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1. Introduction

1.1. Motivation. Let E be an elliptic curve over a p-adic integer ring R, and assume E has supersingular
reduction. Consider the 2-dimensional Fp-vector space of characteristic-0 geometric p-torsion points in the
associated 1-parameter formal group Ê over R. It makes sense to ask if, in this vector space, there is a
line whose points x are nearer to the origin than all other points (with nearness measured by |X(x)| for a
formal coordinate X of Ê over R; the choice of X does not affect |X(x)|). Such a subgroup may or may not
exist, and when it does exist it is unique and is called the canonical subgroup. This notion was studied by
Lubin [Lu] in the more general context of 1-parameter commutative formal groups, and its scope was vastly
extended by Katz [K] in the relative setting for elliptic curves over p-adic formal schemes and for analytified
elliptic curves over certain modular curves. Katz’ ideas grew into a powerful tool in the study of p-adic
modular forms for GL2/Q.

In [C4] we used rigid-analytic descent theory to give two generalizations of this p-torsion theory in the
1-dimensional case: higher p-power torsion-levels and arbitrary p-adic analytic families with no restriction
on the base space or non-archimedean base field k/Qp. More specifically, under a necessary and sufficient
fibral hypothesis, for any n ≥ 1 we constructed a pn-torsion relative canonical subgroup in generalized
elliptic curves over rigid spaces over any analytic extension field k/Qp, and the method made no use of
the fine integral structure of modular curves or their 1-dimensionality. However, the method did use the
1-dimensionality of the fibers in an essential way (as this severely restricts the possibilities for the semistable
reduction type).

The study of p-adic modular forms for more general algebraic groups and number fields, going beyond the
classical case of GL2/Q, naturally leads to the desire to have a theory of canonical subgroups for rigid-analytic
families of abelian varieties. (See [KL] for an application to Hilbert modular forms.) Ideally, one wants such
a theory that is intrinsic to the rigid-analytic category and in particular avoids restrictions on the nature of
formal (or algebraic) integral models for the family, but it should also be amenable to study using suitable
formal models (when available). In this paper we develop such a theory, and our viewpoint and methods
are rather different from those of other authors who have recently worked on the problem (such as [AM],
[AG], [GK], and [KL]). The replacement for the 1-parameter formal groups in the case of elliptic curves
is the formal group (or equivalently the identity component of the p-divisible group) of the semi-abelian
formal model arising from the semistable reduction theorem for abelian varieties, proved in [BL1] without
discreteness conditions on the absolute value.

Roughly speaking, if A is an abelian variety of dimension g over an analytic extension field k/Qp (with
the normalization condition |p| = 1/p) then a level-n canonical subgroup Gn ⊆ A[pn] is a k-subgroup
with geometric fiber (Z/pnZ)g such that (for k

∧
/k a completed algebraic closure) the points in Gn(k

∧
) ⊆

A[pn](k
∧
) are “closer” to the identity than all other points in A[pn](k

∧
), where closeness is defined in terms

of absolute values of coordinates in the formal group of the unique formal semi-abelian model AR′ for A over
the valuation ring R′ of a sufficiently large finite extension k′/k; this formal group is the same as the one
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arising from the identity component of the p-divisible group AR′ [p∞] over the henselian local ring R′. (See
Theorem 2.1.9 for the characterization of AR′ in terms of the analytification Aan, and see Definition 2.2.7
for the exact meaning of such closeness.) By [C4, Thm. 4.2.5], for g = 1 this notion of higher-level canonical
subgroup is (non-tautologically) equivalent to the one defined in [Bu] and [G].

In contrast with the approach in [AM], our definition of canonical subgroups is not intrinsic to the torsion
subgroups of A but rather uses the full structure of the formal group of a formal semi-abelian model. A level-
n canonical subgroup is obviously unique if it exists, and it is an elementary consequence of the definitions
(see Remark 2.2.10) that A admits a level-n canonical subgroup for all n ≥ 1 if and only if A is ordinary
in the sense that the abelian part of the semi-abelian reduction AR′ mod mR′ is an ordinary abelian variety
over R′/mR′ (or equivalently, if and only if the p-divisible group AR′ [p∞] has ordinary reduction over the
residue field of R′). This is modest initial evidence to support the appropriateness of our definition.

In the 1-dimensional case there is the explicit result [C4, Thm. 4.2.5] that a level-n canonical subgroup
exists if and only if the “Hasse invariant” exceeds p−p/pn−1(p+1). A basic theme in this paper is to prove
properties of canonical subgroups (such as existence and duality results) subject to universal bounds on
fibral Hasse invariants, so let us now recall how the Hasse invariant is defined in the p-adic analytic setting.
Using notation A, k′/k, and AR′ as above, let AR′ = AR′ mod pR′ so the relative Verschiebung morphism
V : A

(p)

R′ → AR′ induces a Lie algebra map Lie(V ) : Lie(A
(p)

R′ )→ Lie(AR′) between finite free R′/pR′-modules
of the same rank. The linear map Lie(V ) has a determinant in R′/pR′ that is well-defined up to unit multiple
(and is taken to be a unit if A = 0). The Hasse invariant h(A) ∈ [1/p, 1] ∩

√
|k×| is the maximum of 1/p

and the absolute value of a lift into R′ for this determinant in R′/pR′. Since h(A) = 1 if and only if A is
ordinary (with h(A) = 1 when A = 0), the number h(A) is a measure of the failure of the abelian part of
AR′ mod mR′ to be ordinary. Work of Mazur–Messing ensures the identity h(A∨) = h(A), with A∨ denoting
the dual abelian variety. (See Theorem 2.3.4.)

A very natural question in the g-dimensional case for any g ≥ 1 is this: is there a number h(p, g, n) < 1
so that for any g-dimensional abelian variety A over any analytic extension field k/Qp, if h(A) > h(p, g, n)
then A admits a level-n canonical subgroup Gn? In effect, we are asking for an existence criterion that has
nothing to do with any particular modular family in which A may have been presented to us. The best choice
for h(p, 1, n) is p−p/pn−1(p+1), but for g > 1 it seems unreasonable to expect there to be a strict lower bound
h(p, g, n) that is sufficient for existence of a level-n canonical subgroup and is also necessary for existence.
Thus, we cannot expect there to be a “preferred” value for h(p, g, n) when g > 1.

We will prove the existence of such an h(p, g, n), but then more questions arise. For example, since
h(A∨) = h(A), can h(p, g, n) be chosen so that if h(A) > h(p, g, n) then the level-n canonical subgroup of A∨

is the orthogonal complement of the one for A under the Weil-pairing on pn-torsion? Also, what can be said
about the reduction of such a Gn into AR′ [pn]0 mod pR′? Finally, how does the level-n canonical subgroup
relativize in rigid-analytic families of abelian varieties A→ S (over rigid spaces S over k/Qp)? The method
of proof of existence of h(p, g, n) allows us to give satisfactory answers to these auxiliary questions, and when
a formal semi-abelian model is given for a family A/S then we describe relative canonical subgroups locally
on the base in terms of fibral formal coordinates on the formal model.

The rigid-analytic families A→ S of most immediate interest are those that are algebraic in the sense that
A/S is a pullback of the analytification of an abelian scheme over a locally finite type k-scheme. However, this
class of families is too restrictive as a foundation for the general theory. For example, when using canonical
subgroups to study p-adic modular forms one has to consider passage to the quotient by a relative canonical
subgroup and so there arises the natural question of whether such a quotient admits a relative canonical
subgroup at a particular level (cf. [Bu], [Kas]). In practice, if A → S is the analytification of an abelian
scheme then its relative canonical subgroups (when they exist) do not generally arise from analytification
within the same abelian scheme, and so passage to the quotient by such a subgroup is a non-algebraic
operation. It is therefore prudent to enlarge the class of families being considered so that it is stable under
passage to the quotient by any rigid-analytic finite flat subgroup. We work with the following larger class
that meets this requirement (and is local on the base): those A/S for which there exists an admissible
covering {Si} of S and finite surjections S′i → Si such that A/S′i

is algebraic. We summarize this condition
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by saying that A/S becomes algebraic after local finite surjective base change on S. (See Example 2.1.8 for
the stability of this class under quotients by finite flat subgroups.)

Modular varieties for g-dimensional abelian varieties with g > 1 generally admit normal compactifications
such that the boundary has codimension ≥ 2, so in a geometric theory of p-adic modular forms beyond the
classical case there is less of a need to use families with degenerate characteristic-0 fibers as in the case g = 1.
Thus, for g > 1 it is not unduly restrictive to work with families of g-dimensional abelian varieties without
degeneration in characteristic 0. (Of course, we do allow the abelian-variety fibers in the family to have
non-trivial toric part in their potential semi-abelian reduction type over the residue field of the valuation
ring.) The theory for g > 1 is more difficult than in the case g = 1 because we do not fix discrete parameters
(such as a PEL-type) and we allow any potentially semistable fibral reduction type. Berkovich spaces play
a vital role in some of our proofs (such as for Theorem 1.2.1 below), so we must allow arbitrary k/Qp even
if our ultimate interest is in the case of discretely-valued extensions of Qp.

1.2. Overview of results. An abeloid space over a rigid space S over a non-archimedean field k is a proper
smooth S-group A→ S with connected fibers. Relative ampleness (in the sense of [C3]) gives a good notion
of polarized abeloid space over a rigid space, and analytifications of universal objects for certain moduli
functors of polarized abelian schemes satisfy an analogous universal property in the rigid-analytic category.

Let S be a rigid space over any non-archimedean extension k/Qp, with the normalization |p| = 1/p, and
consider abeloid spaces A→ S of relative dimension g ≥ 1 such that either:

(i) A/S admits a polarization fpqc-locally on S, or

(ii) A/S becomes algebraic after local finite surjective base change on S (in the sense defined in §1.1).

(In either case, a simple descent argument ensures that the fibers As admit ample line bundles and so are
abelian varieties.) We do not restrict ourselves to universal families over specific modular varieties over Qp

and we allow p and k/Qp to be arbitrary (e.g., k need not be discretely-valued). We prove that for any
abeloid space A → S as in cases (i) or (ii) and any h ∈ (p−1/8, 1) ∩

√
|k×|, the locus S>h (resp. S≥h)

of s ∈ S such that the fiber As has Hasse invariant > h (resp. ≥ h) is an admissible open, and that for
quasi-separated S its formation is compatible with arbitrary extension on k. (The intervention of p−1/8

has no significance; it is an artifact of the use of Zahrin’s trick in the proof, and we shall only care about
h universally near 1 anyway.) We also prove that the open immersions S≥h → S are quasi-compact with
{S≥h′}h<h′≤1 an admissible cover of S>h, and that for “reasonable” S the formation of S≥h and S>h is
compatible with passage to Berkovich spaces. The overconvergent nature of canonical subgroups is due to
the fact that S>h → S induces an open immersion on the associated Berkovich spaces.

These properties of S>h and S≥h are not obvious because in general (even locally on S) there does not
seem to exists a rigid-analytic function H for which s 7→ max(|H(s)|, 1/p) equals the fibral Hasse invariant
h(As). Such an H locally exists in many polarized cases, but probably not in general. To avoid polarization
restrictions for analytified algebraic families we use a result of Gabber (Theorem A.2.1) that is of independent
interest.

The main result in this paper is:

Theorem 1.2.1. There exists a positive number h(p, g, n) < 1 depending only on p, g, and n (and not on the
analytic base field k/Qp, a PEL-type, or special properties of a base space) such that if A→ S is an abeloid
space of relative dimension g that satisfies either of the hypotheses (i) or (ii) above and h(As) > h(p, g, n)
for all s ∈ S then there exists a finite étale S-subgroup of A[pn] that induces a level-n canonical subgroup on
the fibers. Such an S-subgroup is unique, and the formation of this subgroup respects arbitrary extension of
the analytic base field.

We also show that by taking h(p, g, n) to be sufficiently near 1, the level-n canonical subgroup of any
g-dimensional abelian variety A/k satisfying h(A) > h(p, g, n) is well-behaved with respect to duality and
products (in dimensions adding up to g), and that it reduces to the kernel of the n-fold relative Frobenius
morphism on the semi-abelian reduction modulo pλR′ for any fixed λ ∈ (0, 1) ∩Q and any sufficiently large
finite extension k′/k (with valuation ring R′). This compatibility with Frobenius kernels allows us to study
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the behavior of the Hasse invariant and level-n canonical subgroup under passage to the quotient by the
level-m canonical subgroup for 1 ≤ m < n.

The idea for the construction of a level-n canonical subgroup in a g-dimensional abelian variety A with
Hasse invariant sufficiently near 1 (where “near” depends only on p, g, and n) is to proceed in three steps: (I)
the principally polarized case in any dimension (using that the moduli scheme Ag,1,N/Zp

over Zp with p - N
and a fixed N ≥ 3 admits a compactification equipped with a semi-abelian scheme extending the universal
abelian scheme), (II) the potentially good reduction case, which we study via the principally polarized case
(Zahrin’s trick) and a theorem of Norman and Oort concerning the geometry of Ag,d,N/Zp

for all d ≥ 1, and
(III) the general case, which we study by applying the potentially good reduction case to the algebraization
of the formal abelian part in the semistable reduction theorem for A.

Let us be a bit more precise concerning these three steps. In the principally polarized case we use
Berkovich’s étale cohomology theory for torsion sheaves arising from the analytified semi-abelian scheme
over a compactification of Ag,1,N/Zp

to solve a more general construction problem for all g by “smearing
out” from the ordinary locus. This smearing out process gives rise to difficult connectivity problems that
we do not know how to solve, and such problems are circumvented by using Berkovich’s description of étale
cohomology along “germs”. The Zp-properness of these compactifications is essential for the success of this
step, and it is the reason we can find a universal sufficient strict lower bound hpp(p, g, n) < 1 in the principally
polarized case. Since the construction of hpp(p, g, n) rests on compactness arguments (on Berkovich spaces),
it is not explicit.

To settle the case of potentially good reduction in any dimension g with the sufficient strict lower bound
hgood(p, g, n) = hpp(p, 8g, n)1/8 on Hasse invariants, we use Zahrin’s trick to construct a level-n canonical
subgroup on the principally polarized 8g-dimensional (A × A∨)4. In the principally polarized case our
construction provides universal control on “how far” the canonical subgroup is from the origin of the formal
group of a unique formal semi-abelian model, and this enables us to infer that the level-n canonical subgroup
in (A × A∨)4 must have the form (Gn × G′n)4 for subgroups Gn ⊆ A[pn] and G′n ⊆ A∨[pn], so the fibers
of Gn and G′n are finite free Z/pnZ-modules with ranks adding up to 2g. But why does taking h(A) near
enough to 1 in a universal manner suffice to force the Z/pnZ-ranks of Gn and G′n to equal g and force Gn

and G′n to annihilate each other under the Weil pairing on pn-torsion? Since A/k has a polarization of some
(unknown) degree d2 ≥ 1 (that may well be divisible by p), the potentially good reduction hypothesis enables
us to exploit the geometry of Ag,d,N/Zp

as follows. By a theorem of Norman and Oort, the ordinary locus
in Ag,d,N/Fp

is a Zariski-dense open and Ag,d,N/Zp
is a relative local complete intersection over Zp. Thus,

for any closed point x ∈ Ag,d,N/Fp
(such as arises from the reduction of our chosen polarized abelian variety

equipped with an N -torsion basis, after a preliminary argument to reduce to the case [k : Qp] < ∞) we
may use slicing to find a Zp-flat curve Z in Ag,d,N/Zp

such that the closed fiber of Z over Spec(Zp) passes
through x and has all generic points in the ordinary locus. In conjunction with a connectivity result for
affinoid curves (applied to the generic fiber Zrig of the p-adic completion Z of Z), this allows us to solve our
problems in the potentially good reduction case by analytic continuation from the ordinary case.

Finally, in the general case the semistable reduction theorem of Bosch and Lütkebohmert provides a
unique formal semi-abelian “model” A for A (after a finite extension on k) and the formal abelian part
B of A is uniquely algebraizable to an abelian scheme over the valuation ring. This unique algebraization
has generic fiber B that is an abelian variety satisfying h(B) = h(A) and dimB ≤ dimA; perhaps B = 0,
but then we are in the purely toric (and hence ordinary) case that is trivial. We apply the settled case of
potentially good reduction to B in order to solve the existence problem in the general case with h(p, g, n) =
max1≤g′≤g hgood(p, g′, n).

1.3. Further remarks. The reader may be wondering: since the definitions of level-n canonical subgroup
and Hasse invariant make sense for any p-divisible group Γ over the henselian local valuation ring (the
identity component Γ0 provides both a Lie algebra and a formal group), why isn’t this entire theory carried
out in the generality of suitable families of Barsotti–Tate (BT) groups? There are many reasons why this is
not done. First of all, whereas an abelian variety determines a unique (and functorial) semi-abelian formal
model even when the base field is algebraically closed, this is not the case for BT-groups. Hence, if the
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theory is to work over a non-archimedean algebraically closed field k/Qp then it seems necessary to specify
a relative formal model as part of the input data. However, one cannot expect to find relative canonical
subgroups that arise from the same formal data (especially if we later try to shrink the rigid-analytic base
space) and so one would constantly be forced to change the formal model in an inconvenient manner. Even
if we restrict to the case of a discretely-valued base field, there arises the more fundamental problem that
in a family of abelian varieties whose semistable reduction types are varying there is often no obvious way
to pick out a global formal BT-group with which to work. We want the relative theory for abelian varieties
to be applicable without restrictions on the fibral reduction type or on the existence of preferred integral
models for the rigid base space. (The specification of formal models is a source of technical complications in
the theory developed in [K], and we want a theory that is intrinsic to the rigid-analytic category.)

It is also worth noting that for BT-groups one has no analogue of the Zp-compactifications of the
Ag,1,N/Qp

’s that classify “all” abelian varieties (up to suitable applications of Zahrin’s trick). Having a
Zp-proper base space is the key reason that we are able to get a universal number h(p, g, n) < 1 in Theorem
1.2.1, and so for BT-groups there seems to be no a priori reason to expect the existence of such a number.
Our method ultimately rests on analytic continuation from the ordinary case, and for BT-groups the nearest
analogue seems to be the generic ordinarity of the universal equicharacteristic deformation of a BT-group Γ0

over a field of characteristic p. Unfortunately, the Berthelot generic fiber of the universal formal deformation
ring of such a Γ0 is an open unit polydisc and it lacks a good compactification. One might get lucky via
explicit calculations with multivariable formal group laws, and such calculations may clarify the situation for
abelian varieties. Aside from the possibility of a miracle in such calculations, we are not aware of any reason
to justify the expectation that there exists a universal constant like h(p, g, n) in the case of a reasonable class
of BT-groups that do not arise from abelian varieties.

Let us now briefly summarize the contents of this paper. In §2.1 we recall some results of Bosch and
Lütkebohmert on semistable reduction over non-archimedean fields, and in §2.2 we use these results to
define canonical subgroups. In §2.3 we define the Hasse invariant and use the work of Mazur and Messing
on relative Dieudonné theory to show that the Hasse invariant is unaffected by passage to the dual abelian
variety. This is crucial, due to the role of Zahrin’s trick in subsequent arguments. The variation of the
Hasse invariant in families is studied in the polarized case in §3.1, and in §3.2 we use a theorem of Gabber
to get results in the analytified “algebraic” setting without polarization hypotheses. The technical heart of
the paper is §4.1–4.2. In §4.1 we construct level-n canonical subgroups in g-dimensional abelian varieties
whose fibral Hasse invariants exceed a suitable h(p, g, n) < 1 and we show that such canonical subgroups are
well-behaved with respect to duality of abelian varieties. The key geometric input into the argument is a
result concerning the existence of ordinary points on connected components of certain rigid-analytic domains
in A an

g,d,N/Qp
, and the proof of this result occupies §4.2. The relativization of the theory and the relationship

between level-n canonical subgroups and the kernel of the n-fold relative Frobenius map modulo p1−ε for
any fixed ε ∈ (0, 1) (when the Hasse invariant exceeds a suitable h(p, g, n, ε) ∈ (1/p, 1)) are worked out in
§4.3, where we also give a partial answer to the question of how the level-n canonical subgroup and Hasse
invariant behave under passage to the quotient by the level-m canonical subgroup for 1 ≤ m < n.

As this work was being completed we became aware of recent results of others on the theme of canonical
subgroups for abelian varieties. Abbes–Mokrane [AM] (for p ≥ 3), Goren–Kassaei [GK], and Kisin–Lai [KL]
provide overconvergent canonical subgroups for universal families of abelian varieties over some modular
varieties over discretely-valued extensions of Qp, and Andreatta–Gasbarri [AG] construct p-torsion canonical
subgroups for families of polarized abelian varieties with good reduction. In §4.4 we compare our work with
these other papers, including consistency between all of these points of view (at least near the ordinary locus
on the base).

There is a uniqueness result for the p-torsion good-reduction theory developed in [AG], where one also
finds explicit bounds (in contrast with our non-explicit bounds that arise from compactness arguments).
Using notation as in §1.2, the problem of making h(p, g, n) explicit can be reduced to the problem of
making hpp(p, g′, n) explicit in the case of good reduction for abelian varieties of dimension g′ ≤ 8g over
finite extensions of Qp. Our fibral definitions are well-suited to the (non-quasi-compact) Berthelot rigid-
analytification of the universal formal deformation of any principally polarized abelian variety over a perfect
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field of characteristic p (or any field of characteristic p equipped with an associated Cohen ring). Hence,
a plausible method to determine an explicit h(p, g, n) is to study all such local families (even with just
finite residue field) because the results of this paper ensure a priori that a sufficient lower bound on Hasse
invariants across all such local families is also sufficient for global rigid-analytic families of abelian varieties
over any non-archimedean base field k/Qp. This viewpoint may also be useful for a deeper study of the
behavior of canonical subgroups with respect to isogenies.

1.4. Notation and Terminology. Our notation and terminology conventions are the same as in the previ-
ous paper [C4] that treats the 1-dimensional case. In particular, we refer to [C4, §1.3] for a discussion of the
notion of pseudo-separatedness. (A rigid-analytic map f : X → Y is pseudo-separated if its relative diagonal
factors as a Zariski-open immersion followed by a closed immersion; analytifications of algebraic morphisms
are pseudo-separated. This notion is introduced solely to avoid unnecessary separatedness restrictions on
locally finite type k-schemes when we wish to consider how their analytifications interact with change of the
base field.)
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2. Abelian varieties over non-archimedean fields

Our first aim is to define a Hasse invariant h(A) ∈ [1/p, 1] ∩
√
|k×| for any abelian variety A over an

analytic extension k/Qp with |p| = 1/p. The definition rests on the semi-stable reduction theorem that was
proved in a suitable form by Bosch and Lütkebohmert over an arbitrary non-archimedean field k (e.g., |k×|
may be non-discrete in (0,∞)). We first review some generalities for abelian varieties over non-archimedean
fields in §2.1, and then we shall specialize to k/Qp in §2.2 and §2.3 where we define and study canonical
subgroups and Hasse invariants.
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2.1. Polarization and semi-stable reduction. Let us begin by recalling some standard terminology in
the context of relative polarizations over an arbitrary non-archimedean field k.

Definition 2.1.1. Let S be a rigid-analytic space over k. An abeloid space over S is a proper smooth
S-group f : A→ S whose fibers are (geometrically) connected.

As with any smooth map having geometrically connected and non-empty fibers, the fiber-dimension of an
abeloid space is locally constant on the base. Thus, we will usually restrict our attention to abeloid spaces
with a fixed relative dimension g ≥ 1. For quasi-separated or pseudo-separated S, any change of the base
field carries abeloid spaces to abeloid spaces and preserves the Zariski-open loci over which the fibers have
a fixed dimension.

The standard infinitesimal-fiber and cohomological arguments for abelian schemes [GIT, §6.1] carry over
verbatim to show that the group law on an abeloid space is uniquely determined by its identity section and
that any S-map between abeloid spaces must respect the group laws if it respects the identity sections. In
particular, the group law is commutative. By [L3, Thm. II] there is a uniformization theorem (requiring a
finite extension of the base field) for abeloid groups over a discretely-valued non-archimedean field k, from
which it follows that the n-torsion subgroups for nonzero integers n are finite with the same order as in the
case of complex tori and abelian varieties. Hence, if the base field is discretely-valued and A→ S is an abeloid
S-group of relative dimension g then for any positive integer n the same arguments as in the algebraic case
show that the map [n] is a finite flat surjection of degree n2g and so (via [C3, §4.2]) the map [n] exhibits A as
a quotient of A modulo the finite flat closed subgroup A[n]. According to [L3, Rem. 6.7] the uniformization
theorem (and thus the preceding consequences) is almost certainly true without discreteness restrictions on
the absolute value, but there are a few technical aspects of the proofs that have to be re-examined in such
generality. (The existence of rigid-analytic uniformizations for all abelian varieties, without restriction on
the non-archimedean base field, is due to Bosch and Lütkebohmert and is recalled as part of Theorem 2.1.9
below.)

We shall only ever work with the multiplication maps [n] in cases when the fibers As are known to be
abelian varieties, and so we do not require the general rigid-analytic uniformization theorem for abeloid
k-groups over a non-archimedean field k. However, to avoid presumably artificial restrictions in examples
and to keep the exposition clean we shall assume in all examples concerning torsion subgroups of abeloids
that the uniformization theorem is valid for any abeloid k-group over any non-archimedean base field k. This
presents no logical gaps for our intended applications of such examples in the case of abeloids whose fibers
are known to be abelian varieties (such as in all of our theorems that involve torsion subgroups).

Example 2.1.2. Let A→ S be an abeloid space and let G ⊆ A be a finite flat closed S-subgroup. The action
by G on A over S defines a finite flat equivalence relation on A over S, and we claim that the quotient A/G
exists as an S-abeloid space. That is, we want to construct a finite flat surjective map of abeloids A → A′

with kernel G (by [C3, §4.2] this A′ serves as a quotient and as such has all of the usual properties one
would desire with respect to maps and base change). A case of particular interest is when k is an analytic
extension field of Qp and A→ S is a pullback of the analytification of an abelian scheme A/S over a locally
finite type k-scheme, for then (after shrinking S appropriately) there is a relative level-n canonical subgroup
Gn ⊆ A that is a finite étale closed subgroup. Such a Gn will be constructed in §4.3, and in general Gn

does not arise from a subgroup scheme of the given algebraic model A/S but for applications with modular
forms it is useful to form A/Gn.

To construct A/G over S, we may work locally on S and so we can assume that G has constant order
d. The map [d] : A → A is a finite flat covering that exhibits the source as a torsor over the target for the
action of the finite flat group A[d] (using the fpqc topology). In general, if X ′ → X is a finite flat map of
rigid spaces that is an fpqc torsor for the action by a finite flat X-group H and if H0 ⊆ H is a finite flat
closed subgroup (such as X ′ = A, X = A, H = A[d] ×S X, H0 = G ×S X) then the existence of the flat
quotient X ′/H0 follows by working over an admissible affinoid cover of X and using Grothendieck’s existence
results on quotients by free actions of finite locally free group schemes in the affine case [SGA3, V, §4]. This
procedure is compatible with products over S in the spaces and groups if everything is given in the category
of rigid spaces over a rigid space S. In this way we can construct A/G as a rigid space that is a finite flat
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cover intermediate to [d] : A→ A, so it is S-proper because it is finite over the target A and it is S-smooth
with geometrically connected fibers because it has a finite flat cover by the source A. Since the natural
S-map (A×A)/(G×G)→ (A/G)× (A/G) is an isomorphism, we get the desired S-group structure on A/G
with respect to which the finite flat covering A→ A/G over S is a homomorphism with kernel G.

Definition 2.1.3. A correspondence between two abeloid spaces A,A′ ⇒ S is a line bundle L on A × A′
equipped with trivializations i : (e × 1)∗L ' OA′ and i′ : (1 × e′)∗L ' OA such that e′∗(i) = e∗(i) as
isomorphisms (e× e′)∗L ' OS .

Any other choice for the pair (i, i′) on the same L is related by the action of Gm(S) under which
c ∈ Gm(S) carries (i, i′) to (c · i, c · i′), so in particular each of i or i′ determines the other. It is clear
that L has no non-trivial automorphism that is compatible with either i or i′. In practice, we shall refer
to L as a correspondence without explicitly mentioning i and i′ (assuming such an (i, i′) exists and has
been chosen). If A′ = A then we call L a correspondence on A. A correspondence L on A is symmetric
if there is an isomorphism L ' σ∗L respecting trivializations along the identity sections, where σ is the
automorphism of A×A that switches the factors; such an isomorphism of line bundles is unique if it exists,
and the symmetry condition is independent of the choice of pair (i, i′). The rigid-analytic theory of relative
ampleness [C3] allows us to make the following definition:

Definition 2.1.4. A polarization of an abeloid space A → S is a symmetric correspondence L on A such
that the pullback ∆∗L along the diagonal is S-ample on A.

Ampleness in the rigid-analytic category is characterized by the cohomological criterion [C3, Thm. 3.1.5],
so by GAGA an abeloid space over Sp(k) admits a polarization if and only if it is an abelian variety. Moreover,
since relative ampleness is compatible with change in the base field [C3, Cor. 3.2.8], if S is quasi-separated
or pseudo-separated then polarizations are taken to polarizations under change in the base field.

Theorem 2.1.5. Let A → S be an abeloid space with identity e, and assume that A admits a relatively
ample line bundle locally on S. The functor T  Pice(AT ) classifying line bundles trivialized along e is
represented by a separated S-group PicA/S. This S-group contains a unique Zariski-open and Zariski-closed
S-subgroup A∨ that is the identity component of PicA/S on fibers over S. The S-group A∨ is abeloid and
admits a relatively ample line bundle locally on S, and the canonical map iA : A→ A∨∨ is an isomorphism
with i∨A inverse to iA∨ .

The formation of PicA/S and A∨ commute with change of the base field when S is quasi-separated or
pseudo-separated, and each is compatible with analytification from the case of abelian schemes that are pro-
jective locally on the base.

Proof. The functor PicA/S is a sheaf on any rigid space over S, so we may work locally on S. Hence, we can
assume that A admits a closed immersion into PN

S . It is a consequence of the compatible algebraic and rigid-
analytic theories of Hilbert and Hom functors that a finite diagram among rigid-analytic spaces projective
and flat over a common rigid space can be realized as a pullback of the analytification of an analogous finite
diagram of locally finite type k-schemes. (See [C3, Cor. 4.1.6] for a precise statement.) Thus, there exists
a locally finite type k-scheme S and an abelian scheme A → S equipped with an embedding into PN

S

such that its analytification pulls back to A → S along some map S → S an. By the rigid-analytic theory
of the Picard functor [C3, Thm. 4.3.3] we thereby get the existence of PicA/S and A∨ compatibly with
analytification, and the algebraic theory for abelian schemes provides the rest. �

If A is an abeloid space that admits a polarization locally on S (so all fibers are abelian varieties), then
Theorem 2.1.5 provides an abeloid dual A∨ that admits a polarization locally on S and is rigid-analytically
functorial in A. A polarization on such an A corresponds to a symmetric morphism of abeloid spaces
φ : A → A∨ such that the line bundle (1, φ)∗(P) on A is S-ample, where P is the Poincaré bundle on
A × A∨. By the algebraic theory on fibers it follows that φ is finite and flat with square degree d2. This
degree (a locally-constant function on S) is the degree of the polarization. When d = 1 we say φ is a principal
polarization.
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Corollary 2.1.6. Let f : A→ S be an abeloid space equipped with a degree-d2 polarization φ. Locally on the
base, (A/S , φ) is a pullback of the analytification of an abelian scheme equipped with a degree-d2 polarization.

Proof. The polarization is encoded as a symmetric finite flat morphism φ : A→ A∨ with degree d2 such that
L = (1, φ)∗P is S-ample, so an application of the rigid-analytic theory of Hom functors [C3, Cor. 4.1.5]
and the “local algebraicity” as in the proof of Theorem 2.1.5 gives the result. (The only reason we have to
work locally on S is to trivialize the vector bundle f∗(L ⊗3).) �

Example 2.1.7. Let N ≥ 3 be a positive integer not divisible by char(k), and let Ag,d,N/k be the quasi-
projective k-scheme that classifies abelian schemes of relative dimension g equipped with a polarization of
degree d2 and a basis of the N -torsion. The separated rigid space A an

g,d,N/k, equipped with the analytification
of the universal structure, represents the analogous functor in the rigid-analytic category over k; this follows
by rigidity of the functor and the method used to prove Theorem 2.1.5. Note in particular that the formation
of this universal structure is compatible with change in the analytic base field.

Example 2.1.8. Suppose that A → S is an abeloid space admitting a polarization locally over S and that
G ⊆ A is a finite flat S-subgroup. All fibers are abelian varieties, and by Example 2.1.2 we get an abeloid
quotient A′ = A/G equipped with a finite flat surjection h : A→ A′. The norm operation from line bundles
on A to line bundles on A′ preserves relative ampleness (by GAGA and [EGA, II, 6.6.1] on fibers over S),
so A′ necessarily admits a polarization locally over S.

A weaker hypothesis to impose on an abeloid A→ S is that it becomes algebraic after local finite surjective
base change on S (in the sense defined in §1.1). By Corollary 2.1.6 and (the self-contained and well-known)
Lemma 3.2.1 below, it is equivalent to assume that the abeloid A → S acquires a polarization after local
finite surjective base change on S. In this case, if G ⊆ A is a finite flat S-subgroup then the hypotheses
force the fibers As to be abelian varieties and the S-abeloid quotient A/G acquires a polarization after local
finite surjective base change on S. It follows from the proof of Corollary 2.1.6 that A/G becomes algebraic
after local finite surjective base change on S because if T ′ → T is a finite surjection between rigid spaces
and F ′ is a vector bundle on T ′ then F ′ is trivialized over the pullback of an admissible open covering of
T ; cf [EGA, II,6.1.12].

The definition of canonical subgroups in abelian varieties over analytic extensions of Qp requires for-
mal semi-abelian models as in the following non-archimedean semi-stable reduction theorem that avoids
discreteness restrictions on the absolute value.

Theorem 2.1.9 (Bosch–Lütkebohmert). Let A be an abelian variety over k. For any sufficiently large finite
separable extension k′/k (with valuation ring R′) there exists a quasi-compact admissible open k′-subgroup
U ⊆ Aan

k′ and an isomorphism of rigid-analytic k′-groups ι : U ' Arig
R′ where AR′ is a topologically finitely

presented and formally smooth formal Spf(R′)-group that admits a (necessarily unique) extension structure

(2.1.1) 1→ T→ AR′ → B→ 1

as topologically finitely presented and flat commutative formal Spf(R′)-groups, with T a formal torus and B
a formal abelian scheme over Spf(R′).

The quasi-compact open subgroup U and the formal Spf(R′)-group AR′ (equipped with the isomorphism ι)
are unique up to unique isomorphism and are uniquely functorial in Ak′ , as are T and B. There exists a
unique abelian scheme BR′ over Spec(R′) (with generic fiber denoted B over k′) whose formal completion
along an ideal of definition of R′ is isomorphic to B, and this abelian scheme is projective over Spec(R′)
and uniquely functorial in Ak′ . Moreover, the analogous such data

(2.1.2) 1→ T′ → A′R′ → B′ → 1

exist for A∨k′ , say with B′R′ the algebraization of B′, and B′R′ is canonically identified with B∨R′ in such a
manner that the composite isomorphism BR′ ' (B′R′)

′ ' (B′R′)
∨ ' B∨∨R′ is the double-duality isomorphism.

Proof. See [BL2, §1, §6]. �
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We say that A as in Theorem 2.1.9 has semistable reduction over k′ and (by abuse of terminology) we
call AR′ the formal semistable model of A/k′ (even though its generic fiber inside of Aan

k′ is a rather small
quasi-compact open subgroup when T 6= 1). The specific identification of BR′ and B′R′ as dual abelian
schemes (or equivalently B and B′ as dual formal abelian schemes, or the k′-fibers B and B′ as dual abelian
varieties over k′) is part of the constructions in the proof of Theorem 2.1.9. It is natural to ask for an
intrinsic characterization of this isomorphism, such as describing the induced duality pairing between B[N ]
and B′[N ] into µN over k′ for all N ≥ 1 in terms that are unrelated to the proof of Theorem 2.1.9. We
address this matter in Theorem A.3.1; it is required in our study of how canonical subgroups interact with
duality for abelian varieties.

Example 2.1.10. Suppose that A admits a semi-abelian model AR over the valuation ring R of k. By [F,
§2, Lemma 1], AR is uniquely functorial in A. The formal completion ÂR of AR along an ideal of definition
of R is a formal semi-abelian scheme over Spf(R) and there exists a canonical quasi-compact open immersion
of k-groups iA : Ârig

R ↪→ Aan [C1, 5.3.1(4)]. Hence, in Theorem 2.1.9 for A we may take k′ = k and then
the pair (AR, ι) is uniquely identified with (ÂR, iA). Also, the associated formal torus and formal abelian
scheme arise from the corresponding filtration on the reduction of AR modulo ideals of definition of R (using
infinitesimal lifting of the maximal torus over the residue field [SGA3, IX, Thm. 3.6bis]).

2.2. Canonical subgroups. Let k be an analytic extension field over Qp, and normalize the absolute value
by the condition |p| = 1/p.

Definition 2.2.1. An abelian variety A over k is ordinary if the formal abelian scheme B as in (2.1.1) has
ordinary reduction over the residue field of k′.

Example 2.2.2. If B = 0 (potentially purely toric reduction) then A is ordinary. The reader may alternatively
take this to be an ad hoc definition when B vanishes.

Clearly the property of being ordinary is preserved under isogeny, duality, and extension of the analytic
base field. In particular, A is ordinary if and only if A∨ is ordinary. It would be more accurate to use the
terminology “potentially ordinary,” but this should not lead to any confusion.

Let us fix an abelian variety A over k with dimension g ≥ 1 and fix a choice of k′/k as in Theorem 2.1.9.
Let ÂR′ denote the formal completion of the formal Spf(R′)-group AR′ along its identity section. The Lie
algebra of AR′ is a finite free R′-module of rank g, and upon choosing a basis we may identify the formal
completion ÂR′ of AR′ along the identity with the pointed formal spectrum Spf(R′[[X1, . . . , Xg]]) whose adic
topology is defined by powers of the ideal generated by the augmentation ideal and an ideal of definition of
R′.

For any positive integer n, the pn-torsion AR′ [pn] has a natural structure of finite flat commutative R′-
group that is an extension of B[pn] by T[pn]. The AR′ [pn]’s are the torsion-levels of a p-divisible group
AR′ [p∞] over the henselian local ring R′, and so there is an identity component AR′ [p∞]0. Since R′ is p-
adically separated and complete, the formal group ÂR′ coincides with the one attached to AR′ [p∞]0 (via
[Me, II, Cor. 4.5]). In particular, the Lie algebra Lie(AR′) = Lie(ÂR′) functorially coincides with the Lie
algebra of AR′ [p∞].

The local-local part AR′ [p∞]00 of AR′ [p∞] coincides with the local-local part of the p-divisible group of B.
Hence, if we run through the above procedure with A∨ in the role of A then the corresponding local-local
part A′R′ [p

∞]00 of the p-divisible group of the associated formal semi-abelian model A′R′ over R′ is canonically
identified with B′[p∞]00, where B′ is as in (2.1.2), and this is canonically isomorphic to the p-divisible group
B∨[p∞]00 ' (B[p∞]00)∨ = (AR′ [p∞]00)∨ that is dual to AR′ [p∞]00.

The geometric points of the generic fiber of the identity component AR′ [pn]0 = ÂR′ [pn] are identified with
the integral pn-torsion points of the formal group ÂR′ with values in valuation rings of finite extensions of k′.
Hence, as a subgroup of A[pn](k) this generic fiber is Galois-invariant. By Galois descent, we may therefore
make the definition:

Definition 2.2.3. The unique k-subgroup in A[pn] that descends (AR′ [pn]0)k′ is denoted A[pn]0.
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Despite the notation, A[pn]0 depends on A and not just on A[pn]. For later reference, we record the
following trivial lemma (valid even in the setting of Example 2.2.2):

Lemma 2.2.4. The k-subgroup A[pn]0 is independent of the choice of k′, and its order satisfies #A[pn]0 ≥
png with equality for one (and hence all) n if and only if A is ordinary. If equality holds then A∨ is ordinary
and so A∨[pn]0 also has order png for all n ≥ 1.

Definition 2.2.5. The size of an integral point x in ÂR′ with values in the valuation ring of an analytic
extension of k′ is size(x) def= maxj |Xj(x)| < 1 for a choice of formal parameters Xj for the formal group ÂR′

over R′.

This notion of “size” is independent of the choice of Xj ’s, and so it is Galois-invariant over k. For any
0 < r < 1, let A[pn]0≤r ⊆ A[pn]0 denote the k-subgroup whose geometric points are those for which the
associated integral point in ÂR′ has size ≤ r; this k-subgroup is independent of the choice of k′/k.

Lemma 2.2.6. If n ≥ 1 and 0 < r < p−1/pn−1(p−1) then A[pn]0≤r is killed by pn−1.

Proof. For the case n = 1, pick a p-torsion geometric point x = (x1, . . . , xg). Choose j0 such that |xj0 | =
size(x). The power series [p]∗(Xj) has vanishing constant term and has linear term pXj . By factoring [p]
over R′/pR′ through the relative Frobenius morphism [SGA3, VIIA, §4.2-4.3], we have

(2.2.1) [p]∗(Xj) = pXj + hj(X
p
1 , . . . , X

p
g ) + pfj(X1, . . . , Xg)

with hj a formal power series over R′ having constant term 0 and fj a formal power series over R′ with
vanishing terms in total degree < 2. Evaluating at x,

(2.2.2) 0 = Xj0([p](x)) = ([p]∗(Xj0))(x1, . . . , xg) = pxj0 + hj0(x
p
1, . . . , x

p
g) + pfj0(x1, . . . , xg).

Assume x 6= 0, so xj0 6= 0. The final term on the right in (2.2.2) has absolute value at most |px2
j0
| < |pxj0 |,

so the middle term on the right in (2.2.2) has absolute value exactly |pxj0 | = |xj0 |/p. This middle term
clearly has absolute value at most |xj0 |p, so |xj0 |/p ≤ |xj0 |p. Since |xj0 | > 0, we obtain |xj0 | ≥ p−1/(p−1).
But |xj0 | = size(x), so we conclude size(x) ≥ p−1/(p−1) for any nonzero p-torsion geometric point x. Hence,
A[p]0

<p−1/(p−1) = 0.

Now we prove that A[pn]0≤r is killed by pn−1 if 0 < r < p−1/pn−1(p−1), the case n = 1 having just been
settled. Proceeding by induction, we may assume n > 1 and we choose a point x ∈ A[pn]0≤r with r <

p−1/pn−1(p−1). We wish to prove [p]n−1(x) = 0. If x has size < p−1/(p−1) then [p]n−1(x) ∈ A[p]0
<p−1/(p−1) =

{0}. Hence, we can assume x has size at least p−1/(p−1). Under this assumption we claim size([p]x) ≤ size(x)p,
so [p](x) ∈ A[pn−1]0≤rp with rp < p−1/pn−2(p−1), and thus induction would give [p]n−1(x) = [p]n−2([p]x) = 0
as desired. It therefore suffices to prove in general that for any point x of ÂR′ with value in the valuation
ring of an analytic extension of k′ such that size(x) ≥ p−1/(p−1), necessarily [p](x) has size at most size(x)p.
Letting xj = Xj(x), we can pick j0 so that |xj0 | = size(x) ≥ p−1/(p−1). Our problem is to prove that the
absolute value of [p]∗(Xj) at x is at most |xj0 |p for all j. Upon evaluating the right side of (2.2.1) at x, the
first term has absolute value |xj |/p ≤ |xj0 |/p ≤ |xj0 |p, the middle term has absolute value at most |xj0 |p,
and the final term has absolute value at most |xj0 |2/p ≤ |xj0 |/p ≤ |xj0 |p. Thus, we get the desired upper
bound on size([p]x) when x has size at least p−1/(p−1). �

Definition 2.2.7. For n ≥ 1, a level-n canonical subgroup in A is a k-subgroup of the form Gn = A[pn]0≤r

for some r ∈ (0, 1) such that Gn has geometric fiber that is finite free of rank g = dimA as a Z/pnZ-module.

An equivalent recursive formulation of the definition for n > 1 is that the subgroup has the form A[pn]0≤r

for some r ∈ (0, 1) and has order png with pn−1-torsion subgroup that is a level-(n− 1) canonical subgroup,
so for such a Gn and 1 ≤ m ≤ n the subgroup Gn[pm] is a level-m canonical subgroup. In concrete terms, if
K/k is an algebraically closed non-archimedean extension then a level-n canonical subgroup is a subgroup
of png points in A[pn](K) that are “closer” to the identity (in A(K)) than all other points in A[pn](K) (and
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we also impose an additional freeness condition on its Z/pnZ-module structure). In [C4, Thm. 4.2.5] it is
shown that if g = 1 then Definition 2.2.7 is equivalent to another definition used in [Bu] and [G].

The following lemma is trivial:

Lemma 2.2.8. A level-n canonical subgroup is unique if it exists, and the formation of such a subgroup is
compatible with change in the base field. If such a subgroup exists after an analytic extension on k then it
exists over k.

In view of the functoriality of AR′ in Ak′ , level-n canonical subgroups are functorial with respect to
isogenies whose degree is prime to p. In particular, if two abelian varieties over k are related by an isogeny
of degree not divisible by p then one of these abelian varieties admits a level-n canonical subgroup if and
only if the other does. The restriction that the isogeny have degree prime to p cannot be dropped, as is clear
even in the case g = 1 [K, Thm. 3.10.7(1)].

An immediate consequence of Lemma 2.2.6 is that a level-n canonical subgroup must uniformly move out
to the edge of the formal group as n→∞:

Theorem 2.2.9. If 0 < r < 1 and A[pn]0≤r is a level-n canonical subgroup then r ≥ p−1/pn−1(p−1) = |ζpn−1|
for a primitive pnth root of unity ζpn .

Remark 2.2.10. In the ordinary case the subgroup A[pn]0 = A[pn]0≤p−1/pn−1(p−1) has order png, so it is the

level-n canonical subgroup in A[pn]. Hence, by Lemma 2.2.4 the inequality #A[pn]0 ≥ png is an equality
for one (and hence all) n ≥ 1 if and only if A is ordinary, in which case there exist level-n canonical
subgroups for all n ≥ 1. Conversely, if there exists a level-n subgroup Gn for all n then A must be ordinary.
Indeed, suppose A is not ordinary, so A[p]0 contains a point x0 not in G1. By Theorem 2.2.9 with n = 1,
size(x0) ∈ (p−1/(p−1), 1). For n ≥ 1 such that A has a level-n canonical subgroup Gn we have x0 6∈ Gn since
Gn[p] = G1, so the size of every point in Gn is strictly less than size(x0). By Theorem 2.2.9 we conclude
size(x0) > p−1/pn−1(p−1), so

n < 1 + logp

(
logp(size(x0)−1)−1

p− 1

)
∈ (1,∞).

We do not impose any requirements concerning how a level-n canonical subgroup Gn in A should interact
with the duality between A[pn] and A∨[pn] (e.g., is (A[pn]/Gn)∨ ⊆ A∨[pn] a level-n canonical subgroup of
A∨?), nor do we require that its finite flat schematic closure (after a finite extension k′/k) in AR′ [pn]0 reduces
to the kernel of the n-fold relative Frobenius on AR′ mod mR′ . In Theorem 4.1.1 and Theorem 4.3.3 we will
show that there is good interaction of Gn with respect to duality (resp. the n-fold relative Frobenius kernel
modulo pλ for an arbitrary but fixed λ ∈ (0, 1) ∩Q) when the Hasse invariant of A (see §2.3) is sufficiently
near 1 in a sense that is determined solely by p, g = dimA, and n (resp. p, g, n, and λ). We do not know if
A∨ necessarily admits admits a level-n canonical subgroup whenever A does.

Remark 2.2.11. The formation of canonical subgroups is not well-behaved with respect to products or duality
in general, but this is largely an artifact of Hasse invariants “far” from 1. We shall give counterexamples in
Example 2.3.3.

2.3. Hasse invariant. Let A be an abelian variety over k as in §2.2, and let k′/k and AR′ be as in Theorem
2.1.9. Let G be the mod-pR′ reduction of the p-divisible group AR′ [p∞] over R′, so we have a Verschiebung
morphism VG : G (p) → G over Spec(R′/pR′) and on the Lie algebras this induces an R′/pR′-linear map

Lie(VG ) : Lie(G )(p) → Lie(G )

between finite free R′/pR′-modules of the same rank g; it is an isomorphism if and only if VG is étale, which
is to say that the identity component of G is multiplicative. That is, this map is an isomorphism if and only
if A is ordinary in the sense of Definition 2.2.1. Up to unit multiple, there is a well-defined determinant
det(Lie(VG )) ∈ R′/pR′; this is taken to be 1 (or a unit) when A = 0. We let aAk′ ∈ R

′ be a representative
for det(Lie(VG )) ∈ R′/pR′, so aAk′ is well-defined modulo p up to unit multiple and therefore the following
definition is intrinsic to A over k:
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Definition 2.3.1. The Hasse invariant of A is h(A) = max(|aAk′ |, 1/p) ∈ [1/p, 1] ∩
√
|k×|.

Obviously h(A1 ×A2) = max(h(A1)h(A2), 1/p), and h(A) is invariant under isogenies with degree prime
to p. In the 1-dimensional case Definition 2.3.1 recovers the notion of Hasse invariant for elliptic curves in
[C4].

Example 2.3.2. With notation as in Theorem 2.1.9, let B = (BR)k be the generic fiber of the algebraization
of B. We have h(A) = h(B) because (2.1.1) induces an exact sequence on p-divisible groups and hence on
their Lie algebras (and the Verschiebung on the R′/pR′-torus T mod pR′ is an isomorphism). Thus, h(A) = 1
if and only if the Verschiebung for B mod pR′ is étale, which is to say that the abelian variety B mod mR′ is
ordinary. Hence, h(A) = 1 if and only if A is ordinary. Note that this reasoning is applicable even if B = 0
(and so A has potentially purely toric reduction).

Example 2.3.3. Let E and E′ be elliptic curves with supersingular reduction such that h(E), h(E′) ∈
(p−p/(p+1), 1) and h(E) > (ph(E′))p. By [K, Thm. 3.10.7(1)] each of E and E′ admits a level-1 canonical
subgroup but all p-torsion from E has smaller size than all nonzero p-torsion from E′. Hence, A = E × E′
admits a level-1 canonical subgroup G1, namely G1 = E[p], but this is not the product of the level-1 canon-
ical subgroups of E and E′. Also, (A[p]/G1)∨ ⊆ A∨[p] is not the level-1 canonical subgroup of A∨ since A
is principally polarized and G1 is not isotropic for the induced Weil self-pairing.

There are two reasons why we do not consider the failure of formation of canonical subgroups to commute
with products and duality (as in Example 2.3.3) to be a serious deficiency. First of all, our interest in
canonical subgroups is largely restricted to the study of abelian varieties with a fixed dimension and so
it is the consideration of isogenies rather than products that is the more important structure to study in
the context of canonical subgroups. Second, if we take Hasse invariants sufficiently near 1 in a “universal”
manner then the compatibilities with products and duality are rescued. More specifically, it follows from
Theorem 4.1.1 that for any fixed n, g, g′ ≥ 1 there exist h(p, g, n), h(p, g′, n) ∈ (1/p, 1) such that if A and A′

are abelian varieties with respective dimensions g and g′ over any k/Qp and the inequalities h(A) > h(p, g, n)
and h(A′) > h(p, g′, n) hold then both A and A′ admit level-n canonical subgroups Gn and G′n and moreover
Gn ×G′n is a level-n canonical subgroup in A× A′. Since h(A), h(A′) ≥ h(A× A′), by taking h(A× A′) to
be close to 1 we force h(A) and h(A′) to be close to 1. Theorem 4.1.1 also ensures that (A[pn]/Gn)∨ is the
level-n canonical subgroup of A∨ when h(A) is sufficiently near 1 (in a manner that depends only on p, g,
and n).

Our aim is to prove the existence of a level-n canonical subgroup in A when h(A) is sufficiently close
to 1, where “sufficiently close” only depends on p, dimA, and n, and we wish to uniquely relativize this
construction in rigid-analytic families. Zahrin’s trick will shift many (but not all) problems to the principally
polarized case, provided that the Hasse invariant is unaffected by passage to the dual abelian variety (as
then h((A×A∨)4) = h(A)8 when h(A) > p−1/8). Thus, we now prove:

Theorem 2.3.4. For any abelian variety A over k, h(A) = h(A∨).

Let k′/k be a finite extension as in Theorem 2.1.9, and let R′ be the valuation ring of k′. Since B′ in
Theorem 2.1.9 is isomorphic to B∨, by Example 2.3.2 it suffices to prove Theorem 2.3.4 for (BR)k rather
than A. Thus, we may formulate our problem more generally for the p-divisible group Γ of an arbitrary
abelian scheme X over R′/pR′: we claim that the “determinant” of Lie(VΓ) coincides with the “determinant”
of Lie(VΓ∨) up to unit multiple, where the dual p-divisible group Γ∨ is identified with the p-divisible group
of the dual abelian scheme X∨ and we write VΓ and VΓ∨ to denote the relative Verschiebung morphisms. In
other words, we claim that both determinants generate the same ideal in R′/pR′. This is a special case of:

Theorem 2.3.5. Let Γ be a p-divisible group over an Fp-scheme S. The locally principal quasi-coherent
ideals det(Lie(VΓ)) and det(Lie(VΓ∨)) in OS coincide.

Proof. The first step is to reduce to a noetherian base scheme. This is a standard argument via consideration
of torsion-levels, as follows. The cotangent space along the identity section for a p-divisible group Γ over
an Fp-scheme is identified with that of any finite-level truncation Γ[pn] for n ≥ 1 [Me, II, 3.3.20], and this
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truncation “is” a vector bundle over S whose formation commutes with base change; the same holds for
Lie algebras. The relative Frobenius morphism for Γ is an isogeny, so its kernel Γ[F ] is a finite locally
free commutative subgroup of the level-1 truncated BT-group Γ[p] and moreover it is the kernel of relative
Frobenius for Γ[p]; the same holds for Γ∨ in the role of Γ. Hence, by working locally on S we can descend
Γ[p] to a level-1 truncated BT-group Γ′1 over a locally noetherian base (again denoted S) such that Γ′1[F ]
and (Γ′1)

∨[F ] are finite locally free S-groups, and so by [Me, II, 2.1.3, 2.1.4] both Γ′1 and (Γ′1)
∨ have relative

cotangent spaces and Lie algebras that are vector bundles whose formation commutes with base change.
Our problem may be restated in terms of such a descent of Γ[p] over a locally noetherian Fp-scheme S′,
and so it is enough to solve the restated problem after base change from such an S′ to every affine scheme
Spec(C) over S′ with C a complete local noetherian ring having algebraically closed residue field. (Of course,
we just need to treat one such faithfully flat local extension C of each local ring on S′.) We may and do
endow the equicharacteristic C with a compatible structure of algebra over its residue field. By a theorem of
Grothendieck [Ill, Thm. 4.4], the level-1 truncated BT-group Γ′1 over C may be realized as the p-torsion of
a p-divisible group over C (whose dual has p-torsion given by (Γ′1)

∨). Hence, it suffices to solve the original
problem for p-divisible groups over S = SpecC with C a complete local noetherian k-algebra having residue
field k, where k is a perfect field with characteristic p.

It is enough to treat the case of the universal equicharacteristic deformation of the k-fiber Γ⊗C k. This
universal deformation ring is a unique factorization domain (even a formal power series ring over k), so to
check an equality of principal ideals in this local ring it suffices to work locally at the height-1 primes. Also,
by a calculation in Cartier theory [R, Lemma 4.2.3], the generic fiber of the universal equicharacteristic
deformation is ordinary. Hence, we are reduced to the case when S = Spec(R) for an equicharacteristic-p
discrete valuation ring R such that the generic fiber of Γ is ordinary.

The two maps
Lie(VΓ) : Lie(Γ(p))→ Lie(Γ), Lie(VΓ∨) : Lie(Γ∨,(p))→ Lie(Γ∨)

between finite free R-modules are injective due to generic ordinarity, and so each map has finite-length
cokernel. The determinant ideals for these two maps are given by the products of the invariant factors for
the torsion cokernel modules. For any linear injection T between finite free R-modules of the same positive
rank, the linear dual T∨ is also injective and the torsion R-modules coker(T ) and coker(T∨) have the same
invariant factors. Thus, it suffices to prove that the cokernels of Lie(VΓ) and Lie(VΓ∨)∨ are canonically
isomorphic as R-modules. Such an isomorphism is provided by the next theorem. �

Theorem 2.3.6. Let Γ be a p-divisible group over an Fp-scheme X. The OX-modules coker(Lie(VΓ)) and
coker(Lie(VΓ∨)∨) are canonically isomorphic.

Proof. The theory of universal vector extensions of Barsotti–Tate groups [Me, Ch. IV, 1.14] provides a
canonical exact sequence of vector bundles

0→ Lie(Γ∨)∨ → Lie(E(Γ))→ Lie(Γ)→ 0

on X, where E(Γ) is the universal vector extension of Γ. The formation of this sequence is functorial in Γ
and compatible with base change on X, so by using functoriality with respect to the relative Frobenius and
Verschiebung morphisms FΓ and VΓ of Γ over X and using the identities V ∨Γ = FΓ∨ and F∨Γ = VΓ∨ (via
the canonical isomorphism (Γ(p))∨ ' (Γ∨)(p) and [SGA3, VIIA, §4.2-§4.3]) we get the following commutative
diagram of vector bundles in which the rows are short exact sequences:

(2.3.1) 0 // Lie(Γ∨,(p))∨ //

0=Lie(FΓ∨ )∨

��

Lie(E(Γ(p)))

Lie(E(VΓ))

��

// Lie(Γ(p))

Lie(VΓ)

��

// 0

0 // Lie(Γ∨)∨ //

Lie(VΓ∨ )∨

��

Lie(E(Γ))

Lie(E(FΓ))

��

// Lie(Γ)

Lie(FΓ)=0

��

// 0

0 // Lie(Γ(p),∨)∨ // Lie(E(Γ(p))) // Lie(Γ(p)) // 0
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Due to the vanishing in the upper-left and lower-right parts of (2.3.1), we arrive at a natural complex

(2.3.2) 0→ Lie(Γ(p))→ Lie(E(Γ))→ Lie(Γ(p),∨)∨ → 0

whose formation commutes with base change and which fits into the vertical direction in the following
commutative diagram:

Lie(Γ(p))

��

Lie(VΓ)

&&LLLLLLLLLL

0 // Lie(Γ∨)∨ //

Lie(VΓ∨ )∨ &&NNNNNNNNNNN
Lie(E(Γ)) //

��

Lie(Γ) // 0

Lie(Γ(p),∨)∨

Granting the exactness of (2.3.2) for a moment, we can conclude via the elementary:

Lemma 2.3.7. If

M ′

��

f1

""EE
EE

EE
EE

N 2
//

f2 ""EE
EE

EE
EE

M //

��

N 1

M ′′

is a commutative diagram of sheaves of modules with the vertical and horizonal diagrams each short exact
sequences, then coker(f1) and coker(f2) are naturally isomorphic.

Proof. The map M � coker(f1) kills M ′ and so uniquely factors through a map M ′′ � coker(f1) that kills
image(f2) and so induces a map φ : coker(f2) � coker(f1). We similarly construct a map ψ : coker(f1) �
coker(f2), and the composites φ ◦ ψ and ψ ◦ φ are clearly equal to the identity. �

It remains to prove that (2.3.2) is short exact. Since this is a three-term complex of finite locally free
sheaves, it is equivalent to check the short exactness on geometric fibers over X. The formation of (2.3.2)
is compatible with base change on X, so we may assume X = Spec(k) for an algebraically closed field k of
characteristic p. Under the comparison isomorphism between classical and crystalline Dieudonné theory for
p-divisible groups G over k [MM, Ch. 2, Cor. 7.13, §9, Thm. 15.3], there is a canonical k-linear isomorphism
Lie(E(G)) ' Dk(G∨)⊗W (k)k ' Dk(G∨[p]) with Dk denoting the classical Dieudonné functor. (The classical
theory used in [MM] is naturally isomorphic to the one constructed in [Fo, Ch. III].) Hence, (2.3.1) can be
written as an abstract commutative diagram of k-vector spaces (with short exact sequences in the horizontal
direction):

0 // t∗
Γ∨,(p)

//

0

��

Dk(Γ(p),∨[p])

Dk(V ∨
Γ[p])

��

β // tΓ(p)

Lie(VΓ)

��

// 0

0 // t∗Γ∨ //

Lie(VΓ∨ )∗

��

Dk(Γ∨[p])

Dk(F∨Γ[p])

��

// tΓ

0

��

// 0

0 // t∗
Γ(p),∨ α

// Dk(Γ(p),∨[p]) // tΓ(p) // 0

where we write tH to denote the tangent space to a p-divisible group or finite commutative group scheme H
over k and we write t∗H to denote its linear dual. Since V ∨Γ[p] = FΓ∨[p] and F∨Γ[p] = VΓ∨[p], we may respectively
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identify the top and bottom maps in the middle column with the k-linearizations of the semilinear F and V
maps on the classical Dieudonné module Dk(Γ∨[p]).

From the lower-left part of the diagram we get an abstract k-linear injection α(p−1) : t∗Γ∨ ↪→ Dk(Γ∨[p])
onto a subspace containing the image of the semilinear Verschiebung operator V on Dk(Γ∨[p]). Likewise,
we get an abstract k-linear surjection β(p−1) : Dk(Γ∨[p]) � tΓ through which the semilinear Frobenius
operator F on Dk(Γ∨[p]) factors. Since ker(V ) = im(F ) on Dk(Γ∨[p]), due to Γ∨[p] being the p-torsion
of a p-divisible group, our exactness problem with (2.3.2) is thereby reduced to proving two things: (i)
the inclusion im(V ) ⊆ t∗Γ∨ inside of Dk(Γ∨[p]) is an equality, and (ii) the Frobenius-semilinear surjection

tΓ � im(F ) is injective. These conditions respectively say dim(im(V )) ?= dim Γ∨ and dim(im(F )) ?= dim Γ.
If h denotes the height of Γ then h = dimk Dk(Γ∨[p]), so

dim(im(V )) = dim(kerF ) = h− dim(im(F )), dim Γ + dim Γ∨ = h,

whence the two desired equalities are equivalent. We check the second one, as follows. Classical Dieudonné
theory provides a canonical k-linear isomorphism t∗G ' Dk(G)/im(F ) for any finite commutative p-group G
over k [Fo, Ch. III, Prop. 4.3], so taking G = Γ∨[p] gives dim tΓ∨[p] = h− dim(im(F )). But tΓ∨[p] = tΓ∨ , so

dim(im(F )) = h− dim tΓ∨ = h− dim Γ∨ = dim Γ.

�

3. Variation of Hasse invariant

Let k/Qp be an analytic extension field, and A → S an abelian scheme over a locally finite type k-scheme.
Fixing h ∈ (1/p, 1) ∩

√
|k×|, we wish to study the locus of points s ∈ S an for which h(A an

s ) ≥ h.

3.1. The polarized case. It will be convenient to first consider the case of a polarized abelian scheme, and
to then eliminate the polarization by a separate argument. In the polarized case, we can weaken the nature
of the polarization assumption and consider a situation that is intrinsic to the rigid-analytic category:

Theorem 3.1.1. Let k/Qp be an analytic extension field, and let A → S be an abeloid space over a rigid-
analytic space over k. Assume that A/S admits a polarization fpqc-locally on S.

For any h ∈ (p−1/8, 1] ∩
√
|k×| the loci

S>h = {s ∈ S |h(As) > h}, S≥h = {s ∈ S |h(As) ≥ h}
are admissible opens in S and their formation is compatible with base change on S and (for quasi-separated
or pseudo-separated S) with change of the base field, and the same properties hold for S>p−1/8

. The map
S≥h → S is a quasi-compact morphism, and for any h ∈ [p−1/8, 1) ∩

√
|k×| the collection {S≥h′}h<h′≤1 is

an admissible covering of S>h (where we require h′ ∈
√
|k×|).

The locus S≥1 = {s ∈ S |h(As) = 1} is the ordinary locus for A→ S. These are the points such that the
semi-abelian reduction of As over the residue field of a sufficiently large finite extension of k(s) has ordinary
abelian part. The intervention of p−1/8 in Theorem 3.1.1 is an artifact of our method of proof (via Zahrin’s
trick).

Proof. The formation of the sets S>h and S≥h is clearly compatible with base change on S, so by fpqc descent
theory for admissible opens and admissible covers [C3, Lemma 4.2.4, Cor. 4.2.6] we may assume A/S admits
a polarization with some constant degree d2. By the relativization of Zahrin’s trick [Mil, 16.12], (A× A∨)4

is principally polarized over S. For all s ∈ S such that h(As) > p−1/8 we have h((A × A∨)4s) = h(As)8 by
Theorem 2.3.4, so by replacing A with (A × A∨)4 we may suppose that A is principally polarized at the
expense of replacing p−1/8 with 1/p in the bounds on h under consideration. Fix N ≥ 3 not divisible by p.
Working étale-locally, we may assume A[N ] is split. Hence, by Example 2.1.7 it suffices to treat the universal
family over A an

g,1,N/k provided that we work with 1/p rather than p−1/8.
We shall first consider the case k = Qp, and so we now restrict attention to h ∈ pQ with h ∈ [1/p, 1].

Consider the universal abelian scheme over the Zp-scheme Ag,1,N/Zp
. By [CF, IV, 6.7(1),(3); V, 2.5, 5.8],
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this extends to a semi-abelian scheme A→ X over a proper flat Zp-scheme X in which Ag,1,N/Zp
equipped

with its universal abelian scheme is a Zariski-open subscheme. On Qp-fibers, we get a proper rigid space
Xan

Qp
over Qp that contains A an

g,1,N/Qp
as a Zariski-open subspace, and we get a smooth Xan

Qp
-group Aan

Qp

whose restriction over A an
g,1,N/Qp

is the universal principally-polarized abeloid space of relative dimension g

with full level-N structure. We now let Ag,1,N denote Ag,1,N/Qp
.

Let A→ X be the p-adic completion of A→ X, so by Zp-properness of X we get a canonical identification
Xrig = Xan

Qp
and a canonical isomorphism of Arig onto an admissible open subgroup of Aan

Qp
[C1, 5.3.1(4)].

In particular, by Example 2.1.10, the restriction of Arig over the Zariski-open A an
g,1,N is an open subgroup

that fiberwise realizes the Raynaud generic fiber of the unique formal semi-abelian model as in Theorem
2.1.9. That is, for each point x ∈ A an

g,1,N ⊆ Xan
Qp

= Xrig the fiber of A over the corresponding valuation ring
(“integral point” of the proper formal scheme X) is the unique formal semi-abelian model of Aan

x . This entire
construction is compatible with arbitrary analytic extension on Qp because Raynaud’s theory of formal
models is compatible with extension of the base field.

For any formal open affine Spf(R) in X, since Spf(R) has underlying topological space Spec(R/pR) we
may shrink this open around any of its points to arrange that the Lie algebra of A over the open Spf(R) ⊆ X
is a free module over R. Thus, up to a unit in R/pR we get a well-defined determinant for the Verschiebung
on the Lie algebra of A mod pR. Pick a representative hR ∈ R for this determinant. Over the admissible
open locus where the admissible open Spf(R)rig in Xrig = Xan

Qp
meets A an

g,1,N , the function max(|hR |, 1/p)
is well-defined (independent of choices, including hR) and computes the Hasse invariant of the fibers of the
universal abeloid space. Moreover, since such opens Spf(R)rig constitute an admissible cover of Xrig = Xan

Qp
,

we see that for any h ∈ (1/p, 1] ∩ pQ (resp. h ∈ [1/p, 1) ∩ pQ) the locus (A an
g,1,N )≥h (resp. (A an

g,1,N )>h) of
fibers with Hasse invariant ≥ h (resp. > h) is an admissible open in A an

g,1,N whose formation commutes with
arbitrary extension on Qp, and (via the crutch of the rigid-analytic functions hR for varying R) similarly
for any k/Qp with

√
|k×| replacing pQ. The desired quasi-compactness and “admissible covering” properties

are likewise clear. �

Recall [Ber2, 1.6.1] that there is an equivalence of categories between the full subcategory of quasi-
separated rigid spaces S over k that have a locally finite admissible affinoid covering and the category of
paracompact strictly k-analytic Berkovich spaces. For such S the formation of the loci S>h and S≥h is
compatible with passage to Berkovich spaces in the following sense:

Corollary 3.1.2. Let A → S be as in Theorem 3.1.1, and assume that S is quasi-separated and admits a
locally finite admissible affinoid covering.

(1) For any h ∈ (p−1/8, 1] ∩
√
|k×| (resp. h ∈ [p−1/8, 1) ∩

√
|k×|) the admissible open S>h (resp. S≥h)

is quasi-separated and admits a locally finite admissible affinoid cover, as does A.
(2) The associated map of Berkovich spaces (S>h)Ber → SBer (resp. (S≥h)Ber → SBer) is an open

immersion (resp. strictly k-analytic domain), and its image is precisely the locus of points at which
the fiber of ABer → SBer has Hasse invariant > h (resp. ≥ h).

Proof. First suppose A→ S admits a polarization. Passing to (A×A∨)4 thereby reduces us to the principally
polarized case at the expense of replacing p−1/8 with 1/p in what we have to prove. Since it suffices to work
over the constituents of a locally finite admissible affinoid covering of S, we may use the proof of Theorem
3.1.1 in the principally polarized case to get to the situation in which S is affinoid and there is a power-
bounded rigid-analytic function H on S that “computes” the Hasse invariant on all fibers after any extension
of the base field. All of the assertions to be proved are obvious in this case.

In the general case it suffices to work locally on S, so we can assume that S is affinoid and that there
exists an fpqc cover S′ → S by another affinoid such that A/S′ acquires a polarization. The results are all
known in S′ and we wish to deduce them in S. We know that the morphism S≥h → S is a quasi-compact
open immersion, so the quasi-separated S≥h obviously admits a locally finite admissible affinoid cover and
on the associated Berkovich spaces this morphism is a strictly k-analytic domain. Since S′Ber → SBer is a
surjection (as S′ → S is fpqc) and it is compatible with the formation of the Hasse invariant for fibers of ABer,
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the compatibility of S≥h with respect to passage to Berkovich spaces is a consequence of the corresponding
known compatibility for S′≥h.

The map S′
Ber → SBer is a surjection between compact Hausdorff spaces, so it is a quotient map on

underlying topological spaces. Thus, the locus in SBer for which the Hasse invariant is contained in a fixed
open subinterval of (1/p, 1) is open, as this is true on S′

Ber. It follows that by using loci for which the
Hasse invariant is contained in each of a suitable family of intervals that exhaust (h, 1], the quasi-separated
S>h has a locally finite admissible affinoid cover and (S>h)Ber → SBer is a strictly k-analytic domain whose
image is precisely the open locus with Hasse invariant > h in SBer. In particular, this latter map is an open
immersion. �

Remark 3.1.3. If A/S in Theorem 3.1.1 fpqc-locally admits a formal semi-abelian model then the proof of
Theorem 3.1.1 can be applied without using Zahrin’s trick, and so the conclusions of Theorem 3.1.1 and
Corollary 3.1.2 apply to such A/S with p−1/8 replaced by 1/p. For example, this applies to the Berthelot
generic fiber of the universal formal deformation of a polarized abelian variety in characteristic p.

Remark 3.1.4. The openness of (S>h)Ber in SBer in Corollary 3.1.2(2) (and Corollary 3.2.6 below) is the
reason why the construction of relative canonical subgroups in §4.3 is an example of overconvergence.

3.2. The general algebraic case. Now let A → S be an abelian scheme over a locally finite type k-
scheme, but do not assume the existence of a polarization. We claim that the conclusions of Theorem 3.1.1
hold for A an → S an. The starting point is the well-known:

Lemma 3.2.1. If A → S is an abelian scheme over a normal locally noetherian scheme then it admits a
polarization.

Proof. By passing to connected components of S we may assume S is connected and hence irreducible.
Let η be the generic point of S , and pick an isogeny φη : Aη → A ∨

η that is a polarization. By the Weil
extension lemma [BLR, 4.4/1], this isogeny uniquely extends to a morphism of abelian schemes φ : A → A ∨

that is necessarily symmetric (φ∨ = φ) and an isogeny, so it is a polarization if and only if the pullback L of
the Poincaré bundle along the map (1, φ) : A → A ×A ∨ is S -ample. By [EGA, III1, 4.7.1] the locus U of
ample fibers for L is Zariski-open in S and L |U relatively ample over U , so it just has to be shown that
the open immersion U → S is proper. By the valuative criterion, it suffices to consider the case when the
base is the spectrum of a discrete valuation ring, and this case follows from special properties of line bundles
on abelian varieties given in [Mum, p. 60, p. 150] (see the bottom of [CF, I, p. 6] for the argument). �

By pullback to algebraic normalizations we get:

Corollary 3.2.2. If k is a non-archimedean field and A → S is an abelian scheme over a locally finite type
k-scheme then for any rigid space S equipped with a map S → S an the pullback A→ S of the analytification
A an → S an admits a polarization after a finite surjective base change on S.

Our goal is to prove:

Theorem 3.2.3. The conclusions in Theorem 3.1.1 hold if the fpqc-local polarization hypothesis on the
abeloid space A → S is replaced with the assumption that after local finite surjective base change it is a
pullback of the analytification of an abelian scheme over a locally finite type k-scheme.

Recall from Example 2.1.8 that this hypothesis on A → S is inherited by the abeloid quotient by any
finite flat S-subgroup.

Proof. It suffices to treat the case when there exists a finite surjection S̃ → S such that the S̃-abeloid space
A/ eS is a pullback of A an → S an for an abelian scheme A over a locally finite type k-scheme S . After
composing with a further finite surjective base change (such as from analytification of the normalization of
Sred) we can assume that A/ eS is polarized. Pick h ∈ (p−1/8, 1] ∩

√
|k×|. By Theorem 3.1.1, the loci S̃>h

(allowing h = p−1/8) and S̃≥h in S̃ satisfy all of the desired properties. It is also clear that S̃>h is the full
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preimage of its image S>h in S (allowing h = p−1/8), and likewise with “≥ h”. Assuming that we can prove
admissibility of S>h (allowing h = p−1/8) and S≥h in S in general, let us see how to deduce the rest.

The compatibility with base change on S is obvious. To check that S≥h → S is a quasi-compact morphism,
since any admissible open U in S has preimage U≥h in S≥h we have to prove that if S is quasi-compact
then S≥h is quasi-compact. Certainly S̃ is quasi-compact, so S̃≥h is quasi-compact by Theorem 3.1.1. The
restriction S̃≥h → S≥h of the finite surjection S̃ → S is a finite surjection, so quasi-compactness of S≥h

follows from:

Lemma 3.2.4. If X ′ → X is a quasi-compact surjection of rigid spaces and X ′ is quasi-compact then X is
quasi-compact.

The content in this lemma is that it is not necessary to assume X is quasi-separated.

Proof. Let {Ui} be an admissible affinoid covering of X, so its preimage {U ′i} in X ′ is an admissible covering
of X ′ by quasi-compact opens. By quasi-compactness of X ′ there is a finite subcover, so it remains to show
that if {Ui} is a finite set of admissible affinoid opens in X that is a set-theoretic cover and if the finite
collection of admissible quasi-compact open preimages {U ′i} in X ′ is an admissible cover then {Ui} is an
admissible cover of X. Consider a morphism f : S = Sp(B) → X from an affinoid space; by definition of
admissibility, our problem is to prove that the admissible opens Vi = f−1(Ui) form an admissible cover of
S (i.e., {Vi} has a finite affinoid refinement). The map S′ = X ′ ×X S → S is a quasi-compact surjection
onto S, so S′ is quasi-compact, and the preimages {V ′i } of {Vi} in S′ form an admissible cover (since this
collection is the pullback of an admissible cover of X ′). If {Vij}j∈Ji

is an admissible affinoid open covering
of Vi then the preimage collection {V ′ij}j∈Ji

is an admissible covering of V ′i by quasi-compact admissible
opens, so by admissibility of {V ′i } some finite collection of the V ′ij ’s covers the quasi-compact space S′ set-
theoretically. Hence, the corresponding finite collection of Vij ’s is a finite affinoid subcover of {Vi} since
S′ → S is surjective. �

Remark 3.2.5. Gabber noted that Lemma 3.2.4 is false without a quasi-compactness hypothesis on the
surjection. That is, there exist (necessarily non-quasi-separated) rigid spaces X that are not quasi-compact
but have a set-theoretic cover by finitely many admissible affinoid opens; for any such X, taking X ′ to be
the disjoint union of such affinoids (equipped with the canonical map to X) provides the counterexample.
To make such an X, let D+ = D− = {|t| ≤ 1} and let D0 = {0 < |t| ≤ 1}. Pick c ∈ |k×| ∩ (0, 1), and let
U± ⊆ D± be defined as follows: U+ =

∐
n≥0{c2n+1 ≤ |t| ≤ c2n} and U− =

∐
n≥0{c2(n+1) < |t| < c2n+1}.

(One uses finiteness of the number of connected components of an affinoid rigid space to show that U± is
indeed an admissible open in D±.) Let X be the (non-quasi-separated) rigid space obtained by gluing the
non-quasi-compact D0 to D± along U± via the canonical open immersion of U± into both D± and D0, so X
has an admissible cover by {D+, D−, D0} and a set-theoretic cover by the pair of disjoint admissible affinoid
opens {D+, D−}. However, this latter cover of X is not admissible because it pulls back to a set-theoretic
cover of the admissible open D0 ⊆ X by two disjoint admissible opens and this is not admissible for D0 since
D0 is connected. The set of affinoid annuli TN = {cN ≤ |t| ≤ 1} ⊆ D0 for integers N ≥ 0 is an admissible
cover of D0 and hence {D+, D−} ∪ {TN}N≥0 is an admissible affinoid open cover of X, but the preceding
argument shows that there is no admissible finite subcover. Hence, X is not quasi-compact.

Still working under the assumption that the admissibility problems for S>h and S≥h in S are settled in
general, we check that if h ∈ [p−1/8, 1) ∩

√
|k×| then {S≥h′}h<h′≤1 is an admissible cover of S>h (where we

require h′ ∈
√
|k×|). More generally, if X ′ → X is a finite surjection of rigid spaces and {Xi} is a collection of

admissible opens in X for which the maps Xi → X are quasi-compact and such that the preimage collection
{X ′

i} is an admissible cover of X ′ then we claim that {Xi} is an admissible cover of X. By definition of
admissibility in terms of pullbacks to affinoids, we can assume that X is affinoid. In this case the Xi’s
are quasi-compact opens in X and so the problem is to show that a finite collection of them covers X set-
theoretically. This in turn follows from the covering hypothesis for {X ′

i} in X ′ and the surjectivity of X ′

onto X.
Let us next check (under the same admissibility hypotheses as above) that the compatibility with respect

to change in the base field is automatic when S is pseudo-separated or quasi-separated. Let k′/k be an
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analytic extension field, and let S̃′ → S′ be the extension of scalars on S̃ → S. The open immersion
S≥h → S is quasi-compact, so the induced map k′⊗̂k(S≥h) → S′ is also an open immersion as well as
quasi-compact. By pullback along the finite surjection S̃′ → S′ we deduce that the image of k′⊗̂k(S≥h) in
S′ is precisely the image S′≥h of (S̃′)≥h in S′. To check that k′⊗̂k(S>h)→ S′ is an open immersion onto the
admissible open S′>h in S′ we simply note that the source has an admissible covering given by the collection
{k′⊗̂k(S≥h′)}h<h′≤1 = {S′≥h′}h<h′≤1 that maps isomorphically onto an admissible cover of S′>h.

Finally, we turn to the problem of proving that the loci S≥h and S>h (allowing h = p−1/8 in the latter
case) are admissible opens in S. These loci have preimages under the finite surjection S̃ → S that are
admissible opens, so it suffices to prove rather generally that if f : X ′ → X is a finite surjection between
rigid spaces and U ⊆ X is a subset such that f−1(U) is an admissible open in X ′ then U is an admissible
open in X. We refer the reader to Theorem A.2.1 in the Appendix for the proof of a more general result of
Gabber along these lines (allowing proper surjections rather than just finite surjections). �

Here is an analogue of Corollary 3.1.2:

Corollary 3.2.6. Let A → S be as in Theorem 3.2.3, and assume that S is quasi-separated and admits a
locally finite admissible affinoid cover. All conclusions in Corollary 3.1.2 hold in this case.

Proof. The proof is essentially identical to the proof of Corollary 3.1.2 because the only role of fpqc maps of
affinoids in that proof is that they induce surjections on Berkovich spaces. Since finite surjections between
affinoids have the same property, the proof of Corollary 3.1.2 carries over to the new setting. �

Remark 3.2.7. If A/S admits a formal semi-abelian model after local finite surjective base change then (as
in Remark 3.1.3) the conclusions of Theorem 3.2.3 and Corollary 3.2.6 apply with p−1/8 replaced by 1/p.

4. Construction of canonical subgroups

The main result in the theory is a “fibral” existence theorem in §4.1, and it rests on a technique of analytic
continuation from the ordinary case. This analytic continuation argument requires an intermediate general
result in the geometry of affinoid curves that is treated in §4.2. The relativization of the fibral theorem is
straightforward (see Theorem 4.3.1), and the relation between the level-n canonical subgroup and the kernel
of the n-fold relative Frobenius map modulo p1−ε also works out nicely; these and other refinements are
treated in §4.3.

4.1. Fibral construction. The fibral case involves not just the construction of level-n canonical subgroups,
subject to a universal lower bound < 1 on the Hasse invariant (depending only on p, g, and n), but it also
includes behavior with respect to duality and a universal “size description” of the level-n canonical subgroup.

Theorem 4.1.1. Fix p, g, and n ≥ 1. There exists h = h(p, g, n) ∈ (p−1/8, 1) monotonically increasing in
n (for fixed p and g) such that for any analytic extension field k/Qp and any g-dimensional abelian variety
A over k with Hasse invariant h(A) > h,

(1) a level-n canonical subgroup Gn exists in A[pn],
(2) (A[pn]/Gn)∨ ⊆ A∨[pn] is the level-n canonical subgroup in A∨.

Moreover, for any rn ∈ (p−1/pn−1(p−1), 1) we can pick h(p, g, n) so that Gn = A[pn]0≤rn
for all abelian

varieties A with h(A) > h.

Remark 4.1.2. In the case of a principally polarized abelian variety A with h(A) > h(p, g, n), assertion (2)
in the theorem says that Gn is a Lagrangian (i.e., maximal isotropic) subgroup for the induced perfect Weil
symplectic form on A[pn]. It is also worth noting at the outset that the proof consists of three essentially
different cases: the principally polarized case (which contains all of the content for the relavitization in
families), the potentially good reduction case, and finally the general case. It is essential that we have
control over the radius rn in order to push through the proof of the general case (see Step 7 in the proof of
Theorem 4.1.1).
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The key aspects of Theorem 4.1.1 are two-fold: h only depends on p, g, and n (not on any auxiliary
discrete data such as a polarization or level structure), and we do not impose restrictions on the (potentially
semi-abelian) reduction-type.

Before we begin the long proof of Theorem 4.1.1, we make several preliminary observations concerning
an arbitrary A with h(A) > p−1/8. Fix an integer N ≥ 3 not divisible by p. We may enlarge k so
that A[N ] is split. By Zahrin’s trick, (A × A∨)4 is principally polarized. By Theorem 2.3.4 we have
h((A × A∨)4) = h(A)8 ∈ (1/p, 1], so in particular h(A) is close to 1 if and only if h((A × A∨)4) is close to
1. Setting aside the assertion (2) concerning behavior with respect to Cartier duality, and focusing just on
the existence aspect and the universal “size description” for a fixed rn ∈ (p−1/pn−1(p−1), 1), we shall initially
restrict our attention to the problem of constructing a uniform hpp(p, g, n) ∈ (1/p, 1) that works for those
abelian varieties A of dimension g (over arbitrary analytic extensions of Qp) such that A admits a principal
polarization; the preceding observations will be used in the deduction of general case from this special case.
We give the proof of Theorem 4.1.1 in eight steps (with Steps 3 and 4 containing the key inputs from the
theory of Berkovich spaces).

Step 1. In the first five steps we will be working with certain universal families and not with a single
abelian variety over a field as in the statement of the theorem, so there will be no risk of confusion caused by
the fact that we shall use the notation A in Steps 1–5 to denote a certain “universal” semi-abelian scheme. Fix
a positive integer N ≥ 3 not divisible by p. As we recorded in the proof of Theorem 3.1.1, Chai and Faltings
constructed a semi-abelian scheme A → X over a proper flat Zp-scheme X in which Ag,1,N/Zp

equipped
with its universal abelian scheme are Zariski-open subschemes. The proper rigid space Xan

Qp
over Qp contains

A an
g,1,N/Qp

as a Zariski-open subspace, and Aan
Qp

is a smooth Xan
Qp

-group whose restriction over A an
g,1,N/Qp

is
the universal principally-polarized abeloid space of relative dimension g with full level-N structure in the
category of rigid spaces over Qp. Let A→ X be the p-adic completion of A→ X, so by Zp-properness of X
we get a canonical identification Xrig = Xan

Qp
and a canonical isomorphism of Arig onto an admissible open

subgroup of Aan
Qp

[C1, 5.3.1(4)].
We can refine the construction of the loci (A an

g,1,N/Qp
)>h and (A an

g,d,N/Qp
)≥h as follows. The semi-abelian

scheme A over the Zp-proper X provides a notion of Hasse invariant h(Aan
x ) for the fiber Aan

x over any
point x ∈ Xan

Qp
' Xrig. Indeed, if Rx denotes the valuation ring of the residue field of XQp

at x then
the formal semi-abelian scheme arising from A over Spf Rx provides a g-parameter commutative formal
group over Rx/pRx (via formal completion of A mod pRx along its identity section over Spec(Rx/pRx)) and
h(Aan

x ) ∈ [1/p, 1] ∩
√
|k×| is defined to be max(|δx|, 1/p) with δx ∈ Rx a lift of the “determinant” of the

Verschiebung map on the Lie algebra of this formal group over Rx/pRx. These formal groups relativize over
small open formal affines in X, so for h ∈ [1/p, 1] ∩ pQ we get admissible loci (Xan

Qp
)≥h and (Xan

Qp
)>h whose

formations are compatible with any change in the base field and whose intersections with A an
g,1,N/Qp

are the
respective loci (A an

g,1,N/Qp
)≥h and (A an

g,1,N/Qp
)>h. When using any analytic extension field k/Qp as the base

field, we get the same conclusions for h ∈ [1/p, 1] ∩
√
|k×|.

Working over the discretely-valued base field Qp, we will show that for any rn ∈ (p−1/pn−1(p−1), 1) ∩ pQ
there exists h0 ∈ (1/p, 1) sufficiently close to 1 such that subgroup Ax[pn]0≤rn

has size png for any fiber
Aan

x of Aan
Qp
→ Xan

Qp
whose Hasse invariant h(Aan

x ) strictly exceeds h0 (so by induction on n, the subgroup
Ax[pm]0≤rn

has size pmg for all 1 ≤ m < n as well, at the expense of possibly slightly increasing h0 so that
it also “works” for 1 ≤ m < n). Granting this for a moment, the same technique as in the case g = n = 1
[C4, Thm. 4.1.3] provides a unique finite étale subgroup Gn in Aan

Qp
[pn] over the admissible open domain

(A an
g,1,N/Qp

)>h0 such that Gn induces the level-n canonical subgroups on fibers; this is such a crucial step
in the construction that we specifically wrote the proof of [C4, Thm. 4.1.3] for g = n = 1 so that it is
transparent that the method carries over to the case now being considered. (The key input is the finiteness
criterion for flat rigid-analytic morphisms in [C4, Thm. A.1.2].) In view of what we are temporarily assuming
for h0 we get a description for Gn in terms of the “size” of fibral points, and this ensures (with the help of
Arig) that applying extension of the base field to Gn provides the desired universal result in the principally
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polarized case over arbitrary analytic extension fields k/Qp. (It is trivial to eliminate the restriction rn ∈ pQ
by working with rn + θn ∈ pQ for small |θn|.)

We now turn to the problem of finding h0. The method of proof of [C4, Thm. 4.1.3] shows that for any
r ∈ (0, 1)∩ pQ, there is a quasi-compact étale subgroup Gn,≤r = Aan

Qp
[pn]≤r in the Xan

Qp
-group Aan

Qp
[pn] such

that Gn,≤r induces Ax[pn]0≤r on fibers, and that the formation of Gn,≤r commutes with arbitrary extension
on the base field. We want to prove that for each rn ∈ pQ strictly between p−1/pn−1(p−1) and 1 there exists
h0 ∈ (1/p, 1) such that the fibers of Gn,≤rn over the admissible locus with Hasse invariant > h0 are finite
free Z/pnZ-modules of rank g. To construct h0 we shall use étale cohomology on Berkovich spaces.

Step 2. By [Ber2, 1.6.1], for any non-archimedean field K there is an equivalence of categories between
the category of paracompact strictly K-analytic Berkovich spaces and the category of quasi-separated rigid-
analytic spaces over K that have a locally finite admissible covering by affinoid opens. Moreover, this
equivalence is compatible with fiber products and change of the base field. Let ϕ : A →X be the morphism
of Berkovich spaces over Qp that corresponds to the morphism Aan

Qp
→ Xan

Qp
under this equivalence, so by

compatibility with fiber products it follows that A [pn]→X is the morphism associated to the quasi-finite
étale morphism Aan

Qp
[pn] → Xan

Qp
. The universal properties of analytification in the category of classical

rigid-analytic spaces [C1, §5.1] and in the category of good Berkovich spaces [Ber2, §2.6] ensure that ϕ is
the Berkovich-analytification of the group scheme AQp

→ XQp
, and likewise for the structural map for the

pn-torsion, so (by [Ber2, 2.6.9, 3.2.10, 3.5.8]) the map of Berkovich spaces A → X is a smooth group and
A [pn] → X is a quasi-finite étale morphism. Since XQp

is proper over SpecQp, it follows (via Chow’s
lemma) that the strictly Qp-analytic space X is proper, and in particular X is compact and Hausdorff.

Let A0 denote the formal completion of A along the identity section of its mod-p fiber. By [deJ, 7.2.5] and
the arguments in the proof of [C4, Thm. 3.2.5], the morphism of rigid spaces i : Arig

0 → Aan
Qp

over Xan
Qp

is an
open subgroup that fiberwise computes the Berthelot generic fiber of the “formal group” in each semi-abelian
Aan

x . This open Xan
Qp

-subgroup therefore meets Aan
Qp

[pn] in an open Xan
Qp

-subgroup of Aan
Qp

[pn] whose fiber
over each x ∈ Xan

Qp
is Aan

x [pn]0 (see Definition 2.2.3), and these properties persist over any analytic extension
of Qp.

We also claim that the X -group map A 0 → A associated to i is an open immersion. This is a special
case of a general lemma that we set up as follows. Let Z be a separated scheme of finite type over a complete
discrete valuation ring R with fraction field k. Let Y be its formal completion along a closed subset Y0 in
the closed fiber Z0 such that Y0 is proper over the residue field. The canonical morphism

(4.1.1) i : Yrig → Zan
k

of rigid-analytic spaces is an open immersion and remains so upon arbitrary extension on the base field [C4,
Thm. 3.2.5]. Under the equivalence in [Ber2, 1.6.1], (4.1.1) induces a morphism of Berkovich spaces and we
have:

Lemma 4.1.3. The morphism of Berkovich spaces associated to (4.1.1) is an open immersion.

A case of interest in the lemma is when Z is the total space of a semi-abelian scheme over a proper
R-scheme S, and Y0 = S is the identity section. The conclusion in this lemma is generally false if we do not
complete along closed subsets that are proper over the residue field.

Proof. The target Zan
k is generally “too big” to permit passage to the affine case via a cartesian-square

argument, so we first shall reduce the problem to be within the setting of formal schemes over Spf R (rather
than schemes of finite type over SpecR). By the Nagata compactification theorem [L2], there is a Zariski-
open immersion of Z into a proper R-scheme Z. Since Y0 is proper over the residue field, it is closed in the
closed fiber of Z. The map of Berkovich spaces associated to Zan

k → Z
an

k is the Berkovich analytification of
the Zariski-open immersion Zk → Zk over Spec k, so it is an open immersion. Hence, we may replace Z with
Z, so we can assume that Z is R-proper. Thus, if Z denotes the formal completion of Z along its entire closed
fiber then there is a canonical factorization of i as the composite Yrig α→ Zrig β→ Zan

k and by [C1, 5.3.1(4)] the
map β is an isomorphism because Z is R-proper. Hence, it is enough to study the Berkovich-space morphism
associated to the map α, and this is a special case of the following general considerations (applied to Z).
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Let S be a separated formal scheme topologically of finite type over Spf(R) and let S′ be its formal
completion along a closed set in the ordinary scheme Sred over the residue field. Consider the map of
separated quasi-compact rigid spaces j : S′rig → Srig associated to the map of formal schemes S′ → S
via Berthelot’s functor. We claim that the map of Berkovich spaces associated to j is an open immersion.
It is sufficient to check this condition after pullback to each of a finite collection of (strictly k-analytic)
k-affinoid domains that cover Srig (such as the domains associated to the Berthelot-rigidifications of finitely
many formal open affines that cover S). Since Berthelot’s functor is compatible with fiber products, and
so is Berkovich’s functor (from “reasonable” rigid-analytic spaces over k to paracompact strictly k-analytic
Berkovich spaces), our problem is thereby reduced to the affine case S = Spf(B) and S′ = Spf(B′) where
B′ is the completion of B along some ideal (f1, . . . , fm).

There is a natural isomorphism of topological B-algebras

(4.1.2) B′ ' B[[T1, . . . , Tm]]/(Tj − fj).

Let S be the Berkovich space associted to Srig, and let ∆ be the (Berkovich) open unit disc. By the
compatibility of the Berthelot and Berkovich functors with respect to closed immersions (and fiber products),
(4.1.2) identifies the Berkovich space S ′ associated to S′rig with the Zariski-closed locus in S × ∆m cut
out by the simultaneous conditions Tj = fj where T1, . . . , Tm are the coordinates on the factors ∆ of ∆m.
By universal properties, the morphism S ′ → S is an isomorphism onto the open domain in S where
|fj | < 1 for all j. This completes the proof that the Berkovich-space map associated to (4.1.1) is an open
immersion. �

Step 3. Now we study the smooth and separated group A → X with quasi-finite étale torsion levels
A [pn] → X . Over each of finitely many strictly Qp-analytic affinoid subdomains Dα that cover X and
are sufficiently small, the pullback of A 0 over Dα splits as a product of Dα with a g-dimensional open unit
polydisc (with coordinates that measure the “size” of geometric points of A 0 in fibers over Dα in accordance
with Definition 2.2.5).

Let A [pn]0 denote the open subgroup A [pn]∩A 0 in A [pn], so A [pn]0 is étale and separated over X with
finite fibers. Since all of our preceding constructions in the classical rigid-analytic category are compatible
with arbitrary analytic change of the base field, the fibers of A 0 and A [pn]0 in the fiber of A over any
point x ∈ X have the expected interpretations when the fibral Berkovich group Ax over the completed
residue field at x is identified with a smooth rigid-analytic group containing a quasi-compact open subgroup
equipped with a formal semi-abelian model over the valuation ring Rx at x. In particular, each fiber Ax

has a Hasse invariant (in the sense introduced in Step 1 that allows for the possibility that Ax may not be
proper). The space X is (para)compact and Hausdorff, and it is covered by a (locally-)finite set of strictly
analytic domains arising from open affinoids in Xan

Qp
, so it follows that for any h ∈ (1/p, 1] the set X >h

(resp. X ≥h) classifying points whose fibers have Hasse invariant > h (resp. ≥ h) is an open (resp. closed)
set in X , and likewise with h = 1/p when considering X >h. The intersection of X ≥h with any sufficiently
small affinoid subdomain D in X is an affinoid subdomain of D because this subdomain of D is defined by
the condition that a certain analytic function on D has absolute value ≥ h (so in particular, if h ∈ pQ and
D is a sufficiently small strictly Qp-analytic domain in the strictly Qp-analytic space X then D ∩X ≥h is
a strictly Qp-analytic affinoid subdomain in D).

Since A 0 is an open subgroup in A it is easy to see that for any r ∈ (0, 1) the locus A 0
<r (resp. A 0

≤r) in
A 0 that meets each fiber Ax of A → X in the set of points of size < r (resp. ≤ r) in the fibral “formal
group” A 0

x is an open (resp. compact, hence closed) subset in A . It follows that the respective intersections

A [pn]0<r = A [pn] ∩A 0
<r, A [pn]0≤r = A [pn] ∩A 0

≤r

are respectively open and closed subsets in the quasi-finite, étale, and separated X -group A [pn]0, with
A [pn]0<r an open X -subgroup of A [pn].

All fibers A [pn]0x are finite étale with rank ≥ png, and (as in Remark 2.2.10) the rank is exactly png if
and only if x lies in the closed subset X ≥1 in X . Let ϕn : A [pn]0 → X be the quasi-finite, étale, and
separated structural morphism. We need to use “smearing out” from its fibers, analogous to the structure
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theorem for quasi-finite, étale, and separated morphisms in complex-analytic geometry. To keep the picture
clear, we shall therefore consider a more general situation. Let f : Y → Z be a quasi-finite, étale, and
separated morphism between Berkovich spaces. Such a map is open, since it is étale. Berkovich spaces are
locally Hausdorff and locally connected, so for any z ∈ Z and sufficiently small connected open U in Z
around z there is a unique decomposition

(4.1.3) f−1(U ) = V
∐

V ′

with V finite étale over U and V ′
z = ∅. The formation of V is visibly compatible with fiber products over

Z and is functorial (for sufficiently small U ). In particular, if Y has a structure of Z -group then V is an
open and closed U -subgroup in f−1(U ) (without requiring further shrinking on U ).

We apply the preceding considerations to the map f = ϕn to conclude that for all x ∈X and sufficiently
small connected open neighborhoods Ux around x, ϕ−1

n (Ux) contains a unique open Ux-subgroup that is
finite étale over Ux and has degree equal to the degree of the fiber ϕ−1

n (x) over the completed residue field at
x. In particular, if x is in the closed subset X ≥1 of points for which Ax has Hasse invariant 1 then ϕ−1

n (Ux)
contains a unique open subgroup G(x) that is finite étale over Ux with rank png. These ranks are constant
as we vary such x, though the overlaps Ux ∩ Ux′ may be disconnected and hence all we can say is that
G(x) and G(x′) coincide on the connected components of Ux ∩Ux that meet X ≥1. We want to glue these
G(x)’s (and then exploit the compactness of X ≥1) to make an “overconvergent” level-n canonical subgroup
Gn, but disconnectedness problems seem to make it impossible to do this “by hand.” Moreover, we will not
directly construct Gn as a level-n canonical subgroup, but rather (in Step 4) we will first build an abstract
finite étale group G that “glues” the G(x)’s and a posteriori we use compactness of X to adjust the Hasse
invariant locus over which we work in order to make this finite étale group become a fibrally level-n canonical
subgroup given by a radius rn that we freely choose a priori in the interval (p−1/pn−1(p−1), 1).

Step 4. We circumvent the difficulties with disconnectedness at the end of Step 3 by using étale coho-
mology to prove:

Lemma 4.1.4. There exists an open subset U ⊆ X containing X ≥1 oer which there is an open U -
subgroup G ⊆ ϕ−1

n (U ) that is finite étale of degree png over U . If we discard all (necessarily open and
closed) connected components of U that do not meet X ≥1, then G is unique.

The “overconvergence” provided by G → U is to be considered as analogous to the classical extension
theorem [Go, II, 3.3.1] concerning sections along closed sets for sheaves of sets on a paracompact topological
space. Rather amusingly, this fact from sheaf theory on paracompact spaces is used in the proof of [Ber2,
4.3.5], which in turn is the key technical input in the proof of Lemma 4.1.4.

Proof. The uniqueness aspect is obvious, and for existence we shall use the theory of quasi-constructible étale
sheaves [Ber2, §4.4]. We now let k be a non-archimedean field (with non-trivial absolute value, as always),
and we shall consider a very general situation for which we will gradually impose additional hypotheses to
resemble the setup in the statement of the lemma.

Consider a strictly k-analytic Berkovich space Y and a quasi-finite, étale, and separated abelian Y -group
G → Y ; the strictness hypothesis ensures (see [Ber2, 4.1.5]) that representable functors are sheaves for the
étale site on Y , and it also ensures (by descent theory for coherent sheaves [BG, Thm. 3.1], in the case of
étale descent for coherent sheaves of algebras) that the category of étale sheaves of sets on Y that are locally
constant with finite stalks is equivalent to the category of finite étale Berkovich spaces over Y . We assume
that the fiber-degrees for G → Y are bounded above, and for each n ≥ 0 we let Yn be the set of y ∈ Y
such that the fiber Gy has degree ≤ n (and we define Yn = ∅ for n < 0). The “smearing out” arguments as
in (4.1.3) show that the Yn’s are a finite increasing family of closed sets that exhaust Y . We may consider
G as a sheaf on the étale site for Y , and for y ∈ Y the y-stalk of this sheaf is identified with Gy as a
Galois module for the residue field at y. Our first claim is that this sheaf is quasi-constructible by means
of the stratification defined by the Yn’s. That is, the pullback of G to a sheaf on the étale site of the germ
(Y ,Yn − Yn−1) is finite locally constant for each n ≥ 0.

We argue by descending induction on n. If N is the maximal fiber-degree for G over Y then over the
open stratum Y −YN−1 the fiber-degree of G is constant and hence G is finite étale over this open stratum.
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To induct, suppose that G has quasi-constructible restriction Gn on the open Un = Y − Yn−1 for some n,
and let jn : Un ↪→ Un−1 denote the canonical inclusion. The pullback of the étale sheaf Gn−1/jn!(Gn) to the
germ (Y ,Yn−1−Yn−2) is finite locally constant by means of the “smearing out” argument (akin to (4.1.3))
at points in Yn−1 − Yn−2. (To do this calculation most easily, use [Ber2, 4.3.4] to permit replacing Y with
the open subset Un−1 in which Yn−1 − Yn−2 is closed.) Hence, the exact sequence

0→ jn!(Gn)→ Gn−1 → Gn−1/jn!(Gn)→ 0

on Un−1 implies that Gn−1 is quasi-constructible on Un−1 because the outer terms are quasi-constructible
(using the inductive hypothesis for Gn) and quasi-constructibility is preserved under extensions (by [Ber2,
4.4.3], whose proof appears to be incorrect – due to an erroneous reduction to constant sheaves with finite
cyclic fibers – but which is nonetheless true by another argument). This descending induction shows that
G = G−1 is quasi-constructible on Y with finite locally constant restriction to each germ (Y ,Yn − Yn−1),
as desired.

Now we assume that Y is paracompact and Hausdorff. Let ν ≥ 0 be the minimal fiber-degree of G over
Y , so Yν − Yν−1 = Yν is a closed set and hence the germ (Y ,Yν − Yν−1) is a paracompact germ. We
impose the assumption that G is a Z/mZ-sheaf for some m ≥ 1 and that along Yν the stalks are finite free
over Z/mZ. We shall show that over some open neighborhood of Yν in Y there exists a finite étale open
subgroup in G with degree ν, so this will prove the lemma upon taking k = Qp, Y = X , and G = A [pn]0

(so ν = png and Yν = X ≥1 by Lemma 2.2.4).
The quotient G /jν!Gν is finite locally constant on the germ (Y ,Yν). Thus, in view of the paracompactness,

by [Ber2, 4.4.1] (adapted to abelian sheaves) we may find an open subset U ⊆ Y containing Yν and
a finite locally constant m-torsion abelian étale sheaf F on U such that on the étale site of the germ
(U ,Yν) = (Y ,Yν) there is an isomorphism of pullbacks

ξ : F |(Y ,Yν) ' (G /jν!Gν)|(Y ,Yν).

By shrinking U we may arrange that the stalks of F are finite free Z/mZ-modules. The abelian sheaf F
is represented by some finite étale commutative U -group that we shall also denote by F . By [Ber2, 4.3.5]
applied to the pullback of H omZ/mZ(F ,G ) on the paracompact germ (Y ,Yν), we can shrink U so that
there is a map ψ : F → (G /jν!Gν)|U inducing the given isomorphism ξ over the paracompact germ (Y ,Yν).
We need to lift ψ to a map ψ̃ : F |U ′ → G |U ′ for some open U ′ ⊆ U containing Yν , as then shrinking U ′

some more around Yν will ensure (by separatedness of the quasi-finite étale G over Y ) that ψ̃ is injective
and corresponds to an open subgroup in G |U ′ that is finite étale of degree ν.

To construct the lifting ψ̃, it suffices to find an open U ′ ⊆ U containing Yν such that the connecting
map

(4.1.4) δ : HomZ/mZ(F |U ′ , (G /jν!Gν)|U ′)→ Ext1Z/mZ(U ′;F , jν!Gν)

kills the element corresponding to ψ|U ′ . Since F is finite locally free over Z/mZ, the Ext-group may be
identified with the étale cohomology group H1(U ′,F∨ ⊗Z/mZ jν!Gν), where F∨ is the Z/mZ-linear dual,
so by the compatibility of (4.1.4) with respect to shrinking U ′ around Yν it suffices to prove

lim−→
U ′⊇Yν

H1(U ′,F∨ ⊗Z/mZ jν!Gν) = 0.

By [Ber2, 4.3.5], this limit is identified with the étale cohomology group

H1((Y ,Yν), (F∨ ⊗Z/mZ jν!Gν)|(Y ,Yν))

for the pullback sheaf on the étale site of the paracompact germ (Y ,Yν). This pullback sheaf has vanishing
stalks along the closed subset Yν , so by [Ber2, 4.3.4(ii)] it vanishes as a sheaf on the site of the germ
(Y ,Yν). �

Step 5. We fix a choice of open U containing X ≥1 as in Lemma 4.1.4 such that each connected
component of U meets X ≥1, so over U there exists a unique open U -subgroup G ⊆ A [pn]0|U that is finite
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étale with rank png. We have a disjoint-union decomposition of quasi-finite, étale, and separated U -spaces

(4.1.5) A [pn]0|U = G
∐

Z .

All fibers of the U -finite étale G are finite free of rank g as modules over Z/pnZ, as this holds along the
subset X ≥1 ⊆ U that meets all connected components of U . The Hasse invariant is a continuous function
X → [1/p, 1], and X ≥1 is the locus with Hasse invariant 1. Hence, by compactness of X it follows that
there exists h0 ∈ (1/p, 1) such that X ≥h0 ⊆ U .

For any h ∈ [h0, 1), we write G>h to denote G|X >h . For any rn ∈ (p−1/pn−1(p−1), 1), the open X -subgroup
A [pn]0<rn

in A [pn]0 meets the finite étale X >h-subgroup G>h in an open subgroup that contains the entire
fiber along the compact subset X ≥1. Hence, by properness of G>h → X >h we may find hn ∈ (h0, 1) such
that there is an inclusion

(4.1.6) G>hn ⊆ A [pn]0<rn
|X >hn .

Since X ≥h′ is compact for all h′ ∈ (hn, 1), it follows that all points in the fibers of G>hn (viewed in fibers of
A [pn]0) over X ≥h′ have size ≤ rn − ε (in the sense of Definition 2.2.5) for any such h′, with a small ε > 0
that depends on h′ (and on rn).

We shall now prove that the reverse inclusion to (4.1.6) holds if we take hn sufficiently close to 1 (depending
on rn). Assume to the contrary, so we get a sequence of points xm ∈ U such that h(Axm

) → 1− and
Axm

[pn]0<rn
meets the fiber Zxm

in some point zm, with Z as in (4.1.5). By compactness of X there is a
cofinal map j : I → {1, 2, . . . } from a directed set I to the natural numbers such that the subnet {xj(i)}i∈I

has a limit x ∈ X ≥1 ⊆ U . (We have to use subnets rather than subsequences because X is generally not
first-countable.) Since the closed set A [pn]0≤rn

restricted over the compact set X ≥h′ ⊆ U is itself compact
for any h′ ∈ (hn, 1), further passage to a subnet allows us to suppose {zj(i)} has a limit z in Ax[pn]0, and
by (4.1.5) we must have z ∈ Z since Z is open and closed in A [pn]0|U . We have Ax[pn]0 = Gx because
h(Ax) = 1, so Zx = ∅. Since z ∈ Zx, this is a contradiction and so completes our treatment in the case
of principally polarized abelian varieties (with a fixed dimension g). We let hpp(p, g, n) be the universal
lower bound on Hasse invariants that was constructed in this argument, and we may arrange that it is
monotonically increasing in n (for fixed p and g).

Step 6. For the proof of (1) in the theorem, along with the universal “size description,” it remains to
infer the general case from what we have just proved in the principally polarized case. We fix p, g, and n as
at the outset, as well as rn ∈ (p−1/pn−1(p−1), 1), and we consider an abelian variety A of dimension g over an
analytic extension field k/Qp. We now handle the case when A has potentially good reduction; the general
case will be deduced from this case in Step 7. Let us postpone the potentially good reduction hypothesis for
a short time. The abelian variety A admits a polarization over k. The abelian variety (A×A∨)4 is therefore
principally polarized with dimension 8g, and (using Theorem 2.3.4) it has Hasse invariant h(A)8 provided
that h(A) > p−1/8. Thus, by taking

h(A) > hpp(p, 8g, n)1/8 > p−1/8

we ensure that (A×A∨)4 admits a level-n canonical subgroup that is “pn-torsion with size ≤ rn,” so the level-
n canonical subgroup in (A × A∨)4 is (Gn × G′n)4 for the subgroups Gn = A[pn]0≤rn

and G′n ⊆ A∨[pn]0≤rn

whose geometric fibers must be finite free Z/pnZ-modules with ranks adding up to 2g. This shows that
A×A∨ has a level-n canonical subgroup, namely Gn×G′n, and we have to prove that for a suitable universal
constant h(p, g, n) ∈ [hpp(p, 8g, n)1/8, 1) that is independent of k the factors Gn and G′n in A[pn] and A∨[pn]
each have order png if we take h(A) > h(p, g, n). We also have to prove that these factors annihilate each
other with respect to the Weil-pairing between A[pn] and A∨[pn] by taking h(p, g, n) sufficiently near 1. The
following argument shows that hgood(p, g, n) = hpp(p, 8g, n)1/8 works as such an h(p, g, n) when we restrict
our attention to those abelian varieties A with potentially good reduction.

Pick a polarization on A, say with degree d2. Choose N ≥ 3 relatively prime to pd and increase k so that
A[N ] is k-split (so A∨[N ] is also k-split, as (d,N) = 1). This data gives rise to a k-point on the smooth
moduli scheme Ag,d,N/k that is separated and of finite type over k. Since (d,N) = 1, the relativization of
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Zahrin’s trick provides a morphism
ζd : Ag,d,N/k → A8g,1,N/k

of k-schemes such that the functorial effect of ζd on underlying abelian schemes (ignoring the polarization
and level structure) is A  (A × A∨)4. For any h ∈ (1/p, 1] ∩

√
|k×| the ζan

d -preimage of the locus with
Hasse invariant h on A an

8g,1,N/k is the locus with Hasse invariant h1/8 on A an
g,d,N/k. This method shows that

for h ∈ (p−1/8, 1]∩
√
|k×|, the locus of points on A an

g,d,N/k with Hasse invariant > h is admissible open, even
in cases with p|d.

In view of the relative construction of canonical subgroups over loci with suitable Hasse invariant in
the analytified moduli spaces for principally polarized abelian schemes in Steps 1–5, pullback along ζan

d

provides a closed finite étale subgroup Hn,d inside of the finite étale pn-torsion on the 4-fold product of

the universal polarized abeloid space and its dual over Mn,d/k
def= (A an

g,d,N/k)>hgood(p,g,n) such that on fibers
it is a level-n canonical subgroup. As in the case of schemes over a base scheme, any rigid-analytic map
between finite étale spaces over a rigid space factors uniquely through a finite étale surjection and any two
finite étale closed subspaces of a finite étale space coincide globally if they coincide in a single fiber over each
connected component of the base. Thus, by using projection to factors and the preceding fibral analysis
we see that Hn,d = (Gn,d × G ′n,d)

4 for unique finite étale closed Mn,d/k-subgroups Gn,d and G ′n,d in the
repsective pn-torsion of the universal polarized abeloid and its dual over Mn,d/k; these are étale-locally finite
free Z/pnZ-module sheaves. Obviously the formation of Mn,d/k, Gn,d, and G ′n,d are compatible with change
in the base field. For example, these all arise from the analogous constructions over Qp.

Over each connected component of Mn,d/k the Z/pnZ-ranks of Gn,d and G ′n,d are constant and add up
to 2g, and the relative Weil pairing between them vanishes if it does so on a single fiber. If a connected
component of Mn,d/k contains an ordinary point ξ then over that connected component the orders of Gn,d and
G ′n,d are equal to png (by checking on the ξ-fiber). Moreover, we claim that over the connected component of
an ordinary point ξ in Mn,d/k the groups Gn,d and G ′n,d must be orthogonal (and hence be exact annihilators)
under the Weil pairing on pn-torsion. By passing to the fiber at ξ and making a finite extension k′/k(ξ) of
the base field as in Theorem 2.1.9, the problem comes down to the vanishing of the Weil pairing between the
multiplicative identity components of the p-divisible groups of the formal semi-abelian models (with ordinary
reduction) for the abelian variety and dual abelian variety at ξ. More generally, we have:

Lemma 4.1.5. Let A be an abelian variety over k having semistable reduction and formal semi-abelian model
AR over Spf(R) with ordinary abelian part modulo mR. Let A′R be the corresponding formal semi-abelian
model for A∨, so it too has ordinary abelian part modulo mR.

The Weil pairing between A[p∞] and A∨[p∞] makes A[p∞]0k and A′[p∞]0k orthogonal to each other.

Proof. If A1 and A2 are two abelian varieties that satisfy the hypotheses in the lemma, then to prove the
lemma for each Ai it is equivalent to prove the lemma for A1 × A2. Hence, by passing to (A × A∨)4, we
may assume that A admits a principal polarization and (after a harmless finite extension of the base field)
both A[N ] and A∨[N ] are constant (with N ≥ 3 a fixed integer not divisible by p). Let g = dimA, so by the
work of Faltings and Chai (as in Step 1 above) we may use the valuation criterion for properness to extend
A and A∨ to semi-abelian schemes AR and A′R over SpecR. By Example 2.1.10 the respective completions
ÂR and Â′R of AR and A′R along an ideal of definition of R are the formal semi-abelian models AR and A′R
as in Theorem 2.1.9, so we have unique isomorphisms AR[p∞] ' AR[p∞] and A′R[p∞] ' A′R[p∞] respecting
the identifications of the k-fibers inside of A[p∞] and A∨[p∞] respectively. Our problem is therefore to prove
that the Weil pairing between A[p∞] and A∨[p∞] makes AR[p∞]0k orthogonal to A′R[p∞]0k.

Since R is a henselian valuation ring, it is a directed union of henselian local noetherian subrings D. By
standard direct limit arguments, we can descend AR and A′R to semi-abelian schemes AD and A′D over some
such D. Likewise, the identity components AD[p∞]0 and A′D[p∞]0 descend the multiplicative p-divisible
groups AR[p∞]0 and A′R[p∞]0, so these descended p-divisible groups over D are also multiplicative. If we let
F ⊆ k be the fraction field of D then the Weil pairing between the F -fibers AF [p∞] and A′F [p∞] = A∨F [p∞]
descends the Weil pairing between A[p∞] and A∨[p∞], so it suffices to prove that this pairing over F makes
the F -fibers AD[p∞]0F and A′D[p∞]0F orthogonal.
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Rather generally, if Γ and Γ′ are any two multiplicative p-divisible groups over a local noetherian domain
D with residue characteristic p and fraction field F then any Gm[p∞]-valued bilinear pairing between the
F -fibers must be zero. In the irrelevant case char(F ) = p this is obvious for topological reasons. In case of
generic characteristic 0 we use local injective base change to assume that D is a strictly henselian discrete
valuation ring, so Γ and Γ′ are powers of Gm[p∞] and the p-adic cyclotomic character of F is non-trivial (it
has infinite order). The vanishing is therefore also obvious in characteristic 0. �

To settle the case of potentially good reduction with the strict lower bound hgood(p, g, n) ∈ (p−1/8, 1)∩pQ
on the Hasse invariant, it remains to show that for every d ≥ 1 and k/Qp there is an ordinary point on
each connected component Y in Mn,d/k for which Y has a point with potentially good reduction. That
is, we claim that such a component has non-empty locus with Hasse invariant equal to 1. We will reduce
our problem to the case k = Qp. (What really matters is that we reduce to the case of a discretely-valued
field.) The trick is to exploit finiteness properties in the theory of connectivity for rigid spaces; the following
argument uses completed algebraic closures but it could be rewritten to work with only finite extensions. If
k′/k is a finite extension then each connected component of Y ⊗k k

′ is finite flat over Y and so surjects onto
Y . Thus, our problem is unaffected by passage to a finite extension on the base field. (By Theorem 3.1.1,
or Theorem 3.2.3, the formation of the locus with Hasse invariant 1 in Mn,d/k is compatible with change
of the base field.) In particular, by [C1, Cor. 3.2.3] we may suppose that our connected component Y is
geometrically connected. Hence, again using the compatibility with change of the base field in Theorem
3.1.1, we may assume that k is algebraically closed and so k contains Cp. Since connected rigid spaces over
Cp are geometrically connected, we may assume k = Cp. We do not know if Mn,d/Qp

has a finite number
of connected components. However, by [C1, Cor. 3.2.3] for each connected component Z of Mn,d/Qp

there
exists a finite extension k/Qp such that all connected components of Z ⊗Qp

k are geometrically connected.
It follows that each connected component Y of Mn,d/Cp

arises as a base change of a connected component of
Z/k0 for a suitable Z and finite extension k0/Qp (perhaps depending on Y ). This completes the reduction
of our problem to the case k = Qp.

Letting Ad = A ∧
g,d,N/Zp

be the p-adic completion of the separated finite type moduli scheme Ag,d,N/Zp
over

Zp, there is a canonical quasi-compact open immersion Arig
d ↪→ A an

g,d,N/Qp
whose image consists of precisely

the points with potentially good reduction. (The formation of this map commutes with any change of the
base field, as does the description of its image.) It is therefore enough to prove that for any h ∈ (p−1/8, 1)∩pQ
(such as hgood(p, g, n)) every connected component of (Arig

d )>h contains an ordinary point, as any connected
component of (A an

g,d,N/Qp
)>h meets the admissible open (Arig

d )>h in a (possibly empty) union of connected

components of (Arig
d )>h. The existence of such ordinary points is proved in Theorem 4.2.1 below.

We have settled the case of potentially good reduction. For the initial fixed choice rn ∈ (p−1/pn−1(p−1), 1)
we constructed hgood(g, p, n) so that any g-dimensional A with potentially good reduction and Hasse invariant
h(A) > hgood(p, g, n) admits a level-n canonical subgroup Gn given by the set of pn-torsion points with size
≤ rn, and also so that (A[pn]/Gn)∨ ⊆ A∨[pn] is the level-n canonical subgroup of the g-dimensional abelian
variety A∨ with potentially good reduction and Hasse invariant h(A∨) = h(A) > hgood(p, g, n).

Step 7. Now we consider the same initial setup as in Step 6 except that we allow for the possibility that
(after a harmless finite extension of the base field) A has semi-stable reduction with non-trivial toric part.
We define

h(p, g, n) = max
1≤g′≤g

hgood(p, g′, n) ∈ (p−1/8, 1),

and we assume h(A) > h(p, g, n). By Theorem 2.1.9 there exists a (projective) abelian scheme BR of some
non-negative relative dimension g′ ≤ g over R and a short exact sequence of connected p-divisible groups

0→ T[p∞]→ AR[p∞]0 → BR[p∞]0 → 0

over R with T a formal torus and AR a formal semi-abelian scheme that is a “formal model” for A (or
rather, for Aan). By Example 2.3.2, the Hasse invariant of A is equal to that of the abelian variety B that
is the generic fiber of BR. Hence, if g′ > 0 then h(B) > hgood(g′, p, n) and if g′ = 0 then A is ordinary (and
h(B) = h(A) = 1), so the subgroup B[pn]0≤rn

in B[pn]0 = BR[pn]0k is a level-n canonical subgroup of B with
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the arbitrary but fixed choice of rn ∈ (p−1/pn−1(p−1), 1) that has been used throughout the preceding steps.
Since rn > p−1/pn−1(p−1) we have

T[pn]k ⊆ A[pn]0≤p−1/pn−1(p−1) ⊆ A[pn]0≤rn
,

so there is an evident left-exact sequence

(4.1.7) 0→ T[pn]k → A[pn]0≤rn
→ B[pn]0≤rn

and the geometric fibers of T[pn]k and B[pn]0≤rn
are free with respective ranks g−g′ and g′ as Z/pnZ-modules

(even if g′ = 0). Thus, A[pn]0≤rn
has order ≤ png and if equality holds then (4.1.7) is short exact with middle

term that is Z/pnZ-free of rank g, so A[pn]0≤rn
is a level-n canonical subgroup in such cases. The same

argument (with the same rn!) applies to A∨[pn]0≤rn
, so in particular this group has order ≤ png.

Since (A×A∨)4[pn]0≤rn
= (A[pn]0≤rn

×A∨[pn]0≤rn
)4, the upper bounds on the orders of the factors reduces us

to proving that this group has size p8ng. The abelian variety (A×A∨)4 has Hasse invariant > hgood(p, g, n)8 =
hpp(p, 8g, n) and it is principally polarized, so its subgroup of pn-torsion points with size ≤ rn is a level-n
canonical subgroup and hence there are exactly p8ng such points as required. This completes the proof that
A[pn]0≤rn

is a level-n canonical subgroup whenever h(A) > h(p, g, n) (where h(p, g, n) ∈ (p−1/8, 1) may be
taken to depend on the arbitrary but fixed choice of rn ∈ (p−1/pn−1(p−1), 1)). (The reader should reflect
on how essential it is in several parts of the argument that we made the construction of level-n canonical
subgroups in various dimensions all be related to the same size bound rn.)

Step 8. Continuing with notation as in Step 7, the verification of part (2) in Theorem 4.1.1 will now
be given in general; in Step 6 it was verified in the case of potentially good reduction. We must check
that the Weil pairing between A[pn]0≤rn

and A∨[pn]0≤rn
vanishes. The respective generic fibers AR[p∞]k,

AR[p∞]0k, and T[p∞]k will be called the finite part, local part, and toric part of the p-divisible group A[p∞]
over k, and these generic fibers will be respectively denoted A[p∞]f , A[p∞]0, and A[p∞]t. Although these
definitions depend on A and not just on A[p∞] (e.g., k may be algebraically closed), for our purposes such
dependence is not a problem; the pn-torsion of A[p∞]0 recovers Definition 2.2.3, so there is no inconsistency
in the notation. Also, keep in mind that A[p∞]t may be smaller than the generic fiber of the maximal
multiplicative p-divisible subgroup of AR[p∞]0. Analogous notations are used for A∨, and we let B′R denote
the abelian scheme associated to A∨, so B′R is canonically isomorphic to B∨R by Theorem 2.1.9.

The respective quotients A[p∞]f/A[p∞]t and A[p∞]0/A[p∞]t are canonically identified with B[p∞] and
B[p∞]0 def= BR[p∞]0k, and similarly with A∨ and B′R ' B∨R (even if BR and B′R vanish). Since the settled
case of good reduction in Step 6 ensures that the Weil pairing between B[pn]0≤rn

and B∨[pn]0≤rn
vanishes,

to infer the vanishing of the Weil pairing between A[pn]0≤rn
and A∨[pn]0≤rn

(and so to finish the proof of
Theorem 4.1.1, conditional on Theorem 4.2.1 below that was used above in Step 6) it suffices to use (4.1.7)
and its A∨-analogue along with the following general theorem that gives an analogue of the trivial Lemma
4.1.5 in the case of possibly non-ordinary or bad reduction (and characterizes the isomorphism B′ ' B∨ in
terms of two pieces of data: the unique formal semi-abelian models for A and A∨, and the Weil pairings
between torsion on A and A∨).

Theorem 4.1.6. Under the Weil pairing A[p∞] × A∨[p∞] → µp∞ over k, the toric part on each side
annihilates the finite part on the other side, and the induced pairing between A[p∞]f/A[p∞]t ' B[p∞]k and
A∨[p∞]f/A∨[p∞]t ' B′[p∞]k is the restriction of the Weil pairing for the abelian variety B over k via the
canonical isomorphism B′R ' B∨R.

Proof. See Theorem A.3.1 in the Appendix, where a more general compatibility is proved for N -torsion
pairings for any positive integer N by closely studying the proof of Theorem 2.1.9. �

Remark 4.1.7. The method of proof of Lemma 4.1.5 can be used to give a proof of the orthogonality
aspect of Theorem 4.1.6 by reduction to the discretely-valued case that is precisely the semi-stable case of
Grothendieck’s orthogonality theorem [SGA7, IX, Thm. 5.2]. However, it is the compatibility with Weil
pairings on the abelian parts that is more important for us, and to prove this compatibility it seems to be
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unavoidable to have to study the proof of Theorem 2.1.9 where the natural isomorphism between B′R and
B∨R is constructed.

4.2. A connectedness result. This section is devoted to proving the following theorem that was used in
Step 6 in the proof of Theorem 4.1.1.

Theorem 4.2.1. Choose g, d ≥ 1 and N ≥ 3 with p - N . Let M = Ag,d,N/Zp
and let M̂ denote its p-adic

completion equipped with its universal p-adically formal polarized abelian scheme. For any h ∈ [1/p, 1)∩ pQ,
let (M̂ rig)>h denote the locus of fibers with Hasse invariant > h for the Raynaud generic fiber of the universal
p-adically formal polarized abelian scheme over M̂ , and define (M̂ rig)≥h similarly for h ∈ (1/p, 1] ∩ pQ.

Each connected component of (M̂ rig)>h and of (M̂ rig)≥h meets the ordinary locus (i.e., it meets (M̂ rig)≥1).

We can allow 1/p rather than p−1/8 in Theorem 4.2.1 because of Remark 3.1.3.

Proof. Let x be a point in (M̂ rig)>h (resp. (M̂ rig)≥h), with K(x)/Qp the residue field at x and Rx its
valuation ring. Let Ax be the fiber at x for the universal abeloid space over M̂ rig, so Ax is an abelian variety
over K(x) with good reduction, and likewise for its dual A∨x . We uniquely extend x to an Rx-point of M ,
and we let x be the induced rational point in the closed fiber of M/Rx

.
Norman and Oort [NO, Thm. 3.1] proved that the ordinary locus is Zariski-dense in every fiber of Ag,d,N

over non-generic points of SpecZ[1/N ], with all fibers of pure dimension g(g + 1)/2. Mumford proved
that the equicharacteristic deformation ring at any rational point on a geometric fiber of Ag,d,N in positive
characteristic over Z[1/N ] is a g2-variable power series rings modulo g(g − 1)/2 relations [O, 2.3.3], so it
follows from the equality g2 − g(g − 1)/2 = g(g + 1)/2 and a standard result in commutative algebra [Mat,
17.4] that Ag,d,N/Z[1/N ] is a relative complete intersection over Z[1/N ] (and in particular it is flat). Thus,
by a slicing argument on an affine open neighborhood of x in the relative complete intersection M/Rx

, we
may construct an Rx-flat locally closed affine subscheme Z in M/Rx

with relative dimension 1 such that

• the closed fiber Z passes through x and has all generic points in the ordinary locus,
• the generic fiber Z/K(x) is smooth.

Let Z be the Rx-flat formal completion of M/Rx
along Z, so Zrig is a quasi-compact admissible open in M̂ rig

and x lies in Zrig since x ∈ Z.
By the construction of the Hasse invariant, we may replace Z with a suitable open affine around x (to

trivialize the locally-free module underlying a formal Lie algebra) so that the universal formal abelian scheme
over Z mod pRx admits a Hasse invariant as a function on SpecRx/pRx (rather than merely as a section
of a line bundle). Let H be a function on Z that lifts this Hasse invariant. If Hrig denotes the associated
rigid-analytic function on Zrig then max(|Hrig|, 1/p) defines the Hasse invariant over the admissible open Zrig.
The coordinate ring O(Z) of the affine formal scheme Z is excellent and reduced (as A an

g,N,d/Qp
is smooth),

so the normalization of O(Z) is an Rx-flat finite extension ring of O(Z) whose associated formal scheme
Z̃ is Z-finite with Raynaud generic fiber Zrig because Zrig is its own normalization (as it is even smooth).
Also, the “generic ordinarity” of the locus Z in the moduli space ensures that on the pure one-dimensional
reduction Z mod mRx

(with underlying space Z) the reduction of H is a unit at the generic points. The
same must therefore hold for H on the mod-mRx

fiber of the Z-finite formal normalization covering Z̃, as Z̃
has no isolated points (and so its irreducible components are all finite over those of the 1-dimensional Z). By
[deJ, 7.4.1], O(Z̃) is the ring of power-bounded functions on the K(x)-affinoid Z̃rig = Zrig. Hence, the ideal
of topological nilpotents in O(Zrig) is the radical of mRx

O(Z̃). (The intervention of the radical is necessary
because sup-norms for elements of the K(x)-affinoid Zrig merely lie in

√
|K(x)×| and not necessarily in

|K(x)×|.) Thus, we are reduced to the following theorem in 1-dimensional affinoid geometry (applied to
O(Zrig) over K(x)). �

Theorem 4.2.2. Let k be a non-archimedean field and let A be a k-affinoid algebra such that SpA has pure
dimension 1. Let A0 ⊆ A be the subring of power-bounded functions, and let Ã be its analytic reduction; i.e.,
the quotient of A0 modulo topological nilpotents.
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Let a ∈ A0 be an element whose image ã in the reduced algebra Ã is non-vanishing at the generic points
of Spec Ã; in particular, ||a||sup = 1. For any r ∈

√
|k×| with r ≤ 1, every connected component of

(4.2.1) (Sp(A))≥r = {x ∈ Sp(A) | |a(x)| ≥ r}

contains a point x such that |a(x)| = 1.

This theorem can be proved by using the geometry of formal semi-stable models to track the behavior
of |a|, following some techniques of Bosch and Lütkebohmert as in [BL1, §2] (after reducing to the case
of algebraically closed k with the help of [C1, §3.2]). However, A. Thuillier showed me a method of proof
that uses only elementary properties of affinoid Berkovich spaces, entirely bypassing the more sophisticated
apparatus of formal semistable models, so we present Thuillier’s proof.

Proof. It is equivalent to work with the associated strictly k-analytic Berkovich spaces, so we let X = M (A)
and X≥r = M (A≥r) with Sp(A≥r) equal to the affinoid subdomain (Sp(A))≥r in Sp(A); clearly X≥r ⊆ X is
the locus of points x ∈ X for which |a(x)| ≥ r. The Shilov boundary Γ(X) ⊆ X is the finite set of preimages
of the generic points of the analytic reduction Spec(Ã) under the reduction map X → Spec(Ã) [Ber1, 2.4.4].
The hypotheses therefore imply that |a(x)| = 1 for each x ∈ Γ(X), so it is equivalent to prove that every
connected component C of X≥r meets Γ(X) (since the “classical” points are dense in any strictly k-analytic
Berkovich space, such as C ∩X≥1 for each such C). Hence, we pick a component C disjoint from Γ(X) and
seek a contradiction. The complement U = X − (X≥r − C) is an open set in X that contains C, so since
C ∩ Γ(X) = ∅ and Γ(X) ⊆ X≥r we have U ∩ Γ(X) = ∅ and |a| < r on U − C = (X −X≥r) ∩ (X − C).

The closed subset C in X is an affinoid domain in X, so by [Ber1, 2.5.13(ii)] its relative interior Int(C/X)
is equal to the topological interior of C in X. Passing to complements, the relative boundary ∂(C/X) is
equal to the topological boundary ∂X(C) of C in X. (See [Ber1, 2.5.7] for these notions of relative interior
and boundary for morphisms of affinoid Berkovich spaces.) By the transitivity relation for relative interior
with respect to a composite of morphisms [Ber1, 2.5.13(iii)], applied to C → X →M (k), we obtain

∂(C/M (k)) = ∂X(C) ∪ (C ∩ ∂(X/M (k))).

For any pure 1-dimensional strictly k-analytic affinoid Berkovich space Z, the relative boundary with respect
to the base field coincides with the Shilov boundary. (Proof: By Noether normalization there is a finite map
Z → B1 to the closed unit ball, and by Theorem A.1.1, [BGR, 6.3.5/1], and [Ber1, 2.4.4, 2.5.8(iii), 2.5.13(i)]
we are thereby reduced to the case of the case Z = B1. By [Ber1, 2.5.2(d), 2.5.12] we have ∂(B1/M (k)) =
{|| · ||sup} = Γ(B1).) Hence, Γ(C) = ∂X(C) ∪ (C ∩ Γ(X)) = ∂X(C) since C ∩ Γ(X) = ∅. Any neighborhood
of a point in ∂X(C) meets the locus U − C on which |a| < r, so by continuity of |a| on X we have |a| ≤ r
on ∂X(C) = Γ(C). But Γ(C) ⊆ C ⊆ X≥r, so |a| = r on Γ(C). By the maximum principle for the Shilov
boundary of an affinoid, we conclude |a| ≤ r on C, so |a| = r on C (as C ⊆ X≥r). Since |a| < r on U − C,
this implies |a| ≤ r on U .

To get a contradiction, pick a point c ∈ Γ(C) and let X ′ = M (A′) ⊆ U be a strictly k-analytic affinoid
subdomain of X that contains c. Since X ′ ⊆ U , the sup-norm of a|X′ (in the equivalent senses of rigid spaces
or Berkovich spaces) is at most r, so it is equal to r because |a(c)| = r and c ∈ X ′. Let X ′′ = M (A′′) ⊆ X ′

be a connected strictly k-analytic neighborhood of c in X ′ with X ′′ disjoint from the finite set Γ(X ′). (Note
that X ′′ must also be a neighborhood of c in X.) Since Γ(X ′) is the preimage of the generic points under
the analytic reduction map X ′ → Spec(Ã′), by surjectivity of the reduction map X ′′ → Spec(Ã′′) [Ber1,
2.4.4(i)] we conclude that the natural map Spec(Ã′′)→ Spec(Ã′) has constructible image that hits no generic
points and is connected (as Spec(Ã′′) is connected, due to connectivity of Sp(A′′)). The only nowhere-dense
connected constructible subsets of a pure 1-dimensional algebraic k̃-scheme are the closed points, so Spec(Ã′′)
maps onto a single closed point in Spec(Ã′) that must be the analytic reduction of c.

We shall prove that a|X′′ has absolute value r at all points ofX ′′, and this gives a contradiction because the
neighborhood X ′′ of c ∈ Γ(C) = ∂X(C) in X meets the locus U −C on which |a| < r. Let n be a sufficiently
divisible positive integer so that rn = |ρ| with ρ ∈ k×. The analytic function f = an/ρ has sup-norm 1 on X ′

with associated algebraic function on Spec(Ã′) that is a unit at the analytic reduction of c. The restriction
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f |X′′ is also power-bounded, and by functoriality of analytic reduction the reduction of f |X′′ on Spec(Ã′′)
is the pullback of the reduction of f |X′ on Spec(Ã′) under the natural map Spec(Ã′′)→ Spec(Ã′). But this
latter map is a constant map to a closed point in the unit locus for the reduction of f |X′ , so we conclude
that f |X′′ has non-vanishing reduction. That is, f |X′′ has constant absolute value 1, or equivalently a|X′′

has constant absolute value r as desired. �

4.3. Relativization and Frobenius kernels. The variation of canonical subgroups in rigid-analytic fam-
ilies goes as follows:

Theorem 4.3.1. Let h = h(p, g, n) ∈ (p−1/8, 1) be as in Theorem 4.1.1 (adapted to a fixed choice of
rn ∈ (p−1/pn−1(p−1), 1) ∩ pQ), and let k/Qp be an analytic extension field. Choose an abeloid space A →
S with relative dimension g over a rigid-analytic space over k, and assume either that (i) A/S admits a
polarization fpqc-locally on S or (ii) A/S becomes algebraic after local finite surjective base change. Also,
assume h(As) > h for all s ∈ S.

There exists a unique finite étale subgroup Gn ⊆ A[pn] with rank png such that Gn recovers the level-n
canonical subgroup on fibers, and the formation of Gn is compatible with base change on S and (for quasi-
separated or pseudo-separated S) with change of the base field. The dual (A[pn]/Gn)∨ is the analogous such
subgroup for A∨, and Gn[pm] = Gm for 0 ≤ m ≤ n.

Note that under either hypothesis (i) or (ii) each abeloid fiber As becomes an abelian variety after a finite
extension on k(s), and hence (by descending a suitable ample line bundle) each As is an abelian variety.
Thus, it makes sense to speak of a Hasse invariant for each fiber As. Also, Theorem 3.1.1 and Theorem 3.2.3
ensure that the hypothesis on fibral Hasse invariants exceeding h is preserved under arbitrary change of the
base field (for quasi-separated or pseudo-separated S).

Proof. The uniqueness of Gn and the description of its p-power torsion subgroups follow from connectivity
considerations and our knowledge on fibers, and the same goes for the behavior with respect to Cartier
duality. Thus, the existence result is preserved by base change. By rigid-analytic fpqc descent theory [C2,
§4.2], it suffices to work fpqc-locally on S to prove the theorem. In particular, we may and do assume S
is quasi-compact and quasi-separated (e.g., affinoid). By Lemma 4.3.2 below (applied with Y = A[pn] over
X = S), it also suffices to make the construction after a finite surjective base change. Thus, using Corollary
3.2.2 in case (ii), we can assume that A/S admits a polarization of some constant degree d2 and that the
finite étale S-groups A[N ] and A∨[N ] are split for a fixed choice of N ≥ 3 not divisible by p. In particular,
by Zahrin’s trick (A×A∨)4 is a pullback of the universal principally polarized abeloid space over A an

8g,1,N/Qp

along a map f : S → A an
8g,1,N/Qp

. Let A→ X denote the p-adic completion of a semi-abelian scheme over a
proper flat Zp-scheme that extends the universal abelian scheme over A8g,1,N/Zp

, so (A×A∨)4 is a pullback
of Arig → Xrig along a map f : S → Xrig. For a suitable formal admissible blow-up X′ of X and the pullback
(or equivalently, strict transform) A′ of A, we may find a quasi-compact flat formal model S for S and a
map f : S → X′ such that frig = f . In particular, the pullback f∗(A′) is a formal semi-abelian scheme over
S whose rigid-analytic generic fiber is the abeloid S-group (A×A∨)4.

For each s ∈ S et Gn,s ⊆ As[pn] be the level-n canonical subgroup of As. The subgroup (Gn,s ×
(As[pn]/Gn,s)∨)4 ⊆ (A×A∨)4s[p

n] is the level-n canonical subgroup of (A×A∨)4s since h(p, g, n) is adapted
to a fixed choice of rn ∈ (p−1/pn−1(p−1), 1) ∩ pQ. Hence, if we can find a finite étale S-subgroup Cn of
(A×A∨)4 that recovers the level-n canonical subgroup on fibers then the image Gn of Cn under projection
to the first factor of the finite étale eight-fold product (A× A∨)4[pn] ' (A[pn]× A∨[pn])4 over S is a finite
étale S-subgroup of A[pn] that has the required properties. It is therefore enough to find such a Cn in the
pn-torsion of (A×A∨)4. Working locally on S, we may assume that the Lie algebra of f∗(A′) is globally free
(of rank 8g) as a coherent OS-module, so the formal completion A′0 of f∗(A′) along the identity section of
its mod-p fiber is identified with a g-variable formal group law over S.

Exactly as in Steps 2 and 3 of the proof of Theorem 4.1.1, the Berthelot generic fiber A′0
rig is an admissible

open subgroup of f∗(A′)rig = (A × A∨)4 and its locus with fibral polyradius ≤ rn in (A × A∨)4 is a quasi-
compact admissible open S-subgroup that is denoted (A× A∨)4≤rn

. The overlap Cn of this latter subgroup
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with the finite étale S-subgroup (A×A∨)4[pn] is a quasi-compact separated étale S-subgroup whose s-fiber
is (Gn,s × (As[pn]/Gn,s)∨)4 for all s ∈ S. In particular, Cn,s has rank p4ng that is independent of s, so by
[C4, Thm. A.1.2] the map Cn → S is finite. Hence, the S-subgroup Cn ⊆ (A × A∨)4[pn] has the required
properties. �

The following lemma was used in the preceding proof:

Lemma 4.3.2. Let f : X ′ → X be a finite surjective map between schemes or rigid spaces, and let Y → X
be a finite étale cover with pullback Y ′ → X ′ along f . If i′ : Z ′ ↪→ Y ′ is a closed immersion with Z ′ finite
étale over X ′ then i′ descends to a closed immersion i : Z ↪→ Y with Z finite étale over X if and only if it
does so on fibers over each point x ∈ X.

Proof. Let p1, p2 : X ′′ = X ′ ×X X ′ ⇒ X ′ be the standard projections, and let Y ′′ = X ′′ ×X Y . By the
fibral descent hypothesis, the finite étale X ′′-spaces p∗1(Z

′) and p∗2(Z
′) inside of the finite étale X ′′-space Y ′′

coincide over X ′′
x for all x ∈ X, and so p∗1(Z

′) = p∗2(Z
′) inside Y ′′. The problem is therefore to show that

finite étale covers satisfy effective (and uniquely functorial) descent with respect to finite surjective maps.
By working locally on the base, the rigid-analytic case is reduced to the case of schemes (using affinoid
algebras). The case of schemes is [SGA1, IX, 4.7]. �

Now we turn to the problem of relating canonical subgroups and Frobenius kernels. Let A be a g-
dimensional abelian variety over k/Qp with h(A) > h(p, g, n), and pass to a finite extension of k if necessary
so that A has semistable reduction in the sense of Theorem 2.1.9. Let AR be the associated formal semiabelian
scheme over R, and let t and a be the respective relative dimensions of the formal toric and abelian parts T
and B of AR (so t+ a = g). Thus, AR[pn] is a finite flat group scheme over R with geometric generic fiber
that is free of rank t+ 2a as a Z/pnZ-module. Since h(A) > h(p, g, n) there is a level-n canonical subgroup
Gn ⊆ A[pn]0 ⊆ AR[pn]0 and so by schematic closure this is the k-fiber of a unique finite flat closed R-
subgroup Gn ⊆ AR[pn]0 with order png. (Since the valuation ring R is local, this finite flat schematic closure
is automatically finitely presented as an R-module even if R is not noetherian.) Likewise, Gm = Gn[pm] is
a level-m canonical subgroup for all 1 ≤ m ≤ n and we let Gm ⊆ AR[pm]0 denote its closure.

By definition, Gm is contained in the identity component AR[pm]0 whose geometric generic fiber is a free
Z/pmZ-module with rank t+ h0, where h0 ≥ a is the height of the local part of the p-divisible group of B.
In the ordinary case we have t + h0 = g and so Gm = AR[pm]0; thus, Gm mod pR ⊆ AR

def= AR mod pR is
the kernel of the m-fold relative Frobenius

FAR,m,R/pR : AR → A
(pm)

R .

In the non-ordinary case t + h0 > g and we cannot expect Gm mod pR to equal kerFAR,m,R/pR. Working
modulo p1−ε for a small ε > 0 we get a congruence by taking h(A) near enough to 1 in a “universal” manner:

Theorem 4.3.3. Fix p, g, and n ≥ 1, and pick λ ∈ (0, 1)∩Q. There exists h(p, g, n, λ) ∈ (h(p, g, n), 1)∩pQ
such that if h(A) > h(p, g, n, λ) then Gm mod pλR = ker(FAR mod pλR,m,R/pλR) for 1 ≤ m ≤ n.

In the theorem and its proof, the terminology “modulo pλR” really means “modulo c′R′” for the valuation
ring R′ of any analytic extension k′/k and any c′ ∈ R′ satisfying |c′| ≥ p−λ. The implicit unspecified extension
of scalars is necessary in order to make sense of the assertion that the same λ works across all extensions of
the base field without the restriction pλ ∈ |k×| that is unpleasant in the discretely-valued case (as λ near
1 is the interesting case). We will typically abuse notation and write expressions such as R/pλR that the
reader should understand to mean R′/c′R′ for any R′ and c′ as above; this abuse of terminology streamlines
the exposition and does not create serious risk of error.

Proof. The ordinary case is a triviality, so we may restrict attention to those A with h(A) < 1. We also may
and do restrict attention to the case m = n. The formal semi-abelian model AR for A fits into a short exact
sequence

0→ T→ AR → B→ 0
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with a formal torus T and uniquely algebraizable formal abelian scheme B over Spf(R). Let t and a be
the respective relative dimensions of the toric and abelian parts, so a > 0 since h(A) < 1. Let BR be the
associated abelian scheme over R, so its generic fiber B over k is an a-dimensional abelian variety with the
same Hasse invariant as A. The dual A∨ also has semistable reduction and its abelian part is identified with
the formal completion B∨ of the dual abelian scheme B∨R whose generic fiber is B∨. Hence, (A× A∨)4 has
semistable reduction with formal abelian part (B×B∨)4 arising from the abelian scheme (BR×B∨R)4 whose
generic fiber (B ×B∨)4 is principally polarized with good reduction.

By Theorem 4.1.1 for all g ≥ 1 we can find h(p, g, n) ∈ (p−1/8, 1) sufficiently near 1 and adapted to a
fixed choice of rn ∈ (p−1/pn−1(p−1), 1) so that if a g-dimensional A satisfies h(A) > h(p, g, n) then there is a
level-n canonical subgroup Gn in A and (Gn × (A[pn]/Gn)∨)4 is a level-n canonical subgroup of (A×A∨)4.
Since the formation of schematic closure (over R) and relative Frobenius maps commute with products and
h((A× A∨)4) = h(A)8 ∈ (1/p, 1), it therefore suffices to work with (A× A∨)4 rather than A provided that
we use the bound hpp(p, 8g, n) ∈ (1/p, 1) from the principally polarized case (as in the proof of Theorem
4.1.1). In particular, we can assume that A and B admit principal polarizations (and we rename 8g as g).
Consider the p-adic completion A →M of the universal abelian scheme over the finite type moduli scheme
M = Ag′,1,N/Zp

over Zp, with N ≥ 3 a fixed integer relatively prime to p and 1 ≤ g′ ≤ g. By increasing k so
that the finite étale R-scheme BR[N ] is constant, the principally polarized abelian scheme B arises from a
point on the k-fiber of the generic fiber Arig →Mrig in the case g′ = a. Theorem 4.3.1 provides a relative level-
n canonical subgroup over the locus in Mrig where the Hasse invariant is > hpp(p, g′, n) for some universal
hpp(p, g′, n) < 1, and so the proof of [C4, Thm. 4.3.1] (the case g = 1) applies to this situation. (The proof
of [C4, Thm. 4.3.1] was specifically written to be applicable to the present circumstances.) This provides an
hgood(p, g′, n, λ) that “works” in the g′-dimensional principally polarized case with good reduction for any
g′ ≥ 1.

We now check that h(p, g, n, λ) = max(hpp(p, g, n),max1≤g′≤g(hgood(p, g′, n, λ))) ∈ (1/p, 1) ∩ pQ works
for A. Since A and B have the same Hasse invariant, if h(A) > h(p, g, n, λ) then B has a level-n canonical
subgroup G′n whose schematic closure G ′n in B[pn]0 = B[pn]0 reduces to the kernel of the n-fold relative
Frobenius modulo pλ. We have an exact sequence of identity components

(4.3.1) 0→ T[pn]→ AR[pn]0
π0

n→ B[pn]0 → 0,

so the π0
n-preimage G̃ ′n ⊆ AR[pn]0 of G ′n ⊆ B[pn]0 is a finite flat closed R-group of AR[pn]0 whose k-fiber is

the full preimage of G′n in A[pn]0. In Step 7 of the proof of Theorem 4.1.1 we saw that the full preimage of
G′n in A[pn]0 is the level-n canonical subgroup Gn of A, and so G̃ ′n as just defined is indeed the schematic
closure Gn of Gn in AR[pn]0.

We therefore need to prove that G̃ ′n mod pλR is killed by its relative n-fold Frobenius morphism (and then
order considerations force it to coincide with the kernel of the n-fold relative Frobenius morphism in the
formal group of AR mod pλR along its identity section). Since G ′n reduces to the corresponding Frobenius-
kernel in B[pn]0 mod pλR, it suffices to check that the containment

ker(FAR mod pλR,n,R/pλR) ⊆ (π0
n)−1(ker(FB mod pλR,n,R/pλR))

of closed subschemes inside AR mod pλR (which follows from the functoriality of relative Frobenius) is an
equality. Both terms are finite flat R/pλR-schemes and they have the same rank png = pnt · pna (since π0

n in
(4.3.1) is a finite locally free map with degree equal to the order pnt of its kernel T[pn]). Hence, equality is
forced. �

Control over reduction of canonical subgroups allows us to give a partial answer to the question of how
the Hasse invariant and level-n canonical subgroup (for n > 1) behave under passage to the quotient by a
level-m canonical subgroup for 1 ≤ m < n.

Corollary 4.3.4. Choose n ≥ 2 and rn ∈ (p−1/pn−1(p−1), 1) ∩ pQ. Consider 1 ≤ m < n and λ ∈ (0, 1) ∩ pQ
such that p−λ ≤ rpm

n . Let h = max(h(p, g, n, λ), p−λ/pm

) ∈ (h(p, g, n), 1) ∩ pQ with h(p, g, n) adapted to rn
in the sense of Theorem 4.1.1.
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For any analytic extension field k/Qp and g-dimensional abelian variety A over k such that h(A) > h,
the quotient A/Gm has Hasse invariant h(A)pm

and Gn/Gm is a level-(n −m) canonical subgroup that is
equal to (A/Gm)[pn−m]0

≤rpm
n

. Moreover, after replacing k with a finite extension so that A has semistable

reduction, the quotient A/Gm has semistable reduction and the reduction of Gn/Gm modulo pλ coincides
with the kernel of the relative (n−m)-fold Frobenius on the formal semi-abelian model for A/Gm modulo pλ.

Remark 4.3.5. Any λ ∈ [1/(p(n−m)−1(p − 1)), 1) ∩Q satisfies the hypotheses in the corollary, regardless of
rn, and it is λ near 1 that are of most interest anyway. Such a “universal” λ can be found if and only if
1/p(n−m)−1(p− 1) < 1, so if p = 2 then we have to require m < n− 1 (and hence n ≥ 3) in order that such
a universal λ may be found (though if we do not care about λ being independent of rn then some λ can
always be found). For example, for odd p we may always take λ = 1/(p − 1) and for m < n − 1 we may
always take λ = 1/p(p− 1) for any p.

Remark 4.3.6. For h(A) > h(p, g, n) the dual (A/Gm)∨ is identified with the quotient of A∨ modulo the
subgroup (A[pm]/Gm)∨ that is its level-m canonical subgroup, so for A as in the corollary the level-(n−m)
canonical subgroup of (A/Gm)∨ is

(A[pn]/Gn)∨/(A[pm]/Gm)∨ ' (A[pn−m]/Gn−m)∨.

Also, upon fixing 1 ≤ m < n and choosing rn and λ, for h as in this corollary we may take h(p, g,m) =
hpn−m

with rm = rpn−m

n ∈ (p−1/pm−1(p−1), 1) ∩ pQ as the universal size bound in Theorem 4.3.1 for level-
m canonical subgroups. The reader should compare Corollary 4.3.4 with the more precise results [C4,
Thm. 4.2.5, Cor. 4.2.6] in the case g = 1 (where the size estimates and calculation of the Hasse invariant
of the quotient have no logical dependence on Frobenius kernels, essentially because the formal group only
depends on a single parameter).

Proof. (of Corollary 4.3.4). Replace k with a finite extension so that pλ ∈ |k×| and there is a formal semi-
abelian model AR for A. For all 1 ≤ ν ≤ n the closure Gν in AR[pν ]0 of the level-ν canonical subgroup
Gν = Gn[pν ] reduces to the kernel of the relative ν-fold Frobenius modulo pλ. Let AR,λ be the reduction
of AR modulo pλ. The reduction modulo pλ for the formal semi-abelian model AR/Gm of A/Gm is thereby
identified with A

(pm)

R,λ , so the relative Verschiebung for AR/Gm mod pλ is identified with the m-fold Frobenius
base change of the relative Verschiebung for the smooth R/pλR-group AR,λ. Hence, passing to induced
R/pλR-linear maps on Lie algebras, the associated determinant ideal in R/pλR for AR/Gm mod pλR is the
pmth power of the determinant of Lie(VAR,λ

). This implies h(A/Gm) = h(A)pm

since h(A)pm

> hpm ≥ p−λ.
Now we show that Gn/Gm is a level-(n−m) canonical subgroup of A/Gm. Clearly its module structure

is (Z/pn−mZ)g, so it suffices to prove that this subgroup of (A/Gm)[pn−m]0 is precisely the subgroup of
elements with size ≤ rpm

n . First, for x ∈ Gn we claim that sizeA/Gm
(x) ≤ rpm

n . Since rpm

n ≥ p−λ, we
can work modulo pλ. The projection from A to A/Gm reduces to the m-fold relative Frobenius map on
AR,λ, so it raises size to the pmth power modulo pλR. More precisely, if x ∈ A extends to an integral
point of AR and sizeA(x) ≤ p−λ/pm

then sizeA/Gm
(x mod Gm) ≤ p−λ ≤ rpm

n , whereas if sizeA(x) > p−λ/pm

then sizeA/Gm
(x mod Gm) = sizeA(x)pm

. Hence, Gn/Gm ⊆ (A/Gm)[pn−m]0
≤rpm

n
. If this inclusion is not an

equality then there is a point x0 ∈ (A/Gm)[pn−m]0 with size ≤ rpm

n such that it does not lift into Gn in A.
Since AR → AR/Gm is finite flat of degree pm, the image of A[pn]0 in (A/Gm)[pn]0 contains (A/Gm)[pn−m]0.
We may therefore find a lift x0 ∈ A[pn]0 of x0, and x0 6∈ Gn = A[pn]0≤rn

. By the preceding general size
considerations, since sizeA(x0) > rn ≥ p−λ/pm

we get sizeA/Gm
(x0) = sizeA(x0)pm

> rpm

n , contradicting how
x0 was chosen. �

4.4. Comparison with other approaches to canonical subgroups. We conclude this paper by com-
paring Theorem 4.1.1 and Theorem 4.3.1 with results in [AM], [AG], [GK], and [KL]. In [AM], level-1
canonical subgroups are constructed on abelian varieties over k when p ≥ 3 and k is discretely-valued with
perfect residue field, and an explicit sufficient lower bound on the Hasse invariant is given in terms of p and
g (our method does not make h(p, g, n) explicit for g > 1, even with n = 1). The construction in [AM] is
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characterized by a completely different fibral property coming out of p-adic Hodge theory, so we must use
the arguments in Steps 7 and 8 of the proof of Theorem 4.1.1 (especially the existence of ordinary points
on certain connected components via Theorem 4.2.1) to conclude that this construction agrees with ours for
level-1 canonical groups, at least for Hasse invariants sufficiently close to 1 (where “sufficiently close” only
depends on p and g but is not made explicit by our methods since our hpp(p, g, 1) in the principally polarized
case is not explicit). The methods in [AM] do not appear to give information concerning either higher-level
canonical subgroups or level-1 canonical subgroups with p = 2 or general (e.g., algebraically closed) k.

The methods in [AG] are algebro-geometric rather than rigid-analytic, and give a theory of level-1 canon-
ical subgroups in families of polarized abelian varieties with good reduction over any normal p-adically
separated and complete base scheme. A discreteness hypothesis is required on the base field, though this
restriction is probably not necessary for the construction in [AG] to be pushed through. One advantage in
[AG] is a strong uniqueness result (ensuring compatibility with products and with Frobenius-kernels modulo
p1−ε, as well as with any other theory satisfying a few axioms), but the restriction to families with good
reduction seems to be essential in this work.

Finally, in [GK] and [KL] rigid-analytic methods (different from ours) are used to establish the “over-
convergence” of the canonical subgroup in the universal families over some modular varieties for which
well-understood integral models exist. In [GK] there is given a very detailed treatment for canonical sub-
groups over Shimura curves and an exact description of the maximal connected domains over which canonical
subgroups exist; the fine structure of integral models for the 1-dimensional modular variety underlies the
technique. As in Theorem 4.1.1, no explicit bound on the Hasse invariant is given by the general methods in
[KL]. Whereas our abstract bound h(p, g, 1) only depends on p and g, in principle the elegant construction in
[KL] gives a “radius of overconvergence” that may depend on the specific modular variety that is considered.
In particular, in contrast with our viewpoint and the viewpoints in [AM] and [K], since the approach in [KL]
does not assign an a priori intrinsic meaning to the notion of a canonical subgroup in the p-torsion of an
individual abelian variety it does not seem to follow from the methods in [KL] that if an abelian variety
arises in several fibers near the ordinary locus over a modular variety then the induced level-1 canonical
subgroups in these fibers must coincide or be independent of the choice of modular variety. (Our methods,
such as Lemma 4.1.4, ensure that these difficulties do not arise for Hasse invariants sufficiently close to 1 in
a universal manner.)

Appendix A. Some input from rigid geometry

There are several results from rigid geometry that were used in the body of the paper but whose proofs
were omitted there so as to avoid interrupting the main lines of argument. We have gathered these results
and their proofs in this appendix.

A.1. Fiber dimension and reduction. The following must be well-known, but we could not find a pub-
lished reference:

Theorem A.1.1. If B is a k-affinoid algebra of pure dimension d, then its analytic reduction B̃ over the
residue field k̃ also has pure dimension d.

Proof. By [BGR, 6.3.4] the ring B̃ is a d-dimensional k̃-algebra of finite type, so the problem is to show that
Spec(B̃) has no irreducible component with dimension strictly smaller than d. Equivalently, we have to rule
out the existence of b̃ ∈ B̃ such that B̃[1/b̃] is nonzero with dimension < d.

The description of B̃ in terms of the supremum seminorm shows that the natural map to the reduced
quotient B → Bred induces an isomorphism on analytic reductions. Hence, we can assume B is reduced.
Since B̃ is of finite type over k̃, we can find a topologically finite type R-subalgebra B (i.e., a quotient of a
restricted power series ring R{{t1, . . . , tn}}) contained in the subring of power-bounded elements of B such
that k ⊗R B = B and B → B̃ is surjective. Since B is R-flat, by [BL3, Prop. 1.1(c)] the R-algebra B is
topologically finitely presented (so it provides a formal model for B in the sense of Raynaud, but we do not
require Raynaud’s theory here). In particular, if I denotes an ideal of definition of R then there is a natural
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surjection B0
def= B/IB � B̃ of finitely generated k̃-algebras and (by definition) B̃ is reduced. We claim

that the kernel of this map consists entirely of nilpotents, so the quotient Bred of B modulo topological
nilpotents coincides with B̃. This ensures that B0 is a d-dimensional algebra and so our problem will be
equivalent to the assertion that Spec(B0) is equidimensional.

To prove the nilpotence of any b0 ∈ ker(B0 � B̃), we lift b0 to an element b ∈ B that satisfies |b|sup < 1
on Sp(B) and we have to show that b has nilpotent image in B0. It is equivalent to show that b lies in every
maximal ideal of the ring B0, for then it will lie in every maximal ideal of the reduced quotient (B0)red that is
finitely generated over the field k̃ and hence will vanish in this quotient (i.e., b0 is in the nilradical of B0), as
desired. Let n ∈ Spec(B0) be a closed point (identified with a maximal ideal of B). The theory of rig-points
on formal models [BL3, 3.5] provides a point x ∈ Sp(B) = MaxSpec(k⊗R B) such that if p = ker(B → k(x))
then under the projection from B to its R-flat (and R-finite and local) quotient B/p ⊆ k(x) the preimage
of the unique maximal ideal of B/p is n. But since |b|sup < 1 we have b(x) = 0 in k(x), which is to say b ∈ p.
Hence, we get the required result b ∈ n.

It remains to show that the d-dimensional Spec(B0) is equidimensional. It is equivalent to prove that every
non-empty basic open affine Spec(B0[1/b0]) has dimension d. Pick any b0 ∈ B0 such that Spec(B0[1/b0])
is non-empty. Since the quotient (B0)red is identified with B̃ and the Zariski-open non-vanishing locus for
b0 in Spec(B0) is non-empty, we conclude that b0 has nonzero image in (B0)red = B̃. Hence, if b ∈ B is
a lift of b0 then as a power-bounded element of B it has nonzero image in B̃. That is, |b|sup = 1. The
affinoid subdomain Sp(B〈1/b〉) in Sp(B) is therefore non-empty and so has dimension d since Sp(B) is
equidimensional of dimension d. We conclude that dim(B〈1/b〉) = d, so the analytic reduction (B〈1/b〉)∼ is
d-dimensional over k̃. By [BGR, 7.2.6/3] this analytic reduction is (via the evident map from B̃) naturally
isomorphic to B̃[1/b̃], where b̃ is the image of b in B̃. Since the nil-thickening B0 � B̃ carries b0 to b̃, it
follows that (B0[1/b0])red = B̃[1/b̃], so B0[1/b0] is d-dimensional as desired. �

A.2. Descent through proper maps. It is topologically obvious that if f : X ′ → X is a proper surjection
of schemes (or of topological spaces) and U ⊆ X is a subset such that f−1(U) ⊆ X ′ is open then U is open
in X. The analogue in rigid geometry with admissible opens is true, but it does not seem possible to prove
this using classical rigid geometry, nor Raynaud’s theory of formal models, even if we restrict to the case
of finite f and U → X that is a quasi-compact open immersion. Gabber observed that by considering all
formal models at once, as a Zariski-Riemann space, the problem can be solved:

Theorem A.2.1 (Gabber). If f : X ′ → X is a proper surjection of rigid spaces and U ⊆ X is a subset such
that U ′ = f−1(U) ⊆ X ′ is admissible open then U ⊆ X is admissible open.

Remark A.2.2. By Lemma 3.2.4, if U ′ is quasi-compact (resp. U ′ → X ′ is quasi-compact) then so is U (resp.
U → X).

The subsequent discussion is a detailed explanation of Gabber’s proof of Theorem A.2.1, built up as a
series of lemmas. Of course, to prove the theorem we may work locally on X and so we can assume X
is affinoid. In particular, we can assume X (and hence X ′) is quasi-compact and quasi-separated. Rather
than work only with such classical rigid spaces, we will work with Zariski-Riemann spaces. This amounts to
working with the underlying topological spaces of the associated adic spaces in the sense of Huber, but since
we only use the underlying topological spaces of certain adic spaces we do not require any serious input from
the theory of adic spaces.

Definition A.2.3. Let X be a quasi-compact and quasi-separated rigid space. The Zariski-Riemann space
ZRS(X) attached to X is the topological inverse limit of the directed inverse system of (quasi-compact and
flat) formal models of X. (All transition maps are proper, by [L1, 2.5, 2.6].)

As we shall see shortly, these spaces ZRS(X) are spectral spaces in the sense of Hochster: a spectral space
is a quasi-compact topological space T that is sober (i.e., every irreducible closed set in T has a unique generic
point) and admits a base B of quasi-compact opens such that B is stable under finite intersections (so in fact
the overlap of any pair of quasi-compact opens is quasi-compact, which is to say that T is quasi-separated;
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in [H, §12] this property is called semispectral). For example, if S is a quasi-compact and quasi-separated
scheme then by taking B to be the collection of quasi-compact opens in the underlying topological |S| we
see that |S| is spectral. (Conversely, in [H] it is shown that every spectral space arises as the spectrum of a
ring, so spectral spaces are precisely the underlying topological spaces of quasi-compact and quasi-separated
schemes; we shall not use this fact.)

A spectral map between spectral spaces is a continuous map that is quasi-compact (i.e., the preimage
of a quasi-compact open is quasi-compact). For example, if f : S′ → S is a map between schemes whose
underlying topological spaces are noetherian then |f | : |S′| → |S| is spectral. Thus, the inverse system
of formal models for a fixed quasi-compact and quasi-separated rigid space X consists of spectral spaces
with spectral transition maps, so Lemma A.2.6 below ensures that ZRS(X) is a spectral space. By the
theory of formal models for morphisms [BL3, Thm. 4.1], this lemma also ensures that X  ZRS(X) is
a (covariant) functor from the full subcategory of quasi-compact and quasi-separated rigid spaces to the
category of spectral spaces equipped with spectral maps.

We need to record some properties of inverse limits in the category of spectral spaces, and to do this it
is convenient to introduce a few general topological notions for a class of spaces that is more general than
the class of spectral spaces in the sense that we weaken the sobriety axiom to the T0 axiom. Let X be a
T0 topological space (i.e., distinct points have distinct closures) that is quasi-compact and quasi-separated,
and assume that the quasi-compact opens are a base for the topology. A constructible set in X is a member
of the Boolean algebra of subsets of X generated by the quasi-compact opens. Explicitly, a constructible
set in X is a finite union of overlaps U ∩ (X − U ′) for quasi-compact opens U,U ′ ⊆ X. The constructible
topology on such an X is the topology having the constructible sets as a basis of opens, and the associated
topological space is denoted Xcons. (By [EGA, IV1, 1.9.3], if X is the underlying space of a quasi-compact
and quasi-separated scheme then this notion of Xcons coincides with that defined more generally in [EGA,
IV1, 1.9.13].) An open (resp. closed) set in Xcons is an arbitrary union (resp. intersection) of constructible
sets in X, and these are respectively called ind-constructible and pro-constructible sets in X. In particular,
the constructible topology on X refines the given one on X. (In [H], Xcons is called the patch topology and a
pro-constructible set is called a patch. Hochster’s terminology has the advantage of brevity, but we choose to
follow the terminology of Grothendieck that is more widely used in algebraic geometry.) If Z ⊆ X is a closed
subset then Z is also a quasi-compact and quasi-separated T0-space such that the quasi-compact opens are a
base for the topology, and it is clear that the constructible topology on X induces the constructible topology
on Z.

Note that for any T0-space X the topological space Xcons is always a Hausdorff space. Indeed, let x, y ∈ X
be distinct points, so either x 6∈ {y} or y 6∈ {x} and hence there is an open U of X that contains x but not
y or contains y but not x. Using the basis of quasi-compact opens we may shrink U to be quasi-compact, so
U and X − U are disjoint opens in Xcons that separate x and y.

The analysis of topological operations with spectral spaces is very much simplified by means of:

Lemma A.2.4. Let X be a quasi-compact and quasi-separated T0 topological space such that the quasi-
compact opens are a base for the topology.

(1) The space X is a spectral space if and only if the Hausdorff space Xcons is quasi-compact.
(2) A continuous map f : X → Y between two spectral spaces is spectral if and only if f cons : Xcons →

Y cons is continuous.

The proof is very briefly sketched in [H, §2], and due to lack of a reference with a more complete discussion
we provide the details for the convenience of the reader (since the proof requires some input from point-set
topology that is not widely known).

Proof. Let us begin with (1). First assume that Xcons is quasi-compact. Pick an irreducible closed set
Z ⊆ X. We seek a generic point. Since Xcons induces the contructible topology on Z, clearly Zcons is closed
in Xcons and hence it too is quasi-compact. We may therefore rename Z as X to reduce to the case when X is
irreducible and we wish to find a generic point for X. If x ∈ X is non-generic then there exists a non-empty
quasi-compact open Ux ⊆ X that does not contain x. Hence, if there is no generic point then we get a
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collection {Ux} of non-empty quasi-compact opens in X such that ∩x∈XUx = ∅. The Ux’s are closed in the
quasi-compact topological space Xcons, so by the finite intersection property for closed sets in quasi-compact
spaces some finite intersection Ux1 ∩ · · · ∩ Uxn

must be empty. This contradicts the irreducibility of X (as
all Uxi

are non-empty opens in X).
Conversely, suppose that X is spectral. To prove that Xcons must be quasi-compact we prove that

it satisfies the finite intersection property for closed sets. Every closed set in Xcons is an intersection of
constructible sets, and every constructible set is a finite union of overlaps U ∩ (X − U ′) for quasi-compact
open U and U ′. Hence, the quasi-compact opens and their complements form a subbasis of closed sets for
the constructible topology. By the Alexander subbase theorem [Ke, Ch. 5, Thm. 6] (whose proof uses Zorn’s
Lemma), a topological space is quasi-compact if it satisfies the finite intersection property for members of
a subbasis of closed sets. Hence, it is enough to show that if {Ci} is a collection of subsets of X with each
Ci either closed or quasi-compact open in X and if all finite intersections among the Ci’s are non-empty
then ∩iCi 6= ∅. By Zorn’s Lemma we may and do enlarge {Ci} to a maximal such collection (ignoring
the property of whether or not the total intersection is non-empty). In particular, {Ci} is stable under
finite intersections among its quasi-compact open members and also among its closed members. Since X is
quasi-compact and those Ci’s that are closed satisfy the finite intersection property, their total intersection
Z is non-empty. For any Ci0 that is a quasi-compact open, the overlaps Ci0 ∩ Ci for closed Ci satisfy the
finite intersection property in the quasi-compact space Ci0 and hence the open Ci0 meets Z. Let us show
that the non-empty Z is irreducible. Suppose Z = Z1 ∪ Z2 for closed subsets Z1, Z2 ⊆ Z. If each Zj fails
to meet some Cij

then Ci1 and Ci2 must be quasi-compact opens in X and so the member Ci1 ∩ Ci2 in the
collection {Ci} is a quasi-compact open that does not meet Z1 ∪ Z2 = Z, a contradiction. Thus, one of the
closed sets Zj meets every Ci and hence by maximality that Zj is in the collection {Ci}. By construction
of Z we thereby obtain Z ⊆ Zj , so Zj = Z as desired. The spectral property of X provides a generic point
z in the irreducible closed set Z, and since each quasi-compact open Ci0 meets Z it follows that every such
Ci0 contains z. Thus, z ∈ ∩iCi. This shows that Xcons is indeed quasi-compact.

Now we turn to (2). Certainly if f is spectral then f−1(U) is a quasi-compact open in X for every
quasi-compact open in Y , so f cons is continuous. Conversely, assuming f cons to be continuous we pick a
quasi-compact open U ⊆ Y and we want the open set f−1(U) ⊆ X to be quasi-compact. Since U is closed
in Y cons it follows from continuity of f cons that f−1(U) = (f cons)−1(U) is closed in the space Xcons that is
also quasi-compact since X is spectral. Hence, f−1(U) is a quasi-compact subset of Xcons. But the open
set f−1(U) in X is covered by quasi-compact opens in X, and this may be viewed as an open covering of
f−1(U) in Xcons. Hence, there is a finite subcover, so f−1(U) is a finite union of quasi-compact opens in X.
Thus, f−1(U) is quasi-compact. �

Example A.2.5. By the theory of formal models for open immersions [BL4, Cor. 5.4(a)], if U ⊆ X is a
quasi-compact admissible open in a quasi-compact and quasi-separated rigid space X then a cofinal system
of formal (flat) models for U is given by an inverse system of opens in a cofinal system of formal (flat) models
for X. The induced map ZRS(U)→ ZRS(X) is thereby identified with an inverse limit of open embeddings,
so it is an open embedding of topological spaces. Likewise, if U ′ ⊆ X is another such open then so is U ∩U ′
and clearly ZRS(U) ∩ ZRS(U ′) = ZRS(U ∩ U ′) inside of ZRS(X).

Since every closed point of a formal model arises as the specialization of a point on the rigid-analytic
generic fiber, we see that if {Ui} is a finite collection of quasi-compact admissible opens in a quasi-compact
and quasi-separated rigid space X then the Ui’s cover X if and only if the ZRS(Ui)’s cover ZRS(X). Hence,
working locally on X with quasi-compact admissible opens has the effect of allowing us to work locally on
ZRS(X). By the same argument, a base of opens in ZRS(X) is given by ZRS(U)’s for affinoid subdomains
U ⊆ X.

Lemma A.2.6. The full subcategory of spectral spaces in the category of topological spaces enjoys the fol-
lowing properties with respect to topological inverse limits:

(1) If {Xi} is a directed inverse system of spectral spaces with spectral transition maps then the inverse
limit space X is spectral and each map X → Xi is spectral. Moreover, (lim←−Xi)cons = lim←−X

cons
i as

topological spaces.
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(2) If {Xi} → {Yi} is a map of such inverse systems with each fi : Xi → Yi a spectral map then the
induced map f : X → Y on inverse limits is spectral. Moreover, if {Fi} is an inverse system of
pro-constructible (resp. closed) subsets of {Xi} then the inverse limit F is pro-constructible (resp.
closed) in X and f(F ) is the inverse limit of the fi(Fi) ⊆ Yi. In particular if each fi is a surjective
(resp. closed) map of topological spaces then so is f .

Part (1) is [H, Thm. 7], and the proof we give for the entire lemma follows suggestions of Hochster.

Proof. We first analyze the formation of products of spectral spaces. If {Xα} is a collection of spectral
spaces then we claim that P =

∏
Xα is again a spectral space and that P cons =

∏
Xcons

α (in the sense
that the constructible topology on the underlying set of P is the same as the product of the constructible
topologies on the factor spaces Xα). Certainly P is a quasi-compact space, and since each Xα has a base of
quasi-compact opens the same holds for P by the definition of the product topology. The T0 property for
P follows from the T0 property for the factors Xα. Let us next check that P is quasi-separated. Any open
in P is covered by opens of the form

∏
Uα with each Uα a quasi-compact open in Xα and Uα = Xα for

all but finitely many α; such a
∏
Uα shall be called a basic quasi-compact open block. Any quasi-compact

open in P is covered by finitely many basic quasi-compact open blocks, and since an intersection of two such
blocks is another such block (as each Xα is quasi-separated) we conclude that P is indeed quasi-separated.
By Lemma A.2.4, the spectral property for P is now reduced to showing that P cons is quasi-compact.

We will show directly that P cons =
∏
Xcons

α , so by quasi-compactness of the Xcons
α ’s (via Lemma A.2.4)

we would get the desired quasi-compactness of P cons. The topology on P cons has as a base of opens the sets
U ∩ (P −U ′) for quasi-compact opens U,U ′ ⊆ P , and both U and U ′ are finite unions of basic quasi-compact
open blocks. Thus, U is certainly open in

∏
Xcons

α and P −U ′ is a finite intersection of complements P −U ′i
with U ′i ⊆ P a basic quasi-compact open block

∏
α Uα,i. If we let pα : P → Xα denote the projection then for

each i the complement P −U ′i is the union of the finitely many p−1
α (Xα−Uα,i)’s for which the quasi-compact

open Uα,i ⊆ Xα is distinct from Xα, so P − U ′i is open in
∏
Xcons

α . Hence, every open in P cons arises
from an open in

∏
Xcons

α . The converse is exactly the assertion that the map of spaces P cons →
∏
Xcons

α is
continuous, which is to say that each map pcons

α : P cons → Xcons
α is continuous. Since Xcons

α has a base of
opens given by U ∩ (Xα − U ′) for quasi-compact opens U,U ′ ⊆ Xα and both p−1

α (U) and P − p−1
α (U ′) are

constructible in P , we are done with the treatment of products.
Turning our attention to directed inverse limits, we shall prove that lim←−Xi is not only spectral but that

as a subset of
∏
Xi it is closed in (

∏
Xi)cons =

∏
Xcons

i . Note that by the definition of topological inverse
limits, the induced topology on lim←−Xi from (

∏
Xi)cons =

∏
Xcons

i is lim←−X
cons
i ; this latter topological inverse

limit makes sense topologically because the transition maps fij : Xj → Xi are spectral and hence each f cons
ij

is continuous. Each Xcons
i is a quasi-compact Hausdorff space and hence the inverse limit of the Xcons

i ’s
is indeed closed in the product

∏
Xcons

i . In particular, lim←−X
cons
i is quasi-compact and Hausdorff. It is

clear that lim←−Xi is a T0-space (as it is a subspace of the product
∏
Xi of T0-spaces), and it has a refined

topology lim←−X
cons
i that is quasi-compact so it must be quasi-compact as well. For any i0 the set-theoretic

identification lim←−Xi = lim←−i≥i0
Xi is a homeomorphism and so a base of opens of lim←−Xi is given topologically

by lim←−i≥i0
Ui where Ui0 ⊆ Xi0 is a quasi-compact open and Ui = f−1

i0i (Ui0) is a quasi-compact open in Xi

for all i ≥ i0 (since fi0i is spectral). But a quasi-compact open in a spectral space is spectral, so {Ui}i≥i0

is also a directed inverse system of spectral spaces with spectral transition maps, whence U = lim←−i≥i0
Ui is

quasi-compact. If U ′ = lim←−i≥i′0
U ′i is another such open in lim←−Xi and we pick i1 ≥ i0, i′0 and let U ′′i = Ui∩U ′i

for i ≥ i1 then U ∩ U ′ = lim←−i≥i1
U ′′i inside of lim←−Xi. Hence, lim←−Xi has a base of quasi-compact opens that

is stable under finite intersection, so it is quasi-separated.
We have proved enough about the topology of lim←−Xi so that (lim←−Xi)cons makes sense. Thus, by Lemma

A.2.4 the spectral property for the space lim←−Xi and for the continuous maps lim←−Xi → Xi0 (for all i0) will
follow if the set-theoretic identification (lim←−Xi)cons = lim←−X

cons
i is a homeomorphism. It has been shown

above that lim←−X
cons
i is the topology induced on lim←−Xi by

∏
Xcons

i = (
∏
Xi)cons, so we just have to show

that the constructible topology on lim←−Xi is also induced by (
∏
Xi)cons. By directedness of the indexing

set and the spectral property for the transition maps, it is clear that any basic quasi-compact open block
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in
∏
Xi meets lim←−Xi in a quasi-compact open set, and so any constructible set in

∏
Xi meets lim←−Xi in a

constructible set. That is, (lim←−Xi)cons → (
∏
Xi)cons is continuous. To see that it is an embedding, we just

have to show that every constructible set in lim←−Xi is a pullback of a constructible set in
∏
Xi, and for this

it suffices to consider quasi-compact opens. But any quasi-compact open in lim←−Xi is trivially of the form
lim←−i≥i0

Ui considered above, and so is the pullback of the basic quasi-compact open block in
∏
Xi given by

Ui0 in the i0-factor and Xi in the i-factor for all i 6= i0. This completes the proof of (1).
For the first assertion in (2), the induced map f = lim←− fi : X → Y is certainly continuous and hence

(by Lemma A.2.4) is spectral if and only if f cons is continuous. But the preceding considerations show
that f cons = lim←− f

cons
i , and each f cons

i is continuous since each fi is spectral, so f cons is indeed continuous.
Since pro-constructible sets in a spectral space are precisely the closed sets in the associated constructible
topology, if {Fi} is an inverse system of pro-constructible sets then the subset F = lim←−Fi in X = lim←−Xi

is an inverse limit of closed sets in lim←−X
cons
i = Xcons so it is closed in this space since the Xcons

i ’s are
quasi-compact Hausdorff spaces (with continuous transition maps between them). Thus, F is indeed pro-
constructible in X for such {Fi}. This argument also shows that f(F ) ⊆ Y is pro-constructible because
f(F ) = f cons(F cons) inside of Y cons = lim←−Y

cons
i (with F cons denoting F viewed inside of Xcons = lim←−X

cons
i )

and f cons is a continuous map between quasi-compact Hausdorff spaces (so it is closed). Moreover, f(F )
is the inverse limit of the fi(Fi) (as subsets of Y ) because upon passing to the constructible topologies we
reduce to the well-known analogous claim for a continuous map between inverse systems of quasi-compact
Hausdorff spaces (see [B, I, §9.6, Cor. 2]). Since closed sets in each Xi are trivially pro-constructible, the
same argument shows the set-theoretic fact that if the Fi’s are closed in X then f(F ) is the inverse limit of
the fi(Fi)’s in Y . In this special case the subset F ⊆ X is closed because X − F is the union of the overlap
of X ⊆

∏
Xi with the open blocks given by (Xi0 − Fi0)×

∏
i 6=i0

Xi for all i0.
By taking Fi = Xi for all i, we conclude that if fi(Xi) = Yi for all i then f(X) = Y ; that is, f is

surjective if all fi’s are surjective. As for the property that f(F ) is closed in Y whenever F ⊆ X is closed
and each fi is closed, we note that if F = lim←−Fi with {Fi} an inverse system of closed sets in {Xi} then
f(F ) = lim←− fi(Fi) is an inverse limit of closed sets in the Yi’s and hence is indeed closed in Y . Thus, the
preservation of closedness for morphisms reduces to the claim that any closed set F in X = lim←−Xi has the
form lim←−Fi with Fi ⊆ Xi a closed set. This is true in the setting of arbitrary topological spaces, as follows.
An arbitrary intersection of closed sets of the form lim←−Fi with closed Fi ⊆ Xi again has this special form, so
it suffices to verify our claim for closed sets complementary to members of a base of opens. A base of opens
is given by lim←−i≥i0

f−1
i0i (Ui0) with Ui0 ⊆ Xi0 an open set (and fi0i : Xi → Xi0 the spectral transition map),

and the complement of such an open has the form lim←−i≥i0
Fi with Fi = f−1

i0i (Xi0 − Ui0) for i ≥ i0. Defining
Fi = Xi for all other i settles the claim. �

Let I be an ideal of definition for the valuation ring R of our non-archimedean base field k. Fix a k-
affinoid algebra A, and let A be a flat formal affine model (i.e., A is topologically finitely presented and
flat over R, with k ⊗R A ' A). A key fact is that the ring extension A ⊆ A0 into the subring of power-
bounded elements is integral. To prove this, we shall exhibit a subring of A over which A0 is integral. Let
d = dim(A /mRA ) ≥ 0. By [C4, Thm. A.2.1(1)], d = dim(A). By Noether normalization over the residue
field k̃, there is a finite map ϕ : k̃[T1, . . . , Td] → A /mRA . For an ideal of definition I of R it follows that
any lifting of Specϕ to a map Spec(A /IA ) → Spec((R/I)[T1, . . . , Td]) between finitely presented R/I-
schemes is proper and quasi-finite, hence finite. Thus, any continuous lift Φ : R{{T1, . . . , Td}} → A of ϕ
over R is finite. Such a map of flat R-algebras must be injective because on generic fibers it is a finite map
Φk : k〈〈T1, . . . , Td〉〉 → A with d = dimA. The finite map Φk between k-affinoids induces an integral map on
subrings of power-bounded elements [BGR, 6.3.5/1], but the power-bounded elements of the d-variable Tate
algebra are precisely the d-variable restricted power series over R. The R-algebra of such power series is a
subalgebra of A inside of A, so we conclude that A0 is indeed integral over A .

By [vdPS, Thm. 2.4], the points in ZRS(Sp(A)) are functorially in bijective correspondence with (not
necessarily rank-1) valuations rings V on fraction fields Frac(A/p) for primes p of A such that the subring
A0 of power-bounded elements lands in V and the (necessarily nonzero) ideal IV of V generated by I is
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topologically nilpotent (i.e., ∩n≥1(IV )n = ∩n≥1I
nV vanishes). Alternatively, and more conveniently for our

purposes, since A → A0 is an integral ring extension we can identify such points with maps A → V to
valuation rings V such that (i) I generates a nonzero proper ideal of V that is topologically nilpotent, and
(ii) Frac(V ) is generated by the image of A (or equivalently, of A).

Concretely, given any map A → V to a valuation ring such that (i) holds it is straightforward to check
that the I-adic completion V̂ of V is a valuation ring and it thereby determines a point of ZRS(Sp(A))
since (by principality of finitely generated ideals in a valuation ring) one can uniquely lift the map of formal
schemes Spf(V̂ )→ Spf(A ) through admissible formal blow-ups (and so chasing the image of the closed point
of Spf(V̂ ) gives the desired point in ZRS(Sp(A))). Using the induced valuation ring structure on the fraction
field of the image of A in V gives the valuation associated to this point. In particular, via the theory of
rig-points [BL3, 3.5], points of Sp(A) give rise to points in the associated Zariski-Riemann space; likewise, if
X is a quasi-compact and quasi-separated rigid space then the underlying set of X is functorially a subset
of its associated Zariski-Riemann space. (Note that X is empty if and only if ZRS(X) is empty.)

Lemma A.2.7. Any pair of faithfully flat local maps W ⇒ V, V ′ of valuation rings can be completed to a
commutative square of valuation rings and faithfully flat local maps.

Recall that a local map from a valuation ring to a domain is faithfully flat if and only if it is injective (as
all finitely generated ideals in a valuation ring are principal).

Proof. Pick x ∈ Spec(V ⊗W V ′) over the closed points of Spec(V ) and Spec(V ′), so the maps V, V ′ ⇒
OV⊗W V ′,x are local and flat, hence faithfully flat. Let p be a minimal prime of the local ring at x, so by
going-down for flat maps the two local maps V, V ′ ⇒ OV⊗W V ′,x/p are injective and hence faithfully flat.
Thus, any valuation ring dominating OV⊗W V ′,x/p does the job. �

Lemma A.2.8. Let X,Y ⇒ Z be a pair of maps between quasi-compact and quasi-separated rigid spaces,
and let P = X ×Z Y so P is also quasi-compact and quasi-separated. The natural map

(A.2.1) ZRS(P )→ ZRS(X)×ZRS(Z) ZRS(Y )

is surjective.

Proof. By Example A.2.5 it is enough to consider the affinoid case, say with X = Sp(A), Y = Sp(B), and
Z = Sp(C), so P = Sp(D) where D = A⊗̂CB. Let A , B, and C be flat affine formal models for A, B, and
C respectively, equipped with continuous R-algebra maps C ⇒ A ,B inducing C ⇒ A,B. Let D be the
quotient of A ⊗̂C B by R-torsion (so D is a flat affine formal model for D). A point in the target of (A.2.1)
is induced by a compatible triple of maps to valuation rings A → V , B → V ′, and C → W (with local
faithfully flat maps W ⇒ V, V ′). By Lemma A.2.7 we can find a valuation ring V ′′ equipped with a map
V ⊗W V ′ → V ′′ such that the maps V, V ′ ⇒ V ′′ are local and faithfully flat. Hence, the I-adically completed
tensor product D maps to the I-adic completion of V ′′ (which is again a valuation ring, as we noted above)
and this determines the desired point of ZRS(P ). �

Lemma A.2.9. If f : X → Y is a map of quasi-compact and quasi-separated rigid spaces then the following
are equivalent:

• The map f is surjective.
• Every formal model f : X→ Y of f (using R-flat formal models of X and Y ) is surjective.
• The map ZRS(f) is surjective.

Proof. First assume f is surjective, and let f : X → Y be a formal model with X and Y flat over R. On
topological spaces f coincides with the map fred of ordinary finite type k̃-schemes, and so it is surjective if
and only if it is surjective on underlying spaces of closed points. For any closed point y0 ∈ Y the R-flatness
ensures (via the theory of rig-points) that there exists a finite extension k′/k and a map y : Spf(R′) → Y
over Spf(R) that hits y0. If y0 is not hit by f then the pullback of f by y is empty. However, this pullback is
a topologically finitely presented (possibly non-flat) formal scheme over R′ whose generic fiber over Sp(k′)
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is f−1(y) with y ∈ Y = Yrig the image of yrig. Since f is surjective, the fiber f−1(y) cannot be empty and
so we have a contradiction. Thus, f is indeed surjective.

If all formal models for f are surjective then the map ZRS(f) can be expressed as an inverse limit of
surjective spectral maps, and so surjectivity of ZRS(f) follows from Lemma A.2.6 in such cases.

Finally, assume ZRS(f) is surjective and pick y ∈ Y ⊆ ZRS(Y ). Identify y with a map y : Sp(k′) → Y
for a finite extension k′/k. We want to prove that the fiber product Sp(k′)×Y X is non-empty. It suffices to
show that its associated Zariski-Riemann space is non-empty, and by Lemma A.2.8 the natural map

(A.2.2) ZRS(Sp(k′)×Y X)→ ZRS(Sp(k′))×ZRS(Y ) ZRS(X)

is surjective. But ZRS(Sp(k′)) is trivially a one-point space {ξ}, and so the topological target fiber product
in (A.2.2) is exactly the fiber of ZRS(f) over the image of ξ in ZRS(Y ). Hence, surjectivity of ZRS(f) gives
the desired non-emptiness. �

Here is the key definition.

Definition A.2.10. Let X be a quasi-compact and quasi-separated rigid space. An open subset U ⊆
ZRS(X) is admissible if for every map of quasi-compact and quasi-separated rigid spaces f : Y → X, the
image of ZRS(f) is contained in U whenever the subset f(Y ) ⊆ X ⊆ ZRS(X) is contained in U . (It clearly
suffices to work with affinoid Y .) Given such a U , we call the subset U = U ∩X its set of ordinary points.

Remark A.2.11. If U ⊆ ZRS(X) is an admissible open then ZRS(f)−1(U ) ⊆ ZRS(Y ) is as well (for any
f : Y → X as in Definition A.2.10).

It is clear that if X is a quasi-compact and quasi-separated rigid space and U ⊆ X is a quasi-compact
admissible open in the sense of Tate then ZRS(U)∩X inside of ZRS(X) is equal to U ⊆ X and so the open
set ZRS(U) in ZRS(X) is admissible. In general, if U ⊆ ZRS(X) is an admissible open in the above sense
then the associated locus U ⊆ X of ordinary points is an admissible open of X in the sense of Tate. Indeed,
we may choose admissible affinoid opens Ui ⊆ X such that the associated open sets Ui = ZRS(Ui) ⊆ ZRS(X)
are an open cover of U (so obviously ∪Ui = U inside of X) and we just have to check that for any (necessarily
quasi-compact) morphism f : Y = Sp(B)→ X from an affinoid space such that f(Y ) ⊆ U , the set-theoretic
cover of Y by the quasi-compact pullbacks f−1(Ui) has a finite subcover. But by definition of admissibility
for U the map ZRS(f) has image contained in U and hence the preimages ZRS(f)−1(Ui) are an open
cover of the space ZRS(Y ) that is quasi-compact. It follows that ZRS(f) has image contained in the union
of finitely many Ui, whence f(Y ) ⊆ X is contained in the union of the finitely many corresponding loci
Ui = Ui ∩X as required. This can be strengthened as follows:

Lemma A.2.12. Let X be a quasi-compact and quasi-separated rigid space. The association U 7→ U ∩X
from admissible opens in ZRS(X) to admissible opens in X is a bijection that commutes with the formation
of intersections. Moreover, U is quasi-compact if and only if the admissible open U ∩X in X is a quasi-
compact rigid space, and the correspondence U 7→ U ∩ X commutes with formation of preimages under
ZRS(f) for any map f : X ′ → X between quasi-compact and quasi-separated rigid spaces.

Proof. Since U is covered by opens of the form ZRS(U) for quasi-compact admissible opens U ⊆ X, to
prove that the admissible open U ∩X determines U it suffices to note the obvious fact that for any quasi-
compact admissible open U ⊆ X we have ZRS(U) ⊆ U if and only if U ⊆ U ∩X (since U is admissible,
U = X ∩ ZRS(U), and ZRS(·) is a functor).

Now let U ⊆ X be an arbitrary admissible open, say with {Ui} an admissible covering by quasi-compact
opens. Let U be the open set ∪ZRS(Ui) in ZRS(X), so U ∩X = U . We claim that U is admissible. Pick a
map of rigid spaces f : Y → X with Y quasi-compact and quasi-separated such that f(Y ) ⊆ U . We need to
prove that ZRS(f) has image contained in U . By the definition of admissibility for the covering {Ui} of U ,
the loci f−1(Ui) in Y are admissible opens and constitute an admissible cover. In particular, there is a finite
collection of affinoid domains {Vj} in Y that covers Y and refines {f−1(Ui)}. Since an admissible covering by
finitely many quasi-compact opens can always be realized from a Zariski-open covering of a suitable formal
model [BL3, Lemma 4.4], ZRS(Y ) is the union of the ZRS(Vj)’s. Thus, the image of ZRS(f) is the union
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of the images of the ZRS(fj)’s, with fj = f |Vj : Vj → X a map that factors through some Ui(j). Hence,
ZRS(fj) has image contained in ZRS(Ui(j)) ⊆ U , so ZRS(f) has image contained in U . This concludes the
proof that U is an admissible open in ZRS(X).

Finally, we check that an admissible open U ⊆ ZRS(X) is quasi-compact if and only if the admissible
open U = U ∩X in X is quasi-compact as a rigid space, and that the correspondence between admissible
opens in X and ZRS(X) is compatible with preimages. The preceding argument shows that if a collection of
quasi-compact opens Ui ⊆ U is an admissible covering of U then the ZRS(Ui)’s cover U , and the converse is
immediate from the hypothesis of admissibility for U and the quasi-compactness of Zariski-Riemann spaces.
Thus, the desired quasi-compactness result follows. As for preimages, if f : X ′ → X is a map between quasi-
compact and quasi-separated rigid spaces and U ⊆ ZRS(X) is an admissible open then for U = U ∩X we
have to check that f−1(U) = ZRS(f)−1(U ) ∩X ′. The containment ⊆ is obvious by admissibility of U and
functoriality of ZRS(·) (applied to admissible quasi-compact opens in U). For the reverse inclusion consider
x′ ∈ X ′ such that ZRS(f)(x′) ∈ U . Since ZRS(f)(x′) = f(x′) in X ⊆ ZRS(X) we have f(x′) ∈ U ∩X = U
as desired. �

Any finite union U of affinoid subdomains Ui in a quasi-compact and quasi-separated rigid space is an
admissible open with the Ui’s as an admissible covering, so it follows that retrocompact opens in ZRS(X)
are necessarily admissible.

Lemma A.2.13. If f : X ′ → X is a surjective map of quasi-compact and quasi-separated rigid spaces and
U is an open subset of ZRS(X) whose open preimage U ′ ⊆ ZRS(X ′) is admissible then U is admissible.

Proof. Let Y be a quasi-compact and quasi-separated rigid space and h : Y → X a map such that h(Y ) ⊆ U .
We want to prove that ZRS(h) has image contained in U . The pullback f ′ : Y ′ = X ′×X Y → Y is surjective,
so by Lemma A.2.9 the map ZRS(f ′) is surjective. Hence, we may replace Y with Y ′ so that h factors as
f ◦ h′ for some h′ : Y → X ′. Obviously h′(Y ) ⊆ U ′, so by admissibility of U ′ the image of ZRS(h′) is
contained in U ′. Composing with ZRS(f) gives that ZRS(h) has image contained in U . �

Lemma A.2.14. If f : X ′ → X is a proper map of quasi-compact and quasi-separated rigid spaces then
ZRS(f) is a closed map of topological spaces. Moreover, if f is surjective and U ⊆ ZRS(X) is a subset
whose preimage in ZRS(X ′) is open (resp. admissible open, resp. quasi-compact open) then the same holds
for U in ZRS(X).

Proof. By Lemma A.2.6, ZRS(f) is closed provided that any formal model for f is a closed map. But (as
we explained in [C3, §A.1]), by recent work of Temkin the map f is proper in the sense of rigid spaces if
and only if one (equivalently every) formal model of f is proper (and thus closed) in the sense of formal
geometry.

Now assume that f is also surjective. Any closed surjection of topological spaces is a quotient map, so
a subset U ⊆ ZRS(X) is open (resp. quasi-compact open) if its preimage in ZRS(X ′) has this property.
If ZRS(f)−1(U ) is an admissible open in ZRS(X ′) then U must at least be open in ZRS(X) and it is
admissible by Lemma A.2.13. �

Now we can prove Theorem A.2.1:

Proof. Let P = X ′×X X ′ and let U ′ ⊆ ZRS(X ′) be the admissible open that corresponds to U ′ via Lemma
A.2.12. Let p1, p2 : P ⇒ X ′ be the canonical projections. By the definition of U ′ as a preimage from X, the
two admissible open preimages p−1

j (U ′) in P coincide, hence they correspond to the same admissible open
set in ZRS(P ). But the final part of Lemma A.2.12 ensures that p−1

j (U ′) corresponds to ZRS(pj)−1(U ′), so
these latter two opens in ZRS(P ) coincide. By Lemma A.2.8, it follows that U ′ is the preimage of a subset U
of ZRS(X). By Lemma A.2.14, U is an admissible open in ZRS(X). Its associated locus U ∩X of ordinary
points is therefore an admissible open in X by Lemma A.2.12. Since the correspondence between admissible
opens in X and ZRS(X) has been shown to be compatible with formation of preimages, we conclude that
the admissible open U ∩X in X has preimage U ′ ∩X ′ = U ′ in X ′ and hence it is equal to the image U of
U ′ in X. Thus, U is indeed an admissible open in X. �
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A.3. Weil-pairings and formal semi-abelian models. Let k be a non-archimedean field with valuation
ring R and let A/k be an abelian variety with semistable reduction over R. Let AR and A′R be the associated
formal semi-abelian models for A and A∨ over Spf(R), and let

0→ T→ AR → B→ 0, 0→ T′ → A′R → B′ → 0

be the filtrations with maximal formal subtori and formal abelian scheme quotients as in the general semi-
stable reduction theorem (Theorem 2.1.9). In particular, there are unique abelian schemes BR and B′R over
Spec(R) that algebraize B and B′, and we let B and B′ denote their respective generic fibers over k. The
proof of Theorem 2.1.9 provides a canonical isomorphism B′ ' B∨ (or equivalently, B′R ' B∨R or B′ ' B∨).

In the discretely-valued case, note that by Serre’s criterion the Néron models N(A) and N(A∨) of A and
A∨ over R must have semi-stable reduction and by Example 2.1.10 the formal semi-abelian models AR and
A′R coincide with the respective mR-adic completions of the relative identity components N(A)0 and N(A∨)0.
Grothendieck [SGA7, IX, 5.2, 7.1.5, 7.4] proved that in the discretely-valued case the finite flat k-group T[N ]k
(resp. T′[N ]k) is orthogonal to A′R[N ]k (resp. AR[N ]k) when using the Weil-pairing A[N ] × A∨[N ] → µN

for every positive integer N , and he used the theory of bi-extensions to construct a canonical isomorphism
B′R ' B∨R with respect to which the pairing between B′[N ] ' (A′R[N ]/T′[N ])k and B[N ] ' (AR[N ]/T[N ])k

induced by the Weil-pairing A[N ]×A∨[N ]→ µN is precisely the canonical Weil-pairing between B[N ] and
B∨[N ] for every N ≥ 1. This condition for all N (or even just N running through powers of a fixed prime)
uniquely characterizes Grothendieck’s isomorphism B′ ' B∨ without mentioning the theory of bi-extensions.
The proof of the duality aspect of Theorem 4.1.1 rests on an analogue of these results in the setting of the
general semistable reduction theorem without discreteness restrictions on the absolute value. The required
analogous result was recorded without proof as Theorem 4.1.6, and here we give the statement and proof of
a slightly more general result:

Theorem A.3.1. With notation as above, for every positive integer N the Weil pairing A[N ]×A∨[N ]→ µN

makes T[N ]k annihilate A′R[N ]k and AR[N ]k annihilate T′[N ]k, and the resulting pairing

(A.3.1) B[N ]×B′[N ] = B[N ]k ×B′[N ]k ' (AR[N ]k/T[N ]k)× (A′R[N ]k/T′[N ]k)→ µN

induced by the Weil pairing between A[N ] and A∨[N ] arises from the canonical isomorphism B′R ' B∨R via
the Weil pairing B[N ]×B∨[N ]→ µN .

The key point is that the isomorphism B′R ' B∨R is provided by an explicit construction in the proof
of Theorem 2.1.9 and not through an abstract recipe such as the algebraic theory of bi-extensions that is
used in the discretely-valued case (and which we do not have in the rigid-analytic setting). Since Theorem
A.3.1 gives an abstract unique characterization of the isomorphism B′R ' B∨R that emerges from the explicit
rigid-analytic constructions in the proof of Theorem 2.1.9, in the discretely-valued case we conclude (using
Grothendieck’s results) that the isomorphism B′R ' B∨R constructed via rigid geometry in [BL2] coincides
with the one that is provided by Grothendieck’s work with bi-extensions. We emphasize that it is the duality
between B′ and B constructed via rigid geometry that is relevant in the theory of canonical subgroups, and
so one cannot avoid relating this specific duality with the duality between torsion-levels of A and A∨ in the
study of how duality interacts with canonical subgroups.

Fortunately, bi-extensions are irrelevant in the proof of Theorem A.3.1. The proof requires nothing more
than carefully unwinding the rigid-analytic construction of the Poincaré bundle PA on A × A∨ in terms of
the formal Poincaré bundle PB on B×B∨ in the proof of Theorem 2.1.9, and tracking the construction of
each Weil pairing A[N ]×A∨[N ]→ µN in terms of PA (as in [Mum, §20]) so that we can understand how it
restricts to AR[N ]k × A′R[N ]k ⊆ A[N ]×A∨[N ].

Proof. 1 � 1

1Must work out!
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