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Abstract. We provide a proof of Nagata’s compactification theorem: any separated map of finite type

between quasi-compact and quasi-separated schemes (e.g., noetherian schemes) factors as an open immersion

followed by a proper morphism. This is a detailed exposition of private notes of Deligne that translate
Nagata’s method into modern terms, and includes some applications of general interest in the theory of

rational maps, such as refined versions of Chow’s Lemma and the elimination of indeterminacies in a rational

map, as well as a blow-up characterization of when a proper morphism (to a rather general base scheme) is
birational.

Introduction

It is a fundamental theorem of Nagata ([N1], [N2]) that if S is a noetherian scheme and f : X → S is
separated and of finite type then there exists a proper S-scheme X and an open immersion j : X ↪→ X
over S. For example, this theorem is used to define the higher direct image functors with proper support in
étale cohomology. In [SGA4, XVII, §3.2ff] this theorem was avoided by developing a theory of such higher
direct image functors for “compactifiable” morphisms f (i.e., those admitting a factorization as in Nagata’s
theorem). In the case of a noetherian scheme S, the compactifiable S-schemes are exactly the separated finite
type S-schemes once one knows that Nagata’s theorem is true. Another application of Nagata’s theorem is
in Grothendieck duality, where it is used in the approach of Deligne and Verdier to constructing the twisted
inverse image functor f ! for a separated map f : X → S of finite type with a general noetherian S (that
may not admit a dualizing complex). Unfortunately, Nagata’s proof is given in terms of pre-Grothendieck
algebro-geometric terminology that is difficult for a modern reader to understand. At the beginning of [N2],
Nagata writes “. . . the usual definition of a scheme is not nicely suited to our proof.” His arguments use the
Zariski–Riemann space attached to a function field, together with arguments proceeding by induction on the
rank of a valuation.

In graduate school I was told by an expert in algebraic geometry that there was some uncertainty about
the validity of Nagata’s theorem over a general noetherian base because modern algebraic geometers could
not understand Nagata’s proof. I asked Deligne about this a few years later, and he said that by translating
Nagata’s methods he had worked out a scheme-theoretic version of Nagata’s proof in which S is permitted
to be an arbitrary quasi-compact and quasi-separated base scheme, with no noetherian or finite presentation
hypotheses. (Recall that a scheme is quasi-separated if the overlap of any two quasi-compact opens is again
quasi-compact, so this includes all locally noetherian schemes. Also, away from the locally noetherian case a
finite type morphism may not be finitely presented; e.g., a closed immersion.) Deligne offered me a photocopy
of his personal notes on these matters [D]. Since Deligne wrote these notes for himself, many proofs in his
notes are merely sketched. Due to the importance of Nagata’s theorem, I decided to write out complete
proofs of the assertions in [D].

I later found out that Lütkebohmert [L] published a short proof of the theorem in the noetherian case,
but Nagata’s method is different and his study of quasi-dominations (which we give in §2) yields interesting
refinements of and improvements upon classical blow-up techniques such as elimination of the indeterminacy
locus of a rational map and Chow’s Lemma (see Remark 2.5 and Corollary 2.6 respectively). These arguments
also give a characterization of proper birational morphisms that applies under much weaker hypotheses than
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the classical fact [H, II, 7.17] that birational projective maps between integral quasi-projective schemes over
a field are blow-ups: if a proper map f : X → Y between noetherian schemes is an isomorphism over a
dense open U ⊆ Y with dense preimage in X then there are blow-ups X̃ → X and Ỹ → Y away from
U and an isomorphism f̃ : X̃ ' Ỹ covering f ; see Theorem 2.11 (and Remark 2.12). In Corollary 4.4 we
record some related results that describe separated but possibly non-proper birational maps of finite type
after suitable blow-up. (I am grateful to S. Nayak for pointing out these consequences of Nagata’s methods.)
These general results concerning rational maps are not given in [L] and do not seem to be widely known
even in the case of abstract varieties over a field. Roughly speaking, they say that separated birational maps
of finite type always arise from blow-ups and dense open immersions, much as Zariski’s Main Theorem says
that separated quasi-finite maps always arise from finite maps and open immersions. We emphasize that
these results exert good control over the blow-up locus.

In recent work of Temkin [T] on applying valuation-theoretic methods to problems in algebraic geometry,
the original viewpoint of Nagata (Zariski–Riemann spaces) is resurrected in a modern form. In fact, Temkin
gives a new proof of Nagata’s theorem with a general quasi-compact and quasi-separated base scheme S as
a consequence of a remarkable factorization theorem: every quasi-compact and separated map X → S to
such a scheme (no finite-type assumption on the map!) factors as an affine morphism followed by a proper
map. In Temkin’s work some ideas related to quasi-dominations as in Deligne’s notes play an important role
and so it is convenient for him to refer to [D] (or rather, to this exposition of [D]). Since Nagata’s proof
yields results of general interest concerning rational maps and (in contrast with the powerful but abstract
valuation-theoretic techniques of Temkin) it only uses techniques that are widely known to modern algebraic
geometers, it seems appropriate to make Deligne’s notes available in a more permanent form as we do here.

In addition to the enormous thanks I owe to Deligne, both for allowing me to see his notes and for his
permission to disseminate an exposition of them, I want to thank M. Kisin and M. Raynaud for helpful
discussions, S. Nayak for instructive suggestions and a careful reading of the entire manuscript, and M.
Temkin for his encouragement.

Noetherian hypotheses. Since most readers will only be interested in the noetherian case, whenever a
proof in the noetherian case can avoid a technical step I first give the relevant part of the argument in the
noetherian case and then direct the “noetherian reader” to skip ahead to a later paragraph so as to bypass
complications caused by working without noetherian assumptions. The phrase “finite type quasi-coherent
sheaf” should be read as “coherent sheaf” by a noetherian reader, and such a person should ignore all
mention of schemes or morphisms being “quasi-compact and quasi-separated” or open subschemes and open
immersions being “quasi-compact”.

The notes of Deligne are written almost entirely in the noetherian case, and at the end he observes that
one can modify the arguments so that they work over any quasi-compact and quasi-separated base scheme.
One simply has to be careful to only use open subschemes that are quasi-compact and use closed subschemes
that are defined by finite type quasi-coherent ideal sheaves, and it is necessary to use direct limit arguments
when working with scheme-theoretic closures. For the sake of maximal utility as a reference, I have made the
necessary modifications to incorporate such generality right from the start in this exposition: all preliminary
results are stated and proved without noetherian hypotheses.

In Deligne’s translation of the proof of Nagata’s theorem there is one key step that seems (to me) to be
difficult to carry out in the absence of a noetherian condition, so I have written the proof of the theorem
in such a way that this step is isolated at the end. The difficulty is circumvented by a trick using some
remarkable results of Thomason and Trobaugh [TT, App. C]. More specifically, we use [TT] to deduce
Nagata’s theorem in general as a formal consequence of its validity in the noetherian case. A reader who
is familiar with [L] (or [N2]!) and only wants to see how to eliminate noetherian hypotheses in Nagata’s
theorem can read just this self-contained reduction step (see Theorem 4.3 and the last two paragraphs of
the proof of Theorem 4.1). However, as we have noted, Nagata’s method gives intermediate general results
for rational maps that are of independent interest, even for abstract varieties over a field.

Guide to the proof. To aid the reader in following the rather complicated series of steps leading to the
proof of Nagata’s theorem, here is a detailed sketch how the argument goes. Suppose for simplicity that S
is noetherian and affine and that there is a covering of X by finitely many dense open subschemes Ui that
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are quasi-projective over S. (For example, if X is irreducible then we can take the Ui’s to be affine. In the
general noetherian case such Ui’s can always be found by using finite disjoint unions of quasi-affine opens,
as we explain near the end of the proof of Theorem 4.1.) This key use of quasi-projective opens seems to
prevent Nagata’s method from carrying over to algebraic spaces. If there is to be a compactification X of X
then it also serves as a compactification of each dense open Ui, and we may hope that the boundary X −X
admits an open covering {Yi} so that Ui ∪ Yi is an open subset of X that can be rediscovered (with its open
subscheme structure) as an open subscheme in a more elementary (e.g., projective) compactification U i of
the quasi-projective Ui. Proceeding in reverse, each Ui is quasi-projective over S and so admits a projective
compactification U i over S. We want to choose the U i’s carefully so that if we append a suitable open subset
Yi of the boundary U i − Ui to Ui then these can be glued together to give a compactification of X = ∪Ui.
More precisely, we seek a closed subset Zi ⊆ U i −Ui so that the gluing Mi of U i −Zi ⊇ Ui to X along Ui is
a separated S-scheme and the gluing of the Mi’s along X is the desired compactification.

Before we find a good choice for U i, we note that the possible failure of separatedness under gluing is a
basic difficulty that has to be overcome. Recall that for any scheme S, if we glue two separated S-schemes
T1 and T2 along an S-isomorphism ι : V1 ' V2 between open subschemes, then the resulting S-scheme T
is separated if and only if the subscheme graph Γι ⊆ T1 ×S T2 of ι is closed. Such closedness is a stronger
assertion than the closedness of the graph in V1×SV2 (which is an obvious consequence of the separatedness of
the Vj ’s over S). To prove that this stronger closedness property is necessary and sufficient for separatedness
of T over S, observe that {Ti ×S Tj} is an open covering of T ×S T and the intersection of ∆T/S with the
elements of this covering are ∆T1/S , ∆T2/S , Γι, and Γι−1 . Since closedness can be checked over an open
covering of a topological space, we see the assertion.

Thus, to maintain separatedness in the gluing procedure we have to be attentive to closedness of graphs
in larger product spaces. It is therefore natural to consider the following concept: for a noetherian scheme S
and a pair of S-schemes X and X ′ of finite type with X ′ separated over S, a quasi-domination of X over X ′

is a dense open subscheme U ⊆ X and an S-map f : U → X ′ such that the graph Γf is closed in X ×S X ′
(not only closed in U×SX ′, as is automatic by S-separatedness of X ′). Nagata’s study of quasi-dominations
in §2 yields several useful consequences, among which is a striking refinement of Chow’s Lemma (Corollary
2.6) that gives (in our setup above for Nagata’s theorem) a blow-up qi : Xi → X away from the dense open
quasi-projective Ui such that Xi is compactifiable to a projective Xi over S. We consider Xi to be a good
first choice for U i since it knows about all of X (in the sense that it contains the open subscheme Xi that
has a proper birational map qi onto X), and we view the closed set Yi = Xi −Ui as an exceptional locus for
the blow-up qi. It makes sense to form the gluing Mi of X and Xi − Y i along Xi − Yi = Ui, where Y i is
the closure of Yi in Xi; we hope that these Mi’s can be an open cover of the sought-after compactification
of X (i.e., glue the Mi’s along X). At least each gluing Mi is S-separated, which amounts to the diagonal
image of Ui in X ×S (Xi − Y i) being closed. To verify such closedness, one checks that the preimage of this
diagonal under the proper surjection qi × 1Xi−Y i is the overlap of Xi ×S (Xi − Y i) with the closed subset
∆Xi/S

in Xi ×S Xi.
The gluing of the Mi’s along X will usually not be separated, so we have to modify the Mi’s away from

X. The most difficult result in Nagata’s treatment (Theorem 2.8 and its inductive refinement in Corollary
2.10) gives a general procedure to make a separated gluing after blow-up of the open pieces. This provides
blow-ups M ′i of Mi away from X and a gluing M of the M ′i ’s along open subschemes containing X so that M
is S-separated (and contains X as a dense open subscheme, so U = ∩Ui is also a dense open in M). Roughly
speaking, the role of blow-ups is to separate apart certain closed subschemes so as to force gluings to be
separated over the base. Since M is separated, to try to prove it is proper (and hence is a compactification
of X over S) we seek a (projective) compactification U of U dominating every Xi so that some blow-up
U∗ of U away from U resolves indeterminacies of the rational map from U to M arising from the inclusion
U ↪→M , so the compactification U∗ of U over S admits an S-map U∗ →M extending the inclusion U →M .
Such an S-map to M is dominant (by denseness of U in M) and proper (since U∗ is S-proper and M is
S-separated), hence surjective, and so this would show that the separated M is S-proper. Unfortunately,
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it may not be possible to find such a U (and in fact M may not be proper over S) unless we make better
choices of the Xi’s at the start.

To explain the difficulty, consider the S-proper closure U of the image of U = ∩Ui in
∏
Xi. This is a

(projective) compactification of U and it dominates each Xi via the projection πi : U → Xi (extending
the dense open immersion of U into Xi). We want to construct a blow-up q : U∗ → U away from U so
that there is an S-map g : U∗ → M extending the inclusion of U into M . One can make a reasonable
candidate for U∗ so that U is schematically dense in U∗ and on the open U∗i = q−1(U −π−1

i (Y i)) ⊆ U∗ that
meets U in Ui there is an S-map gi : U∗i → M extending the inclusion Ui ↪→ M . These agree on overlaps
(by comparing on the schematically dense open U = ∩Ui in U∗), so we can glue the gi’s to get an S-map
g : ∪U∗i → M extending U ↪→ M . However, the U∗i ’s may fail to cover U∗, or equivalently ∩π−1

i (Y i) in U
may be non-empty. Such non-emptiness (if it occurs) can be partially controlled in the following sense: by
using separatedness of X one can compute that the preimages π−1

i (Yi) satisfy ∩π−1
i (Yi) = ∅. The difficulties

are therefore happening over the boundaries Xi −Xi (since Y i ∩Xi = Yi = Xi − Ui). A general result on
separation of closures after blow-up (Lemma 3.2, whose proof rests on Theorem 2.4, the most fundamental
ingredient in the entire proof and the hardest step in Deligne’s notes) enables us to use the emptiness of
∩π−1

i (Yi) to construct blow-ups qi : X
′
i → Xi away from Xi such that the closures Y

′
i of Yi = Xi−Ui in X

′
i

satisfy ∩(π′i)
−1(Y

′
i) = ∅, where π′i : U ′ → X

′
i is the projection from the closure U ′ of the image of U ′ = U

in
∏
X
′
i. Thus, if we work with X

′
i rather than with Xi at the start then the U∗i ’s will cover U∗, so the

S-separated M can indeed be dominated by the S-proper U∗, and hence M is S-proper. This M is therefore
the desired compactification of X over S.

Notation and terminology. For a scheme X and a quasi-coherent ideal sheaf I on X, we let V (I ) =
Spec(OX/I ) denote the associated closed subscheme. If f : X → Y is a map of schemes and I is a
quasi-coherent ideal sheaf on Y , we let I ·OX denote the quasi-coherent pullback ideal sheaf f−1(I ) · OX
on X. A quasi-coherent OX -module F is of finite type if it is locally finitely generated (and so coherent in
the locally noetherian case).

If Z is a subscheme of X, we sometimes denote this by writing Z ⊆ X. We let X − Z denote the set-
theoretic complement of Z in X, understood to have its canonical open subscheme structure if Z is closed in
X. Also, if Z is a closed subscheme of X, we let I Z denote the corresponding quasi-coherent ideal sheaf on
X. If I and K are quasi-coherent ideal sheaves on X, we say that K is a subideal sheaf in I if K ⊆ I
as subsheaves of OX .

When we refer to the image of a morphism f : X → Y , we mean the image f(X) on the level of underlying
topological spaces. When we wish to discuss the scheme-theoretic image (when it exists — e.g., if f is quasi-
compact and quasi-separated), we will always use the adjective “scheme-theoretic”. A similar comment
applies when we discuss closures of subschemes.

We define the concepts of quasi-projective and projective for morphisms of schemes as in [EGA, II, 5.3, 5.5]
(also see [EGA, IV1, 1.7.19]). For example, if S is quasi-compact and quasi-separated then a map of schemes
f : X → S is quasi-projective (resp. projective) if it factors as a quasi-compact immersion (resp. closed
immersion) into an S-scheme of the form P(E ) := Proj(Sym(E )) for a quasi-coherent sheaf E of finite type
on S. If S is affine then this coincides with the more familiar definition (as in [H, II, §7]) using Pn

S . We refer
to [EGA, II, 5.1] (and [EGA, IV1, 1.7.16]) for the definition and properties of quasi-affine morphisms.

1. Review of Blow-ups

Let A be a ring and I an ideal. For a ∈ I, define U(a) = Spec(A[Ia−1]), with A[Ia−1] ⊆ A[a−1] = Aa
denoting the A-subalgebra of Aa generated by elements of the form b/a, with b ∈ I. Though a is usually
not a unit in A[Ia−1], it is at least not a zero divisor. For a1, a2 ∈ I, we have a unique isomorphism of
A-algebras

(1.1) A[Ia−1
1 ]a2/a1 ' A[Ia−1

2 ]a1/a2
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(equality inside of Aa1a2). In terms of universal properties, U(a) is the final object in the category of A-
schemes X such that I ·OX is an invertible ideal sheaf with global basis given by (the pullback of) a ∈ I. In
this sense the isomorphism (1.1) corresponds to identifying open subschemes in U(a1) and U(a2) with the
same universal property, namely being final among A-schemes X such that I · OX has both a1 and a2 as
a global basis. Gluing along the isomorphisms (1.1) thereby yields an A-scheme BlI(A) called the blow-up
of A along I (called a dilitation by Nagata in [N1, §2]) with the universal property that it is final in the
category of A-schemes X such that I ·OX is invertible. The open subscheme U(a) in BlI(A) represents the
open subfunctor as described above, so if a runs through a set of generators of the ideal I then the schemes
U(a) give an open affine covering of BlI(A).

The description of BlI(A) via U(a)’s glued along isomorphisms as in (1.1) will be useful in later calcu-
lations, but for other purposes it is convenient to have an alternative description via Proj, as follows. The
A-algebra GrI(A) = ⊕n≥0I

n is graded and is generated by the first graded piece. The natural map of
A-algebras GrI(A) → A defined by the inclusion on each graded piece carries a1 := a ∈ I = (GrI(A))1 to
a ∈ A, so we get a natural A-algebra map (GrI(A))a1 → Aa. This latter map is injective on the 0th graded
piece of the source, so it induces an A-algebra isomorphism

(GrI(A))(a) ' A[Ia−1].

Thus, we see that BlI(A) ' Proj(GrI(A)) as A-schemes, and this isomorphism is unique since BlI(A) has
no non-trivial A-automorphisms. In particular, BlI(A) is projective over A when I is finitely generated, but
usually not otherwise (as it may not even be quasi-compact).

For any ideal J in A, the strict transform Ṽ (J) of V (J) = Spec(A/J) in BlI(A) is a closed subscheme of
the pullback of V (J) under BlI(A)→ Spec(A) and it is V (J)-isomorphic to the blow-up of V (J) along the
pullback ideal (I + J)/J ⊆ A/J . Explicitly, over an open U(a) = Spec(A[Ia−1]) in BlI(A), Ṽ (J) cuts out
the closed subscheme V (Ja ∩A[Ia−1]) ⊆ U(a).

We can globalize this to the setting of a scheme X and a quasi-coherent ideal sheaf I on X (or, equiva-
lently, a closed subscheme Y of X, with I Y = I ) as follows. We define the X-scheme

BlI (X) = BlY (X) := Proj(GrI (OX)),

often denoted X̃ if I is understood. Note that if I is of finite type then the map BlI (X)→ X is projective
in the sense of [EGA, II, 5.5.2] (so in particular, this map is proper). In the non-noetherian case it may
happen that I is not of finite type, so the blow-up morphism may fail to be projective (or even quasi-
compact). Thus, we have to be careful about which ideals we blow up. We call Y the center of the blow-up,
so the structure map q : X̃ → X is an isomorphism over the open complement U = X − Y of the center of
the blow-up. Strictly speaking, the blow-up morphism does not uniquely determine the center as we have
defined it (e.g., we do not require the center to have support equal to the minimal closed set in the base
away from which the blow-up morphism is an isomorphism). This will not matter for us since we use the
notion of “center” purely as a linguistic device.

By construction, the quasi-coherent ideal I ·O eX is an invertible ideal sheaf on X̃ = BlI (X), so the open
subscheme j : U ↪→ X̃ is schematically dense in the sense that O eX → j∗OU is injective [EGA, IV3, 11.10.2];
this amounts to the fact that for a ring R and r ∈ R that is not a zero divisor, the map R→ Rr is injective.
By [EGA, IV3, 11.10.4], the schematic density implies that U is also dense as a subspace of the topological
space X̃. If I is of finite type then U = X − Y → X is quasi-compact and hence the open immersion
U → X̃ is quasi-compact [EGA, IV1, 1.1.2(v)]. This sort of reasoning will be used frequently below, and
it is another reason why we generally only blow up finite type quasi-coherent ideal sheaves when avoiding
noetherian hypotheses.

As in the case of affine X that we considered at the outset, in general the X-scheme X̃ is the final object
in the category of X-schemes f : X ′ → X such that I ·OX′ is invertible. This is easily reduced to checking
locally on X, so we can assume X is affine, and then we can work locally on X̃ by using the affine open
covering by U(a)’s for a ∈ I = Γ(X,I ). We omit the straightfoward details. For a closed subscheme Z in X
the strict transform Z̃ of Z in X is defined to be BlI ·OZ (Z), and the canonical map Z̃ → X̃ over Z ↪→ X is
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a closed immersion because we can check this over an open affine covering of X (where it has been checked
above). For example, if I = I Z then Z̃ is empty. We can give an alternative (and useful!) description of
the strict transform of Z in X̃, as follows:

Lemma 1.1. Let X be a scheme, Y and Z closed subschemes of X, and U = X − Y the open complement
of Y . We view Z ∩U as a closed subscheme of U , which in turn is an open subscheme of X̃ = BlY (X). The
immersion j : Z ∩U → X̃ is quasi-compact (even affine) and its scheme-theoretic closure in X̃ is the closed
subscheme Z̃.

Proof. This can be checked locally on X, so we may assume X = Spec(A), Y = Spec(A/I), Z = Spec(A/J),
so X̃ = Proj(GrI(A)). The scheme Z−(Z∩Y ) = Z∩U is is covered by open affines of the form Spec((A/J)a),
with a ∈ I. For a ∈ I, we let Za = Spec((A/J)a) and Xa = Spec(A[Ia−1]) (this was denoted U(a) above).
We have a canonical map

Za → Xa ↪→ X̃.

If we can show that j−1(Xa) = Za then j is affine and the kernel of O eX → j∗(OZ∩U ) over Xa is exactly
the quasi-coherent sheaf associated to the kernel of A[Ia−1] → (A/J)a = Aa/Ja. Since this kernel is just
Ja ∩ A[Ia−1], we will then have what we wanted (due to the earlier explicit description of strict transforms
in the affine setting).

In order to see that j−1(Xa) = Za, we compute that for any a′ ∈ I, j−1(Xa)∩Za′ ' Za′ ×Xa′ (Xa′ ∩Xa)
is exactly

Spec((A/J)a′ ⊗A[Ia′−1] A[Ia′−1]a/a′) = Spec(((A/J)a′)a/a′) = Spec((A/J)aa′).

This is exactly the open subscheme Za′ ∩Za inside of Z ∩U . Since Z ∩U is covered by the open subschemes
Za′ for a′ ∈ I, taking the union over all a′ ∈ I yields j−1(Xa) = Za, as desired. �

For a blow-up q : X̃ = BlI (X)→ X and a section s of I over an open subscheme W ⊆ X, we define U(s)
to be the open subscheme of q−1(W ) over which q∗(s), viewed as a section of I ·O eX , is a local generator.
We will sometimes abuse notation and speak of s, rather than q∗(s), as a section of I ·O eX when there is no
possibility of confusion. When W is affine, this definition for U(s) coincides with the one given earlier.

A couple of points concerning composites of blow-ups will be useful in our later considerations. Let I 1

and I 2 be two quasi-coherent ideal sheaves on X and let X̃i = BlI i(X). There is a natural commutative
diagram

(1.2) X̃12
//

��

X̃1

��
X̃2

// X

in which X̃12 = BlI 1 I 2(X). To make this diagram, first observe that X̃12 is covered by opens U(s1s2)
for s1 and s2 respective sections of I 1 and I 2 over a common open W in X. On U(s1s2), neither s1 nor
s2 is a zero divisor. For any section t1 of I 1 over W , t1s2 is a section of I 1 I 2 ·O eX12

over U(s1s2) and
so t1s2 is a multiple of s1s2 here. Thus, t1 is a multiple of s1, so I 1 |U(s1s2) has s1 as a basis. In this
way, we see that I 1 ·O eX12

is invertible on X̃12, and likewise with I 2 replacing I 1. The existence of (1.2)
then follows from the universal property of blow-ups, and the map X̃12 → X̃j carries U(s1s2) into U(sj).
Moreover, the resulting natural map from X̃12 to the blow-up of X̃1 along I 2 ·O eX1

carries U(s1s2) into
(U(s1))(s2), and for W = Spec(A) ⊆ X the U(s1)-map U(s1s2)→ (U(s1))(s2) corresponds to the A-algebra
map (A[I−1

1 s1])[I2s−1
2 ]→ A[I1I2(s1s2)−1] that is an isomorphism by inspection (equality inside As1s2). Since

the U(s1s2)’s (resp. the (U(s1))(s2)’s) cover X̃12 (resp. BlI 2 ·OfX1
(X̃1)) as we vary W and s1, s2, by using

the known gluing data on such opens we thereby see that the natural map X̃12 → BlI 2 ·OfX1
(X̃1) is an

isomorphism. Likewise, X̃12 is identified with the blow-up of X̃2 along I 1 ·O eX2
. In particular, by induction
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there are unique X-isomorphisms BlI n(X) ' BlI (X) for all n ≥ 1; these isomorphisms are induced by
applying relative Proj to the obvious explicit map on the level of quasi-coherent graded OX -algebras.

We begin our sequence of blow-up lemmas with an important result which essentially says that a composite
of blow-ups is the same as a single blow-up. Though some later results could be stated in terms of a finite
sequence of blow-ups if we wished to avoid Lemma 1.2 below, in other places (e.g., applications of Lemma
2.7) it seems essential that we only require a single blow-up. Lemma 1.2 is not explicitly mentioned in
[D], but Deligne must have had it in mind. First, we introduce some terminology. If X is a scheme and
U ⊆ X is an open subscheme, we say that an X-scheme f : X ′ → X is a U -admissible blow-up of X if it
is X-isomorphic to BlI (X), where I is a quasi-coherent ideal sheaf on X of finite type (automatic if X is
locally noetherian) and V (I ) is disjoint from U . In particular, f is proper (even projective).

Lemma 1.2. [GR, Lemma 5.1.4] Let X be a quasi-compact and quasi-separated scheme, U ↪→ X a quasi-
compact open immersion, f : X ′ → X a U -admissible blow-up, and g : X ′′ → X ′ an f−1(U)-admissible
blow-up. Then f ◦ g : X ′′ → X is a U -admissible blow-up.

Any noetherian scheme X and open subscheme U ⊆ X satisfy the initial topological hypotheses in this
lemma.

Proof. We give a more detailed version of the proof in [GR] because we include an additional argument
due to Raynaud which plays a critical role in the proof (and which is not mentioned in [GR]). We have
X ′ = BlI (X) as an X-scheme and X ′′ = BlK (X ′) as an X ′-scheme with I and K quasi-coherent and
finite type ideal sheaves on X and X ′ respectively such that V (I ) ⊆ X − U and V (K ) ⊆ X ′ − f−1(U)
respectively (as sets). Since I is of finite type, X ′ → X is projective and I ′ = I ·OX′ is an X-ample
invertible sheaf [EGA, II, 5.5.1, 8.1.7]. Thus, by [EGA, II, 4.6.8; IV1, 1.7.15], the natural map

f∗f∗(K ⊗I ′
⊗n)→ K ⊗I ′

⊗n

is surjective for all large n. But K ⊗I ′
⊗n ' K I ′

n (since I ′ is invertible) and I ′
n = I n ·OX′ , so

replacing I by a suitable power allows us to assume that the natural map f∗f∗(K I ′)→ K I ′ is surjective.
Since f is quasi-compact and separated (even proper), f∗OX′ is a quasi-coherent OX -algebra. Hence, the

natural map u : OX → f∗OX′ gives rise to a commutative diagram

X ′
h //

f
&&MMMMMMMMMMMM Spec(f∗(OX′))

Spec(u)

��
X

If X is noetherian then f∗(OX′) is coherent, so Spec(u) is finite. Moreover, in this case Spec(u) is an
isomorphism over U and (for similar reasons) the coherent OX -module f∗(K I ′) coincides with OX over
U . The noetherian reader should define N = f∗(K I ′) and skip the rest of this paragraph and the next
one. In the general case we claim that Spec(u) is integral. To check this, we may assume that X = Spec(A)
is affine and we want to show that for a finitely generated ideal I = (a0, . . . , am) in A, every global function
on P = Proj(GrI(A)) ⊆ Pm

A is integral over A. If A is noetherian, then the A-module of global functions is
finite and thus we have the integrality assertion. Let’s reduce to the noetherian case, even though P may
not be finitely presented over A. This is a standard limit argument, as we now explain. Choose a global
function s on P . This is equivalent to specifying si ∈ (GrI(A))(ai) for 0 ≤ i ≤ m, with si = sj under the
canonical identification ((GrI(A))(ai))aj/ai = ((GrI(A))(aj))ai/aj . Because of the direct sum in the definition
of GrI(A), this data only involves a finite number of elements of A. Thus, if we consider a suitable finite-type
Z-subalgebra A0 in A depending on s and containing a0, . . . , am, and let I0 be the ideal generated by the
ai’s in A0, then we get a global function s0 on P0 = Proj(GrI0(A0)) inducing s after pullback along the
natural map r : P → P0 over Spec(A)→ Spec(A0). Note that r is “defined everywhere” since I0A = I. The
induced map of rings

Γ(P0,OP0)→ Γ(P0, r∗OP ) = Γ(P,OP )
over A0 → A takes s0 to s. Since s0 is integral over A0, it follows that s is integral over A.
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Clearly Spec(u) is an isomorphism over U and the quasi-coherent OX -module f∗(K I ′) coincides with
OX over U . We claim that there is a quasi-coherent finite type OX -submodule N ⊆ f∗(K I ′) such that
N |U = OX |U and the natural map f∗(N )→ K I ′ is surjective. By [EGA, II, 9.4.7ff; IV1, 1.7.7], we have
f∗(K I ′) = lim−→N i, with N i ⊆ f∗(K I ′) running through the finite type quasi-coherent OX -submodules
equal to OX |U over U . Since

lim−→ f∗(N i) ' f∗(lim−→N i) ' f∗f∗(K I ′)→ K I ′

is surjective, K I ′ is of finite type, and X is quasi-compact, for suitably large i0 we have that N
def= N i0

is a quasi-coherent OX -submodule of f∗(K I ′) which is of finite type over OX , satisfies N |U = OX |U , and
has the property that the natural map f∗(N )→ K I ′ is surjective.

The integrality of Spec(u) ensures that the quasi-coherent OX -algebra OX0 ⊆ f∗(OX′) generated by
the finite type OX -module N (i.e., the image of ⊕m≥0 N ⊗m → f∗(OX′)) is a finite OX -algebra. In the
noetherian case (with N = f∗(K I ′)) we have OX0 = OX+f∗(K I ′) ⊆ f∗(OX′). In general, let N 0 ⊆ OX0

be the finite type ideal generated by N (i.e., the image of ⊕m≥1 N ⊗m → OX0). Note that OX |U ' OX0 |U .
Now comes the most critical step in the proof. We claim that there exists a positive integer m such that

(1.3) N m
0 = u(M ) · OX0

for some quasi-coherent finite type ideal sheaf M in OX with M |U = OX |U (here we view u as a map
OX → OX0). The proof of the existence of m in [GR] is unclear. Assume this existence for now, and let’s
see how this enables us to finish the proof.

Using the commutative diagram

X ′ //

f

��

Spec(f∗(OX′))

��
X Spec(OX0)oo

we see that M ·OX′ is the mth power of the ideal generated by the image of f∗(N ) → OX′ , which is
nothing other than (K I ′)m. Since I ′ is invertible on X ′, X ′′ is X ′-isomorphic to the blow-up of X ′ along
(K I ′)m = M ·OX′ . Thus, X ′′ ' BlM I (X) as X-schemes. Since M I is a quasi-coherent finite type ideal
in OX and restricts to OX |U on U , this blow-up is U -admissible and we are done.

It remains to find an integer m for which (1.3) holds. The following argument is due to Raynaud. We will
find an m > 0 so that N m

0 ⊆ u(OX) inside of OX0 . This is somewhat stronger than the original assertion,
as we’ll soon see, and this condition has the important technical advantage that it can be checked locally on
our quasi-compact base X (so we will be able to reduce to the case of an affine base). Let’s show that any
m such as we just described is also adequate for our original needs above. Define M ′ = u−1(N m

0 ) ⊆ OX , so
M ′ is a quasi-coherent ideal sheaf on X satisfying M ′ |U = OX |U . Thus, M ′ satisfies all of the requirements
except that in the non-noetherian case it may not be of finite type. The noetherian reader should skip to
the next paragraph. To handle the general case we again use a simple direct limit argument, as follows. We
may write M ′ = lim−→M j with M j ⊆ M ′ running through the finite type quasi-coherent ideal sheaves in
M ′ such that M j |U = OX |U . Since lim−→u(M j) = N m

0 and N m
0 is finite as an OX -module (since OX0 and

N are), we conclude from the quasi-compactness of X that u(M j) = N m
0 for large j. For large j, taking

M = M j gives what we needed above.
To find m such that N m

0 ⊆ u(OX) inside of OX0 , we can work locally on the quasi-compact X and so
may now assume X = Spec(A). Let I = Γ(X,I ), K = Γ(X,N ), B = Γ(X,OX0). Since the ideal K in B is
finitely generated as an A-module, it suffices to choose b ∈ K ⊆ B and to show that bNB ⊆ u(A) for some
large N (perhaps depending on b). We first claim that the open affine W = Spec(Bb) ⊆ Spec(B) lies over an
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open subscheme V in Spec(A) over which X ′ → X is an isomorphism. Consider the commutative diagram

X ′
g //

f
$$H

HH
HH

HH
HH

H Spec(B)

��
X

Since the ideal generated by K in B contains b and pulls back (under g) to the ideal sheaf K I ′ on X ′ (by
the choice of N ), we see that OX′ |g−1(W ) = K I ′ |g−1(W ) ⊆ I ′ |g−1(W ). Thus, I ′ |g−1(W ) = OX′ |g−1(W ),
so g−1(W ) lies over X − V (I ). But g is proper (since f is) and dominant (since B → OX′(X ′) is injective
by construction of g, so [EGA, I, 9.5.4] applies). Hence, g is surjective, so W also lies over X − V (I ).
That is, Spec(Bb) lies over an open V ⊆ Spec(A) for which OX |V ' f∗OX′ |V . In particular, since u(OX) ⊆
OX0 ⊆ f∗OX′ , we have OX |V ' OX0 |V . But f is an isomorphism over V , so Spec(Bb)→ Spec(A) is an open
immersion.

Choose a finite open affine covering {Spec(Afi)} of the open subset of Spec(A) given by the image of
Spec(Bb), so the fi’s generate the unit ideal in Bb, which is to say that there exists some large N for which

bNB ⊆
∑

fiB.

Since X ′ → X is an isomorphism over V and g is surjective, Spec(B)→ Spec(A) restricts to an isomorphism
over the open subscheme

⋃
Spec(Afi) ⊆ V and hence the map Afi → Bfi is an isomorphism for all i. Let

b1, . . . , bt generate B as an A-module. Via Afi ' Bfi , we have bj = aj/f
M
i in Bfi , for aj ∈ A and M large.

Thus, there is a large M ′ such that
(fMi bj − aj)fM

′

i = 0

in B for all i and j, so for N ′ = M + M ′ we have fN
′

i bj ∈ u(A) inside B for all i and j. This implies that
fN
′

i B ⊆ u(A) for all i. Since we also have that bNB ⊆
∑
fiB for some large N , we conclude that there is a

large N ′′ such that bN
′′
B ⊆ u(A). This is what we needed to prove. �

Since we are primarily interested only in blow-ups along finitely presented closed subschemes (i.e., along
finite type quasi-coherent ideal sheaves), we now give a simple criterion for the complement of an open set
to admit the structure of a finitely presented closed subscheme. The following lemma should be skipped by
the noetherian reader.

Lemma 1.3. Let X be a quasi-compact and quasi-separated scheme, U an open subscheme which is quasi-
compact. There exists a finite type quasi-coherent ideal sheaf I such that V (I ) = X − U .

By quasi-separatedness of X, the quasi-compactness condition on U is equivalent to saying that the open
immersion U → X is quasi-compact.

Proof. Let K be the quasi-coherent ideal sheaf associated to the canonical reduced closed subscheme struc-
ture on the closed subset X − U in X. By [EGA, I, 9.4.9; IV1, 1.7.7], K = lim−→K i, with {K i} the set
of finite type quasi-coherent subideals in K . We can consider {V (K i)} as a decreasing inverse system of
closed subsets of X, with intersection V (K ) (as sets). We want to check that this inverse system termi-
nates for large i. Since X is quasi-compact and quasi-separated, we can assume X = Spec(A) is affine.
Let J = Γ(X,K ), Ji = Γ(X,K i), so the Ji are a cofinal system of finitely generated ideals in J . The
quasi-compactness of U allows us to cover U by finitely many open affines Spec(Afj ) with fj ∈ J . Taking i
so large that Ji contains all of the fj ’s, we have V (Ji) = V (J) as subsets of X. �

Lemma 1.4. [D, Lemme 0.2] For closed subschemes Y and Y ′ in a scheme X, the strict transform Ỹ of
Y in X̃ = BlY ∩Y ′(X) lies inside of the union of the U(s)’s as s ranges through all sections of I Y ′ over all
opens. Moreover, if Y1, . . . , Yn are closed subschemes of X then the strict transforms Ỹj in Bl∩Yi(X) satisfy
∩Ỹj = ∅.

The mutual disjointness of strict transforms in the blow-up corresponds to [N1, Prop. 2.4].
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Proof. We may assume X = Spec(A) is affine. For the first claim, let I ′ = Γ(X,I Y ′) and I = Γ(X,I Y ).
Clearly X̃ is covered by U(s) for s ∈ I ∪ I ′, so it is enough to show that for s ∈ I, U(s) is disjoint from
the strict transform Ṽ (I). In terms of commutative algebra, the overlap of U(s) and Ṽ (I) in X̃ is the affine
scheme attached to the ring

A[(I + J)s−1]/(Is ∩A[(I + J)s−1]),
with Is∩A[(I+J)s−1] taken inside of As. Since s ∈ I we have 1 ∈ Is∩A[(I+J)s−1], so the overlap is empty.
For the second claim, let Ij = Γ(X,I Yj ), so since I ∩Yj =

∑
I Yj we have that the U(s)’s for s ∈ ∪Ij cover

X̃ = Bl∩Yj (X). It therefore suffices to show that for s ∈ I1 the open set U(s) is disjoint from Ṽ (I1). This
goes exactly as in the preceding calculation, setting I = I1 and J = I2 + · · ·+ In (so J = 0 if n = 1). �

Now we come to the first of the separatedness lemmas which we will need to prove. The lemma has a
disjointness hypothesis and asserts that after a certain admissible blow-up we can get a stronger disjointness
property for closures. We will later have more subtle lemmas of this sort.

To set up the necessary notation, consider a commutative diagram of schemes

Y

��

f // Z

p

��
U

i
// V

j
// X

We assume that i and j are open immersions and f is a quasi-compact immersion. Obviously Y and
p−1(V − U) are disjoint in Z, but Y and p−1(V − U) may meet. We will eliminate this via base change by
a blow-up of X with center in X −V . Let I 1 be a quasi-coherent ideal sheaf on X with V − U ⊆ V (I 1) ⊆
X − U as sets. (In Case 3 in the proof of Theorem 2.4 we will use I 1 satisfying V (I 1) = V − U in the
noetherian case. In the proof of Lemma 3.1 we will use I 1 satisfying V (I 1) = X−U .) Define T1 = V (I 2

1),
roughly a square-zero thickening of V − U .

Let I 2 be a quasi-coherent ideal sheaf on X such that T2 = V (I 2) lies inside of T1 ∩ (X − V ) as a set.
Setting Y to be the scheme-theoretic image of Y in Z under the quasi-compact immersion f , we assume
that the closed subscheme p−1(T1)∩Y in Z (which is set-theoretically contained in Y −Y since T1 ∩U = ∅)
factors through the closed subscheme p−1(T2). Loosely speaking, we have

p(p−1(T1) ∩ Y ) ⊆ T2 ⊆ T1 ∩ (X − V ),

with the first inclusion as schemes and the second as sets. This strange-looking hypothesis is motivated by
specific situations that arise in the proofs of Theorem 2.4 and Lemma 3.1.

Let q : X ′ → X be the blow-up of X along I 1 + I 2 (an ideal cutting out T1 ∩ T2 as a set, but usually
not as a scheme). Let Y ′, Z ′, p′, etc. denote the base changes of Y , Z, p, etc. by q. Note that q is an
isomorphism over V , since V (I 1 + I 2) ⊆ V (I 2) = T2 is disjoint from V . After base change by q, we have
a disjointness assertion:

Lemma 1.5. [D, Lemme 0.3] With the above notation and hypotheses, the closed subsets

Y ′, p′
−1(q−1(V )− q−1(U)) = p′

−1(q−1(V − U)) ⊆ Z ′

are disjoint. In other words, after the base change by q, p(Y ) and V − U are disjoint.

Proof. Since the formation of closures in topological spaces (resp. scheme-theoretic images of quasi-compact
immersions) commutes with passage to an open subspace (resp. open subscheme), our problem is local on
both X and Z, so we may assume X = Spec(A) and Z = Spec(B). Let Ij = Γ(X,I j). In this setting, we
will try to locally construct functions on Z ′ that vanish on p′

−1(q−1(V − U)) and equal 1 on Y ′.
First, we claim that the opens U(s2) ⊆ X ′ for s2 ∈ I2 cover q−1(V − U). To show this, note that the

strict transform of V (I 1) is a closed subscheme of X ′. Since the underlying space of V (I 1) contains
V − U ⊇ V −U and we have q−1(V −U) ' V −U as topological spaces, we see that q−1(V − U) lies inside
of the strict transform of V (I 1). By the proof of Lemma 1.4 in the affine case, we conclude that q−1(V − U)
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is covered by the U(s2)’s for s2 ∈ I2, as desired. Thus, the p′−1(U(s2))’s for s2 ∈ I2 give an open covering
of p′−1(q−1(V − U)). It therefore is enough to show that for all s2 ∈ I2,

p′
−1(q−1(V − U)) ∩ p′−1(U(s2)) ∩ Y ′ = ∅.

Since we have the set-theoretic inclusions

p′
−1(q−1(V − U)) ⊆ p′−1(q−1(V − U)) ⊆ p′−1(q−1(T1)),

it suffices to show that for all s2 ∈ I2, we have set-theoretically in Z ′ that

(1.4) p′
−1(q−1(T1)) ∩ p′−1(U(s2)) ∩ Y ′ = ∅.

By hypothesis, p−1(T1) ∩ Y ⊆ p−1(T2) as closed subschemes of Z = Spec(B), so p∗(s2) ∈ B vanishes on
p−1(T2) ∩ Y . Thus,

p∗(s2) = t1 + g

in B, with t1 vanishing on the closed subscheme p−1(T1) cut out by I2
1B and g vanishing on the closed

subscheme Y . The quasi-compact immersion Y → Z makes Y an open subscheme of Y , so if we write
t1 =

∑
bis1ir1i with s1i, r1i ∈ I1 and bi ∈ B, we have

s2|Y =
∑

bis1ir1i

on the subscheme Y ↪→ Z = Spec(B).
Because Y lives over U ⊆ V and V does not meet T2, we see that

Y ′ ∩ p′−1(U(s2)) ⊆ p′−1(U(s2) ∩ (X ′ − q−1(T2))).

However, s2 doesn’t vanish at any points on U(s2)∩ (X ′− q−1(T2)), so s2 is a unit here. Thus, the pullback
of s2 to Z ′ is a unit on the subscheme Y ′ ∩ p′−1(U(s2)), whence∑

bi ·
(
s1i

s2

)
· r1i = 1

on the subscheme Y ′ ∩ p′−1(U(s2)). But h =
∑
bi(s1i/s2)r1i is a global function on the open subscheme

p′
−1(U(s2)) in Z ′, so since h = 1 on the subscheme Y ′∩p′−1(U(s2)), we see that h = 1 on its scheme-theoretic

image Y ′ ∩ p′−1(U(s2)) in p′
−1(U(s2)) (recall that Y ′ ∩ p′−1(U(s2)) → p′

−1(U(s2)) is a quasi-compact
immersion and use [EGA, I, 9.5.4, 9.5.8; IV1, 1.7.8]).

On the other hand, h vanishes on the subscheme p′−1(q−1(V (I 1)))∩p′−1(U(s2)), since all r1i ∈ I1. Thus,
the subschemes p′−1(q−1(V (I 1))) ∩ p′−1(U(s2)) and Y ′ ∩ p′−1(U(s2)) of p′−1(U(s2)) are disjoint. Passing
to the underlying sets and noting that V (I 1) = V (I 2

1) = T1 as sets, we obtain the desired disjointness
(1.4), since the function h separates the sets under consideration (at least on p′

−1(U(s2))). �

There are other blow-up lemmas that will be needed for the proof of the Nagata compactification theorem.
However, what we have already is adequate to prove some results that are necessary in the proof of Nagata’s
theorem and are interesting on their own. Thus, we will postpone the remaining blow-up lemmas until §3
and in the next section we give applications of the results so far.

2. Some Preliminary Theorems

We begin by introducing a notion that is critical in the constructions needed for the proof of Nagata’s
theorem.

Definition 2.1. Let S be a scheme and let X and Y be S-schemes with Y separated over S. A quasi-
domination of X over Y is a pair (U, f) with U ⊆ X a dense open subscheme and f : U → Y an S-morphism
such that the graph subscheme Γf ↪→ U ×S Y is closed when viewed as a subscheme of X ×S Y .
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Note that this graph is closed in U×S Y since Y is S-separated, so the condition to be a quasi-domination
of X over Y is a stronger closedness property. Also, since the subscheme Γf maps isomorphically to the open
subscheme U ⊆ X, it encodes the data of the pair (U, f). If f : U → Y is proper, we say that (U, f) is a
proper quasi-domination of X over Y . If U0 ⊆ X is an open subscheme and f0 : U0 → Y is an S-morphism,
a quasi-domination of X over Y extending f0 is a quasi-domination (U, f) of X over Y with U0 ⊆ U ⊆ X
and f |U0 = f0. The reason that the notion of a quasi-domination is of interest to us is because we will need
to glue separated S-schemes along S-isomorphic open subschemes and so we need to make sure that the
relevant graphs are closed (for reasons given in the Introduction).

Example 2.2. The notion of quasi-domination is related to viewing rational maps on their (maximal) domain
of definition, as follows. Suppose that Y is separated over S. We view an S-map f : U → Y on a schematically
dense (hence topologically dense) open subscheme U ⊆ X as a rational map from X to Y over S, and its
domain of definition is the maximal open U ′ ⊆ X containing U to which f (necessarily uniquely) extends
as an S-map f ′ : U ′ → Y . If f is a quasi-domination of X over Y then U coincides with this domain of
definition. Indeed, Γf ′ ⊆ U ′ ×S Y is closed and contains Γf ⊆ U ×S Y , but Γf is closed in X ×S Y so it is
also closed in U ′×S Y . Since the closed immersion Γf ↪→ Γf ′ is identified with the open immersion U ↪→ U ′

that is schematically dense, we deduce that Γf = Γf ′ , so U = U ′.
If the inclusion of U into X is quasi-compact then we can generalize this: f is a quasi-domination of X

over Y if and only if for every separated map h : X ′ → X that is an isomorphism over U and for which
h−1(U) = U is a schematically dense open subscheme in X ′ (e.g., a U -admissible blow-up of X) the domain
of definition of f ′ = f ◦(h|h−1(U)) (viewed as a rational S-map from X ′ to Y ) coincides with U . The necessity
follows from the preceding argument and the fact that Γf ′ ⊆ X ′ ×S Y is the pullback of Γf ⊆ X ×S Y , and
for sufficiency we take X ′ to be the schematic closure of Γf in X ×S Y (and h to be its natural projection
to X); this schematic closure makes sense since U → X is assumed to be quasi-compact.

Example 2.3. Consider an S-map f : X → Y to a separated S-scheme and let Y ⊆ Y be an open subscheme.
The restriction f : U = f

−1
(Y ) → Y is a quasi-domination of X over Y if this U is dense in X, since

Γf = (X ×S Y ) ∩ Γf .

Now replace the density condition on U by the condition (automatic in the noetherian case) that the open
immersion U ↪→ X is quasi-compact. Let U be the scheme-theoretic image of U in X, so U is a dense open
subscheme of U and is schematically dense in U as well. Clearly U ↪→ U is quasi-compact. Let f : U → Y
be an S-morphism. Consider a quasi-domination (V, f) of U over Y extending f , with V an open subscheme
of U containing U and thus automatically dense in U . We claim that the graph Γf , as a (closed) subscheme
of U ×S Y , must be the schematic image Γf of the quasi-compact immersion

Γf ↪→ U ×S Y ↪→ U ×S Y
(note that the first immersion is quasi-compact because it is a closed immersion). This implies in particular
that the pair (V, f) is unique if it exists.

In order to prove that Γf = Γf , consider the quasi-compact immersions

ϕ1 : U
Γf−→ U ×S Y ↪→ U ×S Y

and
ϕ2 : V

Γf−→ V ×S Y ↪→ U ×S Y.
Although V ↪→ U might not be quasi-compact, the immersion ϕ2 is nevertheless quasi-compact because
of the hypothesis that it is a closed immersion. The scheme-theoretic images of these are Γf and Γf
respectively. Since ϕ1 = ϕ2 ◦ j, with j : U → V the canonical open immersion, in order to establish equality
of schematic images it is enough to prove that j is schematically dense. But j factors through U ↪→ U , which
is schematically dense by construction of U , so we are done.

Note that if Y is proper over S, then a quasi-domination (U, f) of X over Y must have U = X. Indeed,
U is the image of the closed subscheme Γf ↪→ X ×S Y under the proper projection to X, yet U is a dense
open subscheme, so therefore U = X. Because of this, the following theorem seems to be a powerful tool
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in the elimination of indeterminacies of rational S-maps to an S-proper target. Indeed, Theorem 2.4 below
asserts that (under mild restrictions) after making a suitable U -admissible blow-up on X, we can make any
such map be defined everywhere. This theorem is the most important step in the proof of Nagata’s theorem,
but its proof is rather long and technical; the reader may prefer to skip it on a first reading.

Theorem 2.4. [N1, Theorem 3.2], [D, Théorème 1.2] Let S be a quasi-compact and quasi-separated scheme,
X and Y two quasi-compact and quasi-separated S-schemes. Let U ⊆ V ⊆ X be dense open subschemes of
X such that the open immersions of U and V into X are quasi-compact. Assume Y → S is separated and
of finite type. Let (U, f) be a quasi-domination of V over Y in the sense of Definition 2.1. There exists a
V -admissible blow-up X̃ of X such that X̃ quasi-dominates Y in a manner extending f : U → Y .

The quasi-compactness conditions on the immersions of U and V into X are equivalent to assuming that
U and V are quasi-compact as schemes. Note also that U is dense in any V -admissible (even U -admissible)
blow-up X̃ of X (as we explain in Case 1 of the proof below), so Definition 2.1 makes sense for such an X̃,
Y , and f : U → Y .

Remark 2.5. Consider the interesting special case U = V . This is the only case we will need in applications.
In this case, any S-morphism f : U → Y is a quasi-domination of U over Y since Y → S is separated.
Thus, if Y is S-proper (so for a scheme X ′ containing U as a dense open subscheme, any quasi-domination
of X ′ over Y extending f must have domain of definition X ′) then the theorem says that f extends to
an S-morphism X̃ → Y on some U -admissible blow-up X̃ of X. This special case for noetherian S is [L,
Lemma 2.2]. If we require U = V in the statement of the theorem then the proof does not work. It is
essential for the success of the argument that we have the flexibility in certain constructions to allow for the
possibility that U 6= V . We will point out the step in the proof where this extra generality is needed (it
occurs in the treatment of the “general case”).

Proof. Note that f is automatically quasi-compact and quasi-separated, by [EGA, IV1, 1.1.2(v), 1.2.2(v)].
Replacing Y by Y ×S X, we can assume X = S. Thus, Y → S = X is separated and finite type, with
f : U → Y a section over U whose set-theoretic image is closed in the part of Y that lies over V ⊆ X. We
prove the theorem by handling a series of special cases, which we make more general one step at a time.

Case 1: U = V , p : Y → X quasi-affine, X affine.
Since p is finite type and quasi-affine, by [EGA, II, 5.1.9] we deduce the existence of a commutative

diagram

Y
i //

p
!!B

BB
BB

BB
B An

X

��
X

with i a quasi-compact immersion. Consider the immersion F = i◦f : U → An
X . Since U = V and An

X → X
is separated, F is obviously a quasi-domination of V over An

X . Assume temporarily that in the case Y = An
X

(i.e., i an isomorphism) there exists a V -admissible blow-up X̃ which works. That is, suppose we have a
finite type quasi-coherent ideal sheaf I on X with V (I ) disjoint from V = U , an open subscheme W̃ in
X̃ = BlI (X) containing U , and an X-morphism F̃ : W̃ → An

X extending f such that the graph subscheme

Γ eF ⊆ W̃ ×X An
X ⊆ X̃ ×X An

X

is a closed subscheme. Note that W̃ is automatically dense in X̃. To see this, it is enough to check that
U is dense in any U -admissible blow-up BlI (X) of X. Since U is dense in X it is dense in X − V (I ) '
BlI (X)− V (I ′), with I ′ = I ·O eX the invertible pullback ideal of I . Since I ′ is of finite type, the open
immersion BlI (X) − V (I ′) ↪→ BlI (X) is quasi-compact. But this open immersion is also schematically
dense since I ′ is invertible. Hence, a consideration of the scheme-theoretic image shows that the complement
of V (I ′) is topologically dense in BlI (X), so U is topologically dense in here also.
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Since U → X̃ is a quasi-compact open immersion, there is a finitely presented closed subscheme in X̃ with
support equal to the complement of U (in the non-noetherian case, use Lemma 1.3). Let q : X̃ ′ → X̃ be the
U -admissible blow-up along such a closed subscheme. The open subscheme W̃ ′ = q−1(W̃ ) in X̃ ′ contains U ,
so it is dense. Also,

F̃ ′ : W̃ ′
q→ W̃

eF→ An
X

has a graph Γ eF ′ ↪→ X̃ ′ ×X An
X that is a closed subscheme since it is the base change of Γ eF . Note that U

is schematically dense in X̃ ′, due to how the center of the blow-up q : X̃ ′ → X̃ was chosen. By Lemma
1.2, the map X̃ ′ → X is a U -admissible blow-up, so we can replace X̃ with X̃ ′ to get to the case when U

is schematically dense in X̃. This will be important in our attempt to recover the result for our original Y
from the (temporarily assumed) result for An

X .
The morphism F̃ |U : U → An

X is just F , which factors through the immersion i : Y ↪→ An
X . Since i is an

immersion, there is an open subscheme U0 ⊆ An
X such that i factors through a closed immersion j : Y ↪→ U0.

Define W = F̃−1(U0) ⊆ X̃. Since U ⊆ W is an open subscheme, we see that W is open and schematically
dense in X̃ (because U ⊆ X̃ is so). Also, since the graph subscheme Γ eF ⊆ X̃ ×X An

X is closed, we see that
the graph subscheme Γ eF |W ⊆ X̃ ×X U0 is closed.

We claim that it is enough to show that F̃ |W = j ◦ f̃ for some (necessarily unique) f̃ : W → Y . Indeed,
if such an f̃ exists, then f̃ |U = f (since F̃ |U = F ) and the graph subscheme Γ ef ⊆ X̃ ×X Y is exactly

(1X × j)−1(Γ eF |W ), which is closed. Thus, f̃ : W → Y is the desired quasi-domination of X̃ over Y extending
f : U → Y .

As for the existence of f̃ , we know that F̃ |U = j ◦ f as maps from U to U0, so since U is an open and
schematically dense subscheme of W it follows that the pullback of the closed immersion j : Y ↪→ U0 under
F̃ |W : W → U0 must be W (i.e., the only closed subscheme of W which contains U as an open subscheme
is W ). This shows that F̃ |W factors as j ◦ f̃ in the manner desired. Observe that this argument shows that
in Case 1, we can even find X̃ in which U is schematically dense. This will be useful later.

For Case 1, it remains to settle the case Y = An
X . Since U ↪→ X = Spec(A) is quasi-compact, we can

cover U by Spec(Aui)’s for i = 1, . . . ,m, so the finitely generated ideal (u1, . . . , um) in A cuts out the closed
subset X − U in X. The X-morphism Spec(Aui) ⊆ U → An

X corresponds to an A-algebra map

A[t0, . . . , tn−1] → Aui

tj 7→ gij/u
N
i

for gij ∈ A and some large N . The compatibility on overlaps Spec(Aui) ∩ Spec(Aui′ ) says that for some
large M ,

(uiui′)M (uNi gi′j − uNi′ gij) = 0

in A. Replace gij by uMi gij and uNi by uN+M
i (and N by N + M), so we can assume that uNi gi′j = uNi′ gij

for all i, i′, j (1 ≤ i, i′ ≤ m, 0 ≤ j ≤ n− 1). Call this common element gi,i′,j = gi′,i,j ∈ A.
Let I = (uNi ) + (gi,i′,j) be the ideal of A generated by all uNi and gi,i′,j , and let I be the associated

quasi-coherent ideal sheaf on X = Spec(A). Let X̃ = BlI (X), so X̃ → X is a U -admissible blow-up. We will
extend f : U → An

X to an X-morphism f̃ : X̃ → Pn
X (where An

X embeds Pn
X in the classical manner as the

complement of the hyperplane {Tn = 0}). Assume we have such an f̃ . We can then argue as in Example 2.3
to get the required quasi-domination. More precisely, since Pn

X → X is separated, the graph Γ ef ⊆ X̃×X Pn
X

is closed. Also, W = f̃−1(An
X) is an open subscheme of X̃ containing U , so W is automatically dense in the

U -admissible blow-up X̃. The X-morphism W → An
X induced by f̃ is a quasi-domination of X̃ over An

X

extending f , as desired.
All we need to do now is construct f̃ . Intuitively, on Spec(Aui) ⊆ U ⊆ X̃ we want to consider the

A-map to Pn
A given by homogeneous coordinates [gi1, . . . , gin, uNi ], and we want to prove that these agree

on overlaps and (more importantly) extend to meaningful homogeneous coordinate formulas locally over
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all of X̃ = BlI (X) by using that gij/uNi = gi′j/u
N
i′ in Auiui′ for all i, i′, j. To be precise, consider the

open covering of X̃ by the open affine subschemes Spec(A[I(uNi )−1]) (all i) and Spec(A[Ig−1
i,i′,j ]) (all i, i′, j).

Writing Pn
X = Proj(A[T0, . . . , Tn]), define the X-map Spec(A[I(uNi )−1]) → An

X ' D+(Tn) by Tj/Tn 7→
gi,i,j/(uNi )2. Meanwhile, we define an X-map Spec(A[Ig−1

i,i′,j ]) → D+(Tj) = Spec(A[T0/Tj , . . . , Tn/Tj ]) by
Tr/Tj 7→ gi,i′,r/gi,i′,j for r ≤ n − 1 and Tn/Tj 7→ uNi′ u

N
i /gi,i′,j . It is straightfoward (though somewhat

tedious) to check compatibility on the overlaps; one simply applies the relation uNi gi′j = uNi′ gij in A many
times. Thus, these maps glue to give an X-morphism f̃ : X̃ → Pn

X , and f̃ is easily seen to extend the given
map f : U → An

X . This completes the proof of Case 1.
This case is the only place where the finite type condition on Y is explicitly needed (aside from the fact

that everything else will ultimately reduce back to Case 1, as we shall see).

Case 2: U = V , p is quasi-affine.
Let {Wi}0≤i≤n be a finite open affine covering of X, pi : p−1(Wi) → Wi the induced quasi-affine map

over Wi, Ui = U ∩Wi the induced quasi-compact open dense subscheme in Wi. The pullback fi : Ui → Yi =
p−1(Wi) of f over Ui is a quasi-domination of Ui over Yi. By Case 1, there exists a finite type quasi-coherent
ideal sheaf I i on Wi such that V (I i) ⊆Wi −Ui ⊆ X −U = X − V as sets and BlI i

(Wi) quasi-dominates
Yi in a manner extending fi. In addition, as we noted in Case 1, we can (and do) also arrange that the open
subscheme Ui in BlI i

(Wi) is schematically dense.
We claim that I i extends to a quasi-coherent finite type ideal sheaf I i on X with V (I i) ⊆ X−V as sets.

In the noetherian case we take I i to define the scheme-theoretic closure of V (I i) in X. The noetherian
reader should skip ahead to the next paragraph. The construction of I i in general is given by a standard
technique that we will need to use frequently when avoiding noetherian hypotheses, and so we explain how
it goes in the present setting. Consider the scheme-theoretic closure V (K i) of V (I i) in X under the quasi-
compact immersion Wi ↪→ X (recall that X is quasi-separated). Since Wi − Ui = (X − V ) ∩Wi (as sets),
we see that V (K i) ⊆ X −V as sets and K i |Wi

= I i. Write K i as the direct limit of quasi-coherent finite
type subideal sheaves K i,α which restrict to I i on Wi. Since {V (K i,α)∩V } is a decreasing inverse system
of closed subsets in the quasi-compact space V and the intersection of all of these closed subsets is empty,
we conclude that for some large α0, V (K i,α0) is disjoint from V . Define I i = K i,α0 .

Define I =
∏

I i, a quasi-coherent finite type ideal sheaf on X with V (I ) disjoint from V . Define
X̃ = BlI (X), X̃i = BlI i

(X). By definition of I i (in terms of a quasi-domination property for X̃i|Wi
=

BlI i
(Wi)), there is an open dense subscheme Ti ⊆ BlI i

(Wi) = X̃i|Wi
containing Ui and an X-morphism

fi : Ti → Yi ↪→ Y which extends f |Ui such that the composite Γfi ⊆ Ti ×Wi Yi ⊆ (X̃i|Wi)×Wi Yi of a closed
immersion and an open immersion is a closed subscheme. As we noted above, Ui is schematically dense in
X̃i|Wi

, so Ui is schematically dense in Ti.
Consider the canonical morphisms πi : X̃ → X̃i over X as in (1.2), so this can be viewed as a blow-up

along a finite type quasi-coherent ideal sheaf whose zero scheme is disjoint from V = U ⊇ Ui. In particular,
we can view Ui as an open subscheme of X̃. Let T ′i = πi

−1(Ti) ⊆ X̃, an open subscheme of X̃ which contains
Ui as an open subscheme. We claim that Ui is schematically dense in T ′i . Since πi is a blow-up map, the
overlap of T ′i with the complement of the center of the blow-up πi is schematically dense in T ′i . But this
overlap is an open subscheme of Ti which contains Ui, so in view of the schematic density of Ui in Ti, we
obtain the schematic density of Ui in T ′i .

The open subscheme T =
⋃
T ′i in X̃ contains the open subscheme

⋃
Ui = U = V , so T is dense in X̃ since

X̃ → X is a V -admissible blow-up. We will now check that the X-morphisms fi ◦ πi : T ′i → Yi ⊆ Y agree
on overlaps in X̃, so they glue to give an X-morphism f : T → Y extending f . Since Ui is a schematically
dense open in T ′i , Ui ∩Uj is a schematically dense open in T ′i ∩T ′j . Combining this with the separatedness of
Y → X and the obvious fact that fi ◦ πi and fj ◦ πj coincide on Ui ∩Uj , it follows that these maps coincide
on T ′i ∩ T ′j .
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Now we check that the graph Γf ⊆ T ×X Y is closed in X̃ ×X Y . This can be checked locally on X, as
follows. Over the open Wi ⊆ X, we have

Γf |Wi
= π−1

i,Y (Γfi),

where πi,Y : (X̃ ×X Y )|Wi
→ (X̃i|Wi

)×Wi
Yi is the natural map induced by πi on the first factor. Since we

have already noted (by the quasi-domination property for fi) that Γfi is closed in (X̃|Wi
) ×Wi

Yi, we get
closedness for Γf |Wi in (X̃ ×X Y )|Wi . Thus, f is the quasi-domination we sought.

Case 3: p is quasi-affine.
By Lemma 1.2, at the start we may apply a base change by a V -admissible blow-up X̃ → X (note that

such a blow-up does not cause us to lose the denseness hypotheses on U and V ). Thus, before we settle
Case 3, let’s first show that after a base change on X by a suitable such V -admissible blow-up of X, we have
p(f(U)) ∩ V − U = ∅. We will then prove Case 3 with this additional condition.

Consider the commutative diagram

(2.1) f(U)

��

// Y

p

��
U // V // X

In this diagram, f(U) = Γf is the quasi-compact subscheme of Y cut out by the section f (so the left
column is the canonical isomorphism). We wish to apply Lemma 1.5 to (2.1). To get started, let I 1 be
any quasi-coherent ideal sheaf on X with V (I 1) = V − U ⊆ X − U as a set, and define T1 = V (I 2

1) (e.g.,
we can take I 1 to correspond to the canonical reduced structure on the closed subset V − U in X). The
noetherian reader should give X − V its reduced structure and skip to the next paragraph. In the general
(possibly non-noetherian) case we will have to keep in mind the requirement that V -admissible blow-ups
are taken with respect to finite type quasi-coherent ideal sheaves (to ensure that blow-up morphisms are
quasi-compact). Since V ↪→ X is a quasi-compact open immersion, we can use Lemma 1.3 to give the closed
subset X − V in X the structure of a finitely presented closed subscheme in X.

Define T2 = T1 ∩ (X − V ) as a closed subscheme of X. We claim that p(p−1(T1)∩ f(U)) ⊆ T2 as sets (for
now, f(U) is just the topological closure of f(U) in Y ). Certainly p(p−1(T1) ∩ f(U)) ⊆ T1. Since f(U) is
closed in p−1(V ) by the quasi-domination hypothesis on f , we have

p(p−1(T1) ∩ f(U)) ∩ V = p(p−1(T1) ∩ f(U) ∩ p−1(V )) = p(p−1(T1) ∩ f(U)),

which lies inside of T1 ∩ U = ∅. We conclude that p−1(T1) ∩ f(U) ⊆ p−1(T2) as closed subsets in Y . Now
give f(U) its canonical scheme structure as the scheme-theoretic image of the quasi-compact quasi-separated
map f : U → Y . Our next step is to thicken the scheme structure on X − V (and hence on T2) so that
the scheme-theoretic inclusion p−1

1 (T1) ∩ f(U) ⊆ p−1(T2) in Y is an inclusion of closed subschemes. This is
possible because I T2 = I T1 + IX−V with IX−V of finite type and we have the desired inclusion as closed
subsets of Y . More precisely, after making a suitable nilpotent thickening of the closed subscheme structure
on the closed subset X − V , the definition of I T2 is correspondingly altered to give a new T2 that works in
this way.

If I 1 is of finite type, then since p−1(T1)∩f(U) ⊆ p−1(T2) as closed subschemes of Y we can use Lemma 1.5
to get a V -admissible blow-up of X so that after base change by this blow-up the intersection p(f(U))∩V − U
is empty. The noetherian reader should skip to the next paragraph. In general, to circumvent the possibility
that I 1 may not be of finite type, we use a standard limit argument as follows. Since I 1 |U = OX |U , we can
write I 1 = lim−→I 1,α, with I 1,α ranging through the finite type quasi-coherent subideal sheaves in I 1 on X
satisfying I 1,α |U = OX |U . Thus, I T1 = I 2

1 = lim−→I 2
1,α. Since IX−V ·OY ⊆ I T2 ·OY ⊆ I T1 ·OY +I

f(U)

and IX−V is of finite type, we see that for large α,

IX−V ·OY ⊆ I 2
1,α ·OY + I

f(U)
.
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Defining T1,α = V (I 2
1,α) and T2,α = T1,α ∩ (X − V ), we have V − U ⊆ T1,α ⊆ X − U as sets and

p−1(T1,α) ∩ f(U) ⊆ p−1(T2,α)

as closed subschemes of X. By Lemma 1.5, if we make a base change by the V -admissible blow-up of X
along

I 1,α + I T2,α = I 1,α + IX−V

then we get to the case p(f(U)) ∩ V − U = ∅, as desired.
Define X ′ = X − V − U , an open subscheme in X. Clearly p(f(U)) ⊆ X ′. Since V − U is closed in V ,

we also see that X ′ ∩ V = V − (V ∩ V − U) is equal to V − (V ∩ (V − U)) = U . This latter condition says
that when working over X ′ we are in the setting of Case 2 provided that X ′ is quasi-compact. This property
holds in the noetherian case, so the noetherian reader should skip ahead to the next paragraph. In general,
express I V−U as a direct limit of finite type quasi-coherent subideal sheaves to replace X ′ with a suitable
quasi-compact open subscheme while preserving the conditions p(f(U)) ⊆ X ′ and X ′ ∩ V = U . (This can
be done because f(U) is quasi-compact in Y and both U and V are quasi-compact.)

Give f(U) its canonical closed subscheme structure in p−1(X ′) (and thus in Y ) as the scheme-theoretic
image of the quasi-compact, quasi-separated map f : U → p−1(X ′). By Case 2 (with f(U)→ X ′ in the role
of Y → X), there is a finite type quasi-coherent ideal sheaf I ′ on X ′ with V (I ′) ⊆ X ′−U = X ′−(X ′∩V ) ⊆
X − V as sets and such that X̃ ′ = BlI ′(X ′) quasi-dominates f(U) as an X ′-scheme. Let f ′ : W ′ → f(U)
be the associated X ′-morphism extending f , with W ′ ⊆ X̃ ′ an open subscheme containing U and graph
subscheme

Γf ′ ⊆W ′ ×X′ f(U) ⊆ X̃ ′ ×X′ f(U)

that is closed. As usual, such a W ′ is automatically dense in the U -admissible blow-up X̃ ′ since it contains
the dense open U .

We can construct a quasi-coherent finite type ideal sheaf I on X with I |X′ = I ′ and V (I ) disjoint
from V . Indeed, in the noetherian case we take I to be the coherent ideal sheaf defining the schematic
closure of V (I ′) in X. In general, shrink this I by a direct limit argument as for the I i’s in Case 2. Define
the V -admissible blow-up X̃ = BlI (X). We may view X̃ ′ as an open subscheme in X̃ and U as a dense
open in X̃ (perhaps not schematically dense if U 6= V ), so W ′ is a dense open in X̃. We want to check that
Γf ′ ⊆ X̃ ×X Y is closed. But X̃ ×X f(U) ⊆ X̃ ×X Y is closed, so it suffices to observe that

X̃ ′ ×X′ f(U) ' X̃ ×X f(U),

since p(f(U)) ⊆ X ′.

General Case: Let {Yi} be a finite open affine covering of Y , chosen small enough so that each Yi ↪→
Y

p→ X factors through an open affine subscheme in X. Thus, each Yi is quasi-affine over X. Define
Ui = f−1(Yi) ⊆ U ⊆ V , Xi = Ui (the scheme-theoretic image of the quasi-compact open immersion
Ui → X), and Vi = Xi ∩ V .

Consider the commutative diagram

Ui

fi
��

// Vi

��
Yi ∩ p−1(Xi) // Xi

Since pi : Yi ∩ p−1(Xi) → Xi is quasi-affine (because Yi → X is) and Ui is dense in Xi, the hypotheses of
Case 3 are satisfied for pi, Ui ⊆ Vi, and fi. Observe that even if U = V at the start, it is possible that Vi is
strictly larger than Ui. Thus, it is essential that Case 3 allows “U 6= V ” (i.e., Case 2 is not adequate). By
Case 3, there exists a finite type quasi-coherent ideal sheaf I i on Xi such that

V (I i) ⊆ Xi − Vi = (X − V ) ∩Xi



18 BRIAN CONRAD

as sets and such that the Vi-admissible blow-up X̃i = BlI i
(Xi) quasi-dominates Yi ∩ p−1(Xi) over Xi in a

manner extending fi.
We next claim that there exists a finite type quasi-coherent ideal sheaf I i with V (I i) disjoint from V and

with V (I i)∩Xi = V (I i) as closed subschemes ofXi; i.e., the subsheaf (I i+IXi)/IXi ⊆ OX/IXi ' OXi
is equal to I i. In the noetherian case, take I i to be the coherent preimage of I i ⊆ OXi under the surjection
OX � OXi . The noetherian reader should now skip to the next paragraph. In the general case, we begin
by canonically writing I i = K i /IXi with K i ⊆ OX a quasi-coherent ideal sheaf containing IXi . Note
that K i |V = OX |V because

(OX/K i)|V = (OXi/I i)|V = 0

(since V (I i) ∩ V = ∅). Thus, we have K i = lim−→K i,α with K i,α ⊆ K i running through the finite type
quasi-coherent subideal sheaves in K i which satisfy K i,α |V = OX |V . Since (K i,α + IXi)/IXi is a quasi-
coherent OXi-ideal sheaf inside of I i and these have direct limit I i, the fact that I i is of finite type and
Xi is quasi-compact implies that we can take I i = K i,α for suitably large α.

Define I =
∏

I i, so V (I ) is disjoint from V . Since I is of finite type, q : X̃ = BlI (X) → X is a
V -admissible blow-up. Letting ι : U ↪→ X̃ be the canonical open immersion, define F = (ι, f) : U → X̃×Y X
to be the quasi-compact immersion induced by f . Let F (U) denote the scheme-theoretic image of F (in
particular, the underlying space of F (U) is the topological closure of F (U)). We claim that F (U) → X̃ is
quasi-finite. Since this map is trivially of finite type, it remains to check that the fibers are finite as sets.
We will prove this by exhibiting F (U) as a subset of a finite union of subsets of Y ×X X̃ that each map
injectively to X̃.

Recall that by the definition of I i in terms of quasi-dominations via our preceding applications of Case 3,
there is an open subscheme Ṽi ⊆ X̃i = BlI i

(Xi) (not necessarily a blow-up of an open in Xi) that contains
Ui and for which there exists an X̃i-section Fi : Ṽi → X̃i×Xi (Yi∩p−1(Xi)) that extends the graph morphism
Γfi and has a closed image (and so is a closed immersion). We will use this later.

We now relate some of the different blow-ups. First, using the notion of strict transform as reviewed in
§1, we can naturally view the Ui-admissible blow-up X̃i = BlI i(Xi) as a closed subscheme of BlI i

(X) over
the closed immersion Xi ↪→ X. Thus, we can construct the commutative diagram

X ′i
//

��

X̃

��
X̃i

��

// BlI i
(X)

��
Xi

// X

in which the top square (with right side built via (1.2)) is cartesian, the composite along the right side is
q, and all other maps are as described above. In particular, X ′i → X̃i is an isomorphism over the open
subscheme Ui (viewed in either Xi or X) since Ui ⊆ V in X.

Applying the base change by X ′i → X̃i to the closed immersion of X̃i-schemes

Fi : Ṽi ↪→ X̃i ×Xi (Yi ∩ p−1(Xi))

with open Ṽi ⊆ X̃i containing Ui gives rise to an open subscheme U ′i ⊆ X ′i containing q−1(Ui) ' Ui and a
closed immersion

ϕi : U ′i ↪→ X ′i ×Xi (Yi ∩ p−1(Xi))

of X ′i-schemes with ϕi(U ′i) containing the topological closure F (Ui) of F (Ui) inside of X ′i×Xi (Yi∩p−1(Xi)).
The topological closure of F (U) in X̃×X Y , which is exactly the underlying space of F (U), has the property
that it meets X̃ ×X Yi in the relative closure of the subset F (U) ∩ (X̃ ×X Y ) = F (Ui) since Yi = f−1(Ui).
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Using the closed immersion

X ′i ×Xi (Yi ∩ p−1(Xi)) ' X ′i ×X Yi ↪→ X̃ ×X Yi,

we conclude that F (U)∩ (X̃×X Yi) ⊆ ϕi(U ′i) as sets, so F (U) ⊆
⋃
ϕi(U ′i). But the map ϕi(U ′i) ↪→ X ′i ↪→ X̃

is set-theoretically injective. Therefore, the map F (U)→ X̃ is quasi-finite. This map is also separated since
Y → X is separated.

The importance of this map being quasi-finite and separated is that it implies that the morphism F (U)→
X̃ is quasi-affine, due to Zariski’s Main Theorem ([EGA, IV4, 18.12.12] in the general case). Combining this
quasi-affineness and Lemma 1.2, we may apply the base change by the V -admissible blow-up X̃ → X to
reduce to the case in which the scheme-theoretic image f(U) of U in Y is quasi-affine over X. Since we can
always replace Y by f(U), we are reduced to the case in which Y → X is quasi-affine. But this was Case
3. �

We can use Theorem 2.4 to prove a refined version of Chow’s Lemma, somewhat generalizing the version
given in [EGA, II, 5.6.1] even in the noetherian case. Recall that we define projectivity and quasi-projectivity
for morphisms as in [EGA, II, 5.3, 5.5].

Corollary 2.6. [D, Cor. 1.4] (Chow) Let S be quasi-compact and quasi-separated, f : X → S a separated
and finite type map. Then for any quasi-compact dense open subscheme U ⊆ X which is quasi-projective
over S, there exists a diagram of S-schemes

X
q←− X ′

j
↪→ X

with q a U -admissible blow-up, X → S projective, and j a dense open immersion (necessarily quasi-compact).
In particular, q is projective and surjective, q−1(U) ' U , and U ' q−1(U) ↪→ X ′ is quasi-compact.

This refines the traditional formulation of Chow’s Lemma not only by eliminating noetherian hypothesis
in a stronger manner than in [EGA, II, 5.6.1], but also by controlling the center of the blow-up.

Proof. Since U → S is quasi-projective, there exists a quasi-compact open immersion U ↪→ Y with Y → S
projective. Let U∗ denote the scheme-theoretic image of U in Y , so U∗ → S is projective and U → U∗ is a
quasi-compact open immersion which is schematically dense.

Because i : U → X is a quasi-domination of U over X, by Theorem 2.4 we can find a U -admissible blow-up
U∗∗ of U∗ such that we have a commutative diagram of S-schemes

(2.2) U // V
h //

ϕ

��

U∗∗

U
i
// X

with h : V → U∗∗ a quasi-compact open immersion and Γϕ ⊆ V ×S X ⊆ U∗∗ ×S X a closed subscheme. In
particular, ϕ factors as

V ' Γϕ ↪→ U∗∗ ×S X
p2−→ X,

so ϕ is proper and V is quasi-compact. Note also that U ⊆ U∗∗ is a schematically dense open immersion, so
U is schematically dense in V . Also, V is S-separated since X is S-separated by hypothesis.

We now need to prove an auxiliary lemma before continuing with the proof. This lemma, whose formu-
lation is a bit long, will be useful later as well.

Lemma 2.7. [D, Lemme 1.5] Let S be a quasi-compact, quasi-separated scheme. Consider a commutative
diagram of separated finite type S-schemes

U // V //

ϕ

��

Y

U // X
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with all horizontal maps open immersions (necessarily quasi-compact). We assume that U is dense in X and
Y , and that U is schematically dense in V . Suppose that ϕ is a quasi-domination of Y over X.

Let I be a quasi-coherent finite type ideal sheaf on X with V (I ) disjoint from U , and for which the U -
admissible blow-up X̃ = BlI (X) is quasi-dominant over V in a manner extending the map U ↪→ V . (Such
an I is provided by Theorem 2.4, applied to U = U ⊆ X and the quasi-domination U ↪→ V of U over V ).
Let ψ : W → V be the map corresponding to this quasi-domination, where j : W ↪→ X̃ is an open subscheme
containing U . Finally, suppose that the quasi-compact open immersion U ↪→ X̃ (which necessarily has dense
image) is schematically dense.

Under these conditions, the associated diagram

U

��@
@@

@@
@@

@
// W

ψ

��

j // X̃

��
V ϕ

// X

has the following properties:
(i) W is V -isomorphic to BlI ·OV (V ) (so ψ is proper),
(ii) The graph Γψ ⊆W ×S V ⊆ X̃ ×S Y is closed.

Proof. Let Ṽ = BlI ·OV (V ). By the universal property of X̃, there is a unique X-morphism α : Ṽ → X̃. In
particular, α−1(I ·O eX) · OeV = (ϕ−1(I ) · OV ) · OeV . Since the diagram

W

ψ

��

j // X̃

��
V ϕ

// X

commutes, with j an open immersion, we also have a unique V -morphism β : W → Ṽ . In particular,
β−1((ϕ−1(I ) · OV ) · OeV ) · OW = j−1(I ·O eX) · OW .

Since the X-morphisms α ◦ β and j from W to X̃ pull I ·O eX back to the same ideal sheaf (in particular,
to an invertible ideal sheaf), these maps coincide. Thus, we have a commutative diagram

W
β //

ψ ��@
@@

@@
@@

@ Ṽ

��

α // X̃

��
U

OO

// V ϕ
// X

in which the composites along the rows are exactly the given open immersions U ↪→ X and W
j→ X̃.

Since the closed subscheme Γϕ ⊆ V ×S X projects isomorphically to V , its pullback Γ in V ×S X̃ is
proper over V (because X̃ → X is proper). Also, U → W inside of X̃ is schematically dense (as U ↪→ X̃

is), so by definition of ψ being a quasi-domination of X̃ over V extending U → V we see that the closed
subscheme Γψ ⊆ W ×S V ⊆ X̃ ×S V is the schematic closure of the composite (quasi-compact) immersion
∆U/S ↪→ U ×S U ↪→ U ×S V in X̃ ×S V ; see the discussion preceding Theorem 2.4. We will now use this to
show that ψ is proper.

Let Γ′ ⊆ X̃ ×S V correspond to the V -proper closed subscheme Γ ⊆ V ×S X̃ under the flip isomorphism
V ×S X̃ ' X̃ ×S V . The map X̃ → X is an isomorphism over U , so clearly ∆U/S ⊆ X̃ ×S V lies in Γ′.
Since Γ′ is a closed subscheme in X̃ ×S V , it contains the schematic closure Γψ of ∆U/S . In particular, Γψ
is V -proper since Γ′ is, so ψ is proper.
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Now we are ready to prove (ii), and then we will prove (i). Consider the commutative diagram

(2.3) V ×S X̃

��

// Y ×S X̃

��
V ×S X // Y ×S X

in which the horizontal maps are immersions. Since Γϕ ⊆ Y ×S X is a closed subscheme (because ϕ is
a quasi-domination of Y over X), if we pull this back to Y ×S X̃ we get a closed subscheme Z. By the
commutativity of (2.3), Γϕ ⊆ V ×S X is a closed subscheme whose pullback Γ to V ×S X̃, when viewed as
a subscheme of Y ×S X̃, is exactly Z. In particular, Γ is closed in Y ×S X̃. But we just saw above that Γψ
is a closed subscheme of Γ′. This proves (ii).

To prove (i), we will show that β is an isomorphism. Since ψ is proper and Ṽ → V is separated, it follows
that β is proper. But α ◦ β : W → X̃ is an open immersion, so β is a categorical monomorphism. Proper
monomorphisms are closed immersions (by [EGA, IV4, 18.12.6] without noetherian hypotheses), so β is a
closed immersion. However, U is schematically dense in V , so the U -admissible blow-up Ṽ → V makes U
schematically dense in Ṽ . That is, the composite map

U →W
β−→ Ṽ

is schematically dense, so β is schematically dense. But β is a closed immersion, so it must be an isomorphism.
This completes the proof of Lemma 2.7. �

Now we return to the proof of Corollary 2.6. We shall first reduce to the case when (2.2) satisfies all of
the hypotheses in Lemma 2.7. By Lemma 1.2 (and Lemma 1.3 in the non-noetherian case), at the start of
the proof of Corollary 2.6 we could have blown-up X along a finitely presented closed subscheme structure
on the closed set X − U so that U ↪→ X is not just an open immersion with dense image, but is also a
schematically dense map. Thus, any further U -admissible blow-ups of X will contain U as a schematically
dense open subscheme. In particular, we can apply Lemma 2.7 with I there provided by Theorem 2.4. The
S-separatedness of X is crucial for the applicability of Lemma 2.7.

Using Lemma 2.7 (which is compatible with the notation preceding Lemma 2.7), together with the proper-
ness of ϕ : V → X and ψ : W → V in that lemma, we see that the resulting dense open immersion
j : W ↪→ X̃ = BlI (X) is proper and therefore an isomorphism. Thus, W = X̃. In particular, X̃ is X-
isomorphic to the blow-up of V along I ·OV . Let I ′ be a finite type quasi-coherent ideal sheaf on U∗∗ with
I ′ |V = I ·OV and V (I ′) disjoint from U ; the noetherian reader should take I ′ to define the schematic
closure of V (I ·OV ) in U∗∗. We have seen the argument needed to justify the existence of such an I ′ in
the non-noetherian case a couple of times already (using the quasi-compactness of U) so we don’t repeat the
argument again.

DefineX ′ = X̃ = BlI (X) andX = BlI ′(U∗∗). Observe that the unique map k : X ′ 'W = BlI ·OV (V ) ↪→
X over the quasi-compact open immersion h : V → U∗∗ is an open immersion that is the identity map
between the dense open copies of U in each side, so k has dense image. The quasi-compactness of k and
U ↪→ X ′ follow readily from [EGA, IV1, 1.1.2(v)]. This completes the proof of Corollary 2.6 since X → U∗ is
a U -admissible blow-up (by Lemma 1.2) with U∗ projective over S, and a composite of projective morphisms
is projective. �

We now come to what is the most time-consuming lemma in Nagata’s original treatment. Thanks to
Lemma 2.7, this step will not be too difficult for us.

Theorem 2.8. [N1, Lemma 4.2], [D, Lemme 1.6] Let S be a quasi-compact, quasi-separated scheme. Con-
sider a diagram of finite type separated S-schemes

X2 ←↩ U ↪→ X1,

with each U ↪→ Xi a (necessarily quasi-compact) open immersion with dense image. Then there exists
a schematically dense open immersion j : U ↪→ X with X separated of finite type over S (and so j is
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automatically quasi-compact with a dense image) such that there is a proper quasi-domination of X over
each Xi extending U ↪→ Xi.

Proof. We begin by making the simple observation that if f : U → Y is a proper quasi-domination of Xi

over some Y and if g : Y → Y ′ is proper then g ◦ f : U → Y ′ is a proper quasi-domination of Xi over Y ′.
Therefore, by blowing up Xi along (Xi −U)red in the noetherian case, or more generally along a finite type
quasi-coherent ideal sheaf with zero locus Xi−U (using Lemma 1.3 since U → Xi is quasi-compact), we can
assume that U is schematically dense in each Xi. In particular, U will be schematically dense in any further
U -admissible blow-ups of the Xi’s.

By Theorem 2.4, we see that X1 can be replaced with a suitable U -admissible blow-up so that we have a
commutative diagram of S-schemes

(2.4) U

  A
AA

AA
AA

A
// V

��

// X1

X2

in which V → X1 is an open immersion with closed graph in X1 ×S X2, so V is quasi-compact (since V is
the image of a closed subscheme of the quasi-compact scheme X1 ×S X2 under the continuous projection
map X1 ×S X2 → X1). In particular, V is separated and finite type over S and U is schematically dense in
V . We can apply Lemma 2.7 to (2.4) to obtain a commutative diagram of S-schemes

(2.5) U // W //

ψ

��

X ′2

��
U // V // X2

such that
(i) X ′2 is a U -admissible blow-up of X2 in which W is an open subscheme containing U ,
(ii) ψ is a U -admissible blow-up along some finite type quasi-coherent ideal sheaf I on V ,
(iii) Γψ ⊆W ×S V ⊆ X ′2 ×S X1 is a closed subscheme.

By the usual arguments, we can construct a finite type quasi-coherent ideal sheaf I ′ on X1 such that
I ′ |V = I and V (I ′) is disjoint from U . (In the noetherian case, we may take V (I ′) to define the
schematic closure of V (I ) in X1.) Let q : X ′1 → X1 be the U -admissible blow-up along I ′. Thus, ψ induces
an isomorphism ψ̃ between W and q−1(V ). Since the graph subscheme Γψ ⊆ X ′2×SX1 is closed, its pullback
Γ ⊆ X ′2 ×S X ′1 under 1× q : X ′2 ×S X ′1 → X ′2 ×S X1 is a closed subscheme. But clearly Γ = Γ eψ, so we have
an S-isomorphism between open subschemes of X ′2 and X ′1 with a closed graph in X ′2×S X ′1. Therefore, the
gluing X of the X ′i’s along this isomorphism is separated over S.

It is obvious that X → S is of finite type. Since the left square in (2.5) commutes, we have a natural open
immersion U ↪→ X over S, and since U is schematically dense in each X ′i, U is schematically dense in X.

We claim that the natural maps pi : X ′i → Xi are the proper quasi-dominations of X over Xi that we
want. Clearly these extend U ↪→ Xi and are proper. To see that the graph Γpi ⊆ X ′i ×S Xi ⊆ X ×S Xi is
closed, it suffices to check that its preimage under the surjective closed map X ×S X ′i � X ×S Xi is closed.
This preimage meets X ′i ×S X ′i in the closed subset cut out by ∆X′i/S

, and it meets X ′3−i ×X ′i in the closed
subscheme Γ (or its “flip”, depending on whether i = 1 or i = 2). Since X ′1 ×S X ′i and X ′2 ×S X ′i give an
open covering of X ×S X ′i, we are done. �

Remark 2.9. Using Lemma 1.2, the above proof shows that the proper quasi-domination of X over Xi can
be taken to be a U -admissible blow-up of Xi.

Theorem 2.8 is the key tool for gluing without losing separatedness over the base. For completeness (and
later applications), we mention the following easy generalization of Theorem 2.8.

Corollary 2.10. Let S be quasi-compact and quasi-separated. Consider a finite collection of dense open
immersions ji : U ↪→ Xi between finite type separated S-schemes. Then there exist U -admissible blow-ups
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X ′i → Xi and a separated finite type S-scheme X, together with open immersions X ′i ↪→ X over S, such that
the X ′i cover X and the composite open immersions U → X ′i → X are all the same.

Proof. By induction and Lemma 1.2, we may assume that our collection consists of just two dense open
immersions. In this case, the result follows from Remark 2.9 and the construction in the proof of Theorem
2.8. �

As a special case of Corollary 2.10, if X1 and X2 are proper S-schemes (with S quasi-compact and
quasi-separated) and there are quasi-compact dense open immersions U → Xj then there are U -admissible
blow-ups X ′i of Xi that are an open cover with overlap U in a separated finite type S-scheme X. But the
open immersions X ′i → X over S are visibly dense and proper, hence are isomorphisms, so X1 and X2 have a
common U -admissible blow-up (thereby “explaining” a posteriori how they share U as a common dense open
subscheme). This observation can also be deduced from the following characterization of proper birational
maps that is not used in the proof of Nagata’s theorem (nor is it mentioned in [D]) but follows easily from
Lemma 2.7 (and Lemma 1.2) and is quite interesting for its own sake.

Theorem 2.11. Let f : X ′ → X be a proper map between quasi-compact and quasi-separated schemes, and
let U ⊆ X be a quasi-compact dense open subscheme such that f is an isomorphism over U and makes U
dense in X ′. There exist U -admissible blow-ups X̃ ′ → X ′ and X̃ → X and an isomorphism X̃ ′ ' X̃ over f .

Loosely speaking, this theorem says that a proper map is birational if and only if its source and target
admit a common blow-up. In particular, such a map is the “composition” of a blow-up and the “inverse” of
a blow-up. Even for abstract varieties over an algebraically closed field this is not a well-known fact.

Proof. The map U → X ′ is quasi-compact, so there is a quasi-coherent finite type ideal sheaf K on X ′

with V (K ) = X ′ − U as sets. Replacing X ′ with BlK (X ′) loses no generality (by Lemma 1.2) and lets
us assume that U is schematically dense in X ′. Now apply Lemma 2.7 with X = S, Y = V = X ′,
and ϕ = f . Taking I as in that lemma, since f is proper it follows that the dominant open immersion
j : W = BlI ·OX′ (X

′)→ BlI (X) over f is proper, hence an isomorphism. �

Remark 2.12. By using Lemma 1.2, it follows from two applications of Theorem 2.11 that any two proper
birational maps from a common source become isomorphisms after suitable blow-ups. To be precise, let
πi : X → Yi be a pair of proper birational maps between quasi-compact and quasi-separated schemes in the
sense that there are dense open subschemes Ui ⊆ Yi such that U ′i = π−1

i (Ui) is dense in X and πi is an
isomorphism over Ui. Let U = U ′1 ∩ U ′2, so U is a dense open subscheme of X and can be viewed as a dense
open subscheme of each Yi (with πi an isomorphism over U). By Theorem 2.11 we can find U -admissible
blow-ups of X and Y1 that are isomorphic over π1, and by Lemma 1.2 we can rename these blow-ups as
X and Y1 (and replace π2 with its composite back to the chosen U -admissible blow-up of the original X)
so as to get to the case when π1 is an isomorphism. An application of Theorem 2.11 to π2 (and another
application of Lemma 1.2) then completes the argument.

After we have proved Nagata’s theorem, we will be able to easily deduce generalizations of Theorem 2.11
and Remark 2.12 in which the properness hypothesis is relaxed (and the isomorphism conclusion is weakened
appropriately).

3. More Blow-up Lemmas

We now prove some further lemmas, building on §1. These will be needed for the proof of Nagata’s
theorem in §4. For motivational purposes, the reader may prefer to go directly to §4 and to only return to §3
when results here are cited there. More precisely, Lemma 3.1 is only used in the proof of Lemma 3.2, which
in turn is crucial to get properness of the gluing construction of the desired compactification in the proof of
Nagata’s theorem.
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The following technical-looking lemma roughly says that if q : X2 → X1 is a birational map that is an
isomorphism over a dense open U ⊆ X1 and if V ⊆ X1 is an open subscheme containing U such that there
is a containment

q−1(Z1 ∩ V ) = q−1(Z1) ∩ q−1(V ) ⊆ Z2 ∩ q−1(V )
as subsets of q−1(V ) for closed subsets Zj ⊆ Xj , then after base change by a V -admissible blow-up of X1

centered in Z1 − (Z1 ∩ V ) we have the stronger containment relation q−1(Z1 ∩ V ) ⊆ Z2 as subsets of X2.
The actual lemma is more general in the sense that it does not impose density conditions on U or require q
to be birational. However, the lemma will only be used (in the proof of Lemma 3.2) in the special case just
considered.

Lemma 3.1. [D, Lemme 0.4] Consider a commutative diagram of schemes

U // V2
//

p

��

X2

q

��
U // V1

// X1

in which all horizontal maps are open immersions, q−1(V1) = V2, and X1 and X2 are quasi-compact and
quasi-separated. Assume that V1 ↪→ X1 is quasi-compact and q is quasi-compact and separated. Let Zi be a
closed subscheme of Xi such that the open immersion Xi−Zi ↪→ Xi is quasi-compact. Define Y1 = Z1

⋂
V1,

a closed subscheme of V1. Assume that p−1(Y1) ⊆ Z2 as sets (equivalently, q−1(Y1) ⊆ Z2 as sets).
There exists a finite type quasi-coherent ideal sheaf I on X1 with V (I ) ⊆ Z1 − Y1 = Z1 ∩ (X1 − V1) as

sets such that after base change by the V1-admissible blow-up X ′1 = BlI (X1)→ X1, we have q′−1(Y ′1)
⋂
U ′ ⊆

Z ′2
⋂
U ′ as subsets of X ′2. Here, q′, Y ′1 , etc. denote the base change of q, Y1, etc. by X ′1 → X1, and U ′ (resp.

Y ′1) is the topological closure of U ′ in X ′2 (resp. Y ′1 in X ′1).

Proof. We want to apply Lemma 1.5 to the diagram

(3.1) q−1
0 (X1 − Z1)

��

j // X2 − Z2

q0

��
X1 − Z1

// X1 − (Z1 − Y1) // X1

Here, q0 is the map induced by q, so q−1
0 (X1 − Z1) = X2 − (q−1(Z1)

⋃
Z2). All horizontal maps in (3.1) are

quasi-compact open immersions: for the top row, use that q : X2 − q−1(Z1)→ X1 − Z1 and X1 − Z1 → X1

are quasi-compact and q is separated (so X2 − q−1(Z1) → X2 is quasi-compact); for the bottom row, use
that X1 − (Z1 − Y1) = (X1 − Z1) ∪ V1 with X1 − Z1 and V1 quasi-compact opens in X1.

Let I 1 = I Z1 , T1 = V (I 2
1). Observe that

(X1 − (Z1 − Y1))− (X1 − Z1) = Y1

has its topological closure in X1 lying inside of Z1, and also that

X1 − (X1 − (Z1 − Y1)) = Z1 − Y1

as sets, with Z1 − Y1 = Z1

⋂
(X1 − V1) a closed set in X1. In order to profitably apply Lemma 1.5, we need

to find a finite type quasi-coherent ideal sheaf I 2 on X1 so that T2 = V (I 2) has underlying space contained
in the closed set Z1 − Y1 in X1 and

q−1
0 (T1)

⋂
q−1
0 (X1 − T1) ⊆ q−1

0 (T2)

as closed subschemes (not just as closed subsets) of X2 − Z2. (The finite type condition on I 2 is not
a hypothesis in Lemma 1.5, but it is needed for how we will use the conclusion of Lemma 1.5.) Here,
q−1
0 (X1 − T1) denotes the scheme-theoretic image of the scheme q−1

0 (X1 − T1) = q−1
0 (X1 − Z1) under the

quasi-compact immersion j. In particular, the underlying space of q−1
0 (X1 − T1) is the topological closure

of j(q−1
0 (X1 − T1)) in X2 − Z2.
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Before we construct I 2, we first check the weaker set-theoretic statement that q−1
0 (Z1)

⋂
q−1
0 (X1 − Z1) ⊆

q−1
0 (Z1 − Y1) as closed subsets in X2 − Z2. This is easy, since

q−1
0 (Z1 − Y1) = q−1(Z1 − Y1)

⋂
(X2 − Z2) = (q−1(Z1)− p−1(Y1))

⋂
(X2 − Z2),

yet p−1(Y1) ⊆ Z2 by hypothesis, so q−1
0 (Z1 − Y1) = q−1(Z1)

⋂
(X2 − Z2) = q−1

0 (Z1), which gives what we
want.

Since Z1 − Y1 = (X1 − V1)
⋂
Z1 as subsets of X1, our quasi-compactness assumptions on V1 ↪→ X1 and

X1 − Z1 ↪→ X1 enable us (via Lemma 1.3 in the non-noetherian case) to get a finitely presented closed
subscheme structure T on Z1 − Y1 inside of X1. The proved containment

q−1
0 (T1)

⋂
q−1
0 (X1 − T1) ⊆ q−1

0 (T )

as sets, together with the quasi-compactness of q−1
0 (T ) (this is closed in the quasi-compact space X2 − Z2),

enables us to take T2 = V (I 2) to be a suitable nilpotent thickening of T .
Define I = I T1 + I T2 , so V (I ) is supported inside Z1 − Y1 ⊆ X1 − V1. This is a finite type quasi-

coherent ideal sheaf on X1 since I T1 and I T2 are finite type, and we will show that the V1-admissible
(hence U -admissible) blow-up X ′1 = BlI (X1) → X1 satisfies the desired properties. By Lemma 1.5 applied
to (3.1), after base change by the blow-up X ′1 → X1, the closure of (q−1

0 (X1 − Z1))′ ' q−1
0 (X1 − Z1) in

(X2 − Z2)′ = X ′2 − Z ′2 is disjoint from q′
−1
0 (Y ′1) inside of X ′2 − Z ′2. Thus, q′−1(Y ′1) meets X ′2 − Z ′2 inside of

an open W ⊆ X ′2 − Z ′2 which lies inside of

(X ′2 − Z ′2)− (q−1
0 (X1 − Z1))′ = ((X2 − Z2)− q−1

0 (X1 − Z1))′ = (q−1
0 (Z1))′ = (q−1(Z1)

⋂
(X2 − Z2))′.

We want W
⋂
U ′ = ∅ inside of X ′2 (where U ′ denotes the closure of U ′ ' U in the base change X ′2 of X2 by

the U -admissible blow-up X ′1 → X1). Since W is open in X ′2, it suffices to check W
⋂
U ′ = ∅. Clearly

W
⋂
U ′ ⊆ (q−1(Z1)

⋂
(X2 − Z2))′

⋂
U ′ = (q−1(Z1)

⋂
(X2 − Z2)

⋂
U)′.

However, by hypothesis p−1(Y1) ⊆ Z2 as sets, so

q−1(Z1)
⋂

(X2 − Z2) ⊆ q−1(Z1)− p−1(Y1) = q−1(Z1)
⋂

(X2 − V2)

(recall Y1 = Z1

⋂
V1 and q−1(V1) = V2), and this is disjoint from U in X2 since U ⊆ V2 in X2. �

We need one more lemma (with a long proof) before we can prove the main theorem. Before we give the
statement of the lemma, we need to set up some notation. Fix a quasi-compact, quasi-separated scheme S,
and consider a commutative diagram of quasi-compact, separated S-schemes

U // Xi
//

qi

��

Xi

U // X

for 1 ≤ i ≤ m, with each horizontal map a quasi-compact open immersion and U topologically dense in
both X and Xi. The notation Xi is merely suggestive; we do not assume that Xi is schematically dense in
Xi (though it will be so in our applications). Assume that all maps Xi → S and qi are proper and that
X → S is of finite type. Let U denote the scheme-theoretic closure of U under the quasi-compact immersion
U ↪→

∏
Xi, and let

πi : U ↪→
m∏
j=1

Xj → Xi

be the canonical quasi-compact map (which is surjective since it is closed and U lies in the image). Here
and in what follows, all products are taken over S unless otherwise specified. Finally, assume that we have
finitely presented closed subschemes Yi ↪→ Xi for all i, satisfying

⋂
π−1
i (Yi) = ∅.
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Fix an Xi-admissible blow-up X
′
i → Xi for each i, so we have quasi-compact immersions X ′i, Y

′
i ⇒ X

′
i

induced by base change, with X ′i ' Xi and Y ′i ' Yi. Let Y ′i denote the scheme-theoretic closure of Y ′i in X
′
i.

We have a quasi-compact immersion
U ′

def= U ↪→
∏

X
′
i

induced by U ↪→ Xi ' X ′i ↪→ X
′
i, so we have a scheme-theoretic closure U ′ of U ′ as well as canonical

(surjective) maps
π′i : U ′ ↪→

∏
X
′
i → X

′
i.

There is a natural map U ′ → U which is proper and extends the identity map between the canonical dense
open subscheme U on each side, so U ′ → U is surjective. From this we readily see that

⋂
(π′i)

−1(Y ′i ) = ∅.
In other words, our hypotheses are preserved after replacing each Xi with any Xi-admissible blow-up. Our
aim is to show that for such suitably well-chosen blow-ups, an even stronger disjointness property holds.

Lemma 3.2. [D, Lemme 0.5] With the above notation and hypotheses, we can choose Xi-admissible blow-ups
X
′
i → Xi so that

⋂
(π′i)

−1(Y ′i ) = ∅.
Proof. Because X → S is separated and finite type, Theorem 2.4 ensures the existence of an Xi-admissible
blow-up X

′
i → Xi such that there is a quasi-domination (Vi, fi) of X

′
i over X extending qi : Xi → X.

Since fi : Vi → X is an S-map between separated S-schemes it must be separated, and qi is proper, so
the (necessarily dense) open immersion Xi ↪→ Vi is proper and therefore an isomorphism. Thus, qi is a
quasi-domination of X

′
i over X, so Γqi ⊆ X

′
i ×S X is a closed subscheme. By Lemma 1.2, we may replace

Xi by X
′
i and so can suppose that the graph subscheme Γqi is closed in Xi ×S X. In other words, (Xi, qi)

is a quasi-domination of Xi over X. This condition will be critical later in the proof, and this is the reason
why we had to assume that X → S is of finite type and all of the qi are proper.

Since π−1
i (Yi)→ Yi and Yi → S are quasi-compact and U → S is separated, the immersion π−1

i (Yi) ↪→ U is
quasi-compact. Let π−1

i (Yi) denote the scheme-theoretic closure of π−1
i (Yi) in U , and let I i be the associated

quasi-coherent ideal sheaf in OU , so I i |π−1
i (Xi)

= I π−1
i (Yi)

since Yi is closed in Xi. Since U ⊆
∏
Xi inside

of
∏
Xi and Yi ⊆ Xi is closed, we have

(3.2) U
⋂(⋂

π−1
i (Yi)

)
⊆
⋂
π−1
i (Yi) = ∅.

Thus, the closed subscheme Zi = V (I i) ⊆ U meets π−1
i (Xi) in π−1

i (Yi) and

U
⋂(⋂

Zi

)
= ∅,

so U
∗

= Bl∩Zi(U) is a U -admissible blow-up of U if each quasi-coherent I i is of finite type. (Recall that the
definition of an admissible blow-up requires that the blown-up ideal sheaf be of finite type.) The noetherian
reader should skip to the next paragraph. For the general case, we write I i = lim−→I i,α (α ∈ Ai), with I i,α

running through the quasi-coherent finite type subideal sheaves in I i such that I i,α |π−1
i (Xi)

= I π−1
i (Yi)

.
By (3.2), the quasi-compactness of the scheme U implies that for sufficiently large αi ∈ Ai, 1 ≤ i ≤ m,
K i = I i,αi has the property that the finitely presented closed subscheme V (K i) ⊆ U meets π−1

i (Xi) in
π−1
i (Yi) and U

⋂
(
⋂
V (K i)) = ∅ (as in the noetherian case). We therefore rename V (K i) as Zi and redefine

U
∗

= BlP K i
(U) = Bl∩Zi(U), so U

∗
is a U -admissible blow-up of U .

We have a commutative diagram

U
∗

��
U

>>}}}}}}}}
//

��

U

πi

��
Xi

// Xi
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with U → U
∗

an open immersion. Letting pi : U
∗ → U

πi−→ Xi be the canonical quasi-compact map, we get
a commutative diagram

(3.3) U // p−1
i (Xi)

��

// U
∗

pi

��
U // Xi

// Xi

in which all horizontal maps are quasi-compact open immersions. Let Z̃i ⊆ U
∗

be the strict transform of
the closed subscheme Zi ⊆ U with respect to the U -admissible blow-up U

∗ → U .
By Lemma 1.4,

⋂
Z̃i = ∅. The noetherian reader should define Ti = Z̃i ⊆ U

∗
and define Y i to be the

schematic closure of Yi in Xi, so ∩Ti = ∅ and Y i ∩Xi = Yi, and skip to the next paragraph. In the general
case, two problems are that Z̃i might not be finitely presented as a closed subscheme of U

∗
and the schematic

closure of Yi in Xi may not be finitely presented. The usual limit argument gives finitely presented closed
subschemes Ti ⊆ U

∗
with Z̃i ⊆ Ti and

⋂
Ti = ∅. Again repeating the usual limit argument, we can find a

finitely presented closed subscheme Y i in Xi with Y i ∩Xi = Yi. (This is a smearing-out of the schematic
closure of Yi in Xi.)

Since the open immersions U
∗−Ti → U

∗
and Xi−Y i → Xi are quasi-compact, we can apply Lemma 3.1 to

(3.3) using Y i and Ti as Z1 and Z2 in Lemma 3.1 provided that we can choose Ti so that p−1
i (Yi) ⊆ Ti as sets.

We will now show that for suitable choices of Zi, we have p−1
i (Yi) ⊆ Z̃i as sets. Since Zi∩π−1

i (Xi) = π−1
i (Yi),

by Lemma 1.1 it suffices to show that each π−1
i (Yi) is disjoint from ∩Zj , the center of the blow-up U

∗ → U .
In the noetherian case (with Zi taken to be the schematic closure of π−1

i (Yi) in U , as we may do in this case)
this means that each π−1

i (Yi) is disjoint from
⋂
π−1
j (Yj), and in the general case it is also sufficient to prove

this same disjointeness property (as then by the usual argument with quasi-compactness and limits we can
shrink each Zj around π−1

j (Yj) so that π−1
i (Yi)

⋂
(∩Zj) = ∅ for all i).

Recall that the underlying space of π−1
j (Yj) is the topological closure of π−1

j (Yj) in U . Since Yj is closed
in Xj for all j, it is enough to show that the subset π−1

i (Yi) ⊆ U ⊆
∏
Xj lies inside of the open subscheme∏

Xj for each i. Indeed, this would imply that

π−1
i (Yi)

⋂(⋂
π−1
j (Yj)

)
⊆
⋂
π−1
j (Yj) = ∅.

More generally, we will now show that if ξ ∈ U satisfies πi(ξ) ∈ Xi for some i, then πj(ξ) ∈ Xj for all j.
The key point is that we have arranged that the graph Γqj ⊆ Xj×SX of qj : Xj → X is a closed subscheme.
Using this, we will show that its pullback to a closed subscheme Γj ⊆ U ×S X is independent of j. The
reason for such independence is that Γj is (by construction) a closed subscheme in U ×S X which contains
∆U/S and maps isomorphically to an open subscheme Wj ⊆ U (just the pullback of Xj) with U ⊆ Wj , so
Γj corresponds to a quasi-domination of U over X relative to U ↪→ X. By the discussion of uniqueness of
quasi-dominations in the schematically dense case at the beginning of §2, we see that the closed subscheme
Γj ⊆ U ×S X is therefore the same for all j.

Choose ξ ∈ U with πi(ξ) ∈ Xi. Let η ∈ U ×S X be the point (ξ, qi(πi(ξ))); more precisely, this is the
image ξ under the S-morphism (1, qi ◦πi) : U → U ×S X. Note that the image of η in Xi×S X under πi× 1
lands in Γqi , so η ∈ Γi = Γj . Since Γj ⊆ Xj ×S X lives in the subscheme Xj ×S X, we see that πj(ξ) ∈ Xj .
This is what we needed to prove.

Now that we know we can construct the Ti’s so the hypotheses of Lemma 3.1 are satisfied, we conclude
that for each i there exists an Xi-admissible blow-up X

′
i → Xi such that after base change by this blow-up

we have

(p′i)
−1(Y ′i ) ∩ Ui ⊆ T ′i ∩ Ui
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as sets, where the quasi-compact open immersion Ui ↪→ U
∗×Xi X

′
i is the fiber over U ⊆ U∗ (so Ui ' U), Ui

is the topological closure of Ui in U
∗×XiX

′
i, and T ′i and p′i are the base changes of Ti and pi by the blow-up

X
′
i → Xi.
Consider the canonical map U ′ → U . Note that this map is proper and is compatible with the dense open

immersion of U into each side, so this map is surjective. Letting Z ′i be the fiber over Zi, we define

U ′
∗

= Bl∩Z′j (U
′).

This object fits into a commutative diagram

U ′
∗ r //

f

��

U
∗

��
U ′ //

π′i
��

U

πi

��
X
′
i

// Xi

in which r is induced by the universal propery of the blow-up map U
∗ → U and the composite map along

the right column is pi. We let f i denote the composite map along the left column. Note that the induced
map (r, f i) : U ′

∗ → U
∗×Xi X

′
i is compatible with the open immersions of U into each side. Since U is dense

in U ′
∗
, it follows that (r, f i) has its set-theoretic image inside of Ui. Hence, if we take the preimage under

(r, f i) of the containment of sets (p′i)
−1(Y ′i ) ∩ Ui ⊆ T ′i ∩ Ui, we get f

−1

i (Y ′i ) ⊆ r−1(Ti).
Recalling that

⋂
Ti = ∅, we obtain ⋂

f
−1

i (Y ′i ) = ∅.

However, the map f is proper and compatible with the dense open immersion of U into U ′
∗

and U ′, so f is
surjective. Using the fact that f i = π′i ◦ f , we therefore get⋂

(π′i)
−1(Y ′i ) = ∅,

which is what we wanted to prove. �

4. Nagata Compactification Theorem

Theorem 4.1. [N2, §4, Theorem 2], [D, Thm. 1.7] Let f : X → S be separated and finite type, with S
quasi-compact and quasi-separated. There exists an open immersion j : X ↪→ X of S-schemes such that
X → S is proper.

Remark 4.2. Since X → S is quasi-compact and X → S is separated, any j : X ↪→ X as in Theorem 4.1
is necessarily quasi-compact. Thus, a scheme-theoretic closure of X in X exists and if we rename this as X
then we obtain a j that is also schematically dense.

Proof. Let’s assume that we have a finite open covering {Ui} of X by dense opens, with all Ui → S quasi-
projective (in particular, Ui is quasi-compact). We will use this assumption to prove the theorem, and then
will return to the verification of this assumption at the very end. By the refined version of Chow’s Lemma
in Corollary 2.6, there exists a commutative diagram of S-schemes

Ui // Xi

qi

��

ji // Xi

Ui // X
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with qi proper and surjective, q−1
i (Ui) ' Ui, Ui a dense open in Xi and X, ji an open immersion, and

Xi → S a proper map. In particular, all horizontal maps are quasi-compact due to separatedness and
quasi-compactness over S for all objects.

Give X −Ui a finitely presented closed subscheme structure in X. (In the non-noetherian case, this rests
on Lemma 1.3.) Define Yi = q−1

i (X−Ui) and define U to be the scheme-theoretic closure of U =
⋂
Ui under

the quasi-compact immersion U →
∏
Xi. Finally, define πi : U ↪→

∏
Xj → Xi. Since this is proper and the

image contains the dense open U , πi is surjective.
We first claim that

⋂
π−1
i (Yi) = ∅. That is, inside of

∏
Xi, we want U

⋂
(
∏
Yi) = ∅. Since

∏
Yi lies inside

of the open subscheme
∏
Xi, it is enough to check that U

⋂∏
Xi does not meet

∏
Yi. But π :

∏
Xi → Xn

makes the n-fold diagonal subscheme ∆n
U/S ⊆

∏
Xi factor through the closed subscheme π−1(∆n

X/S) (recall
that X → S is separated). Thus, U

⋂
(
∏
Xi) ⊆ π−1(∆n

X/S) as subschemes of
∏
Xi. This yields(

U
⋂∏

Xi

)⋂(∏
Yi

)
⊆ π−1

(
∆n
X/S

⋂∏
(X − Ui)

)
,

yet ∆n
X/S ' X identifies ∆n

X/S

⋂
(
∏

(X − Ui)) with
⋂

(X − Ui) = ∅.
By Lemma 3.2, replacing Xi by a suitable Xi-admissible blow-up lets us suppose that

⋂
π−1
i (Yi) = ∅,

with Yi the scheme-theoretic closure of Yi in Xi under the quasi-compact immersion ji. The noetherian
reader should skip to the next paragraph. In the general case Yi may not be finitely presented as a closed
subscheme of Xi, so we need to modify Yi slightly. By the usual limit argument, we can write I Yi

= lim−→I i,α

(α ∈ Ai), with I i,α running through the finite type quasi-coherent subideal sheaves in I Yi
that satisfy

I i,α |Xi = I Yi . For a large αi, we have closed subschemes Yi
def= V (I i,αi) in Xi that satisfy Yi

⋂
Xi = Yi

and
⋂
π−1(Yi) = ∅. The notation Yi here is merely suggestive (though in the noetherian setting, it could be

taken to be the scheme-theoretic closure of Yi as above); we will no longer need to use the scheme-theoretic
closure of Yi in Xi, so this notation should not cause confusion.

Note that {U − π−1
i (Yi)} is an open covering of U . This will be used later. Let Mi be the S-scheme

obtained by gluing the quasi-compact and quasi-separated (and even finite type) S-schemes X and Xi − Yi
along Ui. Clearly, Mi is of finite type over S and X is dense in Mi (since Ui is dense in Xi). We claim that Mi

is also separated over S. To check this, we need to show that the diagonal subscheme ∆Ui/S ⊆ X×S (Xi−Y i)
is closed (see the discussion of this point in the Introduction). Since Xi → S is separated and qi is proper
and surjective, it suffices to show that inside of Xi ×S Xi, we have an equality of subschemes

(qi × 1Xi−Yi)
−1(∆Ui/S) = ∆Xi/S

⋂
(Xi ×S (Xi − Yi)).

Combining the equality

∆Xi/S

⋂
(Xi ×S (Xi − Yi)) = ∆Xi/S

⋂
(Xi ×S ((Xi − Yi) ∩Xi))

with

(Xi − Yi)
⋂
Xi = Xi −

(
Xi

⋂
Yi

)
= Xi − Yi = q−1

i (Ui),

we get the result (since q−1
i (Ui) ' Ui).

Next, we apply Corollary 2.10 to the collection of dense open quasi-compact immersions X ↪→Mi over S.
This provides X-admissible blow-ups M ′i = BlI i

(Mi) so that X is schematically dense in each M ′i and there
is a schematically dense open immersion j : X ↪→M , with M separated and finite type over S and covered
by open immersions M ′i ↪→ M such that all composite maps X → M ′i → M coincide with j. We will show
that M is proper over S, thereby completing the proof (granting the existence of the initial open covering
{Ui}). It suffices to construct a U -admissible blow-up U∗ of the S-proper U such that U∗ surjects onto the
S-separated M over S.
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We will need to use the commutative diagram

(4.1) U //

��

U − π−1
i (Yi)

π′i
��

Ui // Mi

where π′i on U − π−1
i (Y i) = π−1

i (Xi − Y i) is defined using πi and the open immersion of Xi − Y i into Mi

(via the definition of Mi). Since U−π−1
i (Yi) is quasi-compact (as it is quasi-compact over the quasi-compact

scheme Xi − Yi), all maps in (4.1) are quasi-compact. The map across the top is schematically dense.
Let K i on U be a quasi-coherent finite type ideal sheaf with

K i |U−π−1
i (Yi)

= (π′i)
−1(I i) · OU−π−1

i (Yi)

on the quasi-compact open U i − π−1
i (Y i), so K i |U = OU . Defining U∗ = BlQ K i

(U), the natural map
q : U∗ → U is a U -admissible blow-up such that the open immersion U → U∗ is quasi-compact and
schematically dense. Using the blow-up map q and (1.2), we get composite S-scheme maps

gi : U∗ − q−1(π−1
i (Yi))→ BlI i

(Mi) = M ′i →M

that coincide on the common open subscheme U . By schematic density and quasi-compactness of the open
immersions U ↪→ U − π−1

i (Yi), as well as the separatedness of M → S, it follows that the gi’s agree on the
quasi-compact overlaps of their domains. These open domains cover U∗ because ∩π−1

i (Y i) = ∅, so the gi’s
glue to give an S-morphism g : U∗ →M that is compatible with the canonical open immersion of U into U∗

and M . Thus, g has the dense open subset U in the image. But U∗ → S is proper and M → S is separated,
so g must be proper. Therefore the image is closed and so g is surjective. Hence, M is S-proper.

The one remaining issue is the initial construction of a finite covering of X by dense opens that are quasi-
projective over S. Let {Wi}1≤i≤n be a finite open affine covering of X, chosen so small that each Wi → S is
quasi-affine (e.g., take Wi to land in an open affine in S). Since Wi → S is also of finite type, each Wi → S
is quasi-projective [EGA, II, 5.3.4(i)]. For each permutation σ of {1, . . . , n}, define the open subscheme

Uσ =
n⋃
i=1

Wσ(i) − (Wσ(i)

⋂⋃
j<i

Wσ(j))

 .

It is clear that the Uσ are an open covering of X and each Uσ is dense in X. Also, the n-fold union in the
definition of each Uσ is a disjoint union. By [EGA, II, 5.3.6], in order to prove the quasi-projectivity of Uσ
over S, it therefore suffices to check that each of the parts of these unions is quasi-projective over S.

By [EGA, II, 5.3.4(i),(ii)], we only need to check that the open immersions

Wσ(i) −

Wσ(i)

⋂⋃
j<i

Wσ(j)

 ↪→Wσ(i)

are quasi-compact. This is obvious in the noetherian case, so for the noetherian reader the proof of Nagata’s
theorem is done. To handle the general case it suffices to show that the maps X −Wi ↪→ X are quasi-
compact for all i. If there exist finitely presented closed subscheme structures on the closed sets Wi in X,
then the result is clear (and this condition is necessary as well, by Lemma 1.3). This is always the case
when S is noetherian. For the general case, [D, Commentaires(c), p.14] seems to suggest working with closed
subschemes in X around each Wi that are slightly larger and finitely presented. I am unable to see how to
make this work because it seems that enlarging these closures may cause the Uσ to no longer be dense in X.
Thus, we bypass this difficulty by giving an alternative argument to infer the general case rather formally
from the settled noetherian case.

The crucial result that makes it possible to reduce to the noetherian case is a wonderful theorem of
Thomason and Trobaugh that essentially says that every quasi-compact and quasi-separated scheme S
“descends” to the noetherian setting. More precisely, by [TT, Thm. C.9], for any such S there exists an
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inverse system {Si} of schemes of finite type over Z such that the transition maps are affine and S ' lim←−Si.
Hence, by the standard direct limit formalism [EGA, IV3, 8.8.2(ii), 8.10.4], if X → S is finitely presented
then there exists an i0 and a map Xi0 → Si0 that is separated and of finite type such that X ' Xi0×Si0 S as
S-schemes. By applying Nagata’s theorem in the noetherian case we get an open immersion Xi0 ↪→ Xi0 into
a proper Si0 -scheme, and so applying base change gives an open immersion of X into the proper S-scheme
Xi0 ×Si0 S. This settles the case of an arbitrary S when X is finitely presented over S.

To eliminate the finite presentation restriction, we use Theorem 4.3 below to conclude that there exists a
closed immersion X ↪→ X ′ over S into a finitely presented and separated S-scheme X ′. By the cases already
treated, there exists an open immersion X ′ ↪→ X

′
into a proper S-scheme, so the composite map k : X → X

′

is an immersion into a proper S-scheme. Since k is quasi-compact, it must factor as an open immersion into
a closed subscheme of X

′
; this gives the desired compactification for X over S. �

Theorem 4.3. Let S be a quasi-compact and quasi-separated scheme, and let X be a quasi-separated S-
scheme of finite type. There exists a closed immersion X ↪→ X ′ over S into an S-scheme of finite presenta-
tion. If X is S-separated then we can choose X ′ to be S-separated.

This theorem is a triviality in the noetherian case by taking X ′ = X.

Proof. Let us first check that if such an X ′ exists and X is S-separated then there is a finitely presented
closed subscheme Z ↪→ X ′ containing X such that Z is S-separated. Let I be the quasi-coherent ideal
sheaf for X in X ′, so since X ′ is a quasi-compact and quasi-separated scheme we may write I = lim−→I α for
quasi-coherent and finitely generated ideal sheaves I α ⊆ I . Let Xα ↪→ X ′ be the zero-scheme of I α, so
the Xα are finitely presented over S and X = lim←−Xα. We wish to prove that Xα is S-separated for large α.
Since S is quasi-compact, this assertion is local on S. Hence, we may assume S is affine. The separatedness
of the limit X = lim←−Xα therefore forces the Xα’s to be separated for large α, by [TT, Thm. C.7].

Now it remains to find a closed immersion X ↪→ X ′ with X ′ finitely presented over S. If X is affine and
lies over an open affine T in S then we can take X ′ = An

T for suitable n (this is finitely presented over S
because T → S is finitely presented, as S is quasi-compact and quasi-separated). In general we can cover
X by r such open opens (lying over open affines in X) and we proceed by induction on r. The case r = 1
was just settled, and the general case immediately reduces to the following situation: X has an open cover
by two quasi-compact opens U and V (so U and V are of finite type over S) such that there exist closed
immersions U ↪→ U ′ and V ↪→ V ′ with U ′ and V ′ finitely presented over S. We seek finitely presented
closed subschemes in U ′ and V ′ that contain U and V and can be glued to construct the desired X ′. The
construction is an elaborate exercise in standard direct limit techniques, as we now explain.

Let W = U ∩ V , so W is a quasi-compact open in both U and V . Choose quasi-compact opens U ⊆ U ′

and V ⊆ V ′ such that U ∩ U = W and V ∩ V = W . (In particular, W is a closed subscheme in both U
and V .) Since U ′ is quasi-compact and quasi-separated, the quasi-coherent ideal I of U in U ′ has the form
I = lim−→I α for finitely generated quasi-coherent ideal sheaves I α ⊆ I . Thus, we have U = lim←−U

′
α where

{U ′α} is the inverse system of zero-schemes of the I α’s on U ′. Likewise, W = lim←−(U ∩ U ′α) with U ∩ U ′α
closed in U and open in U ′α. Let {V ′β} be an analogous such inverse system of finitely presented closed
subschemes in V ′ with inverse limit V .

The inclusion W = U ∩ V → V → V ′ lies in

(4.2) HomS(W,V ′) = HomS(lim←−(U ∩ U ′α), V ′) = lim−→
α

HomS(U ∩ U ′α, V ′),

where the final equality holds because V ′ is locally of finite presentation over S and each U ∩ U ′α is quasi-
compact and quasi-separated. Hence, by replacing U ′ with a suitable U ′α we may suppose that there exists
an S-map U → V ′ lifting the inclusion W ↪→ V . In fact, by applying (4.2) with V ′ replaced by the finitely
presented S-scheme V ⊆ V ′, we can “smear out” the closed immersion W = U ∩ V = V ∩ V ↪→ V to a map
φ : U → V , where V is the above choice of quasi-compact open in V ′. (Keep in mind that since we replaced
U ′ with a well-chosen U ′α, what we are presently calling U is what used to be U ∩ U ′α.)
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By reversing the roles of U and V , we find a large β0 and a map ψ : V ∩ V ′β0
→ U that lifts the identity

on W . The composite
φ ◦ ψ : V ∩ V ′β0

→ V

lifts the identity on W , so the fact that V is finitely presented over S ensures that by replacing β0 with some
β1 ≥ β0 (that is, composing ψ with the natural inclusion V ∩ V ′β1

→ V ∩ V ′β0
for some β1 ≥ β0) we can

arrange that φ ◦ ψ is the canonical closed immersion.
Now observe that for any finitely generated quasi-coherent ideal sheaf I on the quasi-compact open

U ⊆ U ′ such that W ⊆ V (I ) (i.e., I ⊆ IW inside OU ), I extends to a finite type quasi-coherent ideal
sheaf I ′ on U ′ such that U ⊆ V (I ′) as closed subschemes of U ′ (i.e., I ′ ⊆ I U inside OU ′). Indeed, since
U ∩U = W we have I ⊆ IW = I U ∩U = I U |U inside OU with I of finite type, so I extends to a finite
type quasi-coherent subsheaf I ′ ⊆ I U by [EGA, I, 9.4.7; IV1, 1.7.7].

Let V1 = V ∩ V ′β1
for β1 as above. Let U1 ↪→ U be the preimage under φ of the finitely presented closed

subscheme V1 ↪→ V . Observe that the inclusion W1 := U1 ∩ U ⊆ U ∩ U = W of closed subschemes of U is
an equality because φ restricts to the identity map on W (and W ⊆ V ′β for all β). Likewise, V1 ∩ V = W
because of the inclusions W ⊆ V1 ∩ V ⊆ V ∩ V = W as subschemes of V . We can extend the ideal sheaf
of the finitely presented closed subscheme U1 in U to a finite type quasi-coherent ideal sheaf on U ′ whose
zero-scheme contains U because of the preceding paragraph. Let U ′1 be the zero scheme of this extended
ideal in U ′, so U ′1 is a finitely presented S-scheme containing U1 as a quasi-compact open subscheme. (In
fact, U ′1 ∩U = U1 with U a quasi-compact open in U ′.) Upon replacing U ′, U with U ′1, U1, and also V ′,
V with V ′β1

, V1 (and leaving X, U , V , W unchanged!), we do not lose any generality but (by the choice of
β1) we gain the property that there exist maps

s : U → V , t : V → U

lifting the identity on W such that s ◦ t = idV . Here, s and t are respectively induced by φ and ψ as above
(before we renamed things). If t◦s is the identity on U then we can glue the finitely presented S-schemes U ′

and V ′ along the inverse S-isomorphisms s and t between quasi-compact open subsets U and V to construct
a scheme X ′ that is finitely presented (i.e., quasi-separated and locally finitely presented) over S. There is
then a unique S-map X → X ′ whose restriction over V ′ (resp. U ′) is the canonical closed immersion V ↪→ V ′

(resp. U ↪→ U ′) because W = U ∩ V . Hence, X → X ′ is a closed immersion and solves the problem.
We must reduce ourselves to the special case when t ◦ s is the identity. Since U is finitely presented over

S and the composite map

W ↪→ U
s→ V

t→ U

is the canonical inclusion, for large α0 the composite

U ∩ U ′α0
↪→ U

t◦s→ U

is the canonical inclusion. Hence, if we let Vα0 = t−1(U ∩ U ′α0
) then the composite of restrictions

U ∩ U ′α0

sα0→ Vα0

tα0→ U ∩ U ′α0

is the identity. Of course, sα0 ◦ tα0 is the identity on Vα0 (because it is a restriction of s ◦ t, which is the
identity on V ). Hence, by replacing U ′ with U ′α0

and shrinking V ′ so that the “new” V is the above Vα0 , we
find ourselves in the case where t ◦ s is indeed the identity, so we may glue as before to complete the proof
in the general case. �

With Nagata’s theorem now proved, we get the following result that generalizes Theorem 2.11 and Remark
2.12.

Corollary 4.4. Separated birational maps of finite type always arise from blow-ups and dense open immer-
sions in the following two senses.

(1) Let f : X → Y be a separated map of finite type between quasi-compact and quasi-separated schemes,
and assume that f is an isomorphism over a quasi-compact dense open subscheme U ⊆ Y such that
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f−1(U) is dense in X. There exist U -admissible blow-ups X̃ and Ỹ of X and Y for which there is
an open immersion X̃ ↪→ Ỹ over f .

(2) Let πi : X → Yi be a pair of separated birational maps of finite type between quasi-compact quasi-
separated schemes, and let Ui ⊆ Yi be a quasi-compact dense open subscheme such that πi is an
isomorphism over Ui. For the dense quasi-compact open U = U1 ∩ U2 (viewed in X, and then in
Y1 and Y2), there are U -admissible blow-ups X̃, Ỹ1, and Ỹ2 equipped with open immersions X̃ ↪→ Ỹi
over πi for each i.

Proof. For (1), we can apply Theorem 4.1 (and Remark 4.2) to f to get a dense open immersion j of X over
Y into a proper Y -scheme f : X → Y . The inclusion of U into f

−1
(U) is a proper open immersion with

dense image, so it is an isomorphism. In particular, f is an isomorphism over U and f
−1

(U) is dense in X.
Thus, it suffices to solve the problem for X in the role of X, so we can assume that f is proper. In this case
Theorem 2.11 gives the required result. For (2), the case when each πi is proper is Remark 2.12. To handle
the general case, we have to carefully apply Nagata’s theorem twice. (The subtlety is due to the fact that we
do not assume X and the Yi’s are finite type over a common base S.) To carry out the argument, first apply
Theorem 4.1 and Remark 4.2 to πi to get a schematically dense open immersion of X into a proper Yi-scheme
Xi. The proper maps Xi → Yi are isomorphisms over the dense open U ⊆ Yi with dense preimage in Xi, so
by Theorem 2.11 there is a U -admissible blow-up X

′
1 of X1 that is also a U -admissible blow-up of Y1. Let

I 1 be an ideal along which the blow-up X
′
1 of X1 is defined, and let I 2 be a finite type quasi-coherent ideal

on X2 whose restriction to the quasi-compact open X is I 1 |X . We can replace Xi with its U -admissible
blow-up along I i to get to the case when π1 is an open immersion. (We have implicitly used Lemma 1.2 in
the non-noetherian case.) An application of Theorem 2.11 to π2 gives a common U -admissible blow-up of
X2 and Y2. If K 2 is an ideal along which this blow-up of X2 is defined then K 2 |X can be extended to a
finite type quasi-coherent ideal on Y1 since π1 is now a quasi-compact open immersion. The desired blow-ups
to complete the proof of (2) are the blow-up of Y1 along this extended ideal, the blow-up of X along K 2 |X ,
and the blow-up of Y2 provided by our second application of Theorem 2.11. �

Appendix A. Auxiliary elimination of noetherian hypotheses

In this appendix we give another application of Theorem 4.3 and [TT, App. C] to eliminate noetherian
assumptions. The key is the following refinement of Theorem 4.3:

Theorem A.1. Let f : X → S be a finite map of schemes with S quasi-compact and quasi-separated. There
exists a closed S-immersion j : X → Y into a finite and finitely presented S-scheme Y .

Proof. By Theorem 4.3, there is a closed S-immersion X ↪→ X ′ into a finitely presented S-scheme X ′. Let
J be the quasi-coherent ideal sheaf of X in OX′ , so since X ′ is a quasi-compact and quasi-separated scheme
we can write J = lim−→Ji with Ji the directed system of finitely generated quasi-coherent ideal sheaves on
X ′ contained in J . Let Xi be the zero scheme of Ji in X ′, so the Xi’s are an inverse system of finitely
presented S-schemes with affine (even closed immersion) transition maps and limit X. We shall prove that
Xi is S-finite for large i, and so we can take Y to be Xi for such large i. Note that if Xi0 is S-finite for
some i0 then Xi is S-finite for all i ≥ i0. Hence, it suffices to work over a finite collection of affine opens
that cover S, which is to say that we can assume S = Spec(A) is affine. Then by S-finiteness of X we have
that X = Spec(B) for a finite A-algebra B.

The Xi’s are an inverse system of finitely presented A-schemes with affine transition maps and affine limit
SpecB, so by [TT, Prop. C.6] it follows that Xi is affine for large i. We restrict attention to such large i,
so we can write Xi = Spec(Bi) with {Bi} a directed system of finitely presented A-algebras with surjective
transition maps and limit B that is A-finite. We fix algebra generators b1, . . . , bn for some Bi0 over A, so
each bj has A-integral image in the limit B. Thus, for large i ≥ i0 and each j the image of bj in Bi satisfies
the same A-integral relation that is satisfied by the image of bj in B. Hence, for large i we have that the
quotient Bi of Bi0 is A-finite. �
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It is a theorem of Chevalley [EGA, II, 6.7.1] that if X → Y is a finite surjection of schemes with X affine
and Y noetherian then Y is affine. The preceding theorem lets us prove the same result without noetherian
restrictions:

Corollary A.2. If f : X → Y is a finite surjection of schemes with X affine then Y is affine. In particular,
if Y is a scheme such that Yred is affine then Y is affine.

Proof. Certainly Y is quasi-compact, and by finiteness and surjectivity of f it follows that Y → Y ×Spec Z Y
has closed image since X is a separated scheme. Hence, Y is also separated. Thus, by Theorem A.1 we
may factor f through a closed immersion into a finitely presented and finite morphism h : X ′ → Y that is
certainly surjective (since X surjects onto Y ). We claim that X ′ can be taken to be affine. Granting this for
now, we can rename X ′ as X so as to reduce to the case when f is finitely presented. By [TT, Thm. C.9],
we may write Y = lim←−Yi with {Yi} an inverse system of finite type Z-schemes having affine transition maps.
Hence, for a large i0 we can find a finitely presented map fi0 : Xi0 → Yi0 inducing f under the base change
Y → Yi0 .

Define fi : Xi → Yi by the base change Yi → Yi0 on fi0 , so {Xi} is an inverse system of finite type Z-
schemes with affine transition maps and inverse limit X; clearly f = lim←− fi. Since f is finite and surjective,
for large i we have that fi is finite and surjective. Since the inverse system {Xi} of finite type Z-schemes has
affine limit X, by [TT, Prop. C.6] it follows that Xi is affine for large i. Thus, for such large i we have that
Xi → Yi is a finite surjection from an affine scheme onto a noetherian scheme. By the known noetherian
case it follows that Yi is affine for large i, so the limit Y = lim←−Yi is affine.

It remains to show that X ′ can be taken to be affine when X is affine. More generally, we claim that
for a closed immersion X ↪→ X ′ of schemes with X affine and X ′ quasi-compact and quasi-separated, there
is a finitely presented closed subscheme Z ⊆ X ′ containing X such that Z is affine. By [TT, Thm. C.9],
X ′ = lim←−X

′
α for an inverse system {X ′α} of finite type Z-schemes with affine transition maps. Let Zα ⊆ X ′α

be the schematic image of the affine map X → X ′α. Then {Zα} is an inverse system of Z-schemes of
finite type with affine transition maps, and lim←−Zα = X. (Note that we do not claim that the natural map
Zβ → Zα ×X′α X

′
β is an isomorphism for β ≥ α; this is generally false and we do not need it.) Since the

Zα are finite type over Z and their limit X is affine, it follows from [TT, Prop. C.6] that Zα0 is affine for
some large α0. Hence, the pullback Z = Zα0 ×X ′α0

X ′ is a closed subscheme of finite presentation in X ′ that
contains X and is affine (as it is affine over Zα0). �
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