
CLARIFICATONS AND CORRECTIONS FOR GROTHENDIECK DUALITY AND

BASE CHANGE

BRIAN CONRAD

In what follows, “the book” refers to Grothendieck duality and base change in its original form. All
theorems, equations, page numbers, etc. which are mentioned without reference to [Be], [CE], [D], [G], or
[RD] are to be understood to refer to the book. More than half of this write-up is devoted to explaining why
the book is consistent with [D] and [Be]. It is important to confirm this consistency because there may be
confusion caused by the fact that [D] and [Be] occasionally use definitions which do not coincide with the
ones in the book (all such differences are recorded below).

I am grateful to Ofer Gabber for pointing out many of the discrepancies below, particularly concerning
Lemma 3.5.3 (which should have no sign), Theorem B.4.1 (which should have a sign), and the location of
the main error in the proof of [Be], p. 532, Lemme 1.2.5. The errors in Lemma 3.5.3 and Theorem B.4.1 do
not affect the truth or proof of any other theorems, lemmas, or corollaries in the book, and are caused by
elementary explicit miscalculations (rather than subtle errors in homological algebra). The other errors and
ambiguities are essentially all of expository nature and have no impact on the truth of any statements of
results in the book, but a couple of proofs are affected in very very minor ways (as is made explicit below).
In all cases of incorrectly formulated definitions (none of which affect the general foundations of duality
theory or homological algebra used in the book), it is the “corrected” definitions which are actually used in
the proofs. The only systematic homological mistake was an occasional failure to observe the sign implicit
in [CE], Chapter V, Proposition 7.1 (nearly all comments below for pp. 228, 271–281 are due to this), even
though on p. 113 this sign is properly noted. As is explained below, this mistake only affects the exposition
and does not affect the statements of any results, because the essential steps in all affected proofs utilize the
correct map (in accordance with [CE], Ch. V, Prop. 7.1).

p. 6 (line 28): The given definition of relative dimension of f at x as dim OXf(x),x is incorrect (think of the
case when x is a generic point in Xf(x)). The definition should be the maximal dimension of an irreducible
component of Xf(x) passing through x, which is to say dimxXf(x) in the sense of EGA 0IV, 14.1.2. This
corrected definition is the one which is used throughout the book.

p. 7 (line 19): Throughout the book, a double complex is understood to have anti-commutative squares.
This is consistent with [CE], but is not consistent with EGA, 0III, 11.4.2, where one works with commutative
squares (and then must introduce a sign in the definition of total complexes). The choice of convention cer-
tainly affects the construction of Grothendieck spectral sequences for composite functors, and any explication
of maps arising from the spectral sequence of a double complex is sensitive to one’s choice between these
two conventions. Under both points of view, columns of injectives in an upper half-plane double complex
are viewed as the resolutions to be used when computing derived functors of objects along the “bottom”,
but if one convention computes RmG(RnF (A)) by using an injective resolution I• of RnF (A) then the
other convention computes with the injective resolution J• obtained by multiplying all differentials of I• by
(−1)n. Arguing as near the bottom of p. 9, the signless isomorphism Hm(G(I•)) = Hm(G(J•)) corresponds
to multiplication by (−1)mn on RmG(RnF (A))!

For example, if we had used the convention in EGA, then Lemma 2.6.1 would only commute up to a
sign of (−1)nm (and we could eliminate this sign if the complex on line 20, which defines the top row of
the diagram in Lemma 2.6.1, had its differentials multiplied by (−1)n). The analysis of (3.6.12) is also very
sensitive to these choices, and this is addressed in detail in the p. 172 comments below.
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If the EGA convention on double complexes had been adopted, then some of the violations of (1.3.4) in
the book might not have been necessary. However, the desire to retain results such as Lemma 2.6.2 would
then force us to rethink the definitions of (2.5.1) and other constructions in the book.

See [G], Chapter V, 3.2.7.2 and Rem. 3.2.8 for further comments on the general topic of double complex
sign conventions. Although the Grothendieck spectral sequence of derived functors is very sensitive to this
issue, observe that the derived category isomorphism R(GF ) ' RG ◦RF which is constructed under the
same hypotheses does not depend on such a sign convention and hence is truly canonical.

p. 8 (line −1): Replace “n = 0” with “i = 0”.

p. 12 (lines -16ff): Due to a printing error, some words are missing near the right edge. Line by line, insert
the following phrases:

where, check, RH om’s, (−1)m(m−1)/2 of, needs, maps via, some, isomorphisms, is an, resp., one

p. 33 (line 14–18), p. 36 (lines 21–25): The relationship with the appendix in [D] is more delicate than
the text indicates. We agree on projective space, but in the case of curves the explanation on p. 36 for
compatibility between Theorem B.2.2 and [D] is wrong. In fact, we get identical trace maps on curves (rather
than being off by a sign, as is incorrectly stated on p. 36). The reason is that the explication for curves in
[D] involves a coboundary map, and (as in the p. 275 discussion below) this introduces an additional sign
which cancels out the sign in Theorem B.2.2. In general, it therefore appears that on ordinary cohomology
for proper ci morphisms our trace maps Rnf∗(ω)→ O coincide.

A somewhat involved analytic calculation (see [C]) shows that (2.3.4) sends (2.3.3) to (−1)n, not 1 as is
stated in the text (e.g., if one does the calculation correctly for P1, one gets an answer of −1 rather than
1). More generally, if X is proper and smooth of pure dimension n over C, the analogue of (2.3.4) for X is
equal to (−1)n times Grothendieck’s trace map (3.4.11) (whose definition rests on (3.4.13)). The analogue
of (2.3.4) in [D] is stated in the derived category and involves no such sign of (−1)n ([D] gets an answer
of 1 instead, but in the derived category rather than on ordinary cohomology). It therefore follows from
the agreement of traces on ordinary cohomology that, as is asserted in paragraph 2 of p. 36, [D] defines an
analogue of (2.3.8) in terms of (1.3.4), thereby differing from (2.3.8) by (−1)n. More generally, [D] therefore
defines an analogue of (3.4.13) in terms of (1.3.4) which differs from (3.4.13) by (−1)n. Since we agree on
ordinary cohomology, it follows that for proper ci f of pure relative dimension n, [D] must use a derived
category trace Rf∗(ω[n]) → O[0] which is off from the composite (3.4.14) by (−1)n (thereby ensuring a
cancellation of signs, and hence agreement, on ordinary cohomology). Note that this sign is consistent with
both derived category trace definitions (in [D] and in the book) being transitive with respect to composites
of scheme morphisms.

At this point, a question of consistency arises. Recall that there is no issue of signs in the definition of the
derived category and sheaf cohomology traces for finite morphisms, so [D] must adopt the same definition
as in (2.2.9) for the trace of a finite morphism. But if the conventions in [D] are to also give a theory of
trace which is transitive in scheme morphisms, then how we could possibly both get commutativity of the
diagrams (4.2.1) and (4.2.5) which link up the traces of proper smooth maps (on which we differ by (−1)n

in the derived category) and finite flat maps (on which we agree)? Note that the horizontal arrows in (4.2.1)
and (4.2.5) ultimately rest on (2.2.3). This is seen from the fact that the definitions of (2.7.4) and (2.7.5)
rest on (2.7.2) and (2.7.11), both of which make essential use of (2.2.3). This is explicated in (2.8.5) and
Lemma 2.8.2 for the special case of a section of projective space.

There seem to be (at least) two possible explanations for what is going on: either [D] uses different sign
conventions for defining an analogue of (2.2.3) or [D] uses a different sign convention when defining the
fundamental local isomorphism. More precisely, define a variant ζDf,g on ζ ′f,g in (2.2.3) which agrees with
ζ ′f,g in the straightfoward cases (a) and (b) on pp. 29, 30 but which is equal to (−1)nζ ′f,g in the more subtle
cases (c) and (d) on pp. 29, 30 (with n defined as in these respective cases on p. 29). Although the ζD

system defined in this way requires an unpleasant sign of (−1)n in its version of (2.2.5), one can easily prove
that the ζD system does satisfy the transitivity property (2.2.4): simply check that passing from (2.2.4) to
its ζD-variant involves introducing the same sign on both sides in all cases. Likewise, define a fundamental



CLARIFICATONS AND CORRECTIONS FOR GROTHENDIECK DUALITY AND BASE CHANGE 3

local isomorphism ηD which is a variant of (2.5.3) in which we introduce an extra factor of (−1)n in the
definition (with n equal to the codimension). Note that Lemma 2.6.2 remains true for the ηD system.

Gabber nicely summarizes the situation as follows. One should think in terms of an abstract “basic
structure” which consists of an abstract line bundle ωX/Y for smooth (resp. lci) morphisms f : X → Y with
pure constant relative dimension (resp. codimension), choices of the isomorphism (2.2.3), a choice of the
fundamental local isomorphism (2.5.1), and a choice of whether to use the usual shift (1.3.4) or the slightly
unorthodox shift (2.3.8) when explicating the trace map on higher direct image sheaves in the proper smooth
case (the choice between (1.3.4) and (2.3.8) analogously affects the definition of (3.4.13)). One also encodes
as part of the basic structure the data of canonical trivializations of ωX/Y whenever X is étale over Y . There
are (at least) three basic structures for which these conditions are met, and for which the general signless
derived category transitivity properties of duality theory hold (the latter point will be addressed after the
definitions are given). Basic structure 1 is the one in the book (for which we know everything works nicely),
basic structure 2 is the one in which we replace (2.2.3) with the ζD system but retain (2.5.1) and use (1.3.4)
rather than (2.3.8), and basic structure 3 is the one in which we retain (2.2.3) but replace (2.5.1) with the
ηD system and use (1.3.4) rather than (2.3.8). The reason for using (1.3.4) instead of (2.3.8) for both basic
structures 2 and 3 will be partly explained in the next paragraph. All three basic structures use the same
line bundles ωX/Y as in the book (along with their evident trivializations in the étale case) and all three
satisfy (2.2.4) and Lemma 2.6.2. There are unique isomorphisms between these basic structures, determined
as follows. The isomorphism between basic structures 1 and 2 is given by multiplication by (−1)n on ωf for
smooth f of pure relative dimension n and by the identity on ωi for lci maps i with pure constant relative
codimension. Meanwhile, the isomorphism between basic structures 2 and 3 is given by the identity map
on ωX/Y in the smooth case and by multiplication by (−1)n on ωX/Y in the lci case (where X ↪→ Y is lci
with pure codimension n). Because all of the signless derived category results have been verified for the
explications of duality theory via basic structure 1 and we have explicated the isomomorphisms among the
basic structures on the level of ω-sheaves, we will be able to deduce in what follows that basic structures 2
and 3 are consistent with duality theory.

We first claim that the trace maps Rnf∗(ω)→ O must coincide under all three basic structures (so, as in
[D], the derived category variant defined via basic structures 2 and 3 is off by (−1)n from that defined via
basic structure 1). In order to see this, we simply note that with basic structures 2 and 3, the horizontal
arrow in (4.2.1) is multiplied by (−1)n (look at the first map in the explicit definition (2.7.7) of (2.7.4)),
so the commutativity of (4.2.1) under all three basic structures forces the horizontal (resp. vertical) maps
in the basic structure 2 and 3 versions of (4.2.1) to differ from the basic structure 1 version by a factor of
(−1)n. Also, note that if all three basic structures are to yield a commutative diagram (4.2.5) with the same
vertical and diagonal trace maps on sheaves, then the basic structure 2 and 3 versions of (4.2.5) had better
have the same horizontal map αZ as in (4.2.5). This fact holds because basic structures 2 and 3 use (1.3.4)
instead of (2.3.8), and hence use a definition of (3.4.13) which is off by (−1)n from basic structure 1: there is
a cancellation with the extra sign of (−1)n in the horizontal map in their version of (4.2.1). Thus, all three
basic structures yield the same map αZ on sheaves in (4.2.5), as required.

The equality of the trace map Rnf∗(ω) → O in the proper smooth case for all three basic structures
ensures that Theorems B.2.1 and B.4.1 remain true for basic structures 2 and 3 also (once one incorporates
the identical correction to Theorem B.4.1 as is noted in the pp.286ff remarks below). On the other hand,
the explication in Theorem B.2.1 remains the same under basic structure 2 but the sign is removed for basic
structure 3 (where, in both cases, we retain the condition that (B.2.3) is the canonical projection). Also,
although the derived category composite (2.8.5) is still the identity map in all three cases, the composite
(2.8.6) is equal to multiplication by (−1)n for basic structures 2 and 3 (and one has the analogous statements
for sections to any proper smooth map of pure relative dimension n). Both basic structures 2 and 3 are
consistent with the facts stated in the appendix to [D].

For later purposes (see remarks for pp. 252–255), let us record an important consequence of passing
between basic structure 1 and basic structures 2 and 3. Recall that by definition the residual complex
trace map (3.4.4) is ultimately is built up from both the canonical theory of trace for finite locally free
maps and the isomorphisms such as (2.2.3) and (2.5.1) that link up duality constructions for finite and
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smooth morphisms. The significance of (2.2.3) and (2.5.1) in the theory of the residual complex trace can
be seen more conceptually as follows. The second of the three properties in Theorem 3.4.1 which uniquely
characterize the residual complex trace is dependent on the isomorphism (3.2.3), which ultimately rests on
(2.7.4) and (2.7.5), and hence on the definition (2.7.2) of (2.7.1). However, (2.2.3) and (2.5.1) intervene in
(2.7.2)! Since the theory of Cousin complexes has nothing to do with isomorphisms such as (2.2.3) or (2.5.1),
switching basic structure 1 to either basic structure 2 or 3 changes the residual complex trace on Cousin
complexes (and this is consistent with the fact that in the proper smooth case, the derived category trace in
[D] is off by a universal sign from the derived category trace in the book). In particular, the residual complex
trace map (3.4.4) and the trace map (A.2.14) are sensitive to one’s foundational choice of basic structure.
Also, this analysis shows that the remark in the second paragraph on p. 148 concerning the residual complex
trace map being independent of duality sign conventions is not true.

p. 52: For some later comments concerning [Be] (see remarks on pp. 252–255), it is important to observe
that the definition of (2.5.1), given explicitly by (2.5.2), coincides with the fundamental local isomorphism in
[Be]. More specifically, the definition of the fundamental local isomorphism in [Be] uses a different complex
construction instead of Hom•(K•(f), ·) and hence does not literally look like the definition in the book.
However, the definition in [Be] involves the same sign of (−1)n(n+1)/2 as in (2.5.2) in degree −n. Since the
situation in degree −n is what matters, [Be] thereby recovers the same definition for the fundamental local
isomorphism. This is seen as follows. Let f1, . . . , fn be elements of a ring A. There is a natural isomorphism
of complexes K•(f) ' K•(f)[n] lifting the identity in degree 0, given in degree −k by the map in EGA
III1(1.1.3) multiplied by (−1)k(k−1)/2+nk; this is consistent with the fact that the equation gdz = d(gz)
on line 9 of p. 83 of EGA III1 is incorrect and should have a sign of (−1)k+1 (with k defined as in loc.
cit.). In particular, relative to the canonical bases in degree −n there appears a sign of (−1)n(n+1)/2. The
relevance of this is that the definition of the fundamental local isomorphism in [Be], p. 445 rests on the
K•(f)[n] construction (though [Be] uses slightly different notation), whence this definition involves the sign
of (−1)n(n+1)/2 in degree −n, as desired. Since (2.5.1) does not generally agree with the fundamental local
isomorphism in [RD], we conclude that the fundamental local isomorphism in [Be] does not generally agree
with [RD]!

p. 68: In diagram (2.6.21), the top horizontal map is the one which should be labelled α4 (rather than the
vertical map as in the text). The application of Lemma 2.6.4 to the analysis of (2.6.21) should have been
explained in much greater detail, but due to the need to modify some of the notation in the formulation of
Lemma 2.6.4 we give this extra detail in the p. 70 comments below.

p. 70: Replace “bottom” with “top” on line 1. In the statement of Lemma 2.6.4 there are too many
N ’s. More precisely, the module with the injective resolution should be called N ′ and on the bottom row
of diagram (2.6.24) both appearances of N should be replaced with N ′. Also, to avoid the possibility of
notational confusion with diagram (2.6.21) the injective resolution I• should have been denoted differently,
say as I•. The proof of Lemma 2.6.4 still works exactly as written.

In the application of Lemma 2.6.4 to the analysis of diagram (2.6.21), one should use the following
dictionary (in terms of the notation in (2.6.21) and Lemma 2.6.4, including the above modifications). Take
R = A = A/J , N = A/K, P • = K•(g) with the canonical augmentation to N in degree 0, N ′ = Hn(I•[J ]),
and I• = τ≥0(I•+n[J ]) with the canonical augmentation from N ′ in degree 0 (this is exactly the injective
resolution (2.6.20)). Also, the correspondence between the maps αi in (2.6.21) and the four vertical maps in
(2.6.24) goes as follows: α1 is the top left map, α2 is the bottom left map, α3 is the bottom right map, and α4

is the top right map. Ultimately what is going on is that the definition of ψg,A involves an Extm term which
is computed in terms of the mth cohomology of a Hom• double complex with N ′[0] in the second variable,
while the corresponding (n+m)th cohomology arising from (2.6.21) involves a Hom• double complex with
N ′[−n] in the second variable. Relating these two points of view signlessly amounts to the bottom row of
(2.6.24), and Lemma 2.6.4 says that such an identification is the same as going the long way around (2.6.24)
up to a sign of (−1)nm.
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p. 77 (line 3, 4 from bottom): The sign of (−1)m(m+n) is incorrect and should be (−1)n(n+m), so it is
actually not “harmless” when m = 0 (contrary to what is said, but fortunately never used, in the book).
The reason for (−1)n(n+m) to be the correct sign is that the isomorphism between I •[m+ n] and I •+m+n

which lifts the identity on (ωX/Y ⊗ π∗G )[m + n] in degree −m − n is multiplication by (−1)(m+n)(m+n+r)

in degree r, and hence multiplication by (−1)n(n+m) in degree −m. There are a number of references to
(2.7.3) later in the book, all of which were located via a computer search for references to this equation in
the computer files for chapters 2–5 and the appendices. The occurrences are on pp. 98, 101, 158, 159, 162,
185, 238, 260, 278, 279. In nearly all of these locations, the reader is simply referred to (2.7.3) for how to
either explicate or define a map, in accordance with specific injective resolution conventions, and there is no
discussion of shifting injective resolutions. The above sign error is not relevant in those cases, as is readily
checked. However, one of the references to (2.7.3) merits closer inspection. On p. 238, lines 5–8 from the
bottom, there is a discussion corresponding to the case m = 0 and a shift of injective resolutions. The sign
of (−1)n

2
= (−1)n is correctly noted there. Thus, no error occurs.

p. 93: In the left column of (2.7.32), the third map from the top should be called ζ ′
Γ̃f ,r1

, not ζ ′
Γ̃f
, r1.

p. 108 (lines 3–6, 13): For (3.1.4), the given definition of Hi
x(F •) is only correct when F • has quasi-

coherent cohomology sheaves, which is the case that arises in subsequent explicit calculations with residual
complexes. In general, Hi

x(F •) should be defined to be the ith cohomology of RΓ{x}(i∗x(F •)), where Γ{x}
is the “sections supported at the closed point” functor on sheaves on Spec(OX,x) and ix : Spec(OX,x)→ X
is the canonical flat map. Likewise, on line 13 the term Fx should be replaced with i∗xF .

p. 123 (line 14): Hd should replace H−d.

p. 151 (line 9): The word “with” should be “without”.

p. 158 (lines −5,−6): The issue of the sign convention for the definition of (3.5.3) is actually very important.
For example, (3.6.12) is very sensitive to this, and hence the global existence of (3.6.11) depends very much
on this choice. The remarks below for p. 172 address this in greater detail.

pp. 160–164: Lemma 3.5.3 is incorrect. In fact, the maps (3.5.7) and (3.5.8) are equal rather than being
off by the universal sign of (−1)n(N−n). This does not affect anything else in the text (for reasons noted
right below Lemma 3.5.3). The mistake in the proof occurs on p. 164, but first we note some typographical
mistakes on p. 163. In the diagram (3.5.10), the last term at the bottom should be ωP/Y , not ωX/P , and in
the fourth line from the bottom the word “are” should be “as”. More importantly, the composite (3.5.10)
coincides with (3.5.9), rather than being off by (−1)n(N−n) as stated in the text. What had been intended
was that (−1)n(N−n)(3.5.10) coincides with (−1)n(N−n)(3.5.9) (which in turn coincides with (3.5.7)).

The mistake in the proof occurs right near the end of the computation on p. 164. On line 9, note the term
dx∧dt, with dx an n-form and dt anm-form (where m = N−n). On line 12, this has strangely become dt∧dx.
This is incorrect and should instead be dx ∧ dt. This mistake introduces a sign of (−1)nm = (−1)n(N−n),
so we get (3.5.8) = (−1)n(N−n)(3.5.10). Since (3.5.7) = (−1)n(N−n)(3.5.9), as is noted on p. 162, and since
(3.5.9) = (3.5.10), we get (3.5.7) = (3.5.8).

Finally, on line 19 one should replace “(3.5.7) and (3.5.9)” with “(3.5.7) and (−1)n(N−n)(3.5.9)”.

p. 167: The commutativity of (3.6.4) involves a somewhat subtle point when passing between statements
about total derived functors and ordinary derived functors. This should have been described in more detail in
the book, and here is what is happening. Let F : A → B andG : B → C be two left-exact covariant functors,
and suppose the usual hypotheses for the construction of the Grothendieck spectral sequence are satisfied
(A and B have enough injectives and F takes injectives to G-acyclics). See the p. 7 comments above for an
explication of the double complex sign conventions which underlie the formation of the Grothendieck spectral
sequence in the book. Let A be an object in A such that RiF (A) = 0 for i 6= n and RjG(RnF (A)) = 0 for
j 6= m. The Grothendieck spectral sequence then gives an isomorphism

Rn+m(GF )(A) ' RmG(RnF (A))
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which is “canonical” (conditional on the convention explicated in the above p. 7 remarks). On the other
hand, there is another way to get such an isomorphism based on the canonical derived category isomorphism
R(GF )(A) ' RG(RF (A)). One proceeds as follows. The (n+m)th cohomology of R(GF )(A) is canonically
Rn+m(GF )(A), and there is also a canonical isomorphism

RG(RF (A)) ' RG(RnF (A)[−n]).

Depending on whether one adopts the injective resolution convention implicit in in (1.3.4) or its slightly
unorthodox variant as in (2.3.8), there are two possible ways to define an isomorphism

Hn+m(RG(RnF (A)[−n])) ' Hm(RG(RnF (A))),

differing from each other by (−1)nm. Since Hm(RG(RnF (A))) = RmG(RnF (A)) without the intervention of
signs, by computing the (n+m)th cohomology on both sides of the isomorphism R(GF )(A) ' RG(RF (A))
we arrive at two new isomorphisms Rn+m(GF )(A) ' RmG(RnF (A)) which are off from each other by
(−1)nm. Thus, in general at most one of these can actually coincide with the “canonical” isomorphism
arising from the degenerate Grothendieck spectral sequence!

In general, it is the construction resting on the “unorthodox” (2.3.8) convention which always recovers the
degenerate Grothendieck spectral sequence isomorphism (under the double complex convention explicated
in the p. 7 remarks), while the construction resting on (1.3.4) is always off from this by (−1)nm (and
hence corresponds to the double complex sign convention as in EGA). The reason is quite simple, and
underlies the reason why the book uses (2.3.8) in the first place: if one forms a Cartan-Eilenberg resolution
of RF (A) and considers the resulting nth injective resolution column I• lying over RnF (A)[−n], then
this is the injective resolution used to compute derived functors of RnF (A) in the Grothendieck spectral
sequence for G ◦ F , but its associated total complex is I•+n, not I•[−n] (though we would get I•[−n] if
we’d used the EGA conventions). Because of this, the (2.3.8) convention for computing RG(RnF (A)[−n])
is what yields the Grothendieck spectral sequence isomorphism by explicating R(GF )(A) ' RG(RF (A)).
If we had used the EGA convention for double complexes (see the p. 7 remarks above), then we would
be working with the “same” total complex for computing R•(GF )(A) and hence the degenerate spectral
sequence isomorphism Rn+m(GF )(A) ' RmG(RnF (A)) would change by a sign of (−1)nm (see the p. 7
remarks for the determination of this sign). This isomorphism would therefore arise from the “orthodox”
(1.3.4) explication rule rather than from the “unorthodox” (2.3.8) rule as used above.

The sign discrepancy of (−1)nm in the above considerations is well-behaved with respect to triple compos-
ites of functors. That is, if we have a third such functor H : C → D and have a similar vanishing hypothesis
for RkH(RmG(RnF (A))) when k 6= r, then because (−1)(n+m)r(−1)nm = (−1)mr(−1)(m+r)n it follows that
both of the above derived category constructions Rn+m(GF )(A) ' RmG(RnF (A)) are “associative” in an
evident sense once one of them is. Since the construction resting on the (2.3.8) injective resolution con-
vention literally corresponds to the derived category Leray-type isomorphism R(GF ) ' RG ◦ RF which
is well-known to be “associative”, we get “associativity” for our two constructions on the level of ordinary
derived functors. Such associativity underlies the commutativity of the diagram (3.6.4).

p. 171 (line −6): (3.5.7) coincides with (3.5.8) (see pp. 160–164 remarks above).

p. 172: In the middle line of (3.6.12), replace OX′ with OP . The second part of the parenthetical remark
below the square diagram is incorrect: the sign issues for explications of E xt are very important. In fact, the
relevance of this commutative square diagram in the proof that (3.6.12) is independent of the factorization
of π rests on the sign convention in (3.5.3) which is used in the definition of (3.6.12). More specifically, in
order to know that the left side of this square diagram actually recovers the degenerate spectral sequence
isomorphism in (3.6.12) we need to use the observation in the p. 167 remarks above (applied to the functors
i[ and i′

[), and this is applicable only with the injective resolution sign convention used in (3.5.3). One
must keep in mind that this all ultimately depends on our decision — in contrast to EGA — to require
double complexes to have anti-commutative squares (see the p. 7 remarks above). If we had opted for the
EGA convention (as described in the p. 7 remarks), then the middle map in (3.6.12) would change by a
sign of (−1)(N−n)(N ′−N). In order to connect up (3.6.12) with the commutative square on p. 172 in such a
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situation, we would have to change the definition of (3.5.3) so that it rests on the injective resolution sign
convention on p. 158, lines −9 through −6. Since this would introduce additional signs of (−1)N

′(N ′−n) and
(−1)N

′(N ′−N) in (3.6.12), yet

(−1)(N−n)(N ′−N)(−1)N
′(N ′−n)(−1)N

′(N ′−N) = (−1)N(N−n),

it follows that the new version (3.6.11) would change by a sign of (−1)N(N−n). This perfectly matches the
discussion on lines −9 through −6 on p. 158 when P is Y -smooth.

p. 228 (lines 6–8): The definition of (5.2.4) is incorrect by a minus sign, and the corrected definition is the
one that is used later on in the book. More specifically, rather than use the connecting homomorphism from
the long exact cohomology sequence, one should use the “definition homomorphism” as discussed in the p.
275 remarks below (this is off by a minus sign from the connecting homomorphism). This correction ensures
that resX : H1(X,ωreg

f )→ k as defined on p. 228 agrees with the classical residue map resX/k in the smooth
case (defined as a special case of (B.2.7) and discussed in the p. 275 remarks below). This latter map is
what is actually used in Appendix B.4, which in turn forms the starting point for the proof of Rosenlicht’s
Theorem 5.2.3 which relates resX and the Grothendieck trace for the possibly singular reduced curve X.
Also, on the eighth line from the bottom the phrase “if uses” should be replaced with “if one uses”.

p. 252: For some clarifying remarks on Lemma A.2.1 and its analogue in [Be], it is helpful to first explicate
the relationship between the local cohomology trace Trf,Z in (A.2.16) and the global cohomology trace γf
when the smooth map f : X → Y

def= Spec(R) is proper, with R a local Gorenstein artin ring. For such f ,
there is a natural δ-functorial map

ι : H•Z(X, ·)→ H•(X, ·)

and one wants to know how this map relates the global trace γf : Hn(X,ωX/Y )→ R defined in (3.4.11) and
the local trace Trf,Z : Hn

Z(X,ωX/Y )→ R defined in (A.2.16). It turns out that

γf ◦ ι = (−1)nTrf,Z .

The reason for this is that γf is defined in terms of (A.2.14), which uses the shifted Cousin complex
E(ωX/Y )[n] as an injective resolution of ωX/Y [n] when computing total derived functors of ωX/Y [n], while
the definition of Trf,Z uses E(ωX/Y ) as an injective of ωX/Y when computing derived functors of ωX/Y .
Due to the convention on injective resolutions in the definition of the isomorphism (3.4.13) which explicates
the Grothendieck trace γf on the level of ordinary sheaves (rather than in the derived category), it follows
from the discussion in the top half of p. 151 that a sign of (−1)n intervenes when comparing γf ◦ ι and
Trf,Z , as desired. It is worth noting that the proof of Lemma A.2.1 very much depends on the convention
that local cohomology Hn

Z(X,ωX/Y ) is to be computed in terms of the Cousin resolution E(ωX/Y ) used in
the definition of Trf,Z in (A.2.16).

Let us now remove any uncertainty about the possibility of a universal sign error (perhaps depending
on n) in Lemma A.2.1 by using the above identity γf ◦ ι = (−1)nTrf,Z to carry out an explicit calculation
of local traces on projective space. Let Y = Spec(R) be a local Gorenstein artin scheme, X = Pn

Y , and
Z = [1, 0, . . . , 0], so Z is the section defined by the vanishing of the homogenous coordinates T1, . . . , Tn. Let
Uj = D+(Tj), so U0 = D+(T0) is an open affine around Z and the functions tj = Tj/T0 on U0, 1 ≤ j ≤ n,
cut out Z. Let ω = dt1 ∧ · · · ∧ dtn ∈ Γ(U0, ωX/Y ), so in terms of C̆ech theory and the calculation on p. 102,
the natural map Hn

Z(X,ωX/Y )→ Hn(X,ωX/Y ) sends ω/(t1 · · · tn) to the class of the C̆ech cocycle

(−1)n(n−1)/2 ω

t1 · · · tn
∈ Γ(U0 ∩ · · · ∩ Un, ωX/Y ).

Thus, taking into account (2.3.3) and the above signed relationship between the local and global trace, we
compute

Trf,Z(ω/(t1 · · · tn)) = (−1)n(−1)n(n−1)/2(−1)n(n+1)/2 = 1.
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Since the residue symbol of ω with respect to the ordered sections t1, . . . , tn may be computed on the open
U0 ' An

Y around Z, the normalization condition (A.1.1) for the residue symbol shows that

Res
[

ω
t1, . . . , tn

]
= 1,

thereby completing our computational verification of Lemma A.2.1 in these special cases.
Now we prepare to compare the definition of the local cohomology trace map Trf,Z in (A.2.16) (or better,

(A.2.15)) with the corresponding definition in [Be], p. 531, (1.2.5). It is suggested on the line above (A.2.16)
that [Be] agrees with (A.2.16) if one assumes that [Be] adopts the general duality conventions in the book.
This is true, but a complete justification reveals some subtle points that we now explain. One source of
possible ambiguity is determining whether or not the complex in [Be], p. 531, line 14 has differentials which
coincide with the corresponding differentials of the Cousin complex E(ΩnY/S) of ΩnY/S (in the notation of [Be])
or if there is an extra sign of (−1)n on these differentials (as in E(ΩnY/S [n]), which is signlessly isomorphic to
E(ΩnY/S)[n]). Let us refer to these options as the “sign-free” case and the “signed” case respectively. In other
words, the signed case rests on the complex E(ω)[n] and the sign-free case rests on the complex E(ω)•+n.
Note that the signed case is the one which is consistent with the book (cf. p. 128, line 4 and (3.4.4)).

Another ambiguity arises from deciding whether [Be] adopts the isomorphisms ζ ′f,g from (2.2.3) or the
variant ζD system discussed in the pp. 33, 36 comments above. Recall from the p. 52 remarks above that
[Be] does use the same fundamental local isomorphism as in the book, so (in the terminology introduced
in the pp. 33, 36 remarks above) the question is whether [Be] uses basic structure 1 or basic structure
2. Certainly [Be] cannot use the isomorphism (2.2.1) from [RD], as this does not satisfy the transitivity
condition (2.2.4) which is vital for the many compatibilities in global duality theory (e.g., the proof of [Be],
p. 532, Lemme 1.2.5 rests on many such compatibilities). Recall also from our comments on pp. 33, 36 that
one’s choice of basic structure has an effect on the residual complex trace. Since the residual complex trace
is used to define the trace map on local cohomology, any comparison between the definitions of the local
cohomology trace in (A.2.16) and in [Be], p. 531, (1.2.5) must specify a priori which basic structure [Be]
uses. We assume for the remainder of these p. 252 remarks that [Be] adopts the use of (2.2.3) (and thus
basic structure 1), so the residual complex trace map in [Be], p. 531, (1.2.4) agrees with (3.4.4). As a special
case, the residual complex trace f∗f∆OY → OY for local Gorenstein artin Y in [Be] agrees with (A.2.14).
Note also that in [Be], p. 531, line 12, it is not the usual codimension which should be used, but rather the
shift of this by the n-fold translation.

We are now ready to compare definitions of the local cohomology trace. Still assuming that [Be] uses
(2.2.3), in the signed case the definition of the local cohomology trace in [Be], p. 531, (1.2.5) coincides with
(A.2.15) and hence agrees with (A.2.16). The crucial point in the justification of this claim is that [Be] also
agrees with the implicit convention in (A.2.15) that the local cohomology of ωX/Y is to be computed using
the injective Cousin resolution E(ωX/Y ); this is illustrated by the remarks in [Be], p. 533, line 12. It follows
that in the sign-free case, the local cohomology trace in [Be] must off by (−1)n from (A.2.16), because the
canonical isomorphism between the Cousin-type resolutions E(ωX/Y )[n] = E(ωX/Y [n]) and E(ωX/Y )•+n of
ωX/Y [n] is given by multiplication by (−1)n(m+n) in degree m (and hence multiplication by (−1)n in degree
0). In particular, if [Be] adopts all of the general duality conventions in the book then the local cohomology
trace in [Be] coincides with (A.2.16), as is asserted in the line above (A.2.16).

pp. 254–5: The discussion of signs in the bottom paragraph of p. 254 and the top paragraph of p. 255
is badly flawed, and should be replaced with the following analysis. In particular, it will turn out that,
despite being typographically identical to Lemma A.2.1, the result [Be], p. 532, Lemme 1.2.5 is incorrect.
In fact, this Lemme 1.2.5 requires a sign of (−1)n(n+1)/2 if [Be] uses the general duality foundations in the
book. Let us make this explicit. We will see below that the notation ω/(t1 · · · tn) introduced on p. 254
(with s playing the role of ω) is off by (−1)n(n+1)/2 from the same notation used in [Be], p. 532, line 10.
Moreover, as we noted in the p. 252 remarks, the local cohomology trace in [Be] coincides with (A.2.16)
if one assumes that [Be] adopts the general duality conventions in the book. Finally, the residue symbol is
uniquely characterized by the properties in Appendix A.1, none of which depend on any sign conventions, so
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there is no possible ambiguity about the meaning of the residue symbol (so the remarks about the residue
symbol on the bottom of p. 254 are incorrect, and this matter will be cleared up below). It follows that
Lemma A.2.1 is equivalent to [Be], p. 532, Lemme 1.2.5 with an additional sign of (−1)n(n+1)/2. In what
follows, we will (among other things) explain the (−1)n(n+1)/2-relationship between the definitions of the
symbol ω/(t1 · · · tn) in [Be] and in the book, and we will locate the errors in Berthelot’s proof which will
combine to yield the sign of (−1)n(n+1)/2 which is forced by consistency with Lemma A.2.1.

The source of the discrepancy between the statements of Lemma A.2.1 and [Be], p. 532, Lemme 1.2.5
lies in the definition of the notation ω/(t1 · · · tn). More specifically, the definition (A.2.21) of (A.2.17) is not
the same as in [Be], but is rather off from [Be] by a sign of (−1)n(n+1)/2 (so on line −9 we are actually not
following Berthelot, contrary to what is claimed). Due to a misreading of [Be], I had initially not realized
that that [Be] uses the analogue of (A.2.17) which rests on (A.2.20). To be precise, the isomorphism (1.2.6)
in [Be], p. 532 is defined by [Be], p. 444, (3.1.4), which in turn is defined in terms of the augmented
C̆ech complex [Be], p. 444, (3.1.3) without sign changes in the C̆ech differential. This latter C̆ech complex
is signlessly isomorphic to the left side of (A.2.20), as is explained in [Be], p. 444, lines 5–10. Thus, the
definition of the analogue of (A.2.17) in [Be] rests on (A.2.20) and so it differs from (A.2.17) by (−1)n(n+1)/2.
Thus, if the foundations for duality theory as used in [Be] agree with in the book, then [Be], p. 532, Lemme
1.2.5 is off by a sign of (−1)n(n+1)/2 from Lemma A.2.1. Recall that we explicitly verified Lemma A.2.1
in some special cases as part of the p. 252 remarks, thereby removing the possibility of a universal sign
error (perhaps depending on n) in Lemma A.2.1. Out of a desire to affirm the consistency of mathematics,
we need to analyze Berthelot’s proof of [Be], p. 532, Lemme 1.2.5 in order to derive the “missing” sign of
(−1)n(n+1)/2 which is forced by consistency with Lemma A.2.1. This will be carried out shortly, after we
make some general analysis of the residue symbol.

On lines −10,−11 it is stated that the residue symbol in [Be] agrees with that in [RD], and that these
both differ from (A.1.4) by a sign of (−1)n(n−1)/2. This is incorrect, since the residue symbol is uniquely
characterized by properties which make no reference to any sign conventions whatsoever. Thus, the central
issue is how one explicates the residue symbol in terms of the constructions of Grothendieck duality theory.
We now explain why the explication of the residue symbol in Appendix A coincides with the explication
of the residue symbol in [RD], III, §9, even though [RD] uses (2.2.1) rather than (2.2.3) and [RD] uses a
different sign convention when defining the fundamental local isomorphism. We then will compare this with
the computations in the proof of [Be], p. 532, Lemme 1.2.5.

The definition (A.1.4) of the residue symbol rests on (A.1.2), which uses a special case of the isomorphism
ζ ′f,g from (2.2.3), via case (c) on p. 29. This instance of (2.2.3) differs from (2.2.1), the isomorphism
used in [RD], by a sign of (−1)n(n−1)/2. Also, as is noted right below (A.1.2), the composite map in
(A.1.2) is unaffected by whether one uses the fundamental local isomorphism as defined in (2.5.1) or the
(sign-problematic) variant used in [RD] (see the remarks immediately following Theorem 2.5.1 for the sign-
problematic nature of the fundamental local isomorphism as defined in [RD]). One is forced in (A.1.4) to
introduce the extra sign of (−1)n(n−1)/2 in order to get a residue symbol satisfying the desired normalization
properties on affine space (and all other desired properties as stated in Appendix A.1). Meanwhile, the
residue symbol in [RD], III, §9 is literally defined by the diagram (A.1.2), except that the first map in this
diagram is replaced with (2.2.1) rather than (2.2.3) and a common sign is introduced for the two appearances
of fundamental local isomorphisms. Hence, the residue symbol in [RD] rests on (−1)n(n−1)/2(A.1.2), so it
agrees with (A.1.4). That is, the residue symbol definitions in (A.1.4) and [RD] literally coincide (and in
Appendix A this definition is proven to satisfy all of the desired properties).

We now compare these constructions with the manner in which the residue symbol arises in the arguments
in [Be]. As is made explicit in [Be], p. 534, lines −7 through −11, the appearance of a residue symbol in
[Be], p. 523, Lemme 1.2.5 is entirely due to the emergence of the [RD]-analogue of the diagram (A.1.2) at
the end of the proof. However, the proof of [Be], p. 532, Lemme 1.2.5 rests on many compatibilities from
[RD] which are are not true under the definitions given in [RD] (there are sign problems). In order to obtain
the compatibilities required in the proof of [Be], p. 532, Lemme 1.2.5, Berthelot must therefore be forced to
adopt some definitions for the foundations of duality theory which do not agree with [RD]. For example, the
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transitivity (2.2.4) is absolutely essential in the globalization of duality theory, and this property is satisfied
by the isomorphisms ζ ′f,g from (2.2.3) and is not satisfied by (2.2.1) from [RD] (which is used in the analogue
of (A.1.2) in [RD]). As we have argued above (using the “basic structure” terminology introduced in the pp.
33, 36 remarks above), [Be] appears to adopt either basic structure 1 or basic structure 2 for the foundations
of duality theory. Even though the composite map in [Be], p. 534, line −9 is typographically the same as
the diagram used to define the residue symbol in [RD] (which we have seen agrees with the residue symbol
(A.1.4)), the essential use of compatibilities of duality theory in [Be], p. 534 leads us to the conclusion that
the composite map in [Be], p. 534, line −9 is off from the residue symbol by (−1)n(n−1)/2 if [Be] uses (2.2.3)
(i.e., basic structure 1) and by (−1)n(n+1)/2 if [Be] uses ζD (i.e., basic structure 2).

Now assume [Be] uses the isomorphisms ζ ′f,g from (2.2.3) (i.e., basic structure 1 from the book) in the
foundations of duality theory and that [Be], p. 531, line 14 is the complex E(ΩnY/S)[n], which is to say the
shifted Cousin complex of ΩnY/S with differentials multiplied by (−1)n. We will explain how to adapt the
proof of [Be], p. 532, Lemme 1.2.5 to these duality conventions which agree with those in the book. In
particular, we will see that a sign of (−1)n(−1)n(n−1)/2 = (−1)n(n+1)/2 naturally emerges from the proof
when adapted in this way (certainly the proof cannot rest on the definitions and conventions in [RD], so we
must adapt it to some globally consistent set of duality conventions, and we choose the ones in the book for
ease of comparison with Lemma A.2.1).

The first point to check is the calculation in the bottom paragraph in [Be], p. 533. The conclusion of the
calculation is correct, but it involves an implicit cancellation of signs. To be precise, recall that the definition
of the fundamental local isomorphism in [Be] coincides with (2.5.1). This definition involves an implicit sign
of (−1)n(n+1)/2. Also, as we have noted above, the definition of ω/(t1 · · · tn) in [Be] rests on the isomorphism
on the bottom of p. 253, which involves a sign of (−1)n(n+1)/2 in degree n. Putting these together, the
double appearance of (−1)n(n+1)/2 in the adaptation of [Be], p. 533 to the duality conventions in the book
yields the cancellation of these two signs. Thus, we deduce the correctness of the explicit description of [Be],
p. 533, line 14 in the lower half of that page (subject to the general duality conventions in the book). The
errors emerge in [Be], p. 534. First of all, the diagram on the third to last line of the proof does not describe
the residue symbol, but rather describes (−1)n(n−1)/2 times the residue symbol. This is something which we
explained above. It also turns out that the square diagram on [Be], p. 534 is only commutative up to a sign
of (−1)n (again, assuming that [Be] uses the duality foundations as in the book). Before explaining this, we
note that it implies that the adapted (and corrected) form of Berthelot’s proof forces the appearance of a
sign of (−1)n(n−1)/2(−1)n = (−1)n(n+1)/2 in the statement of the result, as desired.

The (−1)n-commutativity of the square diagram in [Be], p. 534 is somewhat subtle, but ultimately is
related to the reason why the proof of Lemma A.2.1 is more involved than the proof of [Be], p. 532, Lemme
1.2.5. The central technical point in the proof of Lemma A.2.1 is to keep track of the translation compatibility
of the fundamental local isomorphism. As is explained on the bottom of p. 260 and the top of p. 261, this
compatibility forces the appearance of a sign of (−1)n. It is exactly this sign which is overlooked in [Be], p.
534. Let us justify this. Recall that the fundamental local isomorphism in [Be] coincides with the one in the
book. Moreover, [Be] adopts the convention to compute left derived functors of ΩnY/S in terms of its injective
Cousin resolution E(ΩnY/S) (once again, see [Be], p. 533, line 12). Under exactly these conventions, it is
shown on p. 261 that the explication of an H0 of a suitable derived category fundamental local isomorphism
is not generally described by the usual sheaf isomorphism (2.5.1), but is rather off from this by (−1)n. More
specifically, the square diagram in [Be], p. 534 is obtained from the degree 0 part of a commutative diagram
in the derived category which expresses the transitivity of the derived category trace, but the left map in
the top row is not the one from [Be], p. 533, line 14 (whose second step corresponds to (2.5.1)): rather, it is
off from this by (−1)n for exactly the reason given in the preceding sentence.

Note that the sign error in [Be], p. 532, Lemme 1.2.5 does not affect the truth of [Be], p. 534, Proposition
1.2.6.

p. 271 (line 8 from bottom): One should not use the long exact cohomology sequence to define the surjection
onto H1(X,Ω1

X/k) in (B.1.1), but rather the canonical projection homomorphism that comes from computing
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the cohomology of Ω1
X/k using the flasque resolution indicated earlier on the page (this is the same error as

on p. 228 above). This correction is the standard choice when defining the residue map, is consistent with
the more general definition of the residue map used in subsequent proofs, and corresponds to the negative of
connecting homomorphism from the long exact cohomology sequence (as is explained in the p. 275 remarks
below).

p. 275 (line 18): There is no mistake here, but the phrase “we get” is ambiguous and must be clarified.
Ambiguity arises for the following reason. If

0→ F ′ → F → F ′′ → 0

is an exact sequence of abelian sheaves on a topological space X, then one gets a coboundary map

δ : F ′′(X)→ H1(X,F ′)

and one also gets a map ι : F ′′(X)→ H1(X,F ′) by mapping the resolution F → F ′′ of F ′ to an injective
resolution I • of F ′ and defining ι to be the composite

F ′′(X)→ ker(I 1(X)→ I 2(X))� H1(I •(X)) = H1(X,F ′)

(the latter equality a definition). The maps δ and ι are negatives of each other, due to an analogue of
Proposition 7.1, Chapter V of [CE] for injective resolutions and covariant functors. For convenience of
exposition, we shall refer to δ as the coboundary homomorphism and ι as the definition homomorphism.

In the classical construction of the residue map on a smooth curve X via the canonical 2-term flasque
resolution (3.1.2) of the sheaf of 1-forms, it is the definition homomorphism that is used to define

resX/k : H1(X,Ω1
X/k)→ k

in terms of pointwise residues of mermorphic differentials (this is implicit in the computation on p. 289,
particularly in the reference to (B.4.9) in the second to last line of the proof). Thus, line 18 should read
“we get, via the definition homomorphism, an exact sequence”. This ensures that the residue map in
(B.2.7) agrees with the classical residue map when A = k is an algebraically closed field, thereby validating
the computation on p. 289 (and hence the P1 computation on p. 230). Moreover, it is the definition
homomorphism that is used in the proof of Theorem B.2.2 when “computing” Grothendieck’s trace map γf
in terms of the residual complex flasque resolution (B.2.8) near the end of the proof.

Also, taking into account the correction to Theorem B.4.1 on p. 286 below, the last line of p. 275 should
be replaced with “Theorem B.2.2 and there would be no sign in Theorem B.4.1.”

p. 276 (line 13): Remove the final right parenthesis.

p. 278 (lines 5–7): Replace ωZ×YX with ωZ×YX/Z on line 7. In the displayed equation on lines 6–7, the
map is not the connecting homomorphism but rather should be its negative, the “definition homomorphism”
(as in the p. 275 discussion above). The reason is that we are explicating how to compute an E xt1 using a
specified injective resolution, exactly in accordance with the requirements in (2.7.3), and such a computation
amounts to using the definition homomorphism rather than the connecting homomorphism. In other words,
if we let δ denote the connecting homomorphism then the map on lines 6–7 should be −δ. This ultimately
winds up not causing problems with the statement of Theorem B.2.1 (or its proof) because when we finally
must compute with this map on p. 281, rather than just talk about it, the definition homomorphism is the
one that winds up being used (and it was always the map I had in mind, despite the fact that I mistakenly
thought the connecting homomorphism gave a valid description of this map too). This is explained in more
detail in the comments below for pp. 279–281. One should also keep in mind that Theorem B.2.2 agrees
with Deligne’s calculations in [D], and ultimately the sign in Theorem B.2.2 arises from the sign in Theorem
B.2.1.

p. 279: Replace ωZ×YX on line 4 of (B.3.3) with ωZ×YX/Z and replace δ with −δ. In the paragraph following
(B.3.3), the argument there is actually an explanation of why −δ (and not δ) is the correct map to be using.
Indeed, the aim of that paragraph is to explain the relationship between the definition homomorphism (which
is what I knew to be the relevant map on lines 6–7 of p. 278, despite what is said there) and the connecting
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homomorphism. If one takes into account the minus sign relating these two maps, as in the p. 275 remarks
above, one arrives at the fact that −δ is the correct map to use in (B.3.3).

p. 280: Use −δ rather than δ in (B.3.5).

p. 281: There are no errors here, but we now explain why the use of the definition homomorphism (i.e., the
negative of the connecting homomorphism) on pp. 278–280 makes (B.3.7) compute the composite in (B.3.5).
The diagram (B.3.7) is an explication of the Hom double complex which connects up two computations of an
Ext1: in terms of the injective resolution required by the definition of (2.7.3) and in terms of the projective
Koszul resolution required in the definition of ηj . The lower right vertical map in (B.3.7) corresponds to the
realization of Ext1 as a quotient of a degree 1 term coming from a specified injective resolution. That is,
this map explicates exactly the definition homomorphism! Thus, the computation of (B.3.7) which occupies
the rest of the proof is exactly a computation of (B.3.5) using the definition homomorphism −δ.
p. 284 (line 16): The roles of L |Ui and L |Uj should be switched in the definition of ϕij . This makes the
definition agree with [EGA 0I, 3.3.1], it yields ϕik = ϕij ◦ ϕjk in analogous higher rank cases, and (most
importantly) is the definition actually used in the proof of Theorem B.4.1.

p. 286 (lines 17–20): Theorem B.4.1 is incorrect. The maps are negatives of each other. The mistake is
caused by a strange typographical error addressed in the p. 288 remarks below.

p. 287 (lines 5, −14): Remove “negative of the” on line 5 and remove the minus signs on the last line and
line 14 from the bottom.

p. 288 (lines 1, 3, −5ff): Remove the minus signs on line 1 and 3. Also, on the fifth line from the bottom the
first resx term should have no sign and the second resx term should have a sign. The strange mistake occurs
on third and fourth lines from the bottom. What is called U ′0 should be called U ′1 (and it contains U1, not
U0) and U′ should be defined to be {U0, U

′
1} (and U ′0 ∩U1 should be replaced with U0 ∩U ′1 on the last line).

Now observe that {x} is the complement of the first open set U0 in the ordered open covering U′, so by the
residue theorem −resx(ω/tx) = resy(ω/tx) with {y} the complement of the second open set U ′1 in U′. This
reduces us to a special case of the correctly stated and proven general claim on p. 289. The mistake in the
definition of U′ led me to mix up the ordering of the two open sets in the covering, thereby losing the sign
that belongs in Theorem B.4.1.
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Verlag, Berlin Heidelberg New York, 1974.

[C] B. Conrad, More examples, www-math.mit.edu/ dejong.
[CE] H. Cartan, S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, 1956.
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