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WITH AN APPENDIX BY BRIAN CONRAD

Abstract. The paper was motivated by a question of Vilonen, and the main

results have been used by Mirković and Vilonen to give a geometric interpreta-
tion of the dual group (as a Chevalley group over Z) of a reductive group. We

define a quasi-reductive group over a discrete valuation ring R to be an affine

flat group scheme over R such that (i) the fibers are of finite type and of the
same dimension; (ii) the generic fiber is smooth and connected, and (iii) the

neutral component of the reduced special fiber is a reductive group. We show

that such a group scheme is of finite type over R, the generic fiber is a reduc-
tive group, the special fiber is connected, and the group scheme is smooth over

R in most cases, for example when the residue characteristic is not 2, or when

the generic fiber and reduced special fiber are of the same type as reductive
groups. We also obtain results about group schemes over a Dedekind scheme

or a noetherian scheme. We show that in residue characteristic 2 there are

indeed non-smooth quasi-reductive groups and they can be classified when R
is strictly henselian.

1. Introduction

In [SGA3], the following remarkable theorem about tori is proved:

1.1. Theorem. [SGA3, Exp. X, Théorème 8.8] Let T be a commutative flat group
scheme, separated of finite type over a noetherian scheme S, with connected affine
fibers. Let s ∈ S, s̄ a geometric point over s, and suppose

• the reduced subscheme (Ts̄)red of the geometric fiber Ts̄ is a torus; and
• there exists a generization t of s (i.e. the closure of {t} contains s) such

that Tt is smooth over κ(t), the residue field of t.
Then there exists an open neighborhood U of s such that T|U is a torus over U .

The aim of this paper is to prove an analogous result where “torus” is replaced
by “reductive group”. As usual, the key point is to treat the case where the base
scheme S is the spectrum of a discrete valuation ring (henceforth to be called a
DVR for brevity) R. In this case, our result answers a question of Kari Vilonen
related to [MV] (private communication, May 2003). It turns out that a direct
analogue of Theorem 1.1 fails to hold in some cases if the residue field of R is of
characteristic 2, but the group schemes for which the theorem fails can be classified
over a strictly henselian R.

To state our results, let R be a DVR, π a uniformizer of R and κ the residue
field. Let K = Frac R. We will call a group scheme G over R quasi-reductive (this is
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unrelated to the notion of quasi-reductive algebraic groups over a non-perfect field
introduced in [BT2, 1.1.12]) if

1) G is affine and flat over R,
2) the generic fiber GK := G⊗R K is connected and smooth over K,
3) the reduced geometric special fiber (Gκ̄)red is of finite type over κ̄ and

its identity component (Gκ̄)◦red is a reductive algebraic group of dimension
= dim GK .

1.2. Theorem. Let G be a quasi-reductive group scheme over R. Then
(a) G is of finite type over R;
(b) the generic fiber G := GK is reductive;
(c) the special fiber Gκ is connected.

In addition, G is a reductive group over R if at least one of the following holds:
(i) charκ 6= 2;
(ii) the type of G⊗ K̄ is the same as that of (Gκ̄)◦red;
(iii) no normal algebraic subgroup of G⊗ K̄ is isomorphic to SO2n+1 for n > 1.

We recall [SGA3, Exp. XIX, 2.7] that a reductive group over S is a smooth affine
group scheme over S such that all the geometric fibers are connected reductive
algebraic groups. By the type of a connected split reductive algebraic group over a
field, we mean the isomorphism class of its associated root datum (X, Φ, X∨,Φ∨)
[SGA3, Exp. XXII, 2.6]. If R is strictly henselian, the isomorphism class of a
reductive group over R is determined by its type (i.e. the type of either GK or Gκ,
which are the same [SGA3, Exp. XXII, Proposition 2.8, Exp. XXIII, Corollaire
5.2]).

We remark that over the base Spec R, even in the case of tori, Theorem 1.2 is
slightly stronger than Theorem 1.1 in that we do not assume that G is of finite type
over R (and we only impose conditions on (Gκ̄)◦red). This generality is also required
by Vilonen’s question. Notice that if G is of finite type over R, then Gκ has the same
dimension as GK by [EGA, IV, Lemme 14.3.10]. In §7, we will provide examples
which show that without the condition dim Gκ = dim GK imposed in the definition
of quasi-reductive group schemes, the preceding theorem is false.

In addition, we have the following:

1.3. Corollary. Let G be a reductive group over R and G be its generic fiber.
Assume either

• char κ 6= 2; or
• no normal algebraic subgroup of G⊗ K̄ is isomorphic to SO2n+1 for n > 1.

Let φ : G → H be a morphism of affine group schemes of finite type over R such
that φK : GK → HK is a closed immersion. Then φ is a closed immersion.

We remark that [SGA3, Exp. XVI, Proposition 1.5] implies the following state-
ment: Let φ : G → H be a morphism of affine group schemes of finite type over R
such that G is reductive, and both φK : GK → HK and φκ : Gκ → Hκ are closed
immersions, then φ is a closed immersion. The above corollary shows that the hy-
pothesis on φκ can be eliminated provided a restriction on K or G is imposed (see
7.1). This result, together with the existence of Bruhat–Tits schemes corresponding
to parahoric subgroups, has the following remarkable consequence:

1.4. Corollary. Assume that R is strictly henselian and κ is algebraically closed.
Let φ : G ↪→ G′ be an inclusion of connected reductive algebraic groups over K,
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P a hyperspecial parahoric subgroup of G(K), P ′ an arbitrary parahoric subgroup
of G′(K) such that φ(P ) ⊂ P ′. Assume that either the characteristic of κ is not
2, or no normal algebraic subgroup of G ⊗ K̄ is isomorphic to SO2n+1 for n > 1.
Then any function f ∈ K[G] such that f(P ) ⊂ R is the restriction of a function
f ′ ∈ K[G′] such that f ′(P ′) ⊂ R.

An analogue of Theorem 1.2 over a general noetherian base scheme is given in
§6. There, we will also prove the following:

1.5. Theorem. Let S be a Dedekind scheme and G an affine flat group scheme
over S such that all the fibers are connected reductive algebraic groups of the same
dimension. Then G is a reductive group over S.

These results have been used by Mirković and Vilonen to give a geometric in-
terpretation of the dual group [MV]. We note here that their group scheme arises
from geometry via a Tannakian formalism and they do not know a priori if it is
of finite type; however, the results of this paper show that their group scheme is
actually a reductive group.

We will now summarize the content of this paper. Sections 2–5 are devoted to the
proof of Theorem 1.2 and Corollary 1.3. In section 6, using Theorem 1.2, we prove
results about group schemes over Dedekind schemes and group schemes of finite
type over more general noetherian schemes. In section 7 we give various examples
to show that without the condition dim GK = dim Gκ̄ imposed in the definition of
quasi-reductive group schemes, Theorem 1.2 would be false. The notions of good
quasi-reductive models and schemes are introduced in section 8. In section 9 we
determine all good quasi-reductive group schemes and conclude from this that any
quasi-reductive group scheme is of finite type which is assertion (a) of Theorem 1.2.
At the beginning of this section, we also give examples of good quasi-reductive
models of SO2n+1 which are not smooth. In section 10 we study general quasi-
reductive models of SO2n+1. In 10.8 (ii), using a quadratic form provided to us by
Parimala, we give an example of a quasi-reductive model of SO3 which is not good.

A result of Michel Raynaud (Proposition 3.4) plays a crucial role in this paper.
Brian Conrad kindly provided us a proof of it based on an argument of Faltings.
With his permission, we have reproduced this proof in the appendix at the end of
this paper for the convenience of the reader.

A preliminary version of this paper containing the first six sections was circu-
lated as an IHES-preprint in July 2003. The paper, essentially in its present form,
appeared on Math arXiv (math.RT/0405381) on May 20, 2004.
Acknowledgment. We thank Kari Vilonen for his question and Ching-Li Chai,
Ofer Gabber, Philippe Gille, James Milne, Patrick Polo, Dipendra Prasad, Michel
Raynaud, Jean-Pierre Serre, Marie-France Vigneras, and Shou-Wu Zhang for useful
conversations, correspondence and comments. We thank Raman Parimala for the
quadratic form used in 10.8 (ii). We are grateful to Brian Conrad for carefully
reading several versions of this paper, for his numerous corrections and helpful
remarks, and for providing us a proof of Proposition 3.4.

2. Unipotent isogenies

Let k be an algebraically closed field of characteristic p > 0. Let G, G′ be
connected reductive algebraic k-groups, and φ : G → G′ an isogeny. We say that
φ is unipotent if the only subgroup scheme of ker(φ) of multiplicative type is the
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trivial subgroup, or, equivalently, φ|T : T → φ(T ) is an isomorphism for a maximal
torus T .

2.1. Example. Assume p = 2. For n > 1, let G = SO(V, q) ' SO2n+1, where
(V, q) is a quadratic space over k of dimension 2n + 1 and defect 1 [J, 6.3]. Let
〈·, ·〉 be the associated symmetric bilinear form. Then 〈·, ·〉 is also alternating and
V ⊥ is 1-dimensional. Let G′ = Sp(V/V ⊥) ' Sp2n. Then the natural morphism
φn : G → G′ is a unipotent isogeny. The kernel of φn is a finite unipotent group
scheme of rank 22n.

We will now classify the unipotent isogenies. Let φ : G → G′ be a unipo-
tent isogeny. Then φ induces an isomorphism from the connected center Z(G)◦

to Z(G′)◦, and a unipotent isogeny from the derived group D(G) to D(G′). Let
Gi, i ∈ I, be the connected normal almost simple algebraic subgroups of D(G),
and G′

i = φ(Gi), then G′
i, i ∈ I, are the connected normal almost simple algebraic

subgroups of G′, and φ|Gi
: Gi → G′

i is a unipotent isogeny for each i ∈ I. Thus it
is enough to classify unipotent isogenies between almost simple algebraic groups.

2.2. Lemma. Let φ : G → G′ be a unipotent isogeny between connected almost
simple algebraic k-groups, such that φ is not an isomorphism. Then p = 2 and there
exists n > 1 such that the morphism G

φ−−→ G′ is isomorphic to the morphism
SO2n+1

φn−−→ Sp2n in the preceding example. That is, there exist isomorphisms
f : G

∼−−→ SO2n+1, f ′ : G′ ∼−−→ Sp2n such that f ′ ◦ φ = φn ◦ f .

Proof. Clearly we must have p > 0. Let T be a maximal torus of G and (X, Φ, X∨,Φ∨)
be the root datum of (G, T ), i.e. X = X∗(T ) etc. Then we can identify X with
X∗(T ′), where T ′ = φ(T ). Let (X, Φ′, X∨,Φ′∨) be the root datum of (G′, T ′).
Then there is a p-morphism φ∗ from (X, Φ, X∨,Φ∨) to (X, Φ′, X∨,Φ′∨) induced by
φ [SGA3, Exp. XXI, 6.8].

If φ is not a special isogeny [BoT, 3.3], then p−1Φ′ ⊂ X. By looking at the
classification, we see that this only happens when p = 2 and G ' SO3. In this case
G

φ−−→ G′ is isomorphic to SO3
φ1−−→ Sp2.

If φ is a special isogeny, then by the classification of special isogenies [BoT, 3.3],
either p = 3 and G is of type G2, or p = 2 and G is an adjoint group of type F4 or
Bn, n > 2. In the case of type Bn, G

φ−−→ G′ is isomorphic to SO2n+1
φn−−→ Sp2n.

We claim that G cannot be simply connected, hence we can rule out the cases
of type G2 or F4. Indeed, there exists a ∈ Φ such that ker(φ|Ua

) is non-trivial,
where Ua is the corresponding root subgroup. Let H be the algebraic subgroup of
G generated by Ua and U−a. Then φ induces a unipotent isogeny from H to φ(H).
Since G is simply connected, H is isomorphic to SL2. But every unipotent isogeny
from SL2 is an isomorphism. A contradiction. �

Note that the root systems of Sp2n and SO2n+1 are different for n > 3. When
n = 1 or 2, the root systems of Sp2n and SO2n+1 are the same, but Sp2n is simply
connected, whereas SO2n+1 is of adjoint type with nontrivial fundamental group.
Therefore, Sp2n and SO2n+1 are always of different type (in the sense discussed
after Theorem 1.2).

2.3. Corollary. If φ : G → G′ is a unipotent isogeny which is not an isomorphism,
then the type of G is different from that of G′.
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2.4. Corollary. Let φ : G → G′ be a unipotent isogeny and S be a maximal torus of
G. Let S′ = φ(S). If a is an element of Φ(G, S), the set of roots of G with respect
to S, then either a or 2a is in Φ(G′, S′) under the identification X∗(S) = X∗(S′).

3. Models

We recall that R is a DVR with residue field κ. Let Rsh be a strict henselization
of R. The residue field κsh of Rsh is then a separable closure of κ.

Let G be a connected linear algebraic K-group. By a model of G, we mean an
affine flat R-group scheme G of finite type over R such that GK := G⊗R K ' G. We
have imposed the condition that G is affine for clarity. According to the following
result of Michel Raynaud [SGA3, Exp. XVII, Appendice III, Proposition 2.1(iii)],
this is equivalent to G being separated. Since no published proof of this result
is available, for the reader’s convenience we give below a proof which was kindly
outlined to us by Raynaud.

3.1. Proposition. Let G be a flat group scheme of finite type over R such that its
generic fiber GK is affine. Then G is affine if and only if it is separated over R.

Proof. The “only if” part is obvious. To prove the “if” part, we may replace G

by G ⊗R R′ for any faithfully flat local extension R ⊂ R′ of DVRs [EGA, IV,
Proposition 2.7.1]. Therefore, in view of the separatedness hypothesis, we may
apply Corollary A.4 to reduce to the case where R is strictly henselian, and the
normalization G̃red of Gred is finite over Gred, smooth over R, and an R-group scheme.
By a theorem of Chevalley [EGA, II, Proposition 6.7.1], it suffices to show that G̃red

is affine. Therefore, we may and do assume that G is smooth over R.
Let A = OG(G) = Γ(G,OG). We remark that it is not clear a priori that A is of

finite type over R. However, G′ := Spec A has a natural structure of group scheme
over R and the canonical morphism u : G → G′ is a morphism of R-group schemes.
Obviously, uK is an isomorphism. For f ∈ A, there is a canonical morphism of
schemes uf : Gf → G′f . By the separatedness of G, it follows from [BLR, page 161,
Lemma 6] that there exists f ∈ A such that Gf ∩Gκ 6= ∅ and uf is an isomorphism.
Since the translates of Gf by elements of G(R) (which maps onto G(κ)), together
with GK , form an open cover of G, u is an open immersion. It therefore remains
only to prove the topological assertion that u is surjective.

By [EGA, I, Proposition 6.6.3], G is quasi-affine over Spec R in the sense of [EGA,
II, Définition 5.1.1]. It follows that Gκ is quasi-affine over Spec κ by [EGA, II,
Proposition 5.1.10 (iii)], and hence affine by [SGA3, Exp. VIB , Proposition 11.11].
By [BLR], the paragraph before Lemma 6 on page 161, the map Aκ → Γ(Gκ,OGκ)
is injective. This is a morphism of Hopf algebras over κ, so it is a faithfully flat
morphism of rings [Wa, Theorem 14.1]. The associated morphism on spectra uκ :
Gκ → G′κ is therefore surjective, as desired. �

3.2. Smoothening. For a model G of G, there exists a canonical smoothening
morphism φ : Ĝ → G [BLR, 7.1, Theorem 5], which is characterized by the following
properties:

(i) Ĝ is a model of G, and is smooth over R;
(ii) Ĝ → G induces a bijection Ĝ(Rsh) ' G(Rsh).

In fact, (i) can be replaced by

(i′) Ĝ is an affine smooth scheme over R with generic fiber G.
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Indeed, (i′), (ii), and [BT2, 1.7] show that the group law on the generic fiber of Ĝ

extends to Ĝ.
We often regard G(R) as a subgroup of G(K) via the canonical embedding

G(R) ↪→ G(K). For example, (ii) is then simply Ĝ(Rsh) = G(Rsh).
We refer to [BLR] for further properties of the smoothening. For example, [BLR,

7.1, Theorem 5, and 3.6, Proposition 4] imply that the formation of group smoothen-
ing is compatible with the base change Spec R′ → Spec R if R ⊂ R′ is a local ex-
tension of DVRs of ramification index 1 and the residue field extension of R′/R is
separable, such as R′ = Rsh (cf. [BLR, 7.2, Theorem 1]).

3.3. Normalization. Let G be a model of G. The normalization G̃ of G is also an
affine flat scheme over R with generic fiber G such that G̃(Rsh) = G(Rsh). Since
GK = G is an algebraic group, it is geometrically reduced and by Theorem A.6 of
the appendix, G̃ → G is a finite morphism.

By the universal property of normalization, the smoothening morphism Ĝ → G

factors through G̃ → G uniquely. By 3.2, the morphism Ĝ → G̃ is an isomorphism
of schemes if and only if G̃ is smooth over R. If Ĝ ' G̃ and κ is perfect, the
homomorphism G(Rsh) → G(κsh) is surjective. Indeed, Ĝ(Rsh) → Ĝ(κsh) is always
surjective (Rsh being henselian and Ĝ smooth), and so is G̃(κsh) → G(κsh) (a part
of the going-up theorem).

It is easy to see that Ĝ → G is a finite morphism if and only if Ĝ ' G̃. Observe
that if G′ → G is a finite morphism of models of G extending the identity morphism
on the generic fibers, then G′(R) = G(R). This shows that the condition Ĝ ' G̃, or
equivalently that G̃ is smooth over R, is stable under the base change Spec R′ →
Spec R, if R ⊂ R′ is a local extension of DVRs, and in this case the formation of
smoothening is stable under such a base change.

3.4. Proposition. Assume that R is henselian. Then there exists a local extension
R ⊂ R′ of DVRs such that the normalization G̃′ of G′ := G⊗R R′ is smooth and the
field of fractions K ′ of R′ is a finite extension of K.

This result is due to Michel Raynaud and appeared in [An, Appendice II, Corol-
lary 3]. Brian Conrad pointed out to us its similarity with Faltings’ result ([dJ,
Lemma 2.13]), and showed that Raynaud’s result can be deduced by modifying
Faltings’ argument. For the reader’s convenience, we include a complete discus-
sion, which was provided to us by Brian Conrad, in the appendix. In particular,
the above result is proved there as Corollary A.4 (also see Remark A.1).

3.5. The neutral component. We recall from [SGA3, Exp. VIB, no. 3] that if
G is a smooth group scheme over R, the union of G◦K and G◦κ is an open subgroup
scheme of G, which is denoted by G◦ and is called the neutral component of G.

Lemma. If G is a smooth affine group scheme over R, so is G◦.

Proof. We need only to show that G◦ is affine, which is [BT2, Corollaire 2.2.5 (iii)].
Since G◦ is an open subscheme of the affine scheme G, it is separated. Therefore,
the result also follows from Proposition 3.1.

Alternatively, one can use the following more elementary claim, together with
the fact (see [BLR, 2.1]) that the dilatation of an affine scheme is affine: if G is a
smooth group scheme over R with connected generic fiber, then G◦ is the dilatation
of G◦κ on G.
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To see this, we observe that the above-mentioned dilatation G′ and G◦ are both
flat over R, and are subfunctors of G as functors on the category of flat R-schemes.
It is enough to show that they are identical subfunctors. Indeed, the subfunctor G◦

is described in [SGA3, Exp. VIB, 3.1], and the subfunctor G′ is described in [BLR,
2.1] (cf. 7.2 below), and they are identical. �

3.6. Chevalley schemes. For simplicity, we now assume that R = Rsh. Then a
reductive group G over R is necessarily split [SGA3, Exp. XXII, Proposition 2.1],
and its isomorphism class is uniquely determined by its type (see the discussion
after Theorem 1.2). We will say that G is a Chevalley scheme of that type or the
Chevalley model of its generic fiber.

The Chevalley model T of a split torus T over K is unique, and is also called
the Néron-Raynaud model. It is a torus over R in the sense of [SGA3, Exp. IX,
1.3], and is characterized by (i) T is smooth over R, and (ii) T(R) is the maximal
bounded subgroup of T (K).

We refer to [T, 3.1; see also 1.9, 1.10] for the definition of a hyperspecial maximal
bounded subgroup of G(K). We recall the following result of Bruhat–Tits theory
[BT2, Proposition 4.6.31]. This is the only result of this theory which we will use
here. The first assertion is due to Iwahori and Matsumoto.

3.7. Lemma. Let G be a Chevalley scheme. Then G(R) is a hyperspecial maximal
bounded subgroup of G(K). Conversely, if R is strictly henselian with algebraically
closed residue field and G is a smooth model of a connected reductive algebraic K-
group G such that G(R) is a hyperspecial maximal bounded subgroup of G(K), then
G splits over K and G is a Chevalley scheme.

It is well-known that this can be used to give an alternative definition of a
hyperspecial maximal bounded subgroup of G(K), where G is a connected reductive
K-group and K is henselian. By [T, 2.3.1], a maximal bounded subgroup U always
fixes a point x on the building of (G, K). Bruhat-Tits theory [BT2] associates to x a
smooth model Gx of G, characterized by the property that Gx(Rsh) is the stabilizer
of x in G(Ksh). Then U is hyperspecial if and only if Gx is a reductive group over
R.

4. First steps of the Proof of Theorem 1.2

In this section, we assume that R is strictly henselian and κ is algebraically
closed.

4.1. Lemma. Let T be a model of a K-split torus T . Suppose that T(R) is the
maximal bounded subgroup of T (K). Then T is smooth over R, and hence it is the
Néron-Raynaud model of T .

Proof. Let φ : T̂ → T be the smoothening morphism. Then T̂(R) (= T(R)) is the
maximal bounded subgroup of T (K), and hence T̂ is the Néron-Raynaud model of
T . We want to show that φ is an isomorphism.

By [SGA3, Exp. IX, Théorème 6.8], kerφ is a group of multiplicative type. Since
the generic fiber of kerφ is trivial, ker φ is trivial. Therefore, φ is a monomorphism,
hence a closed immersion by [SGA3, Exp. IX, Corollaire 2.5]. The ideal (sheaf) I

of this closed immersion has generic fiber 0, since φK is an isomorphism, and so
I = 0. Thus φ is an isomorphism.
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We can replace the last paragraph by a more direct argument as follows. Clearly,
T̂ acts on T by multiplication via φ, and hence it acts on the affine ring A[T] of
T. By [SGA3, Exp. I, 4.7.3], A[T] ⊂ A[T̂] decomposes into a direct sum of weight
modules. Since A[T̂] is the group algebra R[X] =

⊕
x∈X R.ex, X = X∗(T ), there

are non-zero elements ax ∈ R, x ∈ X such that A[T] =
⊕

x∈X R.axex. Now the
comultiplication map of the Hopf algebra A[T̂] sends ex to ex ⊗ ex, and hence that
of A[T] sends axex to axex⊗ex. The latter is in A[T]⊗A[T] if and only if a2

x divides
ax in R, i.e. ax ∈ R×. Since this holds for all x ∈ X, A[T] = A[T̂] and φ is an
isomorphism. �

Remark. The proposition shows that if T is a non-smooth model of a split torus
T , then T(R) is not maximal. There are many such models. For example, for
the 1-dimensional split torus T = Spec K[x, x−1] over a 2-adic field R, the model
T = Spec R[x, x−1, (x + x−1)/2, (x − x−1)/2] is non-smooth. In general, if κ is
of characteristic p > 0, the model T = Spec R[x, x−1, (x − 1)p/π, (x−1 − 1)p/π] is
non-smooth.

4.2. Lemma. Let G be a model of a connected reductive algebraic K-group G.
If G(R) is a hyperspecial maximal bounded subgroup of G(K), then G is a quasi-
reductive R-group scheme, and the reduction map G(R) → G◦κ(κ) is surjective.

Proof. Let φ : Ĝ → G be the smoothening of G. By Lemma 3.7, Ĝ is a Chevalley
scheme. Let T̂ be a maximal R-torus of Ĝ. Then the schematic closure T of
T := T̂K in G is isomorphic to T̂ by Lemma 4.1, because T(R) = T (K) ∩ G(R) =
T (K) ∩ Ĝ(R) = T̂(R).

Let H be the kernel of the homomorphism φκ : Ĝκ → (Gκ)◦red. If H◦
red, a reductive

group over κ, is of positive dimension, it contains a torus S of positive dimension.
We may and do assume that S is contained in the maximal torus T̂κ of Ĝκ. Then
we arrive at a contradiction since φ|

bT
: T̂ → T is an isomorphism. Thus H is

zero-dimensional and φκ is onto (Gκ)◦red, which implies that (Gκ)◦red is a reductive
group. Therefore, G is a quasi-reductive group scheme. The final statement follows
from the surjectivity of Ĝ(R) → Ĝ(κ) and that of Ĝκ → (Gκ)◦red. �

Consequences of surjectivity of G(R) → G(κ)
In the rest of this section, G is a quasi-reductive model of a connected linear

algebraic K-group G, φ : Ĝ → G is the smoothening morphism of 3.2, and G̃ is the
normalization of G.

4.3. Proposition. Assume that G(R) → G(κ) is surjective. Then
(i) G is a K-split reductive group;
(ii) G(R) is a hyperspecial maximal bounded subgroup of G(K);
(iii) the smoothening Ĝ of G is a Chevalley scheme;
(iv) there exists an R-torus T in G such that TK is a maximal K-split torus of

G;
(v) the morphism Ĝκ → (Gκ)◦red is a unipotent isogeny;
(vi) G is almost simple if and only if (Gκ)◦red is almost simple.

Proof. Since the composition G(R) = Ĝ(R) → Ĝ(κ) → G(κ) is surjective, Ĝ(κ) →
G(κ) is surjective, and so is (Ĝκ)◦ → (Gκ)◦red. Since (Ĝκ)◦ and (Gκ)◦red have the same
dimension, it follows that (Ĝκ)◦ is a reductive group, for otherwise, its unipotent
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radical would be a (connected normal) unipotent subgroup of positive dimension
lying in the kernel of the homomorphism, and then the dimension of the image
would be strictly smaller. By [SGA3, Exp. XIX, Théorème 2.5], G is a reductive
group. Lemma 3.5 implies that (Ĝ)◦ is a reductive group scheme, hence a Chevalley
scheme. In particular, G is split over K. This proves (i).

Now we have (Ĝ)◦(R) ⊂ Ĝ(R) = G(R) and (Ĝ)◦(R) is a hyperspecial maximal
bounded subgroup of G(K) by Lemma 3.7. So we must have (Ĝ)◦(R) = Ĝ(R).
According to [BT2, 1.7.3c], a smooth model of G is completely determined by its
set of integral points. Therefore, (Ĝ)◦ = Ĝ and assertions (ii) and (iii) hold.

Since Ĝ is a Chevalley scheme, there exists an R-torus T̂ in Ĝ such that T := T̂K

is a maximal K-split torus of G. Let T be the schematic closure in G of T . Then
T(R) = G(R) ∩ T(K) = Ĝ(R) ∩ T̂(K) = T̂(R). By Lemma 4.1, the morphism
φ|

bT
: T̂ → T is an isomorphism. Thus T is an R-torus of G. This proves (iv).

The morphism between the special fibers induced by φ|
bT

is also an isomorphism
which implies (v).

Finally, we prove (vi): G is almost simple ⇐⇒ Ĝκ is almost simple ⇐⇒
(Gκ)◦red is almost simple. �

4.4. Proposition. (i) The generic fiber G is a reductive group and Gκ is con-
nected. Moreover, if H is a connected normal K-subgroup of G, then the
schematic closure H of H in G is quasi-reductive and (Hκ)red is a connected
normal algebraic subgroup of (Gκ)red.

(ii) Assume that G is K-split. Then the correspondence H 7→ (Hκ)red is an
inclusion preserving bijection from N(G), the set of connected normal al-
gebraic subgroups of G, onto N

(
(Gκ)red

)
, where for a connected normal

algebraic subgroup H of G, H denotes its schematic closure in G.

Proof. (i) Let H be a connected normal K-subgroup of G and H be its schematic
closure in G. By Proposition 3.4, there exists a local extension R ⊂ R′ of DVRs
such that the normalization G̃′ of G′ := G ⊗R R′ and the normalization H̃′ of
H′ := H⊗R R′ are smooth. Then G(R′) → G(κ) and H(R′) → H(κ) are surjective
(cf. 3.3). We conclude from Proposition 4.3 that if K ′ is the field of fractions of R′,
G′K′ = G⊗K K ′, and hence G, and so also its connected normal algebraic subgroup
H, are reductive, and the smoothening Ĝ′ (' G̃′) is a Chevalley scheme over R′. In
particular, G̃′κ is connected. As Gκ = G′κ and G̃′(κ) → G′(κ) is surjective, it follows
that Gκ is also connected.

As H(R′) is clearly a normal subgroup of G(R′), H(κ) is a normal subgroup of
G(κ), and hence (Hκ)◦red is a normal subgroup of the connected reductive group
(Gκ)red since G(κ) is Zariski-dense in (Gκ)red. Therefore, (Hκ)◦red is reductive and
H is quasi-reductive. This fact now implies that Hκ is actually connected.

(ii) We now assume that G is K-split. Then any connected normal algebraic
subgroup of G is a reductive group defined over K, hence H 7→ H ⊗K K ′ is a
bijection from N(G) to N(G ⊗K K ′) for any field extension K ′/K. Therefore, to
prove (ii) we are free to replace R by a totally ramified local extension R ⊂ R′

of DVRs. Thus we may and do assume that Ĝ is a Chevalley scheme, thanks to
Propositions 3.4 and 4.3(iii). Now it is clear from the relation between the root
datum of G, of Ĝκ, and of (Gκ)red, with respect to suitable maximal split tori, that
H 7→ (Hκ)red is an inclusion preserving bijection from N(G) to N

(
(Gκ)red

)
. �
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4.5. Proposition. Assume that at least one of the three conditions (i), (ii), (iii) of
Theorem 1.2 holds. Then G is smooth over R, and is a Chevalley scheme.

Proof. It is clear that the hypotheses and the conclusion of the proposition are
unchanged if we replace R by R′ for any local extension R ⊂ R′ of DVRs. Thanks
to Proposition 3.4, by changing R, we may assume that the normalization G̃ of G

is smooth.
By Proposition 4.3 (v), the isogeny Ĝκ → (Gκ)red is a unipotent isogeny. There-

fore, it is an isomorphism by our discussion of unipotent isogenies (§2). Thus, φκ

is a monomorphism, hence a closed immersion.
Let A and Â be the affine rings of G and Ĝ respectively, and let φ∗ : A → Â

be the injective morphism between affine rings. Then C := coker(φ∗) is a torsion
R-module as φ∗K : AK → ÂK is an isomorphism. Since φκ is a closed immersion,
C ⊗ κ = 0 and hence C is a divisible R-module.

But Ĝ ' G̃ → G is a finite morphism (see 3.3). That is, Â is a finite A-module.
If x1, . . . , xn generate C as an A-module, and N ∈ Z>0 is such that πNxi = 0 for
all i, then πNC = 0. This, together with the fact that C is a divisible R-module,
implies that C = 0 and Â = A. The proposition is proved. �

5. Proof of Theorem 1.2 (a)

It is clear that the hypotheses and the conclusion of Theorem 1.2 are unchanged
if we replace R by R′ for any local extension R ⊂ R′ of DVRs. So we may and do
assume that R = Rsh and κ is algebraically closed. We now observe that a large
part of Theorem 1.2 has already been proved. Indeed, if G is a quasi-reductive
group scheme of finite type over R, assertions (b) and (c) of Theorem 1.2 follow
from Proposition 4.4 (i), and the last assertion of Theorem 1.2 is Proposition 4.5.

To complete the proof of Theorem 1.2, it remains only to prove assertion (a),
i. e. , a quasi-reductive group scheme over R is always of finite type over R. In this
section, we will prove this with the additional assumption that at least one of the
three conditions (i), (ii), (iii) of Theorem 1.2 holds. The general case is similar but
we need to replace the classification of reductive group schemes with that of good
quasi-reductive group schemes (see section 8 for the definition and the result), and
is given in 9.7.

5.1. Lemma. Let X be a flat affine scheme over R with affine ring A and generic
fiber X. We assume that X is an irreducible variety (i. e. an irreducible geometri-
cally reduced K-scheme of finite type) and either

(i) X(R) is Zariski-dense in the generic fiber X; or
(ii) there is an ideal I of Aκ := A/πA such that Aκ/I is an integral domain,

and

tr. degκ(Aκ/I) > dim X.

Then A contains no non-zero R-divisible elements.

Proof. Let J be the set of R-divisible elements in A. Then J is an ideal of A, and
of K[X], the affine ring of X. Assume that J 6= {0}. Then we cannot have (i) since
X(R) is contained in the closed subset defined by J .

Now assume (ii). Notice dim(K[X]/J) < dim K[X] = dim X and (A/J)κ '
Aκ. Therefore, we can find d = dim X elements x̄1, . . . , x̄d in (A/J)κ/I that are
algebraically independent over κ. Lift these elements to x1, . . . , xd ∈ A/J . It is
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easy to see that x1, . . . , xd are algebraically independent over K, this contradicts
the fact dim(K[X]/J) < d. �

5.2. Lemma. Retain the hypothesis of the preceding lemma. Assume furthermore
that R is complete. Then A is a free R-module.

Proof. This follows from the preceding lemma, and the following assertion:

Let V be a vector space of at most countable dimension over K
and L an R-submodule of V such that L contains no non-zero R-
divisible elements. Then L is a free R-module.

We have been told by Jean-Pierre Serre and Marie-France Vigneras that this
assertion is known and it appears in an exercise in Bourbaki’s Algebra, Chap.VII.
For the convenience of the reader we give a proof here. We first remark that the
completeness of R implies that HomR(K, K) ' HomR(K, K/R) and Ext1R(K, R) =
0.

We may and do assume that L⊗R K = V . Let d = dimK V 6 ℵ0. Let {vi}06i<d

be a basis of V over K, and put Vn = K〈v0, . . . , vn−1〉, Ln = L ∩ Vn. Then L1

is obviously free over R. Let u0 be a generator of L1 over R. We will construct
{ui}06i<d inductively so that {u0, . . . , un−1} is a basis of Ln over R, as follows.

Assume that we have constructed u0, . . . , un−1, and n + 1 6 d. Then Ln+1/Ln

is a non-zero R-submodule of Vn+1/Vn ' K, and is isomorphic to either R or K.
In the latter case, we have Ln+1 ' Ln ⊕K since Ext1R(K, Ln) = 0, contradicting
the hypothesis on L. Therefore, we have a (split) short exact sequence of free
R-modules 0 → Ln → Ln+1 → Ln+1/Ln → 0, from which we construct un easily.

It is then clear that {ui : 0 6 i < d} is a basis of L and hence L is free over
R. �

5.3. We now prove assertion (a) of Theorem 1.2 with the additional assumption
that at least one of the three conditions (i), (ii), (iii) of Theorem 1.2 holds. We
may and do assume that R is complete with algebraically closed residue field. Then
by the preceding two lemmas, the affine ring A of G is a free R-module. Let B be
a basis of A over R and let S be a finite subset of B such that K[S] = K[G] and
the image of S in (Aκ)red generates (Aκ)red as a κ-algebra.

For any finite subset I of B such that I ⊃ S, by the argument in [Wa, 3.3], there
is a Hopf subalgebra AI of A which is a finitely generated R-algebra containing I.
Let GI = Spec AI be the affine group scheme with affine ring AI . Then as S ⊂ I,
the reduced special fiber (GI

κ)red of GI contains (Gκ)red as a closed subgroup; in par-
ticular, dim(GI

κ)red > dim(Gκ)red. By [M2, 15.3], dim(GI
κ)red 6 dim G = dim(Gκ)red

and hence, dim(GI
κ)red = dim(Gκ)red. This implies that (GI

κ)◦red = (Gκ)◦red. There-
fore, each GI is a quasi-reductive group scheme of finite type over R. Now we
assume that at least one of the three additional conditions of Theorem 1.2 holds.
Then it follows from Proposition 4.5 that GI = Spec AI is a Chevalley scheme.

For any finite sets I, J such that S ⊂ I, J ⊂ B, we can find a Hopf subalgebra A′

of A which contains both AI and AJ , and which is a finitely generated R-algebra.
Again, G′ := Spec A′ is a Chevalley scheme and the morphism of Chevalley schemes
G′ → GI is an isomorphism by Lemma 3.7. Thus GI = GJ and AI = AJ . Since A
is the union of AI for varying I, the theorem is proved. �
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5.4. Proof of Corollary 1.3. Again, we may and do assume that R is strictly
henselian and κ is algebraically closed. Let G∗ be the schematic closure of φ(GK)
in H. Then G∗ is a model of G := GK and φ factors as G → G∗ ↪→ H.

By Proposition 3.4, we can find a local extension R ⊂ R′ of DVRs such that
G∗(R′) → G∗(κ) is surjective. Let K ′ be the field of fractions of R′. Since G(R′) is a
maximal bounded subgroup of G(K ′) (Lemma 3.7) and G(R′) ⊂ G∗(R′) ⊂ G(K ′),
we have G(R′) = G∗(R′) and G(κ) → G∗(κ) is surjective. It follows that (G∗κ)◦red is a
reductive group. Now Theorem 1.2 and [BT2, 1.7] imply that G⊗R R′ → G∗⊗R R′

is an isomorphism, and hence, G → G∗ is also an isomorphism. �

After looking at an earlier version of this paper, James Milne pointed out to us
the paper [V] where an incorrect version of Corollary 1.3 is given as Proposition
3.1.2.1c. Vasiu became aware of the error in his proposition from this paper. He has
recently circulated a paper which claims to give a different proof of the corrected
result.

6. General noetherian base schemes

We will now give the analogues of Theorem 1.2 over more general base schemes.
Proposition 6.1 gives a fiberwise result. Theorem 6.2 is a local result and is the
reductive analogue of Theorem 1.1 for group schemes of finite type. This is then
globalized into Theorem 6.3. Finally, we give the proof of Theorem 1.5.

For the sake of convenience, we introduce the following condition: let G be a
group scheme over a base scheme S. Given s, t ∈ S such that (Gs̄)◦red and (Gt̄)◦red
are reductive algebraic groups for some (hence any) geometric point s̄ (resp. t̄) over
s (resp. t), we say that (G, s, t) satisfies condition (∗) if at least one of the following
holds:

• the characteristic of κ(s) is not 2;
• the type of (Gt̄)◦red is the same as that of (Gs̄)◦red;
• no normal algebraic subgroup of (Gt̄)◦red is isomorphic to SO2n+1 for n > 1.

6.1. Proposition. Let G be an affine flat group scheme over a noetherian scheme
S. Let s ∈ S, s̄ a geometric point over s, and suppose

• (Gs̄)red is of finite type and (Gs̄)◦red is a reductive group; and
• there exists a generization t of s such that Gt is connected, smooth over κ(t)

of dimension equal to that of (Gs̄)◦red.
Then Gt is a reductive group over κ(t), and Gs is connected. If, in addition, (G, s, t)
satisfies condition (∗), then Gs is connected and smooth over κ(s).

Proof. There is nothing to prove if s = t. So assume s 6= t. By [EGA, II, Proposition
7.1.9], we can find a DVR R, and a morphism Spec R → S sending the generic point
of Spec R to t, and the special point of Spec R to s. Now Theorem 1.2 can be applied
to G×S Spec R and the proposition follows immediately. �

6.2. Theorem. Let G be an affine flat group scheme of finite type over a noetherian
scheme S, with connected fibers of the same dimension. Let s ∈ S, s̄ a geometric
point over s, and suppose

• (Gs̄)red is a reductive group; and
• there exists a generization t of s such that Gt is smooth over κ(t).

Then Gt is a reductive group over κ(t). If, in addition, we assume that (G, s, t)
satisfies condition (∗), then there exists an open neighborhood U of s such that G|U
is a reductive group over U .
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Proof. That Gt is a reductive group over κ(t) is immediate from the preceding
proposition, which also implies that Gs is smooth over κ(s). The S-smooth locus
in G is a union of fibers since G is a flat and finite-type S-group, and this smooth
locus has open image in S again since G is flat and of finite type over S, so G is
smooth over an open neighborhood U ′ of s (cf. [SGA3, Exp. X, Lemme 3.5]). Hence
G is a reductive group over a smaller neighborhood U of s by [SGA3, Exp. XIX,
Théorème 2.5]. �

6.3. Theorem. Let G be an affine flat group scheme over an irreducible noetherian
scheme S of positive dimension, with fibers of finite type and the same dimension.
Let ξ be the generic point of S and assume that the generic fiber Gξ is smooth and
connected. For any geometric point s̄ over a non-generic point s ∈ S, assume that
(Gs̄)◦red is a reductive group. Then Gξ is reductive and Gs̄ is connected for all s ∈ S.

If, in addition, we assume that (G, s, ξ) satisfies condition (∗) for all non-generic
s ∈ S, then each geometric fiber of G over S is a connected reductive algebraic
group. Furthermore, if G is of finite type over S, then G is a reductive group over
S.

Proof. The first two assertions follow immediately from Proposition 6.1. The last
assertion is clear from Theorem 6.2. �

6.4. Proof of Theorem 1.5. It suffices to show that G is of finite type over S, or
equivalently, to show that for each closed point s ∈ S, there is an open neighborhood
U of s such that G|U is of finite type over U .

Let C = Os. By Theorem 1.2, G ×S Spec C is of finite type over Spec C, and
hence it is a reductive group over Spec C. We can “spread out” G ×S Spec C to
an affine group scheme of finite type G′ over an open neighborhood U ′ of s such
that there is a morphism of group schemes G|U ′ → G′ inducing an isomorphism
G′ ×S Spec C ' G ×S Spec C. (Concretely, we may assume that S = Spec A is
affine, and G = Spec B, where B is a Hopf A-algebra. Let x1, . . . , xn be elements
generating B ⊗A C over C; then there exists an f ∈ A, f a unit in C, such that
B′ := Af [x1, . . . , xn] ⊂ B ⊗A C is a Hopf subalgebra. We then take U ′ = Spec Af ,
G′ = Spec B′.) We may assume that G′ is smooth over U ′ by shrinking U ′.

By [SGA3, Exp. XIX, Théorème 2.5], there is an open neighborhood U of s such
that G′|U is a reductive group. We now claim that the morphism G|U → G′|U is an
isomorphism, hence G|U is of finite type over U .

If suffices to show that for each closed point t of U , G ×S Spec R is isomorphic
to G′ ×U Spec R, where R = Ot, or equivalently, G

eR := G ×S Spec R̃ is isomorphic
to G′

eR
:= G′ ×U Spec R̃, where R̃ is a strict henselization of R. But since G(R̃) is

a (hyperspecial) maximal bounded subgroup (Theorem 1.2 and Lemma 3.7), we
must have G(R̃) = G′(R̃). As both G

eR and G′
eR

are affine smooth over R̃, we have
G
eR = G′

eR
by [BT2, 1.7]. The theorem is proved. �

7. Examples

7.1. The example in 9.1 and 9.2 shows that the hypotheses of Corollary 1.3 are
necessary. For c 6= 0, the morphism G0 → H is not a closed immersion, although it
is so at the generic fibers.
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We will now give examples to show that if from the definition of quasi-reductive
group schemes we drop the condition that dim(Gκ̄)red = dim GK , then Theorem 1.2
is false. These examples are constructed using variations of dilatations ([BLR, 3.2]).

Throughout this section, R is a DVR and π is a uniformizer of R.

7.2. Higher dilatations. Let X be a flat scheme of finite type over R, and Z ↪→ X

be a flat closed subscheme over R.
We define a sequence of flat schemes Γn = Γn(X,Z) over R, together with closed

immersions in : Z ↪→ Γn as follows. Let Γ0(X,Z) = X, and i0 : Z ↪→ Γ0 be the
inclusion. After Γn and in have been defined, we let Γn+1 be the dilatation of
in(Zκ) on Γn. The dilatation of Zκ on Z, which is nothing but Z itself, then admits
a natural closed immersion into Γn+1 by [BLR, 3.2, Proposition 2(c)], which we
denote by in+1.

The generic fiber of Γn is the same as that of X. Moreover, Γn is flat over R by
construction, hence is determined by its associated functor of points on the category
of flat R-schemes. In fact,

7.3. Proposition. (i) For any flat R-scheme Y, Γn(Y), the set of Y-valued
points in Γn, is{

φ : Y → X
∣∣∣ φ⊗R (R/πnR) factors through

Z⊗R (R/πnR) ↪→ X⊗R (R/πnR)

}
(ii) By (i), each Γn is a subfunctor of X, and we have Γn+1 ⊂ Γn for all n. Let

Γ∞ =
⋂

n>0 Γn. Then the functor Γ∞ is also represented by a flat scheme
over R.

(iii) The special fiber of Γ∞ is naturally isomorphic to Zκ.

Proof. The statements are local, and can be checked by assuming that X = Spec A
is affine. Then Z = Spec(B), where B = A/I for some ideal I of A.

By the definition of dilatations ([BLR, 3.2]), Γ1 is affine with affine ring

A1 = A[π−1I] = A +
∑
k>1

π−kIk ⊂ A⊗R K.

From this, one verifies inductively that Γn is affine with affine ring

An = A[π−nI] = A +
∑
k>1

π−knIk ⊂ A⊗R K.

Now it is easy to verify that (i) describes the functor of points with values in flat
R-algebras.

It is easy to check that Γ∞ is represented by Spec A∞, where

A∞ =
⋃
n>1

An = A + I ⊗R K,

which proves (ii). As Z is flat, A ∩ (I ⊗R K) = I, which implies that (A∞)κ ' Bκ,
hence (iii).

�

7.4. Group schemes. Now assume that X is a group scheme over R, flat of finite
type, and Z is a flat closed subgroup scheme. Then each Γn is naturally a group
scheme over R as well. Indeed, this follows from [BLR, 3.2, Proposition 2(d)]. One
can also use the observation that the subfunctor Γn of X is a subgroup functor.
When Z is the trivial subgroup, Γn is the scheme-theoretic principal congruence
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subgroup of level n. In general, we can think of Γn as a scheme-theoretic congruence
subgroup.

Similarly, Γ∞ is naturally a group scheme over R.

7.5. Examples. Let H be any flat group scheme of finite type over R, and E be
the trivial closed subgroup scheme. Then G := Γ∞(H,E) has the same generic fiber
as H, but its special fiber is the trivial group. In particular, the special fiber is
reductive.

We can also take H to be a Chevalley scheme over R, and H′ a proper Levi
subgroup. Then again we see that the special fiber of G := Γ∞(H,H′) is reductive.
These examples show that without the condition that dim(Gκ̄)red = dim GK in the
definition of quasi-reductive group schemes, Theorem 1.2 is false.

7.6. The Special fiber of a dilatation. Let G be a smooth group scheme over R,
H a smooth subgroup of Gκ, G′ the dilatation of H on G. According to [BLR, 3.2,
Propositions 2 and 3], G′ is a smooth group scheme over R. The following result,
which is not used in this paper, describes the structure of the special fiber of G′.
For simplicity, we assume that κ is perfect.

Proposition. With the above notation, there is a natural surjective morphism
G′κ → H whose kernel is a vector group of dimension dim Gκ − dim H.

Proof. Let G1 be the dilatation of the trivial subgroup of Gκ on G. Then there are
natural morphisms G1 → G′ → G, inducing the inclusions G1(Rsh) → G′(Rsh) →
G(Rsh).

Since G′ and G are smooth over R, the reduction maps G′(Rsh) → G′(κsh) and
G(Rsh) → G(κsh) are surjective. It follows that the image of G′κ → Gκ is exactly
H. Similarly, one sees that the image of Lie G′κ → Lie G is precisely Lie H. It
follows that V := ker(G′κ → Gκ) is a smooth algebraic group over κ, of dimension
dim Gκ − dim H.

Let x ∈ V (κsh) ⊂ G′(κsh). Choose x̃ ∈ G′(Rsh) such that the image of x̃ under
G′(Rsh) → G′(κsh) is x. Then x̃ ∈ G1(Rsh). It follows that G1

κ(κsh) maps onto
V (κsh). On the other hand, G1

κ is functorially isomorphic to the vector group over
κ underlying the vector space Lie G ⊗R (πR/π2R). By [Sp, Theroem 3.4.7] and
[SGA3, Exp. XVII, Lemme 4.1.5], V is also a vector group. �

7.7. A variant. Let H be a flat group scheme of finite type over R. For simplicity,
we assume that H is affine and κ is a finite field with q elements.

Let F : Hκ → Hκ be the Frobenius κ-morphism, and Z = ker(F ). We let Λ1(H)
to be the dilatation of Z on H. In the following, we use Γ1(H) to denote Γ1(H,E),
where E is the trivial subgroup scheme, so that Γ1(H)(R) is the first principal
congruence subgroup of H(R).
Claim 1. We have Γ1(H)(R) ⊂ Γ1(Λ1(H))(R).

Proof. We recall that an element h of H(R) lies in Γ1(H)(R) if and only if for any
f ∈ A = OH(H) such that f(e) ∈ πR, we have f(h) ∈ πR, where e is the identity
element of H(R).

Notice also that Z is defined by the ideal generated by π and {gq : g ∈ A, g(e) ∈
πR}. Therefore, the affine ring of Λ1(H) is A1 := A[gq/π : g ∈ A, g(e) ∈ πR].

Now let h ∈ Γ1(H)(R). We will prove that h lies in Γ1(Λ1(H))(R) by showing
that for all f ∈ A1, f(h) ∈ R (this will imply that h lies in Λ1(H)(R)), and if,
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moreover, f(e) ∈ πR, then f(h) ∈ πR, which will imply that h in fact belongs
to the subgroup Γ1(Λ1(H))(R) of Λ1(H)(R). So let f ∈ A1. We can write f =
F (gq

1/π, . . . , gq
n/π), where gi ∈ A are such that gi(e) ∈ πR and F is a polynomial

over A in n variables. Since gi(e) ∈ πR, gi(h) ∈ πR and hence gi(h)q/π ∈ πR,
and so f(h) ∈ R. If, moreover, f(e) ∈ πR, then the constant term c0 (∈ A) of F
satisfies the condition c0(e) ∈ πR. Therefore, c0(h) ∈ πR, which implies at once
that f(h) ∈ πR. �

Now let Λ0 := H, and define Λn+1 := Λ1(Λn) inductively. Then the affine rings
An of the schemes Λn form an increasing sequence of Hopf algebras (inside the
affine ring of H ⊗R K). Their union A∞ is again a Hopf algebra, whose spectrum
is a group scheme Λ∞ over R. By Claim 1, Γ1(H)(R) ⊂ Λ∞(R).
Claim 2. The reduced special fiber of Λ∞ is the trivial group.

Proof. Let f ∈ A∞/πA∞. It suffices to show that if f(e) = 0, then f is nilpotent.
Lift f to f̃ ∈ A∞. Then f̃ ∈ An for some n > 0. Since f̃(e) ∈ πR, f̃q/π ∈ An+1.

Thus f̃q ∈ πA∞ and hence fq = 0. �

If we apply this to H = Ga/R, then Λ∞ = Spec A∞, where A∞ = R[X0, X1, . . .] ⊂
K[X], with X0 = X, Xn+1 = Xq

n/π. Therefore, G := Λ∞ has reductive reduced
special fiber (trivial group), G(R) is Zariski-dense in G⊗R K, but the generic fiber
is not reductive.

We can apply this to a Chevalley scheme H of positive dimension, and put
G = Λ∞. Then we see again that without the condition dim(Gκ̄)red = dim GK , in
the definition of quasi-reductive group schemes, Theorem 1.2 is false even under
the additional hypothesis that GK is reductive and G(R) is Zariski-dense.

8. Good quasi-reductive group schemes

In the remaining three sections (8, 9, 10), we assume that R is a strictly henselian
DVR with algebraically closed residue field κ, K is its field of fractions and π is a
uniformizer. Let G be a connected reductive K-group.

8.1. Lemma. Let G be a quasi-reductive model of G over R and Ĝ, G̃ respectively
be the smoothening and the normalization of G. Consider the following conditions:

(1) Ĝ → G̃ is an isomorphism.
(2) G(R) → G(κ) is surjective.
(3) G(R) is a hyperspecial maximal bounded subgroup of G(K).
(4) G is K-split and there is an R-torus T in G such that TK is a maximal

K-split torus of G.
Then (1) ⇒ (2) ⇔ (3) ⇒ (4).

Proof. This follows from Lemma 4.2, and Propositions 4.3 and 4.4. �

8.2. Definition. A quasi-reductive model G of G will be called good if the equivalent
conditions (2) and (3) of the above lemma hold. If G admits a good quasi-reductive
model, then it splits over K.

We will say that a quasi-reductive R-group scheme of finite type is good if it is
a good quasi-reductive model of its generic fiber.

We will see later (Proposition 8.10) that the three conditions (1)–(3) are, in fact,
equivalent. Notice that by Proposition 3.4, for any quasi-reductive model G of G
over R, there is a local extension R ⊂ R′ of DVRs such that G′ := G⊗R R′ is good.
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8.3. The ∆-invariant. For a R-group scheme G of finite type with connected
reductive K-split generic fiber G, let Ξ := Ξ(G) be the set of normal algebraic
subgroups of G which are isomorphic to SO2n+1 for some n > 1. For H ∈ Ξ, define

∆G(H) :=
1
2n

lengthR(Lie H/Lie Ĥ),

where H is the schematic closure of H in G, Ĥ is the smoothening of H, and n
is such that H ' SO2n+1. If G is good, then since H(R) = G(R) ∩ H(K) is a
hyperspecial maximal bounded subgroup of H(K), H is also good.

If G ' SO2n+1 for some n > 1, we will call ∆G(G) simply the ∆-invariant of G.

8.4. Theorem. Let G be a good quasi-reductive R-group scheme. The function ∆G

takes values in I := {m ∈ Z : 0 6 2m 6 ordK(2)}.

The proof will be given in 8.9. We will prove the following theorem in the next
section.

8.5. Theorem. Let G and G′ be good quasi-reductive R-group schemes. Then G is
isomorphic to G′ if and only if there is an isomorphism from GK to G′K inducing a
bijection ξ : Ξ(GK) → Ξ(G′K) such that ∆G = ∆G′ ◦ ξ. Moreover, G is a reductive
group over R if and only if ∆G(H) = 0 for all H ∈ Ξ(GK). For a given K-split
reductive group G, the set of isomorphism classes of good quasi-reductive R-group
schemes with generic fiber ' G is in bijection with

IΞ := the set of all functions Ξ → I,

where Ξ = Ξ(G).

Good tori and the big-cell decomposition Let G be a model of a connected
reductive K-group G. We assume that G is K-split for simplicity. We define a
good torus of G to be a closed subgroup S ↪→ G such that S is a (split) R-torus
and SK is a maximal K-split torus of G. To give such a torus is to give a maximal
K-split torus S of G, and to check that the schematic closure S of S in G is the
Néron-Raynaud model of S. Such a torus may or may not exist in a model G, see
10.7 and 10.8(ii). We now assume that G contains a good torus S. Let S be the
generic fiber of this torus.

Let Φ = Φ(G, S) be the root system of G with respect to S. For a ∈ Φ, let Ua

be the corresponding root subgroup and Ua the schematic closure of Ua in G.

8.6. Theorem. Assume that S is a good torus of G. With the above notation, for
any system of positive roots Φ+ of Φ, the multiplication morphism( ∏

a∈Φ+

Ua

)
× S×

( ∏
a∈Φ−

Ua

)
→ G

is an open immersion, here Φ− = −Φ+, and the two products can be taken in any
order.

This follows from [BT2, 1.4.5] and [BT2, Théorème 2.2.3]. This result is the big-
cell decomposition of models with a good torus. We remark that no smoothness
assumption on G is needed here, and the result can be formulated for models of
linear algebraic groups that are not reductive. For similar results for certain models
without a good torus, see [Yu].
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8.7. Let G be a good quasi-reductive model of G. By Lemma 8.1, there exists
a good torus S of G. By Lemma 4.1, S can be regarded as a good torus of the
smoothening Ĝ of G as well. Let S = SK , Φ = Φ(G, S). For a ∈ Φ(G, S), let Ua

be the corresponding root subgroup. As G splits over K (Lemma 8.1), Ua is K-
isomorphic to Ga. Let Ua (resp. Ûa) be the schematic closure of Ua in G (resp. Ĝ).
Since Ĝ is a Chevalley scheme, Ûa is smooth over R.

Since Ûa ' Ga/R, the affine ring R[Ûa] is a polynomial ring R[x], we may and
do assume that R[x] =

⊕
i>0 Rxi is the weight decomposition of the action of S on

R[Ûa], where the weight of Rxi is ia [SGA3, Exp. I, 4.7.3].
The affine ring R[Ua] is a subring of R[Ûa] and it has a similar weight decompo-

sition R[Ua] =
⊕

i>0 R[Ua] ∩Rxi.

8.8. Proposition. Let R[Ua] ∩Rxi = Rπnixi. Then the following assertions hold.

(i) There exists i > 1 such that ni = 0.
(ii) The weights of Lie

(
Ua ⊗R κ

)
for the action of Sκ are of the form ia with

i > 1.
(iii) Let j = min{i > 1 : ni = 0}. The weight of the 1-dimensional Lie algebra

Lie(Ua ⊗R κ)red, for the action of Sκ, is ja.
(iv) If a is the weight of Lie(Ua ⊗R κ)red, then Ua ' Ûa is smooth.
(v) If 2a is the weight of Lie(Ua⊗Rκ)red, then there exists an integer c such that

2 6 2c 6 ordK(2) and R[Ua] = R[πcx, x2]. In this case, Ûa is isomorphic
to the normalization Ũa of Ua, and

lengthR(Lie Ua/Lie Ûa) = c.

Proof. Put yi = πnixi. We may assume that R[Ua] is generated by yi for i =
1, . . . ,m.

(i) Assume the contrary, then ni > 1 for i = 1, . . . ,m. Let R′ = R[π1/m],K ′ =
Frac R′. Then the R-algebra homomorphism R[Ua] → R′, x 7→ π−1/m (i.e. yi 7→
πni−(i/m)) is well-defined. This gives a point of Ua(R′) which is not in Ûa(R′).
However, this contradicts the following observation.

For any totally ramified local extension R ⊂ R′ of DVRs, it is clear from condition
(2) of Lemma 8.1 that G⊗R R′ is good. Therefore, G(R′) is a hyperspecial maximal
bounded subgroup. Since Ĝ(R′) ⊂ G(R′) and Ĝ is a Chevalley group, we must have
Ĝ(R′) = G(R′). Consequently, Ûa(R′) = Ĝ(R′)∩Ua(K ′) = G(R′)∩Ua(K ′) = Ua(R′),
where K ′ = Frac R′.

(ii) By definition, an element of Lie
(
Ua⊗R κ

)
is a homomorphism R[Ua]⊗R κ →

κ[ε]/(ε2), sending each yi ⊗ 1 to an element of κ · ε. Now (ii) is obvious from this
description.

(iii) By (i), if ni > 0, then yi ⊗ κ is nilpotent in R[Ua]⊗ κ. Therefore,
(
R[Ua]⊗

κ
)
red

is spanned by the yi ⊗ 1 for all i such that ni = 0. An element of Lie
(
(Ua ⊗R

κ)red
)

is a homomorphism
(
R[Ua]⊗R κ

)
red

→ κ[ε]/(ε2), which maps yi ⊗ 1 onto an
element of κ · ε. (iii) is obvious from this.

(iv) By (iii), x ∈ R[Ua] and hence R[Ua] = R[x] = R[Ûa].
(v) We must have n1 > 0, and by (iii) we also have n2 = 0. It follows that ni = 0

for all i even, and ni 6 n1 for all i odd.
Recall that the affine ring of (Ua)K is K[x], and it is a Hopf algebra with co-

multiplication µ : x 7→ x⊗ 1 + 1⊗ x. To ease the notation, we will write x⊗ 1 = u,
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1 ⊗ x = v. We now examine the condition that R[Ua] ⊂ K[x] is closed under
comultiplication, i.e. µ(πnixi) ⊂ R[Ua]⊗R R[Ua] for all i. Clearly,

µ(πnixi) =
i∑

j=0

πni

(
i

j

)
ujvi−j ∈ R[Ua]⊗R[Ua]

if and only if

nj + ni−j 6 ni + ordK

(
i

j

)
,

for all j. Taking i = 2 and j = 1, we get 2n1 6 ordK(2). Taking odd i and j = 1,
we get n1 6 ni.

Thus the only possible affine ring for R[Ua] is R[πcx, x2] with 2 6 2c 6 ordK(2).
The assertion on the length of the quotient of the two Lie algebras is easy to
check. �

8.9. The proof of Theorem 8.4. Let H ∈ Ξ(GK) be such that H ' SO2n+1,
and let H be the schematic closure of H in G. For simplicity, we now assume that
H = G so that we can use the notation set up in 8.7.

By the big-cell decomposition of G, Lie Gκ is the direct sum of Lie Sκ and Lie(Ua⊗
κ) for a ∈ Φ(G, S). It follows that Lie(Gκ)red is the direct sum of Lie Sκ and
Lie(Ua ⊗ κ)red. By Proposition 8.8 (iii), Proposition 4.3 (v) and Corollary 2.4, the
weight of Lie(Ua⊗κ)red is either a or 2a, and hence Proposition 8.8 (iv) or (v) can
be applied. Notice that we can combine (iv) and (v) to say that R[Ua] is of the
form R[πcx, x2] for an integer c such that 0 6 2c 6 ordK(2).

If G = H is smooth over R, it is clear that ∆G(H) = 0. Now assume that G is
not smooth over R. According to 3.3 and Proposition 4.3 (v), Ĝκ → (Gκ)red is a
unipotent isogeny. Proposition 8.8 (iv) and Lemma 2.2 show that Ua is smooth if a
is a long root in Φ(G, S). On the other hand, since the normalizer of S(R) in G(R)
permutes the short roots of Φ(G, S) transitively, the above integer c is the same for
all the 2n short roots a.

Again by the big-cell decomposition of G, Lie G is the direct sum of Lie S and
Lie Ua for all a ∈ Φ(G, S). We also have a similar decomposition of Lie Ĝ. This
gives us immediately

lengthR(Lie G/Lie Ĝ) = 2nc.

Thus the invariant ∆G(H) is simply the integer c, and 0 6 2c 6 ordK(2). �

8.10. Proposition. If G is a good quasi-reductive model of a reductive group G,
then Ĝ ' G̃.

Proof. We retain the notation in 8.7. By Proposition 8.8 (iv) and (v), Ûa → Ua is
a finite morphism for all a ∈ Φ. Let Ω (resp. Ω̂) be the big cell of G (resp. of Ĝ)
associated to the good torus S. By the big-cell decomposition for Ĝ and G, Ω̂ → Ω
is a finite morphism. Moreover, since Ĝκ → (Gκ)red is an isogeny (Proposition 4.3
(v)), Ω̂ is simply the inverse image of Ω under the morphism Ĝ → G.

Since G(R) → G(κ) is surjective, the translates gΩ, g ∈ G(R), together with GK ,
form an open cover of G. The smoothening morphism Ĝ → G is finite over each
member of this cover. Hence, Ĝ → G is a finite morphism and so Ĝ is also the
normalization G̃ of G. �
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9. The existence and uniqueness

9.1. Some quadratic lattices. We now describe some quadratic lattices relevant
to (good) quasi-reductive models of SO2n+1, n > 1. See Lemma 9.2, Theorems 9.3
and 10.5 for their applications.

Let V = K2n+1 with standard basis {e−n, . . . , e−1, e0, e1, . . . , en}, and let q be
the quadratic form on V defined by

q

(
n∑

i=−n

ai · ei

)
= −a2

0 +
n∑

i=1

aia−i.

Let G = SO(q), L0 =
∑n

i=−n R · ei, and G0 = SO(L0, q) be the schematic closure
of G in GL(L0). We call a quadratic lattice over R a Chevalley lattice if it is
isomorphic to (L0, u · q) for some n > 1, u ∈ R×. It is well-known that if (L′, q′) is
a quadratic lattice over R of odd rank, then SO(L′, q′) is a Chevalley scheme if and
only if (L′, q′) is a Chevalley lattice (the “if” part is essentially [B, VIII.13.2]; the
“only if” part follows from the uniqueness of invariant elements in the symmetric
square of the standard representation).

For an integer c such that 0 6 2c 6 ordK(2), let Lc = Rπ−c · e0 + L0 and
Hc = GL(Lc). We say that a quadratic lattice (L′, q′) over R is good if (L′, q′) is
isomorphic to (Lc, uπ2c · q) for some integer c such that 0 6 2c 6 ordK(2), and
u ∈ R×. We say that (L′, q′) is potentially good if (L′, q′) ⊗R R′ is a good lattice
over R′ for some local extension R ⊂ R′ of DVRs.

9.2. Lemma. Let c be an integer with 0 6 2c 6 ordK(2). Then the schematic
closure G of G = SO(q) in Hc = GL(Lc) is a good quasi-reductive model of G
whose ∆-invariant equals c. When c = 0, G is a Chevalley model.

The case of c = 0 is well-known so we assume that 1 < 2c 6 ordK(2). Therefore,
κ is of characteristic 2 and ordK(2) > 2.

Claim. The special fiber of G is non-reduced, and (Gκ)red is isomorphic to Sp2n /κ.
The ∆-invariant of G is c.

Proof. Recall that G0 = SO(L0, q) is a Chevalley model of G. The action of G0(R)
on L0/2L0 leaves the image of R · e0 (in L0/2L0) invariant. Therefore, G0(R) ⊂
GL(Lc). It follows that G0(R) = G(R) and we have a natural morphism G0 → G.
By Lemma 4.2, G is a (good) quasi-reductive group scheme.

We will first calculate the ∆-invariant of G when n = 1 for clarity. In this case,
Hc(R) consists of matrices (relative to the basis {e−1, e0, e1}) of the form x1 πcx2 x3

π−cy1 y2 π−cy3

z1 πcz2 z3

 ,

with xi, yi, zi ∈ R.
Let T be the standard maximal K-split torus of G, so that T (A) consists of

diagonal matrices of the form

λ(t) =

t
1

t−1

 , t ∈ A×
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for any commutative K-algebra A. Let T be the schematic closure of T in G, or
equivalently, in Hc. It is easy to see that T is simply the Néron-Raynaud model of
T . In particular, it is smooth.

Let Ua be the root subgroup of G corresponding to the root a : λ(t) 7→ t, so that
Ua(A) consists of matrices of the form1 2u u2

0 1 u
0 0 1

 , u ∈ A

for any commutative K-algebra A. Let Ua be the schematic closure of Ua in G

or Hc. Then the affine ring R[Ua] of Ua is a subring of K[Ua] = K[x], and it is
generated by πcx, x2, and (2/πc)x. As c 6 1

2 ordK(2), 2/πc ∈ πcR, and hence,

R[Ua] = R[πcx, x2] ⊂ K[x].

Let v = πcx,w = x2. Then R[Ua] = R[v, w]/(v2 − π2cw). Thus we see that the
special fiber of Ua is non-reduced, isomorphic to Ga × α2. It is easy to see that(
(Ua)κ

)
red

is in the root subgroup of (Gκ)red relative to Tκ, for the root 2a.
By 8.9, the ∆-invariant of G can be calculated by looking at Ua; it is equal to

c > 0. Therefore, G is not a Chevalley scheme. So the reduced special fiber (Gκ)red,
being the homomorphic image of (G0)κ ' SO3 under a non-trivial unipotent isogeny,
must be isomorphic to SL2 = Sp2.

In the general case, let W be the subspace spanned by e−1, e0, e1, and G′ =
SO(q|W ). Then the schematic closure G′ of G′ in G (resp. G0) is the same as that
in GL(Lc) (resp. GL(L0)), or in GL(W ∩ Lc) (resp. GL(W ∩ L0)), and is what we
have studied in the preceding paragraphs. Since the ∆-invariant can be calculated
by looking at an Ua contained in G′ (cf. 8.9), from the SO3-calculation, we see that
∆-invariant of G is c > 0. It follows that Gκ is non-reduced, (G0)κ → (Gκ)red is a
non-trivial unipotent isogeny, and (Gκ)red ' Sp2n. �

9.3. Theorem. Let G be a connected reductive algebraic group defined and split
over K. Let Ξ be the set of normal algebraic subgroups of G which are isomorphic
to SO2n+1 for n > 1. Let ∆ : Ξ → Z be a function such that 0 6 2∆(H) 6 ordK(2)
for all H ∈ Ξ. Then there is a good quasi-reductive model G of G over R such that
∆G is the given ∆.

Proof. Let Θ be the set of all connected normal almost simple algebraic subgroups
of the derived group of G. For H ∈ Θ, let ZH be the schematic center of H. For
H ∈ Ξ, let HH be a good model of H whose ∆-invariant is ∆(H). Such a model
exists by the preceding lemma.

For H ∈ Θ r Ξ, let HH be the Chevalley model of H. Finally, let S be the
connected center of G and S be the Néron-Raynaud model of S. Let F be the
kernel of the isogeny

G′ := S ×
∏

H∈Θ

H → G.

Let M be any one of F , S, ZH for H ∈ Θ. Then M is a group of multiplicative
type [SGA3, Exp. IX] over K corresponding to a Galois module HomK̄(M,GL1)
which is unramified [SGA3, Exp. X, Théorème 7.1]. Such a group has a canonical
extension to a R-group scheme of multiplicative type.
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The canonical extension ZH of ZH is a natural subgroup scheme of HH and the
canonical extension F of F is naturally embedded in

S×
∏

H∈Θ

ZH .

Thus F is a closed subgroup scheme of

G′ := S×
∏

H∈Θ

HH .

Let G = G′/F (in the sense of quotients of fppf sheaves [R, Théorème 1 (iv)]). It is
easy to see that G is a good model of G and it is a quasi-reductive R-group scheme
with ∆G = ∆. �

9.4. Theorem. Let G and G′ be good quasi-reductive R-group schemes. Then G is
isomorphic to G′ if and only if there is an isomorphism from GK to G′K inducing a
bijection ξ : Ξ(GK) → Ξ(G′K) such that ∆G = ∆G′ ◦ ξ. In particular, G is reductive
if and only if ∆G(H) = 0 for all H ∈ Ξ(GK).

Proof. The “only if” part is clear. We will prove the other implication.
The given condition implies that Ĝ and Ĝ′ are Chevalley schemes of the same

type, hence there is an isomorphism f : Ĝ → Ĝ′ which induces ξ. Let λ be the
corresponding isomorphism from the function field of Ĝ′ to that of Ĝ.

Let S be a good torus of Ĝ and S′ = f(S) the corresponding good torus of Ĝ′.
We will identify Φ = Φ(GK , SK) with Φ(G′K , S′K) via f . For a ∈ Φ, we denote by Ua

(resp. U ′
a) the corresponding root subgroup of GK (resp. G′K), and by Ua (resp. U′a)

the schematic closure of Ua (resp. U ′
a) in G (resp. G′). If a is not a short root in

Φ(H, SK ∩H) for some H ∈ Ξ(GK), then we have Ua = Ûa ' Û′a = U′a, where the
isomorphism is induced by f .

Suppose that a is a short root of Φ(H, SK ∩ H) for an H ∈ Ξ(GK). Then the
affine ring of Ua can be constructed from (i) the affine ring of Ûa, (ii) the action
of S on the affine ring of Ûa, and (iii) the function ∆G. The same is true for U′a.
Since ∆G(H) = ∆G′(f(H)), f again induces an isomorphism Ua ' U′a.

By the big-cell decomposition (Theorem 8.6),
∏

a∈Φ+ Ua × S ×
∏

a∈Φ− Ua is
isomorphic to an open subscheme Ω of G. There is a similar open subscheme Ω′ of
G′, and there is an isomorphism Ω → Ω′, which induces the isomorphism λ from the
function field of Ω′ to the function field of Ω. Since G(R) → G(κ) is surjective, the
collection {GK}∪{gΩ : g ∈ G(R)} is an open cover of G, and we have isomorphisms
GK

∼−−→ G′K , gΩ ∼−−→ f(g)Ω′, all compatible with λ. These isomorphisms patch
together to give an isomorphism G → G′. This proves the “if” part.

The last statement follows immediately since for the Chevalley model G, ∆G(H) =
0 for all H ∈ Ξ(GK). �

We observe that this completes the proof of Theorem 8.5, which combines The-
orems 9.3 and 9.4.

9.5. Theorem. Let G be a connected reductive algebraic group defined and split
over K and Ĝ the Chevalley model over R of G. For any ∆ : Ξ(G) → Z such
that 0 6 2∆(H) 6 ordK(2) for all H ∈ Ξ(G), there is a unique quasi-reductive
model G∆ of G with G∆(R) = Ĝ(R) and ∆G∆ = ∆. The model G∆ is good and its
smoothening is isomorphic to its normalization, which in turn is just the Chevalley
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model Ĝ. Given ∆′ : Ξ(G) → Z, satisfying the same condition as ∆, there is a
morphism G∆′ → G∆ extending the identity morphism on the generic fibers if and
only if ∆′(H) 6 ∆(H) for all H ∈ Ξ(G).

Proof. The existence is clear from Theorem 9.3. For the uniqueness, we argue as in
the preceding uniqueness theorem: the big cells of G∆ can be constructed uniquely
from the big cells of Ĝ and the function ∆. The uniqueness theorem also shows that
the normalization of G∆ is smooth since this is true for the good model provided
by Theorem 9.3.

To prove the last statement, we first set up some notation. As G∆′ is a good
quasi-reductive model of G, it contains a torus S′ whose generic fiber S is a maximal
K-split torus of G. The schematic closure of S in G∆ is then a good torus S of
the latter. Form Φ = Φ(G, S) and {Ua}a∈Φ with respect to this torus. Let Ua

(resp. U′a) be the schematic closure of Ua in G∆ (resp. in G∆′).
Now assume that there is a morphism G∆′ → G∆. This morphism induces a

morphism U′a → Ua. This together with 8.9 show that ∆′(H) 6 ∆(H) for all
H ∈ Ξ(G). Conversely, if ∆′(H) 6 ∆(H) for all H ∈ Ξ(G), then there is a (unique)
morphism U′a → Ua extending the identity morphism on the generic fiber, for
each a ∈ Φ. It follows that there is a (unique) morphism from the big cell of G′

associated to the good torus S′ to that of G, extending the identity morphism on the
generic fiber. As in the proof of Theorem 9.4, this morphism and its translates by
elements of G(R), together with the identity morphism on the generic fiber, patch
to a morphism G∆′ → G∆. The theorem is proved completely. �

9.6. Corollary. Let G and G′ be quasi-reductive models of G such that there is a
morphism G′ → G extending the identity morphism on the generic fiber. Then,

(i) G′ → G is a finite morphism, and hence G′(R) = G(R);
(ii) G is good if and only if G′ is good;
(iii) Fix G, there are only finitely many quasi-reductive models G′ with a mor-

phism G′ → G as above.

Proof. (i) It suffices to check the first assertion (of (i)) after a base change R ⊂ R′.
Therefore, we may assume that both G and G′ are good (notice that if G is good,
then so is G⊗R R′ for any totally ramified local extension R ⊂ R′ of DVRs). Then
as G(R) = G′(R) is hyperspecial, the smoothening Ĝ′ of G′ is also the smoothening
of G. Since the composition Ĝ′ → G′ → G, being the smoothening morphism of G,
is a finite morphism (note that according to Theorem 9.5 the smoothening of G is
isomorphic to its normalization), so is the morphism G′ → G.

(ii) is clear from (i) and characterization (3) in Lemma 8.1.
(iii) Again, it suffices to verify this after a faithfully flat base change R ⊂ R′.

Then we may and do assume that G is good. The statement then follows from (ii)
and the preceding theorem. �

9.7. Completion of the proof of Theorem 1.2 (a). We proceed as in 5.3 to
choose a finite subset S of a basis B of A := R[G], and for I ⊃ S, consider AI and
GI , etc. Again, GI is a quasi-reductive model of G := GK for each I ⊃ S. Now fix
a finite subset I of B containing S. By Corollary 9.6, there are only finitely many
R-subalgebras of A ⊗R K which contain AI and correspond to models of G that
are quasi-reductive group schemes of finite type over R. For any finite subset J of
B such that AJ ⊃ AI , the algebra AJ is one of these. Therefore, the union of AJ
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for all such J , which is simply A, is actually a union of finitely many AJ ’s, and A
is hence of finite type over R.

10. General quasi-reductive models of SO2n+1

The Lie algebra We retain the notations and hypothesis from 9.1. In particular,
the quadratic form q is as in there. Let G be as in Lemma 9.2. We recall that Lie G
can be identified with a Lie subalgebra of End(V ), and Lie G and Lie G0 are lattices
in Lie G.

Let B(−,−) be the bilinear form associated to q, that is, B(v, w) = q(v + w)−
q(v)− q(w). Let ∧2

KV be the exterior square of V . There is a natural map

ι : ∧2
KV → End(V ), ι(a ∧ b) : v 7→ B(a, v)b−B(b, v)a.

10.1. Lemma. The map ι is a K-vector space isomorphism from ∧2
KV onto Lie G.

Moreover, the image of ∧2
RL0 is Lie G0, and the image of ∧2

RLc is Lie G.

Proof. The first statement is well-known if 2 is invertible in K, and can be verified
for an arbitrary non-degenerate quadratic form q. However, for the particular q we
are working with, the statement is true even if K is replaced with Z. In fact, a basis
of the Chevalley algebra Lie G is given on pages 192–193 of [B], and one can verify
easily that ι(e−i∧ei) = Hi, ι(ei∧e0) = Xεi , ι(e0∧e−i) = X−εi , ι(ej∧ei) = Xεi+εj ,
and so on, where Φ = {±εi,±εi ± εj} is the root system of G and {Xa}a∈Φ is the
Chevalley basis given in [B]. This also shows that the image of ∧2

RL0 is Lie G0.
By Proposition 8.8 and Theorem 8.6, Lie G is spanned over R by Hi, 1 6 i 6 n,

π−cXa for short roots a ∈ Φ, and Xa for long roots a ∈ Φ. From this, we we see
that ι carries ∧2

RLc onto Lie G. �

10.2. Lemma. Let H be a group scheme locally of finite type over a noetherian
ring R. Let R → R′ be a flat morphism from R to a noetherian ring R′. Then the
canonical morphism (Lie H)⊗R R′ → Lie(H ⊗R R′) is an isomorphism.

Proof. By [SGA3, Exp. II, Proposition 3.3 and page 54], Lie H is HomR(e∗(Ω1
H/R), R),

where e is the identity section. The lemma follows from this description, the com-
patibility of the formation of Ω1

H/R and base change ([BLR, 2.1, Proposition 3]),
and [M2, Theorem 7.11]. �

10.3. Lemma. Let V be a vector space of dimension m over K. Let d < m be
a positive integer prime to m. Let R ⊂ R′ be a local extension of DVRs and put
K ′ = Frac R′. Let L′ be an R′-lattice in V ′ := V ⊗K K ′, M ′ = ∧d

R′L′. Suppose that
there is an R-lattice M in ∧d

KV such that M ⊗R R′ = M ′. Then there exist an R-
lattice L in V , an element a ∈ (K ′)× such that L⊗R R′ = aL′, and d ·ordK(a) ∈ Z,
where ordK is the valuation on K ′ normalized so that ordK(K×) = Z.

Proof. We will abbreviate the assumption on M ′ to “M ′ descends to a lattice in
∧d

KV ”, and so forth. Let L0 be a lattice in V such that L′0 := L0⊗R R′ is contained
in L′. Write L′/L′0 '

⊕m
i=1 R′/riR

′ and put M ′
0 = ∧d

R′L′0. It follows that M ′/M ′
0

is isomorphic to the direct sum of R′/(ri1 · · · rid
)R′, i1 < · · · < id. By assumption,

this implies ordK(ri1 · · · rid
) ∈ Z for all i1 < · · · < id. It follows that we have

ordK(ri)− ordK(rj) ∈ Z for all i, j, and d · ordK(ri) ∈ Z for all i. We set a = r−1
1

and claim that L′1 = aL′ descends to a lattice in V . Notice that ∧d
R′L′1 = adM ′ also

descends to a lattice in ∧d
KV . Therefore, we may and do assume that L′ = L′1. The
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only consequence of L′ = L′1 that will concern us is that D′ := ∧m
R′(L′) descends to

a lattice D in ∧m
KV .

We apply Grothendieck’s theory of flat descent [BLR, Chapter 6]. Put R′′ =
R′ ⊗R R′, K ′′ = K ′ ⊗K K ′. By assumption, there is a canonical descent datum
ϕV : V ′⊗K′,i2K ′′ → V ′⊗K′,i1K ′′, where i1, i2 are the two natural embeddings of K ′

into K ′′. There are also canonical descent data ϕM : M ′ ⊗R′,i2 R′′ → M ′ ⊗R′,i1 R′′

and ϕD : D′ ⊗R′,i2 R′′ → D′ ⊗R′,i1 R′′. These are compatible in the sense that ϕV

and ϕM induce the same isomorphism ∧d
K′V ′ ⊗K′,i2 K ′′ → ∧d

K′V ′ ⊗K′,i1 K ′′, and
a similar condition holds for ϕV and ϕD. Our second claim is that ϕV restricts to
an isomorphism ϕ! : L′ ⊗R′,i2 R′′ → L′ ⊗R′,i1 R′′. It then follows that ϕ! satisfies
the cocycle condition, and is a descent datum defining a lattice L which proves the
first claim.

By using an R′-basis of L′, we can regard the datum ϕV as an element g of
GLm(K ′′), and the compatibility condition with ϕM is that its image in GLm′(K ′′)
lies in GLm′(R′′), where m′ =

(
m
d

)
and the morphism GLm → GLm′ is the d-th

exterior power representation. Similarly, the compatibility with ϕD shows that
image of g under det : GLm → GL1 lies in GL1(R′′). The second claim is then
that g lies in GLm(R′′), which is now obvious since GLm → GLm′ ×GL1 is a closed
immersion of group schemes over R′′ (or even over Z, by Corollary 1.3) since d is
prime to m. �

The above lemma suffices for the application in this paper. It admits the fol-
lowing generalization, sent to us by Brian Conrad, incorporating simplifications
suggested by Ofer Gabber.

10.4. Theorem. Let R → R′ be a faithfully flat morphism of local domains, induc-
ing the extension K → K ′ on fraction fields. Assume that the morphism Br(R) →
Br(K) between Brauer groups is an injection. Let V be a finite-dimensional vector
space over K and d a positive integer with d < m := dim V . Let L′ be an R′-lattice
in V ′ := V ⊗K K ′ such that the lattice ∧d

R′L′ has a K ′×-multiple that descends to
an R-lattice in ∧d

KV . Then L′ admits a K ′×-multiple that descends to an R-lattice
in V .

Remarks. (i) The morphism Br(R) → Br(K) is known to be injective if R is a
regular local ring [Mi, Corollary IV.2.6], or if R is strictly henselian [Mi, Corollary
IV.1.7]. (ii) By an R-lattice in V we mean a free R-submodule of V of rank = dim V .

Proof. We argue as in the proof of the first claim in the proof of Lemma 10.3,
using the fact that PGLm → PGLm′ is a closed immersion of group schemes over
Z, to conclude that ϕV gives rise to a Čech 1-cocycle w for R′/R with values in
PGLm, becoming a 1-coboundary as a 1-cocycle for K ′/K (here we are working
with non-abelian H1 defined via Čech cocycles for the étale topology; see [Mi,
III.4]). By the assumption on Brauer groups, w represents the trivial class (i.e. w
is a coboundary) in H1(Spec R,PGLm), and also in H1(Spec R′/ Spec R,PGLm),
since H1(Spec R′/ Spec R,PGLm) → H1(Spec R,PGLm) is injective (e.g. by the
torsor interpretation in the proof of [Mi, Proposition III.4.6]).

We now consider the short exact sequence 1 → GL1 → GLm → PGLm → 1 and
the associated exact sequence of pointed sets:

H1(Spec R,GL1) → H1(Spec R,GLm) → H1(Spec R,PGLm).
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We choose a point in PGLm(R′) to express w as a 1-coboundary and use its lift
to GLm(R′) (a lift exists since R′ is local [Mi, Proposition III.4.9]) to change the
basis of L′ to get reduced to the case w = 1. But then ϕV is a 1-cocycle for K ′/K
with values in the central torus GL1 ⊂ GLm. By Grothendieck’s fpqc version of
Hilbert’s Theorem 90 [Mi, Proposition III.4.9], this 1-cocycle is a 1-coboundary.
Upon choosing an element c′ in GL1(K ′) that expresses the coboundary property
of ϕV , we see that the GLm-valued 1-cocycle for K ′/K arising from a suitable basis
of (1/c′)L′ is identically equal to 1, so (1/c′)L′ descends to an R-lattice in V . �

10.5. Theorem. Let G be a quasi-reductive model of G = SO(q). Then there exist
a unique α ∈ {0, 1} and a unique R-lattice L in V so that

(i) G is the schematic closure of G in GL(L);
(ii) ι : ∧2

KV ' Lie G induces an isomorphism ∧2
RL ' πα Lie G.

(iii) α is the smallest integer such that there is a Chevalley lattice L with παL ⊂
L.

Let

c = c(G) := lengthR

(
det(π−αL)/ det(L)

)
− α

2
· dim V ∈ 1

2
Z.

Then (L, π2c−α · q) is potentially good. Moreover, G is good if and only if α = 0 and
(L, π2c · q) is good, in which case the ∆-invariant of G is c, and so 2c 6 ordK(2).
Conversely, if (L′, q′) is a good (resp. potentially good) quadratic lattice, then the
schematic closure of SO(L′, q′)⊗RK in GL(L′) is a good quasi-reductive model over
R (resp. a quasi-reductive model over R).

Proof. First assume that G is good. In view of the uniqueness assertion of The-
orem 9.4, we may and do assume that G is the model constructed in Lemma 9.2
using the lattice Lc. Then by Lemma 10.1, for L := Lc, ι induces an isomorphism
∧2

RL ' πα Lie G with α = 0. By definition, c = lengthR(L/L0) and (L, π2c · q) is
good. According to Lemma 9.2, the ∆-invariant of G equals c. We will now prove
the uniqueness of (α, L). Indeed, it is easy to show that the only lattices stable
under G(R) are of the form πa(Rπ−b · e0 + L0), with a, b ∈ Z, 0 6 b 6 ordK(2).
Among these, only the one with a = 0, b = c, i. e. L = Lc, satisfies (ii) (with
α = 0). The same argument also implies the following: L† := πL is the only lattice
in V satisfying (i†) G is the schematic closure of G in GL(L†), and (ii†) ι induces
an isomorphism ∧2

RL† ' π2 Lie G.
Now we drop the assumption that G is good. By Proposition 3.4, there is a local

extension R ⊂ R′ of DVRs such that G′ := G⊗RR′ is good. Let K ′ = Frac R′. Then
by the case we have already treated, there is a unique lattice L′ in V ′ := V ⊗K K ′

such that G′ is the schematic closure of G ⊗K K ′ in GL(L′), and ι induces an
isomorphism M ′ = ∧2

R′L′ ' Lie G′.
Let M ⊂ ∧2

KV be the inverse image of Lie G under ι. Since ι obviously commutes
with base change, by Lemma 10.2, we have ι(M ⊗R R′) = Lie G′ and hence M ⊗R

R′ = M ′. According to Lemma 10.3, there exist α ∈ {0, 1}, a ∈ R′, an R-lattice L
in V such that ordK(a) = α/2 and L⊗R R′ ' aL′.

We claim that this L satisfies (i) and (ii). Indeed, it suffices to check both
properties after the base change R ⊂ R′, and these hold by construction. To prove
the uniqueness of (α, L), assume that (α̃, L̃) also satisfies (i) and (ii). Let ã ∈ R′ be
such that ordK(ã) = α̃/2 (we may and do assume that ordK(K ′×) ⊃ 1

2Z). Then
ã−1(L̃ ⊗R R′) = L′ by the uniqueness or L′. It follows that ordK(ã/a) ∈ Z and
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α = α̃. The uniqueness of L now follows from the uniquess of L′ when α = 0
or the uniqueness assertion above for L† when α = 1. Moreover, (L, π2c−α · q) is
potentially good since (aL′, a−2π2c · q) is good. Finally, the statement G is good ⇔
α = 0 and (L, π2c · q) is good is also clear.

The converse statement follows from Lemma 9.2. �

10.6. Corollary. Let G be a quasi-reductive model of SO2n+1 over R. Let R ⊂ R′

be a local extension of DVRs such that G′ := G⊗R R′ is good. Then the c-invariants
c(G) and c(G′) are related by c(G′) = e · c(G), where e is the ramification index of
R′/R. In particular, the ∆-invariant of G′ is an integral multiple of e/2,

Proof. The first statement about the c-invariant is clear from its construction. The
second statement follows from the first one since c(G) ∈ 1

2Z. �

10.7. Corollary. Assume that the c-invariant of G is an integer and G admits a
good torus, then G is good.

Proof. Let T be a good torus of G over R. Then we can define Ua etc. as in 8.7.
Assume that the weight a submodule of R[Ua] is Ry.

Let R ⊂ R′ be a local extension of DVRs such that G′ := G ⊗R R′ is good. By
Proposition 8.8, R′[Ua] = R′[π′c(G

′)
z, z2], where π′ is a uniformizer of R′, and z ∈

R′×π′
−c(G′)

y. By the assumption c(G) ∈ Z, we can consider x := π−c(G)y ∈ R′×z.
Then R′[Ua] = R′[πc(G)x, x2], which implies that R[Ua] = R[πc(G)x, x2]. From this
it is clear that the normalization of Ua over R is smooth, and Ua(R) → Ua(κ) is
surjective.

It then follows from the decomposition of the big cell associated to the good
torus T that the image of G(R) → G(κ) contains a big cell of G(κ), and hence
G(R) → G(κ) is surjective. Therefore, G is good. �

10.8. Examples. (i) As before, let π be a uniformizer of R and b an odd integer
such that 1 6 b 6 ordK(2). Let q be the quadratic form x2 + πbyz on a rank-3
lattice L. Then (L, q) is potentially good. The corresponding model G has c-
invariant 1

2b ∈ 1
2Z r Z, therefore, G is not good. Observe that G does admit a good

torus and it becomes good over a suitable quadratic extension of R.
Notice that we can take R = Z2 (or its maximal unramified extension) and

b = 1 to get an example of a non-smooth quasi-reductive model of SO3, while the
construction in 9.1 doesn’t provide any example of a non-smooth quasi-reductive
model of SO2n+1 over such a DVR.

One may wonder if c ∈ 1
2Z/Z is the only obstruction to being good. The following

example shows that this is not the case.
(ii) Let q be the quadratic form −x2 − πy2 + π2yz in three variables x, y, z.

Assume that π2 | 2. Then q is potentially good but not good. Therefore, this gives
us a quasi-reductive model G of SO3 which is not good. The c-invariant of G is 1.

To see this, let R′ = R[π′] with π′
2 = π. Then q ⊗R R′ is −x′

2 + π2y′z′, where
x′ = x + π′y, y′ = y, z′ = z + (2/π′

3)x. Therefore, q is potentially good. On the
other hand, if q is R-equivalent to u(−x2 + π2yz) for some u ∈ R×, then q mod π2

is a multiple of the square of a linear form, which is not the case.
Notice that by Corollary 10.7, G doesn’t have a good torus, even though both Gκ

and GK contain 1-dimensional tori. We remark that by [SGA3, Exp. XV, Propo-
sition 1.6], if G is a flat group scheme of finite type over a complete DVR R, and
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either G is smooth over R or G is commutative, then any torus in Gκ lifts to an
R-torus in G.

It is an interesting question to classify all potentially good quadratic lattices. By
Theorem 10.5, this is equivalent to classifying quasi-reductive models of SO2n+1.

Appendix: Base change and normalization
by Brian Conrad

Let X be a finite-type flat scheme over a Dedekind domain R with fraction field
K; we write S to denote Spec(R). Clearly the structure sheaf of Xred is torsion-free
over R, and so Xred is also flat over R. Given a finite extension K ′/K, we shall let
R′ denote the integral closure of R in K ′; this is Dedekind, is semi-local when R
is, and induces finite extensions on residue fields.

A.1. Remark. If R is a henselian DVR then R′ is automatically a henselian DVR
as well; in particular, R′ is again local.

Quite generally, if R → R′ is any extension of Dedekind domains, inducing an
extension K → K ′ on fraction fields, we write X′ to denote X ⊗R R′ and X′red
to denote (X′)red (and not (Xred)′). The following was proved by Raynaud [An,
App. II, Cor. 3], and later by Faltings [dJ, Lemma 2.13], and our aim will be to
describe its proof and its relevance to this paper.

A.2. Theorem (Raynaud–Faltings). There exists a finite extension K ′/K such that
X′red has geometrically reduced generic fiber and its normalization X̃′ is X′-finite with
geometrically normal generic fiber and geometrically reduced special fibers (over R′).

A.3. Remark. An algebraic scheme Z over a field k is geometrically reduced (resp.
geometrically normal) over k if Z⊗kk′ is reduced (resp. normal) for any finite insep-
arable extension k′/k, in which case the same is true for any extension field k′/k. We
will also use the notion of geometric integrality over k; see [EGA, IV2, §4.5, 6.7.6ff.]
for a detailed discussion.

It follows from Serre’s homological criteria “(R0) + (S1)” for reducedness and
“(R1) + (S2)” for normality (of noetherian rings) [M2, pp. 183ff.] that a finite-
type flat scheme over a noetherian normal domain is normal if its generic fiber is
normal and its other fibers are reduced. Thus, for K ′ as in Theorem A.2 and any
further flat extension R′ → R′′ to another noetherian normal domain R′′, the base
change X̃′ ⊗R′ R′′ is normal, and so it is the normalization of the reduced scheme
X′red ⊗R′ R′′. In particular, the normalization of (X ⊗R R′′)red = X′red ⊗R′ R′′ is
finite over X⊗R R′′ in a uniform sense as we vary R′′/R′.

The argument of Raynaud uses rigid-geometry and flattening techniques, whereas
the argument of Faltings uses the Stable Reduction Theorem for curves. Strictly
speaking, Faltings’ proof assumes that R is (local and) excellent [M1, Ch. 13], pri-
marily to ensure finiteness of various normalization maps. We shall reduce the
general case to the case of complete local R with algebraically closed residue field,
and we then use our reduction steps to describe Faltings’ method in a way that
avoids some technicalities. We first record:
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A.4. Corollary. Let G be a flat finite-type separated group scheme over a Dedekind
domain R with fraction field K. There exists a finite extension K ′/K such that:

• G′red is a subgroup of G′ with smooth generic fiber;
• the normalization G̃′red → G′red is finite and is a group-smoothening in the

sense of [BLR, §7.1];
• these properties are satisfied for the extension R ↪→ R′′ induced by any

injective extension of scalars R′ ↪→ R′′ with R′′ a Dedekind domain.

Proof. The geometric generic fiber GK has smooth underlying reduced scheme, as
it is a group over an algebraically closed field, so by replacing K with a large finite
extension we may assume the S-flat Gred has smooth generic fiber. It follows that
Gred×SGred is reduced, and hence coincides with (G×SG)red, so Gred is a subgroup of
G. Thus, we may rename Gred as G and may assume GK is smooth, and by Theorem
A.2 we may suppose that the normalization G̃ is G-finite with geometrically reduced
fibers over S, and its formation commutes with Dedekind extension on R.

We conclude that G̃×S G̃ is S-flat with smooth generic fiber and reduced special
fibers, so it is normal (by Serre’s criterion). The S-separatedness of G and the
normality (and S-flatness) of G̃ ×S G̃ allow us to use the universal property of
normalization to construct a group law on G̃ compatible with the one on its generic
fiber GK ; note that finiteness of G̃ over G provides a bijection G̃(S) = G(S), so the
identity lifts. Since the fibers of the S-flat group G̃ are geometrically reduced, G̃ is
smooth. Thus, by the argument in 3.3, G̃ is the group-smoothening. �

A.5. Lemma. There exists a finite extension K ′/K and a nonempty open sub-
scheme U ′ ⊆ S′ = Spec(R′) such that (XK′)red is geometrically reduced and the
normalization map X̃U ′ → (XU ′)red is finite with connected components of X̃U ′

having geometrically normal and geometrically integral U ′-fibers.

This lemma reduces Theorem A.2 to the case of local R, since there are only
finitely many points in S′ − U ′.

Proof. Since (XK)red is generically smooth, and the nilradical is locally generated
by finitely many elements, by chasing K-coefficients we may find a finite exten-
sion K ′/K such that (X′red) ⊗K′ K is reduced. That is, upon renaming K ′ as K
and renaming Xred as X, we may suppose XK is geometrically reduced. Further
coefficient-chasing in allows us to descend the finite normalization X̃K → XK to a
finite (necessarily birational) map YK → XK , at least after extending K a little;
since YK is geometrically normal over K, it is normal and so it is the normalization
of XK . Thus, we may assume that the normalization X̃K of XK is geometrically nor-
mal, and moreover (by extending K a little more) that the connected components
of X̃K are geometrically integral.

The finite normalization map X̃K → XK over the generic fiber of X may be
extended to a finite birational map Y → X|U with U ⊆ S a dense open, and by
shrinking U we may suppose that Y is U -flat. Since the connected components of
YK = X̃K are irreducible, by shrinking U we may suppose that the connected com-
ponents Yi of Y are irreducible. Each Yi,K is an irreducible component of X̃K , and
so is geometrically normal and geometrically integral. By [EGA, IV3, 9.7.8, 9.9.5],
there exists a dense open Ui ⊆ U such that each fiber Yi,u is geometrically normal
and geometrically integral for all u ∈ Ui. Renaming ∩Ui as S, Y has geometrically
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normal fibers over S; thus, Y is normal, and so the finite birational map Y → X is
the normalization. �

We may avoid all difficulties presented by the possible failure of normalizations
to be finite, via:

A.6. Theorem. If XK is geometrically reduced, then X̃ → X is finite.

Proof. For any faithfully flat Dedekind extension R → R′ with associated fraction
field extension K → K ′, X′ is R′-flat with reduced generic fiber XK ⊗K K ′, so
X′ is reduced. Thus, X̃ ⊗R R′ is reduced and is an intermediate cover between X′

and its normalization. Since X̃ is X-finite if and only if X̃ ⊗R R′ is X′-finite (as
R → R′ is faithfully flat), and the noetherian property of X′ ensures that finiteness
of its normalization forces finiteness for all intermediate covers, we conclude that
it suffices to prove the finiteness of normalization after base change to R′. Thus,
Lemma A.5 allows us to reduce to the semi-local case, and then we may certainly
reduce to the local case. We may then suppose the base is complete, and hence
Japanese, so [EGA, IV2, 7.6.5] ensures finiteness of normalizations for finite-type
reduced R-schemes. �

By Lemma A.5 and Theorem A.6, we may assume that S is local, X is nor-
mal, and XK is geometrically normal and geometrically integral over K. For any
extension R → R′ of Dedekind domains, the base change X′ is reduced and its
generic fiber X′K′ is geometrically normal, so the normalization X̃′ → X′ is finite
(by Theorem A.6). Our problem is to find a finite extension R′ such that X̃′ has
geometrically reduced special fibers; keep in mind that R′ is usually just semi-local,
and not local.

A.7. Remark. It suffices to prove generic smoothness of special fibers of X̃′. Indeed,
Serre’s homological criteria for reducedness and normality ensure that the R′-flat
normal X̃′ must have geometrically-reduced special fibers when it has generically-
smooth special fibers. This fact allows us to ignore a nowhere-dense closed subset
in the special fibers.

A.8. Definition. Let R → R0 be a faithfully flat local map between local Dedekind
domains, with K0/K the corresponding extension on fraction fields and κ0/κ the
extension on residue fields. The extension R → R0 is pseudo-unramified if:

• The maximal ideal mR0 is generated by mR, and κ0/κ is separable algebraic.
• For every finite extension K ′

0/K0, there exists a finite extension K ′/K
such that K ′

0/K0 is contained in a K-compositum L of K0 and K ′, and the
integral closure of R0 in L is a quotient of R′ ⊗R R0

A.8.1. Example. If R is local and Rh is its henselization, then R → Rh is pseudo-
unramified. Indeed, the algebraicity of the fraction-field extension K → Kh ensures
that any finite extension of Kh is contained in a K-compositum of Kh and a finite
extension K ′/K, and the compatibility on integer rings follows from the more pre-
cise statement that R′⊗RRh is the henselization of the semi-local integral extension
R′/R. This behavior of henselization with respect to integral ring extensions is a
special case of [EGA, IV4, 18.6.8].

A.8.2. Example. If R is local and henselian, with perfect residue field when K

has positive characteristic, then the map R → R̂ to the completion is pseudo-
unramified. To see this, let K̂ ′/K̂ be a finite extension of the fraction field K̂ of
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R̂. We may reduce to the cases when this extension is either separable or purely
inseparable. The separable case may be settled by using Krasner’s lemma to con-
struct a finite separable K ′/K such that K ′ ⊗K K̂ ' K̂ ′, and then R′ ⊗R R̂ is the
completion of R′ (due to R-finiteness of R′ when K ′/K is separable).

It remains to treat the purely inseparable case in positive characteristic p. We
have R̂ ' κ[[y]], so K̂ ' κ((y)) has a unique inseparable pn-extension, namely
K̂1/pn

= κ((y1/pn

)) = K̂(y1/pn

). This has valuation ring R̂[T ]/(T pn − y), and we
may choose y to be any uniformizer of R̂. Using a uniformizer y ∈ R, we may take
K ′ = K(y1/pn

) with integral closure R′ = R[T ]/(T pn − y).

The preceding examples allow for further reduction steps in the proof of Theorem
A.2, due to:

A.9. Lemma. If R → R0 is pseudo-unramified, it suffices to consider X⊗R R0 over
R0.

Proof. If K ′
0/K0 is a finite extension as in Theorem A.2 for X0 = X⊗R R0 over R0,

then by slightly increasing K0 we may suppose (by pseudo-unramifiedness) that K ′
0

is a K-compositum of K0 and a finite extension K ′/K such that R′
0 is a quotient

of R′ ⊗R R0. Note that all residue fields at maximal ideals of R′
0 are separable

algebraic over the corresponding residue fields on R′. Pseudo-unramifiedness has
done its work, so now replace K and K0 with K ′ and K ′

0, and R and R0 with
compatible localizations of R′ and R′

0, and replace X with the (finite) normalization
of X⊗RR′. This reduces us to the case when X is normal with geometrically normal
and geometrically integral generic fiber, and the X0-finite normalization X̃0 of X0

has geometrically reduced special fibers.
Since X̃0 → X0 = X⊗R R0 is a finite surjection, each generic point of the special

fiber (X0)s0 of X0 is hit by a generic point of the special fiber of X̃0. Since the
special fiber of X0 is merely the base change of the special fiber Xs by the extension
of residue fields, each generic point ξs of Xs is hit by a generic point ξ′s0

of (X̃0)s0

under the canonical map X̃0 → X. Since X̃0 and X are finite unions of normal
integral schemes, the induced map OX,ξs

→ OX0,ξ′s0
between local rings is a local

extension of DVRs, and hence is faithfully flat. Passing to the quotient by the
maximal ideal of R also kills the maximal ideal of R0, so we get a faithfully flat
map OXs,ξs → O(X0)s0 ,ξ′s0

; the target of this map is a field that is linearly disjoint
over κ with respect to any finite inseparable extension κ′ of κ, since (X0)s0 is κ0-
smooth near all of its generic points and κ0 is separable algebraic over κ. It follows
that the local ring OXs,ξs of Xs at the generic point ξs is also a field that is linearly
disjoint from all such κ′ over κ. This says that Xs is smooth near ξs, and since ξs

was an arbitrary choice of generic point on Xs we conclude that Xs is generically
smooth. �

By Example A.8.1 and Lemma A.9, we may assume the local base R is henselian.
Let R0/R be a local integral extension with R0 henselian and inducing an algebraic
closure κ/κ on residue fields. Assuming Theorem A.2 for X0 = X⊗R R0 over R0, let
us deduce it over R. There is a finite extension K ′

0/K0 such that the normalization
X̃′0 of X′0 = X⊗R R′

0 has geometrically reduced special fiber. Since K ′
0/K0 is finite

and K0/K is algebraic, K ′
0 may be expressed as a K-compositum of K0 and a finite

extension K ′ of K. By renaming R′ as R, we may assume that the normalization
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X̃0 of X0 has geometrically reduced fibers. By expressing R0 as a directed union of
integral closures R′ of R in finite extensions K ′/K, we see via finiteness of X̃0 → X0

that there exists such an R′ and a finite birational map Y → X′ = X ⊗R R′ that
descends X̃0 → X0. Since Y ⊗R′ R0 ' X̃0 is normal, so Y becomes normal after
a faithfully flat base change (R′ → R0), it follows that Y is normal. Thus, Y is
the normalization of X′. Renaming R′ as R allows us to therefore assume that
X̃ ⊗R R0 is the normalization X̃0 of X0. Since we have already noted that X̃0

has geometrically reduced special fiber, and the special fiber of X̃0 = X̃ ⊗R R0 is
X̃s ⊗κ κ0, it follows that X̃ has geometrically reduced special fiber, as desired.

We may now assume the henselian R has algebraically closed residue field, so
by Example A.8.2 and Lemma A.9 we may assume R is complete. More generally,
to settle any particular case X → Spec(R) over a general local R, it is enough to
consider the situation after passing to connected components of the normalization
of the base-change of X by a local extension R → R′, where R′ is a suitable complete
DVR with algebraically closed residue field. These reduction steps allow us to use
Faltings’ proof of [dJ, Lemma 2.13] to prove Theorem A.2. Let us now show how
his argument is applied.

A.10. Proof of Theorem A.2. As we have explained already, to settle any par-
ticular case we may (after suitable finite extension on K and normalization) restrict
attention to the case when R is local and complete with algebraically closed residue
field and X is normal with geometrically normal and geometrically integral generic
fiber. In particular, R is excellent. The R-flatness and the irreducibility of the
generic fiber ensure that both fibers of X have the same pure dimension, say d, and
the application of our reduction steps (if R was originally more general or X was
not normal) preserves the hypothesis of the generic fiber having a specified pure
dimension d. Thus, we may induct on d, the case d = 0 being trivial.

Suppose d = 1. Working locally on X, we may assume X is affine and hence
quasi-projective, and so by normalizing the projective closure after a suitable finite
extension on K (that may possibly be inseparable even if XK is K-smooth), we
may assume X is proper with XK geometrically normal and geometrically integral.
Thus, the curve XK is K-smooth. By the Stable Reduction Theorem for curves of
genus > 2 [DM] (or see [AW] for the case of an algebraically closed residue field),
after a further finite separable extension on K there exists a proper regular R-curve
C with generic fiber XK and generically smooth special fiber Cs; the same holds for
genus 6 1 by direct arguments.

Since R is excellent, C is an excellent surface. Since κ is algebraically closed,
resolution of singularities for excellent surfaces [Ar] and the factorization theorem
for proper regular R-curves [Ch, Thm. 2.1] ensure that for any two proper normal
R-curves Y and Y′ with the same generic fiber, each generic point on the special fiber
Ys has an open neighborhood in Ys that is isomorphic to either an open subscheme
in Y′s or an open subscheme in P1

κ; here is is crucial that κ is algebraically closed.
Consequently, Ys is generically smooth if and only if Y′s is generically smooth.
Applying this with Y = X and Y′ = C, we conclude that Xs is generically smooth.

For d > 1, we may work locally on X near each generic point of Xs, and so we
may assume X = Spec(A) is affine with Xs irreducible. We may also (as above)
suppose X is normal and R is complete with algebraically closed residue field. Pick
a lift t ∈ A of a κ-transcendental element in the function field of Xs; this defines
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a dominant S-map π : X → A1
S that must be flat over the generic point ηs of A1

s,
since OA1

S ,ηs
is a DVR. Thus, shrinking X around the generic point of Xs allows us

to assume π is flat. The localization π(ηs) : X ×A1
S

Spec(OA1
S ,ηs

) → Spec(OA1
S ,ηs

)
is flat with integral generic fiber of dimension d − 1, so π(ηs) has pure relative
dimension d− 1.

Since OA1
S ,ηs

is a DVR, the induction hypothesis applied to π(ηs) provides a
finite extension L of the fraction field of OA1

S ,ηs
, say with N denoting the finite

normalization of Spec(OA1
S ,ηs

) in L, such that the flat map (X ×A1
S

N)red → N
over the semi-local Dedekind N has geometrically reduced generic fiber and has
normalization (X ×A1

S
N)∼ such that π∼N : (X ×A1

S
N)∼ → N has geometrically

normal generic fiber and geometrically reduced special fibers.
Let C → A1

S be the finite normalization of A1
S in L. Since C is a flat normal

R-curve, we may use the case d = 1 to make a finite extension on K so that CK

is geometrically normal and Cs is geometrically reduced. Finiteness of C over A1
S

ensures that any open subscheme in C containing the generic points of Ns (i.e., the
fiber of C over ηs) contains the preimage of an open subscheme in A1

S around ηs.
Thus, to replace C with a sufficiently small open subscheme around N , it suffices
to replace A1

S with a small open subscheme U around ηs (and then we replace C

and X with CU and XU ; recall that we only need to work generically on Xs; see
Remark A.7). Since (X ×A1

S
C)∼ → C localized at N is the flat map π∼N with

geometrically reduced fibers, we may find an open subscheme U around ηs so that
(XU ×U CU )∼ → CU is flat with geometrically reduced fibers. Thus, we get a
flat map (XU ×U CU )∼s → (CU )s ⊆ Cs with geometrically reduced fibers. Thus,
geometric reducedness of Cs implies the same for (XU ×U CU )∼s .

The finite map CU → U localizes at ηs to become the finite map N → Spec(OA1
S ,ηs

)
that is flat, so by shrinking U some more around ηs we may suppose that CU → U
is flat. Thus, XU×U CU is flat over the normal integral XU , and so its normalization
(XU×U CU )∼ (which is finite over XU×U CU , since the base S is Japanese) is a finite
union of integral finite type S-flat schemes. Since the map (XU ×U CU )∼ → XU is
dominant and finite, hence surjective, and both the source and target have integral
connected components, this map must be flat over an open V ⊆ XU containing the
generic point ξs of Xs (since OX,ξs

is a DVR). Thus, Xs has a dense open subscheme
admitting a flat cover by the geometrically reduced scheme (XU ×U CU )∼s , and so
Xs is generically geometrically reduced. Thus, Xs is generically smooth. �
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