n′, d) = 1. This implies that n′ generates Z/d, so r ∈ d′Z if and only if

nr ≡ 0 mod N/d.

Since n = dn0 with gcd(n0, N/d) = 1, we obtain that r ∈ d′Z if and only if r ≡ 0 mod (N/d)/fd, where
fd = gcd(d,N/d). This yields the desired formula for d′.

�

With the computation of d′ settled, we now turn to consider the data

(C/[1, z], 〈(nz + n′)/N〉) = (C/[1, z], 〈n0z/(N/d) + n′/N〉).
In order to encode the equivalence relation z ∼ z + d′ with d′ = (N/d)/fd, it will turn out to be more
convenient to first mod out by z ∼ z + N/d and then to deal with the extra factor of fd. We apply e2πi(·)

to our situation, so q′ = e2πiz/(N/d) is an fdth root of a parameter q on X0(N) near [m/n] (for |q′| � 1), in
terms of which the data for points on X0(N) near [m/n] looks like

(C×/q′(N/d)Z
, 〈ζn

′

N q
′n0〉),

where q′ is (locally) an fdth root of a parameter in a small punctured disc ∆∗r around [m/n]. Recall also
that n′ satisfies n′ ≡ m−1 mod n due to (2).
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Since n0 = n/ gcd(n,N) is relatively prime to N/ gcd(n,N) = N/d, we can find a ∈ Z with

a ≡ n−1
0 mod N/d

and a ∈ (Z/N)×. Thus, we can replace the indicated subgroup generator ζn
′

N q
′n0 with its ath power, and this

is multiplicatively congruent to ζn
′a

N q′ modulo q′(N/d)Z. We have now normalized our desciption to involve
a subgroup generator which is a root of unity times q′. Thus, we have shown that we can identify a small
punctured neighborhood of [m/n] ∈ X0(N) with a punctured disc ∆∗r such that the restriction of the family

(TateN/dfd , 〈ζ
n′a
N q1/fd〉)→ ∆∗

over ∆∗r describes (via its fibers) exactly the structure classified by points in X0(N) near [m/n].
Our earlier study of relative Tate curve families made explicit that this latter construction in fact only

depends (up to reparameterization of the base disc, reselection of the “local generator” of the subgroup,
and isomorphism) on n′a mod fd. But a mod N/d = n−1

0 mod N/d = (n/d)−1 mod N/d, as we have already
seen, and n′ ≡ m−1 mod d since n′m ≡ 1 mod n. Thus, modulo fd we have

n′a ≡ m−1(n/d)−1 mod fd.

It follows that the structures classified by a neighborhood of [m/n] ∈ X0(N) arise from our Tate construc-
tion for the divisor d = gcd(n,N) of N and the unit u = m−1(n/d)−1 ∈ (Z/fd)× (with fd = gcd(d,N/d)).
We have already noted that both d = gcd(n,N) and m−1(n/d)−1 ∈ (Z/fd)× depend only on the Γ0(N)-orbit
of m/n ∈ P1(Q) (where ∞ = 1/0, with d = N and u = 1), and since the points of Y0(N) are in bijection
with isomorphism classes of pairs (E,CN ), distinct cusps on X0(N) must give rise to distinct pairs (d, u).
Our method of analysis on Y0(N) shows that the evident set-theoretic maps

∆∗r → Y0(N)

are in fact analytic isomorphisms onto punctured neighborhoods of cusps.
This makes the description

cusps(X0(N)) =
∐
d|N

(Z/fd)×

both explicit and geometric, and “explains” the recipe m/n 7→ (m · (n/d))−1 mod fd. For a cusp x ∈ X0(N)
giving rise to parameters d|N and u ∈ (Z/fd)×, and u′ ∈ Z/N a fixed lift of u which is a unit modulo d, the
structures parameterized by Y0(N) near x are given by the fibers of the structure

(3) (TateN/dfd , 〈ζ
u′

N q
1/fd〉)→ ∆∗

over q ∈ ∆∗ with 0 < |q| � 1.

4. The translation to the arithmetic case

We only make some brief motivating remarks here. Consider the situation at a cusp x ∈ X0(N) with
associated paraemters d|N and u ∈ (Z/fd)×. The “universal family” on Y0(N) near x is described by (3),
which depends on a choice of primitive Nth root of unity ζN . Changing this choice amounts to changing
the choice of u′, and the only condition we need to have an isomorphic structure is that we not change u′

modulo fd.
It is essentially for this reason that the point corresponding to x on the arithmetic model X0(N)/Q has

residue field Q(x) which is a priori a subfield of Q(µN ) but with Gal(Q(µN )/Q(x)) = Gal(Q(µN )/Q(µfd)),
so in fact Q(x) = Q(µfd). For example, when N is squarefree then all cusps on X0(N)/Q are Q-rational
points. Completely justifying our suggestive argument (and extending it to the situation over Z for arbitrary
N) requires using the arithmetic theory of the Tate curve, and in particular the “integral” version of this
theory over Z[[q]] where q is not inverted (which is analogous to carrying out the non-trivial task of doing
our preceding analytic work without removing the origin from discs).


