
MAIN THEOREM OF COMPLEX MULTIPLICATION

BRIAN CONRAD

In [S, Ch. IV, §18] the Main Theorem of complex multiplication is proved in a manner that uses some
adelic formalism. However, [S] uses a framework for algebraic geometry that has long been abandoned, so
many of the beautiful ideas there are somewhat shrouded in mystery for the reader who is unfamiliar with
the pre-Grothendieck approaches to algebraic geometry and abelian varieties. The aim of the Main Theorem
is as follows. Let (A, i) be an abelian variety over Q with CM type (K,Φ), and let φ : A→ A∨ be a K-linear
polarization (where A∨ has the K-action i∨(c) = i(c∗)∨, with c∗ denoting complex conjugation on the CM
field K, so (A∨, i∨) also has CM type (K,Φ)); such a φ exists by the complex-analytic theory. Let K∗ ⊆ Q
be the reflex field, and pick σ ∈ Gal(Q/K∗) and a finite idele s ∈ A×

K∗,f that maps to σ|(K∗)ab under the
global Artin map. We seek to describe the AK,f -linear isomorphism σ : Vf(A) ' Vf(Aσ) and the Weil pairing
eφσ on Vf(Aσ) in terms of adelic operations on Vf(A) and eφ using s. We also wish to reconstruct (Aσ, iσ)
from (A, i) by an adelic procedure that does not use Galois automorphisms.

In these notes, we give a complete proof of the Main Theorem of complex multiplication by using the
language of schemes and adelic points of algebraic groups as well as results proved earlier in the seminar.
We avoid the intervention of analytic uniformizations of abelian varieties in our initial “algebraic” statement
of the Main Theorem, working throughout over Q and emphasizing the Galois-theoretic formulation that
arises in Deligne’s axiomatic definition of canonical models. By working over Q we avoid far-out things like
the automorphism group of C. We also use our initial algebraic version of the Main Theorem over Q to
recover a “coordinate-free” version of the traditional formulation of the Main Theorem in terms of analytic
uniformizations and Riemann forms of certain polarizations. Complex-analytic methods certainly have their
place in the theory, but we prefer to minimize their appearance and keep proofs as algebraic as possible. The
reason that we can achieve this is because of our systematic use of Serre’s tensor construction [X], especially
in its relative incarnation over base schemes with possibly mixed characteristic.

The central ideas in the proof we give for the Main Theorem are all due to Shimura and Taniyama, even
though it will frequently be apparent to the reader that we are using a mathematical style very different from
that employed by Shimura and Taniyama. Specializing our largely algebraic arguments to the 1-dimensional
case gives a proof for elliptic curves that exhibits a different flavor from the traditional one (as in [A1]);
moreover, some technical issues simplify tremendously in the 1-dimensional case because elliptic curves have
unique polarizations of each positive square degree.

We assume that the reader is familiar with CM abelian varieties [L], polarizations [C1], CM types [C2, §1],
reflex fields, Weil restriction [R], reflex norms [K], the Serre tensor construction [X], and other background
that has been developed in the seminar.

In §1 we develop some further background concepts that are required in the proof of the Main Theorem,
and in §2 we give the setup for and statement of the Main Theorem of complex multiplication. Before delving
into the proof, in §3 we work out a few consequences of the Main Theorem. The proof of the Main Theorem
occupies §4–§5, Finally, in §6 we use the “algebraic” version of the Main Theorem over Q to deduce the
traditional version in terms of analytic uniformizations and we also translate analytic refinements back into
algebraic language (by using a variant on the Serre tensor construction in the absence of CM by the maximal
order) and give purely algebraic proofs of the latter.

I am deeply indebted to James Parson for several discussions that helped me to locate some key steps in the proof of
Shimura and Taniyama, from which I was then able to construct the proof in these notes. This work was supported by NSF
grant DMS-0093542 and a grant from the Sloan Foundation.
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Notation. We fix an algebraic closure C of R, endowed with its unique absolute value extending the
one on R, and we let Q ⊆ C be the algebraic closure of Q in C. The kernel of exp : C → C× is denoted
Z(1), and we write M(1) to denote Z(1)⊗Z M for any Z-module M .

For a scheme X over a field K and an automorphism σ : K → K, Xσ denotes the K-scheme K ⊗σ,K X
obtained by base change. The same notation is used for K-morphisms. We indulge in one serious abuse of
notation: if σ : K ' K is an automorphism of K that restricts to an automorphism σ0 of a subfield K0 (the
case of most interest being K = Q and K0 a number field) and if Z is a K-scheme for which a K0-descent
Z0 is specified, we write Zσ0 to denote the K0-scheme Zσ0

0 descending the K-scheme Zσ. Hopefully this will
not cause confusion.

We write Af to denote the topological ring of finite adeles of Q (i.e., Q⊗Ẑ), and AK,f ' K⊗QAf to denote
the topological ring of finite adeles of a number field K. As is traditional in number theory, we normalize the
Artin map of class field theory to carry local uniformizers to arithmetic Frobenius elements. (This is opposite
the convention in algebraic geometry.) For a CM field K, a CM abelian variety (A, i : K → End0

k(A)) over
a field k is principal if the CM order i−1(Endk(A)) is equal to OK . If A is an abelian variety over a
field k of characteristic 0 and k/k is an algebraic closure then Tf(A) denotes the “total Tate module”
lim←−A[n](k) '

∏
` T`(A) and Vf(A) denotes the finite free Af -module Q ⊗Z Tf(A). The Weil pairing for A

is denoted 〈·, ·〉A : Vf(A)×Vf(A∨)→ Af(1).

1. Q-polarizations

Let K be a CM field, with maximal totally real subfield K0 of degree g over Q. We write c 7→ c∗ to
denote complex conjugation on K. Let Φ ⊆ Hom(K,Q) be a CM type; i.e., a set of representatives for
the quotient of Hom(K,Q) by the free action of complex conjugation on K. Clearly Φ has size g and
[K : Q] = 2g. Finally, let K∗ ⊆ Q be the reflex field of (K,Φ); this is the fixed field for the open subgroup
of Gal(Q/Q) consisting of those elements σ such that σΦ = Φ. (That is, composition with σ permutes the
set of embeddings Φ.)

We shall be interested in studying pairs (A, i) where A is an abelian variety over Q and i : K → End0
Q

(A)
is a ring homomorphism making A an abelian variety of CM type (K,Φ). That is, the Q-linear action of K
on the tangent space of A has g eigenlines on which K acts through the mappings ϕ : K → Q given by the g
elements ϕ ∈ Φ. The dual A∨ is endowed with the K-action i∨ : K → End0

Q
(A∨) defined by i∨(c) = i(c∗)∨,

so by the complex-analytic theory the CM type for (A∨, i∨) is Φ.
Since Q is algebraically closed, so HomQ(X,Y ) = HomC(XC, YC) for any abelian varieties X and Y over

Q, a polarization of A over Q is the same as a polarization of AC over C, and hence (in terms of the analytic
theory of polarizations) it is encoded as a skew-symmetric bilinear pairing

ψZ : H1(A(C),Z)×H1(A(C),Z)→ Z(1)

such that with respect to the complex structure induced by the R-linear isomorphism H1(A(C),R) '
T0(A(C)) (defined by σ 7→

∫
σ
) the R-linear extension ψR satisfies ψR(cx, y) = ψR(x, cy) for all c ∈ C and

the resulting R-valued symmetric bilinear form (2π
√
−1)−1ψR(

√
−1 · x, y) is positive-definite. In terms of

the algebraic theory this ψZ may be encoded as a symmetric isogeny φ : A → A∨ such that (1, φ)∗(P) is
ample on A, where P is the Poincaré bundle over A × A∨. For our purposes it is inconvenient to impose
“integrality” conditions, so we make the:

Definition 1.1. A Q-polarization of an abelian variety over a field is a positive rational multiple of a
polarization.

For an abelian variety A over Q, a Q-polarization of A is a positive rational multiple of a pairing ψZ as
above or it is a mapping φ : A→ A∨ in the isogeny category of abelian varieties over Q such that φ admits
a positive integral multiple that is a polarization.

We initially seek to construct Q-polarizations on A such that the associated Rosati involution on End0
Q

(A)
restricts to complex conjugation onK, or equivalently such that the associated symmetric isogeny φ : A→ A∨

is K-linear. Such a Q-polarization is called an K-linear Q-polarization. (Since (A∨, i∨) has type (K,Φ) there
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certainly exist K-linear isogenies A → A∨, but the existence of such a map that is a Q-polarization is a
stronger assertion.) Another formulation of the K-linearity condition on a Q-polarization φ : A → A∨ is
this: under the associated skew-symmetric Weil self-pairing

(1.1) 〈·, ·〉φ,Q : H1(A(C),Q)×H1(A(C),Q)→ Q(1),

for any c ∈ K the adjoint to H1(i(c)) is H1(i(c∗)). In a special case, this property is automatic:

Example 1.2. Suppose A is simple, so AC is simple and hence by the complex-analytic theory the endomor-
phism ring End0

Q
(A) = End0

C(AC) is a CM field of degree 2g. Thus, i : K → End0
Q

(A) is an isomorphism
and so the Rosati involution for a polarization of A must be some σ ∈ Aut(K/Q) such that σ2 = 1. The
positivity of the Rosati involution implies that the quadratic form K → Q defined by α 7→ TrK/Q(ασ(α)) is
positive-definite. By [Ca, Lemma 5.6], since K is a CM field this positivity condition forces σ to be complex
conjugation.

In the general (possibly non-simple) case, there is an existence result:

Lemma 1.3. There exist Q-polarizations of A whose associated Rosati involution on End0
Q

(A) restricts to
complex conjugation on i(K). The set of elements in Hom0

Q
(A,A∨) associated to such Q-polarizations is a

principal homogeneous space for the action on A (in the isogeny category) by the subgroup of totally positive
α ∈ K×

0 .

Proof. Extending scalars from Q to C does not introduce new maps between abelian varieties, and does not
affect whether or not a given map from an abelian variety to its dual is a polarization. Hence, by GAGA
we may instead consider the situation over C after analytification. The problem only depends on A up to
K-linear isogeny. Thus, we can assume A(C) ' (KR)Φ/OK as complex tori with CM type (K,Φ). In [L,
p. 3] there is given an explicit Riemann form constructed on this complex torus, and for this Riemann form
the adjoint for the K-action is seen (by inspection) to be given by complex conjugation. This settles the
existence aspect.

As for the extent of non-uniqueness, since K is its own centralizer in End0
Q

(A) it follows that any two
K-linear isogenies from A to A∨ (in the isogeny category) are related through the K-action on A. Hence,
given a single K-linear Q-polarization φ : A → A∨, we just have to work out the condition on c ∈ K×

so that φ ◦ i(c) is a Q-polarization. Since φ is a symmetric K-linear isogeny, the symmetry condition on
φ ◦ i(c) says exactly that i(c) = i(c∗) in End0

Q
(A); i.e., c ∈ K0. In terms of the Hermitian form given in [L,

p. 3], the positivity condition on φ ◦ i(c) is that the action of i(c) on the first variable preserves the positive-
definiteness property. This translates into the condition that for each ϕ ∈ Φ the totally real algebraic number
ϕ(c) ∈ Q ⊆ C is positive. This is equivalent to the condition that c ∈ K0 is totally positive, since Φ|K0 is
the set of all embeddings of K0 into R (as Φ is a CM type on K). �

Lemma 1.4. Let (A0, i0) and (A′0, i
′
0) be abelian varieties with CM type (K,Φ) over a number field L.

Assume L is so large that Hom0
L((A0, i0), (A′0, i

′
0)) is nonzero. If P is a prime of good reduction for A0 and

A′0 then the injective reduction mapping

Hom0
L((A0, i0), (A′0, i

′
0))→ Hom0

κ(P)((A0, i0), (A
′
0, i

′
0))

is bijective.

Proof. Since the abelian varieties all have dimension g with [K : Q] = 2g, the source and target Hom0’s are
each at most 1-dimensional over K. The reduction mapping is K-linear, so the assumption of non-vanishing
in characteristic 0 gives the result. �

Consider triples (A, i, φ) where (A, i) is a CM abelian variety of type (K,Φ) over Q and φ : A→ A∨ is a Q-
polarization of A that is K-linear (in the sense of Lemma 1.3). If σ ∈ Gal(Q/K∗) (where K∗ is the reflex field
for (K,Φ)) then the base change σ : Q ' Q gives another triple (Aσ, iσ, φσ) with iσ(c) = i(c)σ ∈ End0

Q
(Aσ).

The tangent spaces tA and tAσ of A and Aσ at their respective identity elements satisfy tAσ ' σ∗(tA) as
K ⊗Q Q-modules, so (Aσ, iσ) has CM type σΦ = Φ. Hence, by the complex-analytic theory as in [L, §1]
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we know that (A, i) and (Aσ, iσ) are isogenous over Q; that is, there exist K-linear isogenies A → Aσ. A
fundamental fact is that such isogenies can be found that respect K-linear Q-polarizations up to rational
homothety:

Theorem 1.5. The triples (A, i, φ) and (Aσ, iσ, φσ) are isogenous up to rational homethety. More precisely,
if φ : A → A∨ is a K-linear Q-polarization then there is a K-linear isogeny ξ : A → Aσ such that
ξ∨ ◦ φσ ◦ ξ = qφ,ξ,σ · φ with qφ,ξ,σ ∈ Q×

>0, and necessarily qφ,ξ,σ = deg(ξ)1/g.

The notion of degree for maps in the isogeny category is defined by Z-homogeneity of degree for morphisms
of abelian varieties.

Proof. Fix a choice of φ. Once we find the desired ξ then computing the degree of both sides will then give
q2gφ,ξ,σ = deg(ξ) deg(ξ∨) = deg(ξ)2, so qφ,ξ,σ = deg(ξ)1/g.

Let L/K∗ be a finite Galois subextension of Q that is a field of definition for (A, i, φ) in the sense that: (i)
A descends to an abelian variety A0 over L, (ii) the K-action on A (in the isogeny category over Q) descends
to a ring homomorphism i0 : K → End0

L(A0), and (iii) there is a K-linear Q-polarization φ0 : A0 → A∨0 over
L whose Q-scalar extension is φ. We also take L so big that

(1.2) HomL((A0, i0), (Aσ0 , i
σ
0 )) = HomQ((A, i), (Aσ, iσ)).

Choose a prime P of L such that P is unramified over its contraction p in K∗, P is a prime of good
reduction for A0, and σ|L = (L/K

∗

P ). In particular, since σ acting on OL fixes P it follows that P is also
a prime of good reduction for Aσ0 . Let A0 denote the Néron model A0 for A0 over OL,P, so this is an
abelian scheme. Viewing σ as an automorphism of OL,P, the abelian scheme A σ

0 is the Néron model of
its generic fiber Aσ0 , and likewise the dual abelian scheme A ∨

0 is the Néron model of its generic fiber A∨0 .
By the Néron mapping property for abelian schemes (i.e., the valuative criterion for properness and Weil’s
extension lemma), φ0 extends uniquely to a mapping of abelian schemes A0 → A ∨

0 . For any abelian scheme
X → S over a scheme S and any morphism of abelian schemes f : X → X∨, the set of s ∈ S such that
fs is a polarization on Xs is both open and closed in S. Hence, the map A0 → A ∨

0 extending φ0 is a
polarization on the closed fibers too. (Since we are free to choose among infinitely many P, we can arrange
for the reduction of φ0 modulo P to be a polarization by “denominator-chasing”, thereby avoiding some of
the preceding technical issues with Néron models and abelian schemes.)

Let q = qp be the size of the residue field at p, so σ induces the qth-power map on the residue field κ(P)
at P. Because we chose L so large that (1.2) holds, it follows from Lemma 1.4 that there exists a (unique)
K-linear isogeny ξ : A0 → Aσ0 in the isogeny category over L such that its reduction ξ : A0 → A

(q)

0 over κ(P)
is the relative q-Frobenius map FrA0/κ(P),q, where A0 denotes the closed fiber of A0. Of course, ξ depends
on the choice of P.

We claim that ξ works in the theorem, with some rational multiplier q. That is, we claim ξ∨ ◦φσ0 ◦ξ = qφ0.
To check this equality as maps in the isogeny category of abelian varieties over L with good reduction at P,
it is equivalent to check the corresponding equality on reductions over κ(P). Recall that the reduction of φ0

is a Q-polarization on A0. Hence, it suffices to prove more generally that if X is an abelian variety over a
field k of characteristic p > 0 and if q is a power of p then for any Q-polarization φ : X → X∨ there is an
equality

Fr∨X/k,q ◦ φ(q) ◦ FrX/k,q = qφ.

We may extend scalars so that k is algebraically closed, and we may multiply φ by a sufficiently divisible
nonzero integer so that it is a polarization. Hence, φ = φL for an ample line bundle L on A. Since the
formation of φL is compatible with base change, we have φ(q) = φL (q) with L (q) denoting the pullback
of L along the projection A(q) → A (or equivalently, along the base change Spec k → Spec k given by
the qth-power map on k). By the functorial properties of the “Mumford construction” L  φL [Ca, §3],
Fr∨X/k,q ◦ φ(q) ◦ FrX/k,q = φFr∗

X/k,q
(L (q)).

Since qφL = φL⊗q , it now suffices to prove Fr∗X/k,q(L
(q)) ' L ⊗q for any invertible sheaf L on X, where

X is any Fp-scheme. The composite of the relative q-Frobenius FrX/k,q : X → X(q) and the projection
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X(q) → X is the absolute q-Frobenius map FrX,q : X → X that is the identity on topological spaces and the
qth-power map on structure sheaves. Hence, Fr∗X/k,q(L

(q)) ' Fr∗X,q(L ). Our problem is therefore to prove
FrX,q(L ) ' L ⊗q for any invertible sheaf L on X. Since FrX,q is the identity on X and the qth-power map
on OX , we conclude the proof by a calculation on O×

X -valued Čech 1-cocycles (for a trivialization of L over
X). �

In the language of the bilinear pairings (1.1), Theorem 1.5 says

〈H1(ξ)(·),H1(ξ)(·)〉φσ,Q = deg(ξ)1/g · 〈·, ·〉φ,Q
and in particular we may choose a K-linear isomorphism ϕσ : Aσ → A in the isogeny category over Q
such that ϕσ carries φ back to φσ up to Q×

>0-multiple. This isogeny is unique up to the action on A by
elements c ∈ K× such that simultaneous multiplication by c on both factors of H1(A(C),Q) preserves the
Q-polarization φ up to Q×

>0-multiple. That is, for a K-linear Q-polarization φ : A → A∨ the condition on
c is that i(c)∨ ◦ φ ◦ i(c) is a Q×

>0-multiple of φ. But i(c)∨ = i∨(c∗) and φ is K-linear, so the condition on
c is that φ ◦ i(cc∗) = qφ = φ ◦ i(q) for some q ∈ Q×

>0. Equivalently, NK/K0(c) = q ∈ Q× (such a norm is
necessarily positive). We conclude:

Corollary 1.6. The K-linear isogeny ϕσ is unique up to the action of T (Q) ⊆ K× on A, where T is the
torus

T = ker(ResK/Q(Gm)
NK/K0
� ResK0/Q(Gm)/Gm).

This kernel was proved to be connected, and hence a torus, in [R, §4].

Remark 1.7. Since the choice of φ is unique up to the action on A by totally positive elements of K0, by
Lemma 1.3, and the action by these elements commutes with the action by T (Q) ⊆ K×, we conclude that
the “defining condition” on ϕσ is independent of the choice of φ. That is, such a ϕσ carries φ′ to a positive
rational multiple of φ′σ for every K-linear Q-polarization φ′ of A.

Remark 1.8. The preceding argument applies adelically as well, so the elements of AutAK,f (Vf(A)) ' A×
K,f

preserving the A×
f -homothety class of the Af -bilinear skew-symmetric Weil self-pairing

〈·, ·〉φ : Vf(A)×Vf(A)→ Af(1)

are precisely the elements of T (Af).

2. Algebraic formulation of the Main Theorem

We retain the same setup as above: we fix the triple (A, i, φ) over Q with (A, i) of type (K,Φ) and φ a
K-linear Q-polarization of A. We also choose σ ∈ Gal(Q/K∗) and we pick a K-linear isogeny ϕσ : Aσ → A
carrying φ back to φσ up to Q×-multiple (determined by the degree of ϕσ); this condition on ϕσ is independent
of the choice of φ (by Remark 1.7). Consider the AK,f -linear isomorphism

(2.1) Vf(A)
[σ]
' Vf(Aσ)

Vf (ϕσ)
' Vf(A).

The map [σ] in (2.1) is the standard Galois-action on Q-points, and so in terms of Af(1)-valued Weil
self-pairings it carries the self-pairing associated to φσ to the self-pairing associated to φ up to the total
cyclotomic character χ(σ) ∈ A×

f giving the action of σ on Af(1). The second step in (2.1) is equivariant
for the self-pairings defined by φσ and φ up to positive rational multiple, due to the defining condition
on ϕσ. Hence, (2.1) is an AK,f -linear automorphism of the free rank-1 AK,f -module Vf(A) preserving the
self-pairing associated to φ up to the A×

f -multiplier χ(σ)(degϕσ)1/g. The composite (2.1) is multiplication
by an element µσ,ϕσ

∈ A×
K,f = ResK/Q(Gm)(Af) that therefore preserves φ up to an idelic multiple and so

lies in T (Af) (by Remark 1.8).
The T (Q)-ambiguity in the choice of ϕσ implies that the T (Q)-congruence class of the multiplier µσ,ϕσ ∈

T (Af) does not depend on the choice of ϕσ, and by Lemma 1.3 it does not depend on the choice of φ. Since
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the pair (A, i) of type (K,Φ) is unique up to K-linear isogeny, it follows that the choice of (A, i) does not
affect the element we have just built in T (Q)\T (Af). Hence, we get a map of sets

(2.2) Gal(Q/K∗)→ T (Q)\T (Af)

by sending σ ∈ Gal(Q/K∗) to the common T (Q)-congruence class of elements µσ,ϕσ
∈ T (Af) for which the

composite map in (2.1) is multiplication by µσ,ϕσ
with ϕσ as above, and the map (2.2) only depends on

(K,Φ) rather than on (A, i).

Lemma 2.1. The map (2.2) is a continuous group homomorphism.

Proof. We first check that it is a group homomorphism. Choose σ, σ′ ∈ Gal(Q/K∗), and pick ϕσ and ϕσ′ .
We need to express the isomorphism

Vf(A)
[σ]
' Vf(Aσ)

Vf (ϕσ)
' Vf(A)

[σ′]
' Vf(Aσ

′
)

Vf (ϕσ′ )' Vf(A)

as ϕσ′σ ◦ [σ′σ] for a suitable choice of isogeny ϕσ′σ. The isogeny Aσ
′σ ' (Aσ)σ

′ (ϕσ)σ′

→ Aσ
′ ϕσ′→ A carries φ

back to φσ
′σ up to positive rational multiple and is K-linear, so we may take this composite isogeny as our

choice of ϕσ′σ. Thus, our problem is to prove the commutativity of the outside edge of the diagram

Vf(A)
[σ]

'
//

[σ′σ] %%JJJJJJJJJ
Vf(Aσ)

[σ′]

��

ϕσ // Vf(A)

[σ′]

��
Vf(Aσ

′σ)
(ϕσ)σ′

//

ϕσ′◦(ϕσ)σ′ %%KKKKKKKKKK
Vf(Aσ

′
)

ϕσ′

��
Vf(A)

Since the left and bottom triangles clearly commute, it is therefore enough to prove that the inner square
commutes. This amounts to the obvious identity fτ (τ(x′)) = τ(f(x′)) for any Q-map f : X ′ → X between
Q-schemes and any x′ ∈ X ′(Q).

We have verified the group homomorphism condition, so to check continuity it is enough to do so near
the identity. Thus, we can restrict attention to σ ∈ Gal(Q/L) for a number field L ⊆ Q over which (A, i, φ)
is “defined” (any such L must contain K∗). Let (A0, i0, φ0) be a descent of (A, i, φ) to such an L. This
choice of descent naturally identifies Aσ with A carrying iσ to i and φσ to φ. Taking ϕσ to be this canonical
identification Aσ ' A associated to σ ∈ Gal(Q/L), the element µσ,ϕσ ∈ T (Af) ⊆ A×

K,f is the multiplier for
the AK,f -linear action by σ ∈ Gal(Q/L) on Vf(A0). Thus, the continuity of (2.1) on the open subgroup
Gal(Q/L) ⊆ Gal(Q/K∗) follows from the continuity of the Galois representation on the total Tate module
of any abelian variety over a field. �

Lemma 2.2. The quotient space T (Q)\T (Af) is Hausdorff.

Proof. We shall prove that T (Q) is a discrete subgroup of T (Af). Since T (Af) is a second countable Hausdorff
space, we can test discreteness by studying sequences that converge to the identity. Consider the short exact
sequence

1→ Gm → T → T → 1.

Granting for a moment that T (Q) is discrete in T (Af), it follows that a sequence in T (Q) tending to 1 in
T (Af) has image in T (Q) that stabilizes at 1. Such a sequence is eventually a sequence in Gm(Q) = Q×

tending to 1 in T (Af) and hence in Gm(Af) = A×
f . But Q× is discrete in A×

f (as it meets the compact
open subgroup Ẑ× in {±1}), so we would be done.

It remains to prove that T (Q) is discrete in T (Af). By [R, Thm. 3.1], it is enough to prove that T (R)
is compact. (Note that T (R) is not compact.) By Hilbert’s Theorem 90 we have H1(C/R,Gm) = 1, so the
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natural map T (R)/R× → T (R) is a topological group isomorphism. We shall therefore prove that T (R)/R×

is compact. By definition of T , the group T (R) is the closed subgroup of elements

(z1, . . . , zg) ∈
∏

K0↪→R

(K ⊗K0 R)×

whose image in (
∏
K0↪→R R)× under NK/K0 lies in R×. This is identified with the subgroup of points

(z1, . . . , zg) ∈ (C×)g such that |zj | is independent of j, and by working modulo the diagonally embedded
subgroup R× we conclude that T (R)/R× is a quotient of (S1)g and so it is compact. �

By Lemma 2.2, the continuous group homomorphism Gal(Q/K∗) → T (Q)\T (Af) to an abelian target
must factor through the topological abelianization of Gal(Q/K∗). The continuous Artin map (K∗)×\A×

K∗ →
Gal((K∗)ab/K∗) is a surjection and it identifies the abelianized Galois group with the topological group quo-
tient of (K∗)×\A×

K∗ by the closure in (K∗)×\A×
K∗ of the image of the identity component of the archimedean

part (R ⊗Q K∗)× [AT, Ch. IX]. Since the reflex field K∗ is a CM field and hence has no real places,
(R ⊗Q K∗)× '

∏
w|∞(K∗

w)× is connected. The infinite divisibility of (K∗
w)× for each w|∞ on K∗ there-

fore implies that the restricted Artin map (K∗)×\A×
K∗,f → Gal((K∗)ab/K∗) is surjective and identifies the

abelianized Galois group with the maximal Hausdorff group quotient of (K∗)×\A×
K∗,f (i.e., the quotient

by the closure of the identity point). Hence, we have built a natural continuous composite mapping of
topological groups

(2.3) (K∗)×\A×
K∗,f � Gal((K∗)ab/K∗)→ T (Q)\T (Af)

that only depends on the CM type (K,Φ) and not on the paritcular triple (A, i, φ) used to build it in the
first place. It is therefore natural to demand a direct description of (2.3) in terms of (K,Φ).

Remark 2.3. Note that any continuous group homomorphism

h : (K∗)×\A×
K∗,f → T (Q)\T (Af)

must factor continuously through the surjective Artin quotient map (K∗)×\A×
K∗,f � Gal((K∗)ab/K∗).

Indeed, h is a mapping to a Hausdorff target group T (Q)\T (Af), and so it factors continuously through the
maximal Hausdorff group quotient of the source.

We may rewrite the composite map (2.3) in the form

ResK∗/Q(Gm)(Q)\ResK∗/Q(Gm)(Af)→ T (Q)\T (Af).

Now recall from [K, §2] that to the CM type (K,Φ) we associated the reflex norm NΦ : ResK∗/Q(Gm)→ T .
Hence, it is reasonable to ask if the maps induced by the reflex norm on finite-adelic and rational points have
any relation to the composite mapping (2.3). This is the content of the following Galois-theoretic formulation
of the Main Theorem of complex multiplication:

Theorem 2.4 (Main Theorem of CM; algebraic form). The mapping (2.3) is induced by s 7→ NΦ(s)−1 ∈
T (Af) ⊆ A×

K,f for s ∈ A×
K∗,f .

There is a further aspect to the Main Theorem: giving an adelic description of (Aσ, iσ, φσ) in terms of
(A, i, φ). We shall address this aspect in Theorem 5.2 in the case of CM order OK and in Theorem 6.8 in
the general case.

Remark 2.5. The reason NΦ(s)−1 rather than NΦ(s) appears in the statement of the Main Theorem is due
to our convention for defining the Artin map: it carries local uniformizers to arithmetic Frobenius elements.
(See above Remark 4.3.) If we were to use the algebraic geometry convention that the Artin map carries local
uniformizers to geometric Frobenius elements then the identification of Gal((K∗)ab/K∗) with the maximal
Hausdorff group quotient of (K∗)×\A×

K∗,f would be modified by inversion and so the formula in the Main
Theorem would lose the inversion.
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3. Some applications

Before we take up the proof of the Main Theorem, we deduce some consequences. Pick σ ∈ Gal(Q/K∗) and
choose s ∈ A×

K∗,f such that its image (s|K∗) ∈ Gal((K∗)ab/K∗) under the Artin map is σ|(K∗)ab . By Remark
2.3, NΦ(s)−1 ∈ T (Af) has class modulo T (Q) that only depends on (s|K∗) = σ|(K∗)ab ∈ Gal((K∗)ab/K∗)
and not on the choice its lifting s through the Artin map. By the Main Theorem, NΦ(s)−1 ∈ A×

K,f =
AutAK,f (Vf(A)) agrees modulo T (Q) with the composite in (2.1) for any choice ofK-linear isogeny ϕσ : Aσ →
A carrying φ back to a (necessarily positive) rational multiple of φσ. Since this ϕσ is unique up to precisely
the T (Q)-action on A, we may uniquely choose ϕσ to get the exact agreement: NΦ(s)−1 = Vf(ϕσ) ◦ [σ].

To summarize, for all σ ∈ Gal(Q/K∗) and s ∈ A×
K∗,f such that (s|K∗) = σ|(K∗)ab there is a unique

K-linear isogeny λσ,s : (A, i) → (Aσ, iσ) such that NΦ(s−1) · Vf(λσ,s) = [σ], where [σ] : Vf(A) ' Vf(Aσ)
is the natural map defined by σ-action on torsion points. Moreover, by the construction this λσ,s satisfies
deg(λσ,s)1/g ∈ Q× and it carries φσ back to to deg(λσ,s)1/gφ for all K-linear polarizations φ of (A, i). Since
[σ] induces an isomorphism on underlying total Tate modules, the rational multiplier deg(λσ,s)1/g is easy
to compute by formation of adelic degree on the identity NΦ(s−1)Vf(λσ,s) = [σ]: it is the gth root of the
generalized adelic lattice index

[Tf(A) : NΦ(s)Tf(A)] = NK/Q(NΦ(s)) = NK0/Q(NΦ(s)NΦ∗(s)) = NK0/Q(NK∗/Q(s)) = NK∗/Q(s)g

(the third equality follows from the fact that NΦ factors through the subtorus T ⊆ ResK/Q(Gm); see [K,
Prop. 2.5]).

In other words, if we let qs ∈ Q×
>0 be the unique positive generator of the fractional Q-ideal associated

to the finite Q-idele NK∗/Q(s) then λσ,s carries φσ back to qsφ. We can describe qs an a finite idele rather
directly: qs = χ(σ)NK∗/Q(s) inside A×

f , where χ : Gal(Q/Q) → Ẑ× is the total cyclotomic character.
Indeed, passing from Q-ideles to fractional Q-ideals gives the result provided that χ(σ)NK∗/Q(s) ∈ Q×

>0

inside of A×
f . By functoriality of the Artin map with respect to the extension Q → K∗, the image of

NK∗/Q(s) in Gal(Qab/Q) is σ|Qab , and by our convention for the local Artin map the global Artin map
for Q identifies Gal(Qab/Q) with Ẑ× = Q×\A×

Q/R
×
>0 = Q×

>0\A
×
Q,f via the reciprocal of the cyclotomic

character. Hence, NK∗/Q(s) and χ(σ)−1 represent the same coset in Q×
>0\A

×
Q,f , as desired.

Remark 3.1. If we replace s with cs for c ∈ (K∗)×, then since NΦ(cs) = NΦ(c)NΦ(s) with NΦ(c) ∈ T (Q) ⊆
K× we conclude by uniqueness that λσ,cs = NΦ(c)λσ,s.

Let L ⊆ Q be a number field that is a field of definition for (A, i), so K∗ ⊆ L. We let (A0, i0) be a descent
of (A, i) to L. The continuous group homomorphism

ρ : Gal(Q/L)→ AutAK,f (Vf(A0)) ' A×
K,f

uniquely factors through some ρab : Gal(Lab/L) → A×
K,f . Pick s′ ∈ A×

L,f , so (s′|L) ∈ Gal(Lab/L) acts on
Vf(A0) via ρab((s′|L)). We want to describe this action:

Theorem 3.2. For s′ ∈ A×
L,f there is a unique λs′ ∈ K× such that ρab((s′|L)) = NΦ(NL/K∗(s′))−1 · λs′ in

A×
K,f . Moreover, s′ 7→ λs′ ∈ K× is continuous for the discrete topology on K×.

Proof. By functoriality of the Artin symbol, the restriction of (s′|L) to (K∗)ab ⊆ Lab is (NL/K∗(s′)|K∗).
By working over Q we may find some φ as above, and upon choosing σ′ ∈ Gal(Q/L) ⊆ Gal(Q/K∗) lifting
(s′|L) we get that σ′|(K∗)ab = (s|K∗) for s = NL/K∗(s′). Using the L-structure on (A, i) provided by
the identification A ' Q ⊗L A0, we get a canonical K-linear isomorphism Aσ

′ ' A and hence a K-linear
isogeny λσ′,s : A → Aσ

′ ' A such that NΦ(s)−1 · Vf(λσ′,s′) = ρ(σ′) as endomorphisms of Vf(A). Since
ρ(σ′) = ρab((s′|L)), we conclude that λσ′,s′ only depends on s′ and not on σ′. But K is its own centralizer in
End0

Q
(A), so the K-linear λσ′,s′ is multiplication by an element λs′ ∈ K×. This completes the construction

of λs′ ∈ K× such that ρab((s′|L)) = NΦ(NL/K∗(s))−1 · λs′ in A×
K,f .
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It remains to prove continuity of λs′ with respect to the discrete topology on K×. That is, we want λs′ = 1
for s′ ∈ A×

L,f sufficiently near 1. Since λs′ = ρab((s′|L))NΦ(NL/K∗(s′)) ∈ A×
K,f , the mapping s′ 7→ λs′ ∈ K×

is continuous for the topology on K× induced by its inclusion into the group A×
K,f of finite K-ideles. In

particular, for s′ sufficiently near 1 in A×
L,f and a fixed choice of positive integer M ≥ 3 we have several

properties: λs′ ∈ O×
K , λs′ ≡ 1 mod M , and λs′ lies in the CM order OK ∩ EndQ(A). Hence, for such s′ the

element λs′ is an automorphism of the abelian variety A acting trivially on the M -torsion. If we can prove
that λs′ has finite order then since M ≥ 3 such an automorphism must be the identity and so we will be
done. Pick a K-linear Q-polarization φ for (A, i). Taking s′ ∈ A×

L,f sufficiently near 1, we can arrange that
(s′|L) ∈ Gal(Lab/L) has a lift to Gal(Q/L) that acts trivially on a number field of definition for φ over L
(after applying a base change to (A0, i0)). It therefore follows from the construction of λs′ that for such s′

the element λs′ ∈ K× acts as an automorphism of A preserving φ up to a positive rational multiple. Degree
considerations force this positive rational multiplier to be 1, and by [C1, Remark 3.5], the automorphism
group of a Q-polarized abelian variety is finite. Hence, λs′ has finite order as desired. �

We next use the Main Theorem (or rather, its consequence in Theorem 3.2) to deduce some results
concerning L-functions. We now eliminate the mention of Q and work with an “abstract” number field as
the base field. Let A be an abelian variety of dimension g over a number field L and let i : K → End0

L(A)
be a CM structure on A over L. The extension L(Ator)/L is abelian, so it uniquely embeds into Lab over
L. The field L has no real places because it contains a CM field: upon embedding L into Q to define a CM
type Φ for (A, i), we know that L contains the reflex field K∗ for (K,Φ) and K∗ is a CM field. (The reflex
subfield in L depends on the Q-embedding of L in general.) Hence, L×∞ = (R ⊗Q L)× is connected and
infinitely divisible. The associated CM character is the map

α(A,i)/L : A×
L � Gal(Lab/L)→ A×

K,f

defined by the Galois action on torsion of A. The image of L×∞ in Gal(Lab/L) is trivial, so α(A,i)/L(s) only
depends on the finite component sf ∈ A×

L,f for any s ∈ A×
L .

Recall from [K, Prop. 2.5] that the reflex norm NΦ : ResK∗/Q(Gm)→ T ⊆ ResK/Q(Gm) may be defined
as the K-determinant of the (K∗)×-action on the K ⊗Q K∗-module tΦ that descends the K ⊗Q Q-module∏
ϕ∈Φ Q (as in [C2, §1]). The specification of the CM type Φ and the reflex field K∗ ⊆ L depend on a choice

of embedding of L into Q, but the composite map

NΦL
: ResL/Q(Gm)

NL/K∗→ ResK∗/Q(Gm) NΦ→ ResK/Q(Gm)

is independent of the embedding of L into Q. The content here is the identity NτΦ(τs) = NΦ(s) in A×
K for

s ∈ A×
K∗ and τ ∈ Gal(Q/K∗), and by Zariski-density it suffices to prove

detK(τ(x) : tτΦ ' tτΦ) = detK(x : tΦ ' tΦ)

in K for all x ∈ K∗.
The natural map 〈τ〉 :

∏
ϕ∈Φ Q '

∏
ψ∈τΦ Q defined by (xϕ) 7→ (τ(xτ−1ψ)) carries the “descent data”

action (xϕ) 7→ (g(xg−1ϕ)) by g ∈ Gal(Q/K∗) over to the action by τgτ−1 ∈ Gal(Q/τ(K∗)) and respects the
K-actions (but carries multiplication by y ∈ K∗ over to multiplication by τ(y) ∈ τ(K∗)), so the isomorphism
〈τ〉 descends to an isomorphism tΦ ' tτΦ linear over the ring isomorphism 1⊗ τ : K ⊗QK∗ ' K ⊗Q τ(K∗).
The equality of K-determinants for the x-action on tΦ and the τ(x)-action on tτΦ therefore drops out (for
any x ∈ K∗).

Remark 3.3. By Theorem 3.2, for each s ∈ A×
L there is a unique λs ∈ K× depending only on sf such that

α(A,i)/L(s) = λsNΦL
(sf)−1,

and we have λs = 1 if sf is sufficiently close to 1. Since α(A,i)/L kills L×, it also follows that for c ∈ L×,
λc = NΦL

(c) in K×. Consideration of quadratic twists shows that α(A,i)/L generally depends on (A, i) over
L and not just on its Q-fiber (i.e., not just on (K,Φ)).
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Remark 3.4. Two elementary properties of the construction s 7→ λs are that for s ∈ A×
L , [NΦL

(sf)]K = λsOK
and λsλ

∗
s = NL/Q(sf)α(A,i)/L(s)α∗(A,i)/L(s) in A×

f . The second identity follows from picking an embedding
of L into Q (so as to get a CM type Φ) and using the identity NΦ · NΦ∗ = NK∗/Q and transitivity of
norms. To prove the first identity, first note that the automorphism Vf(λs · NΦL

(s−1
f )) = [σ] of Vf(A) is

an automorphism of the total Tate module Tf(A) and hence is an automorphism of the free rank-1 module
it generates over the ring O∧

K =
∏
v-∞ OKv

of integral K-adeles. Hence, the fractional K-ideals λsOK and
[NΦL

(sf)]K have the same ord’s at all finite places of K, so these ideals coincide.

Theorem 3.5. Let (A, i) be a CM abelian variety over a number field L. Let λ : A×
L → K× be the character

s 7→ λs that is trivial on L×∞ and continuous for the discrete topology on K. Pick a prime P of L.
(1) The abelian variety A has good reduction at P if and only if λP = λ|L×P is trivial on O×

LP
.

(2) For primes P of good reduction, λP(πP) ∈ K× lies in OK and in the isogeny category over κ(P) it
acts on the reduction A/κ(P) as the qP-Frobenius endomorphism (with πP a uniformizer at P).

Proof. To check good reduction at P, we choose a rational prime ` distinct from the residue characteristic
of P and we need to determine if the action of an inertia group IP at P is trivial on V`(A). The image of
IP in Gal(Lab/L) is the image of O×

LP
under the Artin map, so it comes from ideles s ∈ A×

L with trivial
`-part. Hence, the formula

(3.1) α(A,i)/L(s) = λsNΦL
(sf)−1

implies that α(A,i)/L(s) has trivial `-part for all s ∈ ιP(O×
LP

) if and only if λs ∈ K× viewed in K×
` is trivial

for all s ∈ ιP(O×
LP

). That is, A has good reduction at P if and only if λP is trivial on O×
K∗P

.
Now choose P that does have good reduction, and pick ` as above. The preceding calculation shows that

for a local uniformizer πP the Frobenius action at P on V`(A) is equal to the action by λP(πP) ∈ K×.
Passing to the reduction A at P, it follows that the action by λP(πP) on V`(A) agrees with the action by
the qP-Frobenius endomorphism, and so as elements of End0

κ(P)(A0) the element λP(πP) ∈ K× coincides
with this Frobenius endomorphism. In particular, it is a genuine endomorphism of A (not just in the isogeny
category) and so is integral over Z. Thus, as an element of K it lies in OK . �

For any embedding τ : K ↪→ C×, let λτ = τ ◦λ with λ as in Theorem 3.5. Define α∞ = N−1
ΦL,∞ ·λ : A×

L →
K×
∞, where NΦL,∞ is the composite of NΦL

: A×
L → A×

K and the projection A×
K � K×

∞. In particular,
NΦL,∞ kills A×

L,f . Clearly α∞ is continuous, and it kills L× due to Remark 3.3. Hence, for each τ : K ↪→ C
corresponding to an archimedean place v of K, the composite

ατ : A×
L
α∞→ K×

∞ � K×
v

τ' C×

is a Hecke character and the restrictions ατP and λτP of ατ and λτ to L×P ⊆ A×
L coincide for all primes P of

L.

Remark 3.6. The restriction of the Hecke character ατ to L×∞ is the continuous extension of the “algebraic”

map L×
NΦL→ K× τ→ C×. More specifically, the C×-valued ατ (or, better, the K×-valued λ) is an algebraic

Hecke character. Let us make this explicit. Let f be an integral nonzero ideal of OL such that λ : A×
L → K×

is trivial on the open subgroup Uf ⊆ A×
L,f of finite ideles congruent to 1 modulo f, so the group I(f) of

fractional ideals of L relatively prime to f is naturally a quotient of A×
L,f/Uf. Hence, ατ induces a well-

defined homomorphism [ατ ] : I(f) → τ(K)× ⊆ C× that sends a prime P to ατP(πP) = τ(λP(πP)) for any
local uniformizer πP at P. On the subgroup P (f) ⊆ I(f) of principal fractional ideals of the form xOL with
x ∈ L× satisfying x ≡ 1 mod f, we have

[ατ ](xOL) = ατ (xf) = ατ (x−1
∞ ) = τ(NΦL,∞(x)).

For each embedding σ : K∗ ↪→ Q, pick σ̃ ∈ Gal(Q/Q) lifting σ via the canonical inclusion of K∗ into Q
given in the definition of the reflex field K∗. Let Σ(Φ, τ) be the set of σ ∈ Hom(K∗,Q) such that τ = σ̃ ◦ ϕ
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for some (necessarily unique) ϕ ∈ Φ. Using [K, Remark 2.7], for xOL ∈ P (f) with x ≡ 1 mod f we have

[ατ ](xOL) = τ(NΦL,∞(x)) =
∏

σ∈Σ(Φ,τ)

σ(NL/K∗(x)) =
∏

ψ:L→Q,ψ|K∗∈Σ(Φ,τ)

ψ(x)

and (as we noted in Remark 3.4) the set Ψτ of ψ’s in this final product satisfies
∏
ψ∈Ψτ

ψ(x)ψ(x) = NL/Q(x)
for all x ∈ L×. Thus, by Artin’s lemma on linear independence of characters, Ψτ is a set of representatives
for the archimedean places of L.

For each τ , Theorem 3.5(1) says that A has good reduction at P if and only if ατ is unramified at P.
By Theorem 3.5(2) and the Riemann Hypothesis for abelian varieties over finite fields [Ca, §5], the Hecke
character || · ||−1/2

L ατ takes values in the unit circle. This unitary character is non-trivial, for otherwise by
working with degree-1 primes of L it would follow from the Riemann Hypothesis for abelian varieties that
K contains square roots of infinitely many odd rational primes, an absurdity. (It can happen for CM elliptic
curves that this non-trivial unitary character has finite order, and even order 2.) Hence, the Euler products
that define each L(s, ατ ) are absolutely and uniformly convergent in half-planes Re(s) ≥ 3/2+ε for all ε > 0,
and extend to holomorphic functions on C. These Hecke L-functions compute the L-function of A:

Theorem 3.7. For s ∈ C with Re(s) > 3/2,

L(s,A/L) =
∏

τ :K→C

L(s, ατ ).

In particular, the L-function for A over L has an analytic continuation to C.

Note that in the product in the theorem, we do repeat conjugate pairs of embeddings.

Proof. We compare Euler factors at good and bad primes separately. Let P be a prime of good reduction
for A, and pick ` distinct from the residue characteristic of P. Let λ(P) ∈ K× be the common value of λ
on local ideles coming from uniformizers at P, and likewise for λτ . By Theorem 3.5, we get

detQ`
(1− λ(P)X) = NK`/Q`

(1− λ(P)X) = NK/Q(1− λ(P)X) = NC⊗QK/K(1− (1⊗ λ(P))X),

and under the natural decomposition C ⊗Q K '
∏
τ C we get that this norm is

∏
τ (1 − λτ (P)X). This is

the product of the Euler factors at P for the right side of the proposed identity because ατ and λτ have the
same value on any idele with trivial archimedean component.

Now we turn to the bad primes for A. At such primes we know by Theorem 3.5(1) that λ is non-trivial on
O×
LP

and hence all Hecke characters ατ are ramified at P. Thus, the Euler factor at P for the L-function of
each of the ατ ’s is trivial. We therefore have to prove that for ` as above, the abelian `-adic representation
V`(A) for Gal(Q/L) has vanishing subspace of inertial invariants at P. Since λ(O×

LP
) ⊆ K× is nontrivial, it

contains some element x ∈ K× − {1}. But λ(O×
LP

) viewed in K×
` is the image of the `-part of α(A,i)/L on

O×
LP

(due to (3.1)), so the subspace of inertial invariants at P is contained in the subspace of V`(A) killed
by x− 1 ∈ K×. Hence, this subspace is 0. �

Theorem 3.7 can be generalized to the case of L-functions of abelian varieties that are merely potentially
CM (i.e., acquire a CM structure over an extension of the base field). Note that if there is a CM structure
over the base field then a CM reflex field lies in the base field, so a potentially CM abelian variety over a
real number field (such as Q) cannot have a CM structure over the base field. These matters will be taken
up in [A2] in the absolutely simple case (as well as in a slightly more general case).

In the case that the complex multiplication is defined over the base field L, we wish to record how
λ = λ(A,i)/L behaves with respect to the action by Aut(K/Q).

Theorem 3.8. For γ ∈ Aut(K/Q), λ(A,i◦γ−1)/L = γ ◦ λ(A,i)/L.

In some references one also sees a discussion of behavior with respect to the action by Gal(Q/Q) when L
has been embedded into Q, namely λ(Aτ ,iτ )/τ(L)(sτ ) = λ(A,i)/L(s). This is our earlier observation that the
character λ(A,i)/L : A×

L → K× is intrinsic for an “abstract” L not embedded into Q.
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Proof. Pick an embedding of L into Q, so we get a CM type Φ for (A, i) and a reflex field K∗ ⊆ L. In
this way, we canonically identify Lab with a subfield of Q over L. Pick s ∈ A×

L and σ ∈ Gal(Q/L) with
σ|Lab = (s|L). We need to prove

Vf(λ(A,i◦γ−1)/L(s)) ?= Vf(γ(λ(A,i)/L(s))) = Vf(γ)(Vf(λ(A,i)/L(s)))

in A×
K,f when the left and right sides are respectively viewed as self-maps of Vf(A) with AK,f -module

structures defined by i ◦ γ−1 and i respectively.
In other words, for NΦL

def= NΦ ◦NL/K∗ and N(Φ◦γ)L

def= NΦ◦γ ◦NL/K∗ we need to prove

N(Φ◦γ)L
(s) · (Vf(i) ◦ γ−1)−1([σ]) ?= Vf(γ)(NΦL

(s) ·Vf(i)−1([σ])) = Vf(γ)(NΦL
(s)) ·Vf(γ)(Vf(i)−1([σ]))

(where Vf(i) : AK,f ' EndAK,f (Vf(A)) is the natural isomorphism). The second factors on the left and right
sides clearly agree, so we just have to show γ−1(N(Φ◦γ)L

(s)) = NΦ(s) in A×
K,f for all s ∈ A×

L . Thus, we just
have to prove that the isomorphism γ : A×

K ' A×
K carries NΦ◦γ to NΦ as maps from A×

K∗ .
In view of the algebraic definition of the reflex norm as an K-determinant, the problem reduces to

constructing an K ⊗Q K∗-module isomorphism K ⊗γ−1,K tΦ◦γ−1 ' tΦ. We apply the extension of scalars
K∗ → Q and just have to compare dimensions of isotypic factors for the K-action. By definition via descent,

K ⊗γ−1,K (tΦ ⊗K∗ Q) ' K ⊗γ−1,K

∏
ψ∈Φ◦γ−1

Q

is Q-linearly isomorphic to a product of copies of Q indexed by ψ ∈ Φ ◦ γ−1 such that K acts on the ψ-th
copy via ψ ◦ γ. Hence, the isotypic pieces are 1-dimensional over Q and the eigencharacters are the elements
of the set (Φ ◦ γ−1) ◦ γ = Φ. �

4. Hom-modules and fractional ideals

We now begin the proof of the Main Theorem. By Remark 1.7 the choice of φ for (A, i) does not matter,
and any two pairs (A, i) and (A′, i′) of type (K,Φ) over Q are isogenous, so in fact the choice of triple (A, i, φ)
of type (K,Φ) does not matter. Thus, we may and do take (A, i) to be principal. This opens the door to
applying Serre’s tensor construction and related results from [X]. Unlike adelic multiplication operations
in the isogeny category that we shall develop in §6 when the CM order is not maximal, the Serre tensor
construction is applicable at torsion levels. This is why we have passed to the principal case in the proof of
the Main Theorem.

We pick σ ∈ Gal(Q/K∗). Choose a finite Galois extension L/K∗ inside of Q such that (A, i) descends to a
pair (A0, i0) over L and such that the K-linear Q-polarization φ of A descends to an K-linear Q-polarization
φ0 of A0. (We will have no need for φ0 until after (5.3), so the reader may safely forget about it until then.)
Make L big enough so that it splits K over Q (i.e., it contains the Galois closure of K in Q) and so that

HomL((A0, i0), (Aσ0 , i
σ
0 )) = HomQ((A, i), (Aσ, iσ)).

In particular, this module of K-linear mappings over L is an invertible OK-module. We write aσ to denote
this abstract invertible OK-module. It will soon be naturally identified with a fractional K-ideal (once we
choose a suitable auxiliary prime of L).

Let N be the product of all primes ` of Q that arise as the residue characteristic of a prime factor of
disc(L/Q) or a prime of bad reduction for A0. (Note that if ` is ramified in K then ` is ramified in L and
hence divides N , as L is assumed to split K over Q.) We will be interested in primes P of OL[1/N ] such
that σ|L = (L/K

∗

P ). Before we pick such a P, we record an important feature of working over Z[1/N ]: the
K⊗QK

∗-module tΦ that arises in the definition of the reflex norm (descending the K⊗QQ-module
∏
ϕ∈Φ Q)

has a natural integral structure over Z[1/N ]. To be precise, first note that L contains all embeddings of
K into Q (due to the “largeness” of the choice of L), so we may first descend tΦ to the K ⊗Q L-module∏
ϕ∈Φ L. Since the generically Galois extension OK∗ [1/N ] → OL[1/N ] is finite étale, we may use étale

descent in place of Galois descent to bring the OK [1/N ] ⊗Z[1/N ] OL[1/N ]-module
∏
ϕ∈Φ OL[1/N ] down to

an OK [1/N ]⊗Z[1/N ] OK∗ [1/N ]-module tΦ,Z[1/N ] such that Q⊗Z[1/N ] tΦ,Z[1/N ] ' tΦ as K ⊗Q L-modules. In
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particular, tΦ,Z[1/N ] is a finite locally free module over each of OK [1/N ] and OK∗ [1/N ]. Thus, the reflex
norm NΦ between Q-tori extends to a surjective mapping between smooth Z[1/N ]-tori

(4.1) NΦ,Z[1/N ] : ResOK∗ [1/N ]/Z[1/N ](Gm)→ ResOK [1/N ]/Z[1/N ](Gm)

defined on R-points (for a Z[1/N ]-algebra R) by

x 7→ detOK [1/N ]⊗Z[1/N]R(x : tΦ,Z[1/N ] ⊗Z[1/N ] R ' tΦ,Z[1/N ] ⊗Z[1/N ] R) ∈ (OK [1/N ]⊗Z[1/N ] R)×

for x ∈ (OK∗ [1/N ]⊗Z[1/N ] R)×. (The map NΦ,Z[1/N ] factors through the closed subtorus

TZ[1/N ] = ker(ResOK [1/N ]/Z[1/N ](Gm)
NOK [1/N]/OK0

[1/N]

� ResOK0 [1/N ]/Z[1/N ](Gm)/Gm)

because it does so on the generic fibers over Q, but we do not need to use TZ[1/N ] and so we will not address
it any further.)

It follows that NΦ : A×
K∗,f → A×

K,f carries
∏
w-N O×

K∗w
into

∏
v-N O×

Kv
and also respects integrality at the

collection of places over any rational prime ` - N . Thus, for any place w of K∗ away from N and any local
uniformizer πw of K∗

w, if we let ιw : (K∗
w)× → A×

K∗,f be the natural inclusion map then NΦ(ιw(πw)) ∈ A×
K,f

has local component 1 away all places v of K not over p and is integral at all places v of K over p. Moreover,
the idele NΦ(ιw(πw)) changes by a unit multiple in all components at places of K over p when πw is replaced
with an O×

K∗w
-multiple. Hence, the reflex norm induces a well-defined homomorphism on fractional ideal

groups away from N : if p is a prime ideal of K∗ away from N then we define the fractional K-ideal

(4.2) NΦ(p) def=
∏

q|pOK

qordq(NΦ(ιp(πp)))

for any uniformizer πp of OK∗p .

Now pick a prime P of L over a rational prime p - N such that σ|L = (L/K
∗

P ). Let p be the prime
of K∗ below P. As we saw in the proof of Theorem 1.5 (via [X]), since L is “big enough” (with respect
to the finitely generated Z-module of K-linear maps from A to Aσ) there is an unique K-linear morphism
ξσ,P : A0 → Aσ0 over L whose reduction is the relative q-Frobenius morphism

FrA0/κ(P),q : A0 → A
(q)

0 ,

where q = #κ(p). The nonzero element

ξσ,P ∈ aσ
def= HomL((A0, i0), (Aσ0 , i

σ
0 ))

endows the 1-dimensional K-vector space K ⊗OK
aσ with a distinguished element and so identifies aσ with

a fractional K-ideal aσ,P that contains OK and depends on P. Equivalently, composition with ξσ,P defines
an OK-linear embedding of invertible OK-modules

OK = HomL((A0, i0), (A0, i0))
ξσ,P◦(·)→ HomL((A0, i0), (Aσ0 , i

σ
0 )) = aσ.

Of course, if we change the choice of the prime P of OL[1/N ] such that (L/K
∗

P ) = σ|L then this inverse-integral
fractional K-ideal aσ,P is replaced with another such ideal.

Note that the fractional ideal aσ,P has nothing to do with φ. Rather important for us is the fact that it
is given by a simple formula that only depends on (K,Φ) and P:

Theorem 4.1. With notation as above, aσ,P = NΦ(p)−1 with p = P ∩K∗.

Proof. Since ξσ,P has p-power degree, OK has p-power index in aσ,P. Hence, the fractional ideal aσ,P is a
unit away from p. By construction, the same holds for NΦ(p). It is therefore enough to fix a place v of K
over p and to compare ordv’s for aσ,P and NΦ(p)−1. Rather than make such a comparison directly, it will
be convenient to compare after raising both ideals to the f(P|p)th-power. To make effective use of this, we
need to describe anσ,P for positive integers n.

First of all, note that for any positive integer n, all K-linear maps A → Aσ
n

descend to K-linear maps
A0 → Aσ

n

0 . This says that the Gal(Q/L)-action on HomQ(A,Aσ
n

) (via the L-structures A0 and Aσ
n

0 ) is
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trivial on the subgroup of K-linear maps, and it suffices to check this on the level of the isogeny category. The
subspace of K-linear maps in the isogeny category is 1-dimensional as a K-vector space, and the K-action
on A over Q descends to A0 over L, so it suffices to exhibit a single nonzero K-linear mapping A0 → Aσ

n

0 .
There is a K-linear isogeny h0 : A0 → Aσ0 (e.g., ξσ,P), so the composite hσ

n−1

0 ◦ · · · ◦ hσ0 ◦ h0 does the job.
We conclude that for all n ≥ 1

aσn
def= HomL((A0, i0), (Aσ

n

0 , iσ
n

0 ))

is an invertible OK-module equal to the module of such mappings over Q, and so by the complex-analytic
theory of the Serre construction the natural evaluation mapping aσn⊗OK

A0 → Aσ
n

0 over L is an isomorphism
because it becomes an isomorphism after analytification of the C-fiber.

Next, observe that the Hom-module aσn contains a unique element ξσ,n,P that lifts the K-linear relative

qn-Frobenius morphism A0 → A
(qn)

0 over κ(P). This identifies aσn with a fractional K-ideal aσ,n,P. For
example, aσ,1,P = aσ,P. What is the ideal aσ,n,P in general? Since FrA0/κ(P),qn is roughly an n-fold composite
of FrA0/κ(P),q’s, the following answer is not a surprise:

Lemma 4.2. For all n ≥ 1, aσ,n,P = anσ,P.

Proof. Since all K-linear maps between A and Aσ are defined over L on the descents A0 and Aσ0 , we have a
canonical evaluation morphism

aσ ⊗OK
A0 → Aσ0

over L and it is an isomorphism. Hence, for any τ ∈ Gal(Q/K∗), applying the base change τ : L ' L and
using the base-change compatibility of Serre’s construction yields a natural K-linear isomorphism

(4.3) aσ ⊗OK
Aτ0 ' (aσ ⊗OK

A0)τ ' (Aσ0 )τ ' Aτσ0
over L, carrying 1⊗ iτ0 to iτσ0 .

By the definition of higher relative Frobenius maps, for any τ = σn with n ∈ Z+ the composite OK-linear
module isomorphism

aτσ
def= HomL((A0, i0), (Aτσ0 , iτσ0 ))

(4.3)
' HomL((A0, i0), (aσ ⊗OK

Aτ0 , 1⊗ iτ0))
' HomL((A0, i0), (aσ ⊗OK

aτ ⊗OK
A, 1⊗ 1⊗ i0))

' aσ ⊗OK
aτ ⊗OK

HomL((A0, i0), (A0, i0))
' aσ ⊗OK

aτ

carries ξσ,n+1,P to ξσ,P⊗ξσ,n,P. (The reader should check this assertion!) In terms of fractional ideals resting
on the distinguished elements ξσ,m,P for m ∈ Z+, this says aσ,n+1,P = aσ,Paσ,n,P. Hence, by induction on
n ≥ 1 we conclude that aσ,n,P = anσ,P for all n ≥ 1. �

As a special case of Lemma 4.2, since σ|L has order f(P|p), the fractional ideal a
f(P|p)
σ,P is associated to the

invertible OK-module EndL(A0, i0) = OK endowed with the distinguished element π0 = ξσ,f(B|p),P that lifts
the Frobenius qP-endomorphism of the abelian variety A0 over the finite field κ(P) with size qP = q

f(P|p)
p .

Hence, we conclude that a
f(P|p)
σ,P = π−1

0 OK , so for any place v of K over p we have

ordv(a
f(P|p)
σ,P ) = − ordv(π0).

Now recall the Shimura-Taniyama formula (proved in [C2]):

ordv(π0) = ordv(qP) · #Φv
[Kv : Qp]

with Φv ⊆ Φ ⊆ HomQ(K,L) equal to the subset of elements ϕ ∈ Φ such that ϕ : K → L carries the P-adic
place back to v. Since

ordv(qP)
[Kv : Qp]

=
f(P|p) ordv(p)

[Kv : Qp]
=
f(P|p)
f(v|p)

,
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the problem ordv(aσ,P) ?= ordv(NΦ(p)−1) may be rephrased as

−f(P|p)
f(v|p)

·#Φv
?= ordv(NΦ(p)−f(P|p)),

or equivalently as

(4.4) f(p|p)#Φv
?= f(v|p) ordv(NΦ(p)).

We will analyze the right side and eventually transform it into the left side.
Choose πp ∈ OK∗ that has order 1 at p and order 0 at all other places ofK∗ over p, so by (4.2) the fractional

K-ideal NΦ(p) is the “p-part” of the principal fractional ideal generated by detK(πp : tΦ ' tΦ) ∈ K×. Hence,
passing to the v-part of this K-determinant,

f(v|p) ordv(NΦ(p)) = f(v|p) ordv(detKv (πp : Kv ⊗K tΦ ' Kv ⊗K tΦ)).

For any x ∈ Kv, f(v|p) ordv(x) = ordp(NKv/Qp
(x)) since p is unramified in K. Also, for any Kv-linear endo-

morphism µ : V → V of a finite-dimensional Kv-vector space V we have NKv/Qp
(detKv (µ)) = detQp(µQp)

with µQp
denoting the underlying Qp-linear endomorphism. Taking µ to be multiplication by πp onKv⊗K tΦ,

f(v|p) ordv(NΦ(p)) = ordp(detQp
(πp : Kv ⊗K tΦ ' Kv ⊗K tΦ)).

Recall that tΦ as an K⊗QK
∗-module is identified as the “generic fiber” of an OK [1/N ]⊗Z[1/N ] OK∗ [1/N ]-

module tΦ,Z[1/N ]. Extending scalars by Z[1/N ] → Zp and using the decomposition Kv ⊗K (K ⊗Q K∗) '∏
w|pOK∗

Kv⊗QpK
∗
w (and the analogous one with the Dedekind rings OKv⊗Zp OK∗w), we get a decomposition

of Kv⊗K tΦ into a product of w-parts over all w|pOK∗ . The πp-action respects the integral structure on this
module decomposition. Thus, this action has integral unit Zp-determinant on w-factors for all w 6= p since
πp ∈ O×

K∗w
for all w|pOK∗ with w 6= p, so f(v|p) ordv(NΦ(p)) is equal to ordp of the Qp-determinant of the

πp-action on the p-part of Kv ⊗K tΦ. This latter action is K∗
p -linear, and for any K∗

p -linear endomorphism
µ of a finite-dimensional K∗

p -vector space V we have

ordp(detQp
(µQp

)) = f(p|p) ordp(detK∗p (µ)),

where µQp is the underlying Qp-linear endomorphism.
We conclude that f(v|p) ordv(NΦ(p)) is equal to f(p|p) ordp(detK∗p (µ)) with µ equal to scalar multiplication

by πp ∈ (K∗
p)× on the p-part of Kv ⊗K tΦ. The K∗

p -determinant of such a scalar action is just πdp
p , where

dp is the K∗
p -dimension of the p-part of Kv ⊗K tΦ. Hence

f(v|p) ordv(NΦ(p)) = f(p|p) ordp(π
dp
p ) = f(p|p)dp.

It follows that (4.4) is equivalent to the assertion #Φv = dp. Under the extension of scalars K∗ → L applied
to tΦ, the p-part of the Kv ⊗QK∗-module Kv ⊗K tΦ is carried by the base change K∗

p → LP over to the P-
part of the Kv⊗QL-module Kv⊗K (tΦ⊗K∗L). Thus, this P-part has LP-dimension dp. But by construction
of the K ⊗Q L-module tΦ via Galois descent, tΦ ⊗K∗ L '

∏
ϕ∈Φ L as K ⊗Q L-modules. Hence, our problem

is to prove that the P-part of the module Pv = Kv⊗K (
∏
ϕ∈Φ L) over the ring Kv⊗QL '

∏
w′|pKv⊗Qp

Lw′

has LP-dimension #Φv.

The module Pv decomposes as
∏
ϕ∈Φ(Kv ⊗K,ϕ L), so it suffices to show that Pv,ϕ

def= Kv ⊗K,ϕ L has
vanishing P-part if ϕ 6∈ Φv and that it has P-part with LP-dimension 1 for ϕ ∈ Φv. By standard facts
concerning completions of global fields, Kv ⊗K,ϕ L '

∏
w′∈Σ Lw′ where Σ is the set of places on L lifting v

via ϕ. Thus, the P-part of Pv,ϕ is at most 1-dimensional over LP, and it is 1-dimensional precisely when ϕ
pulls the P-adic place back to v. That is, the set of ϕ for which there is a nonzero P-part in Pv,ϕ is precisely
Φv. �

Applying functoriality of the Serre tensor construction with respect to the natural OK-linear inclusion
OK → NΦ(p)−1, we may restate Theorem 4.1 in the following more convenient manner: for any prime P of
L over p - N such that σ|L = (L/K

∗

P ), there is a unique OK-linear isomorphism

θσ,P : NΦ(p)−1 ⊗OK
A ' Aσ0
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of abelian varieties over L such that the diagram

(4.5) A0

ξσ,P //

&&MMMMMMMMMMMM Aσ0

NΦ(p)−1 ⊗OK
A0

' θσ,P

OO

commutes, where the top map is the lifting of the relative qp-Frobenius for A0/κ(P) and the diagonal map is
induced by the inclusion of OK into NΦ(p)−1. The isomorphism θσ,P depends on the choice of P.

The isomorphism θσ,P uses a non-canonical L-descent (A0, i0) of (A, i) as well as a non-canonical choice
of P. Our task in §5 will be to improve this situation by constructing a canonical K-linear isomorphism

(4.6) [NΦ(s)−1]K ⊗OK
A ' Aσ

of abelian varieties over Q for any σ ∈ Gal(Q/K∗) and s ∈ A×
K∗,f such that (s|K∗) = σ|(K∗)ab (with (A, i)

having CM order OK), where [·]K denotes the fractional K-ideal associated to a finite K-idele. The maps
θσ,P generally do not descend the canonical isomorphism in (4.6) to be constructed in §5; rather, θσ,P over
Q will be related to (4.6) via the action by an element of NΦ((K∗)×) ⊆ T (Q) ⊆ K×. One should consider
θσ,P as an approximation to (4.6) “at level L” since the Artin map A×

K∗,f � Gal(L/K∗) carries the idele
sp = ιp(πp) to σ|L (due to our convention on local uniformizers and arithmetic Frobenius elements under
the Artin map!) and [NΦ(sp)]K = NΦ(p).

Remark 4.3. The most important applications of the Main Theorem are to abelian varieties over number
fields. However, as the reader will see, the situation is very much simplified by first proving the Main Theorem
in the form stated over Q (or more traditionally, over C) and only later deducing arithmetic consequences
over number fields. The main way in which this simplification manifests itself it is in the task of making the
preceding construction become canonical by passing up to Q. More specifically, to eliminate the intervention
of P we will have to apply certain procedures involving passage to a field that splits A0[M ] for several
relatively prime M ≥ 3. By working over Q from the outset we thereby avoid the unpleasant task of having
to increase the base field at several places in the middle of an argument.

5. Polarizations and torsion

In §4 the number field L ⊆ Q was a rather general “sufficiently big” finite Galois extension of K∗, and
we now need a few more “largeness” conditions on L. Choose a fixed auxiliary integer M ≥ 1 (later we will
take M ≥ 3) and impose the additional “largeness” condition on L that the finite étale L-group A0[M ] is
constant. Thus, Aσ0 [M ] is constant, as is (a ⊗OK

A0)[M ] ' a ⊗OK
(A0[M ]) for any fractional ideal a of K.

Recall that the choice of the prime P of L was controlled by σ|L (via the condition (L/K
∗

P ) = σ|L) and by
the geometry of A0 and the arithmetic of L and K (since we required the residue characteristic p of P to not
divide the product N of the residue characteristics of the primes of bad reduction for A0 and the ramified
primes for L and K over Q). We impose the further condition on the residue characteristic p of P that
p - M (in addition to the condition p - N).

The natural map A0 → NΦ(p)−1⊗OK
A0 has p-power degree and so induces an isomorphism on M -torsion.

Hence, we get a diagram on L-points

(5.1) A0[M ](L)
[σ] //

'
))SSSSSSSSSSSSSS
Aσ0 [M ](L)

(NΦ(p)−1 ⊗OK
A0)[M ](L)

' θσ,P

OO

that is the same as the associated diagram on Q-points (due to the constancy property of these M -torsion
groups over SpecL). The top map in this diagram is Galois-theoretic, and the other two sides arise from
K-linear morphisms of abelian varieties over L. We claim that the diagram (5.1) commutes. Since p - M and
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the three abelian varieties involved all have good reduction at P, we may identify these L-point groups with
the corresponding κ(P)-point groups in the reductions of the abelian-scheme Néron models. The diagram
(5.1) viewed on κ(P)-points is the same as the diagram induced on M -torsion by the reduction of (4.5)
because the morphism ξσ,P reduces to the morphism FrA0/κ(P),q whose effect on κ(P)-points is exactly the
action by the arithmetic Frobenius element in Gal(κ(P)/κ(p)) on such points. (Here, we use that the Galois-
theoretic arithmetic Frobenius automorphism is given by the algebraic formula t 7→ tqp .) This proves the
commutativity of (5.1) as a consequence of the commutativity of (4.5).

To go further, we need to impose one final “largeness” condition on L/K∗ before choosing P: the extension
L/K∗ must contain a certain class field for K∗ to now be described. Consider the reflex norm mapping
NΦ : A×

K∗,f → A×
K,f on Af -points. We have seen earlier that for rational primes ` - N , the induced mapping

on Q`-points
NΦ,` :

∏
w|`

(K∗
w)× = (K∗ ⊗Q Q`)× → (K ⊗Q Q`)× =

∏
v|`

K×
v

carries O×
K∗`

into O×
K`

(where K∗
` = Q`⊗QK

∗, OK∗` = Z`⊗Z OK∗ '
∏
w|` O×

K∗w
, and similarly for K). Define

U ⊆ A×
K∗,f to be the open subgroup

∏
` U` where

U` = O×
K∗`
∩N−1

Φ,`({u ∈ O×
K`
|u ≡ 1 mod M})

for all rational primes ` (so U` = O×
K∗`

for ` - NM). We require L to contain the class field for the
open subgroup (K∗)×(K∗

∞)×U , so the restricted Artin map A×
K∗,f � Gal(L/K∗)ab has kernel contained in

(K∗)×U .
The conditions σ|L = (L/K

∗

P ) and (s|K∗) = σ|(K∗)ab force the idele s · ιp(πp)−1 to be in the open kernel
of the Artin map (K∗)×\A×

K∗,f � Gal(L/K∗)ab, so s = ιp(πp)uc in A×
K∗,f where c ∈ (K∗)× and u ∈ U , so

NΦ(u) ∈ T (Af) ⊆ A×
K,f is everywhere a local unit and satisfies NΦ(u) ≡ 1 mod M as an integral adele for K.

(For later purposes, it is convenient to consider u as being determined by s, πp, and c.) In particular, since
p - M the finite K-idele NΦ(s−1c) = NΦ(ιp(πp)−1u−1) that is possibly non-integral at p has component in∏
`|M K×

` that is an integral unit congruent to 1 modulo M .
Consider the commutative diagram of abelian varieties over L:

(5.2) NΦ(p)−1 ⊗OK
A0 '

θσ,P //

'NΦ(c)−1

��

Aσ0

NΦ(cp)−1 ⊗OK
A0

'

88pppppppppppp

where the diagonal mapping is defined to force commutativity; this diagonal mapping is an K-linear isomor-
phism. Letting [x]K denote the fraction K-ideal associated to a finite idele x ∈ A×

K,f , we have

NΦ(cp) = NΦ(c) ·NΦ(p) = NΦ(c) · [NΦ(ιp(πp))]K
= [NΦ(c · ιp(πp))]K
= [NΦ(su−1)]K
= [NΦ(s)]K

since NΦ(u) ∈
∏
w O×

K∗w
⊆ A×

K∗,f . Thus, the K-linear isomorphism of abelian varieties over L given by the
diagonal map in (5.2) may be expressed as

(5.3) θσ,P,πp,c,s,M : [NΦ(s−1)]K ⊗OK
A0 ' Aσ0 .

We shall prove that if M ≥ 3 then the K-linear isomorphism [NΦ(s−1)]K ⊗OK
A ' Aσ obtained by applying

the base change L → Q to (5.3) only depends on σ ∈ Gal(Q/K∗) and s ∈ A×
K∗,f (linked by the condition

(s|K∗) = σ|(K∗)ab), and not on the choice of L/K∗, the choice of L-descent (A0, i0, φ0) of (A, i, φ), or the
choices of P, πp, c, or M . We will also show that these canonical isomorphisms over Q are well-behaved
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with respect to composition in Gal(Q/K∗) and multiplication in A×
K∗,f . These matters will be settled in

Theorem 5.2 and Remark 5.3.
Up to now, in §4 and §5 the K-linear Q-polarization φ and its L-descent φ0 on A0 have played no role.

We have arrived at the point where φ0 will be used. We must endow [NΦ(s−1)]K ⊗OK
A0 with a natural

K-linear Q-polarization φ0,s over L such that θσ,P,πp,c,s,M carries φ0,s to a positive rational multiple of φσ0
(and the rational multiplier will be made explicit in terms of s). In view of how θσ,P,πp,c,s,M is defined, and
the fact that the mapping ξσ,P in (4.5) that lifts FrA0/κ(P),qp

respects the Q-polarizations φ0 and φσ0 up to
a positive rational multiple (as we showed in the proof of Theorem 1.5), our task comes down to proving:

Lemma 5.1. Let (A, i) be a CM abelian variety of type (K,Φ) over Q with CM order OK , and let φ be an K-
linear Q-polarization on A. There is a unique way to assign a K-linear Q-polarization φα to [NΦ(α)]K⊗OK

A
over Q for all α ∈ A×

K∗,f such that:

(1) φ1 = φ via the identification OK ⊗OK
A = A,

(2) φα only depends on [NΦ(α)]K ,
(3) if h : [NΦ(α)]K → [NΦ(β)]K is an OK-linear map induced by multiplication by c ∈ NΦ((K∗)×) ⊆

T (Q) ⊆ K× then the K-linear isogeny h ⊗ 1A : [NΦ(α)]K ⊗OK
A → [NΦ(β)]K ⊗OK

A carries φα to
qc,α,βφβ with qc,α,β ∈ Q×

>0 the unique positive generator of the fractional Q-ideal [NK∗/Q(β/cα)]Q.

Moreover, deg φα = deg φ and if L ⊆ Q is a subextension such that (A, i, φ) descends to a triple (A0, i0, φ0)
over L then each such φα uniquely descends to an K-linear Q-polarization of A0.

Proof. Galois descent works for Q-polarizations because descent theory is effective for polarizations. Hence,
the compatibility of the Serre construction with respect to change of the base field (such as automorphisms
of Q) and the uniqueness aspect in the lemma imply the final part of the theorem via Galois descent. Thus,
we may and do focus on the existence and uniqueness problem over Q. The uniqueness aspect is obvious,
via parts (1) and (3).

For the existence aspect, let qs ∈ Q×
>0 be the unique positive generator of [NK∗/Q(s)]Q for each s ∈ A×

K∗,f .
Working in the isogeny category and using the evident AK,f -linear isomorphism

Vf([NΦ(α)]K ⊗OK
A) = Vf(A)

carrying Tf([NΦ(α)]K ⊗OK
A) to NΦ(α) · Tf(A), there is a unique Q-polarization φα on [NΦ(α)]K ⊗OK

A
satisfying the identity of adelic Weil pairings eφα

= q−1
α eφ.

By definition of the target torus T for the reflex norm

NΦ : ResK∗/Q(Gm)→ T ⊆ ResK/Q(Gm),

the product mapping NΦN∗
Φ = NΦNΦ∗ factors through the subtorus Gm and as such is equal to NK∗/Q (due

to [K, Prop. 2.5]). Thus, eφα
is uniquely determined by Iα = [NΦ(α)]K because the product of Iα and its

complex conjugate is the fractional K-ideal qαOK with qα as its unique positive rational generator. The
degree of a Q-polarization can be detected by studying the failure of perfectness and integrality on the total
Tate module, so this φα clearly satisfies all of the requirements. �

Lemma 5.1 and the preceding discussion provide K-linear isomorphisms

θσ,P,πp,c,s,M : [NΦ(s)]−1
K ⊗OK

A0 ' Aσ0
of abelian varieties over L carrying φ0,1/s to a positive rational multiple of φσ0 ; this rational multiple must be
1 because deg(φσ) = deg φ = deg φ1/s. We shall now prove that the isomorphism obtained from θσ,P,πp,c,s,M

after extension of scalars to Q only depends on σ and s, so it can be called θσ,s, and that it is well-behaved
with respect to composition in Gal(Q/K∗) and multiplication in A×

K∗,f .
Since NΦ(c) ·NΦ(p) = [NΦ(s)]K , we can define the K-linear isogeny θp,c : A0 → [NΦ(s)]−1

K ⊗OK
A0 over L

to be the composite mapping

A0
// NΦ(p)−1 ⊗OK

A0 '
NΦ(c)−1⊗1 // [NΦ(s)]−1

K ⊗OK
A0.
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This isogeny has p-power degree, so it induces an isomorphism on M -torsion. Since NΦ(sc−1) = NΦ(ιp(πp)u)
with p - M and NΦ(u) ≡ 1 mod M , it follows that on the level of geometric points the composite isomorphism

A0[M ]
θp,c' ([NΦ(s)]−1

K ⊗OK
A0)[M ] ' [NΦ(s)]−1

K ⊗OK
A0[M ] ' ([NΦ(s)−1]K/M [NΦ(s)−1]K)⊗OK/MOK

A0[M ]

of constant finite étale OK/MOK-modules over SpecL is induced by multiplication by the idele NΦ(s)−1

that is naturally a representative of a basis for the invertible OK/MOK-module [NΦ(s)−1]K/M [NΦ(s)−1]K .
Consider induced maps on Q-points of M -torsion subgroups:

A0[M ](Q)
[σ]

'
//

'θp,c

��

Aσ0 [M ](Q)

([NΦ(s)]−1
K ⊗OK

A0)[M ](Q)

'
θσ,P,πp,c,s,M

55kkkkkkkkkkkkkk

Since these Q-point groups coincide with L-point groups, the commutativity of this diagram follows from
the commutativity of (5.1) and (5.2). Via the isomorphism Q ⊗L A0 ' A (carrying i0 and φ0 to i and φ
respectively, and likewise after base change by σ), the K-linear isomorphism θσ,P,πp,c,s,M of abelian varieties
over L must therefore induce the following composite of canonical maps on the Q-points of M -torsion
subgroups:

(5.4) ([NΦ(s)]−1
K ⊗OK

A)[M ](Q) ' [NΦ(s−1)]K ⊗OK
(A[M ](Q))

NΦ(s)
' A[M ](Q)

[σ]
' Aσ[M ](Q).

The steps in this composite are independent of all choices (including L/K∗ and the descent (A0, i0, φ0) over
L) aside from the choices of σ, s,M , and for any M ′|M it is clear that on M ′-torsion subgroups this intrinsic
map on M -torsion restricts to the analogously described map arising from θσ,P,πp,c,s,M ′ . In other words,
θσ,P,πp,c,s,M and θσ,P,πp,c,s,M ′ agree on M ′-torsion subgroups for M ′|M with M ′ ≥ 3.

Consider the automorphism

θσ,P′,π′
p′ ,c

′,s,M ◦ θ−1
σ,P,πp,c,s,M

∈ AutL(Aσ0 , i
σ
0 , φ

σ
0 ) = AutQ(Aσ, iσ, φσ);

the preservation of the polarization is due to the fact that both θ’s carry φ to φσ. We allow for the possibility
P′ = P and c′ = c but π′p 6= πp.

The preceding argument via (5.4) shows that this automorphism of Aσ0 induces the identity on M -torsion.
Since the automorphism group of a Q-polarized abelian variety is finite, this automorphism of Aσ0 has finite
order. However, it acts as the identity on M -torsion, so as long as we restrict attention to M ≥ 3 this
finite-order automorphism is trivial. Thus, if M ≥ 3 then the K-linear isomorphism

Q⊗L θσ,P,πp,c,s,M : [NΦ(s)]−1
K ⊗OK

A ' Aσ

of abelian varieties over Q only depends on σ, s,M ; we therefore denote this isomorphism θσ,s,M .
For M ′|M with M ′ ≥ 3, the same argument now shows that the K-linear automorphism θσ,s,M ◦ θ−1

σ,s,M ′

of the abelian variety Aσ over Q is trivial on M ′-torsion and hence is trivial. Thus, for any M1,M2 ≥ 3 we
have θσ,s,M1 = θσ,s,M1M2 = θσ,s,M2 , so θσ,s,M is independent of M ≥ 3. (See Remark 4.3.)

We summarize the conclusion of our efforts as follows:

Theorem 5.2. Let (A, i) be a CM abelian variety of type (K,Φ) over Q, and assume (A, i) has CM order
OK . For any σ ∈ Gal(Q/K∗) and s ∈ A×

K∗,f such that (s|K∗) = σ|(K∗)ab there is a unique K-linear
isomorphism

θσ,s = θσ,s,(A,i) : [NΦ(s)]−1
K ⊗OK

A ' Aσ
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such that for all M ≥ 1 the isomorphism [σ] : A[M ](Q) ' Aσ[M ](Q) is the composite

(5.5) A[M ](Q) '
NΦ(s−1)// ([NΦ(s−1)]K/M [NΦ(s−1)]K)⊗OK/MOK

A[M ](Q)

'
��

([NΦ(s)]−1
K ⊗OK

A)[M ](Q)

'θσ,s

��
Aσ[M ](Q).

If φ is an K-linear Q-polarization on A then θσ,s carries the Q-polarization φ1/s of [NΦ(s)]−1
K ⊗OK

A

to the Q-polarization φσ of Aσ. Also, for any c ∈ (K∗)× we have θσ,cs = NΦ(c)θσ,s and the formation of
θσ,s,(A,i) is natural in the principal CM abelian variety (A, i).

Proof. The uniqueness follows from the specification of the induced map on every torsion level (for all
M). The existence is the content of the entire preceding analysis, and the proof of existence also gives the
asserted behavior with respect to K-linear Q-polarizations. The behavior with respect to relacing s with cs
for c ∈ (K∗)× comes from the uniqueness (or, less elegantly, from the construction). The naturality in (A, i)
follows from the explicit canonical description (5.5) on every torsion level. �

Remark 5.3. We briefly address the behavior of θσ,s with respect to composition in σ and multiplication
in s. Pick σ, σ′ ∈ Gal(Q/K∗) and s, s′ ∈ A×

K∗,f satisfying (s|K∗) = σ|(K∗)ab and (s′|K∗) = σ′|(K∗)ab , so
(s′s|K∗) = (σ′σ)|(K∗)ab . We claim that θσ′σ,s′s,(A,i) is the composite isomorphism

[NΦ(s′s)]−1
K ⊗OK

A ' [NΦ(s′)]−1
K ⊗OK

([NΦ(s)]−1
K ⊗OK

A)
1⊗θσ,s,(A,i)
' [NΦ(s′)]−1

K ⊗OK
Aσ

θσ′,s′,(Aσ,iσ)
' (Aσ)σ

′

' Aσ
′σ.

This equality may be checked by comparing what happens on M -torsion for arbitrary M ≥ 3. This is a
straightforward calculation because [σ] : A(Q) ' Aσ(Q) is K-linear with respect to i and iσ.

The descent down to models over number fields has served its purpose, and for the rest of the proof of
the Main Theorem we will work exclusively over Q. Passing to the inverse limit on (5.5) and tensoring with
Q gives a commutative diagram in which the composite across the top and right sides is [σ]:

(5.6) Vf(A) ' //

NΦ(s)−1
((PPPPPPPPPPPPP [NΦ(s)]−1
K ⊗OK

Vf(A)

'mult.

��

' // Vf([NΦ(s)]−1
K ⊗OK

A)

' Vf (θσ,s)

��
Vf(A)

'
44jjjjjjjjjjjjjjjjj

'
// Vf(Aσ)

with the right diagonal and lower horizontal maps defined by commutativity. Since NΦ(s) ∈ T (Af) ⊆ A×
K,f ,

the multiplication map by NΦ(s)−1 respects the A×
f -homothety class of the self-pairing induced by φ.

Suppose for a moment that the diagonal mapping Vf(A)→ Vf([NΦ(s)]−1
K ⊗OK

A) in (5.6) is induced by a
K-linear isogeny ψs ∈ Hom0

Q
(A, [NΦ(s)]−1

K ⊗OK
A) that respects the K-linear Q-polarizations φ and φ1/s up

to a (necessarily positive) rational multiple. The K-linear isogeny

λσ,s = θσ,s ◦ ψs ∈ Hom0
Q

(A,Aσ)

therefore carries φ to φσ up to a positive rational multiple and satisfies

Vf(λσ,s) ·NΦ(s)−1 = [σ]
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in HomAK,f (Vf(A),Vf(Aσ)), completing the proof of the Main Theorem! (Note that this map λσ,s coincides
with the one introduced with the same notation in the initial part of §3, where we saw that λσ,s carries φσ

back to qsφ with qs the unique positive generator of [NK∗/Q(s)]Q.)
To construct ψs, first recall that for any c ∈ (K∗)× the multiplier NΦ(c) ∈ T (Q) ⊆ K× acting on

A (in the isogeny category) preserves φ up to a rational multiple. Since θσ,cs = NΦ(c)θσ,s, it follows
that we only need to construct ψcs for some c ∈ (K∗)× (and then NΦ(c) · ψcs serves as ψs). Choosing
c ∈ OK∗ − {0} that is sufficiently divisible (depending on s), we can replace s with cs to reduce to the case
when NΦ(cs) = NΦ(c)NΦ(s) ∈ A×

K,f is everywhere integral as an adele. Hence, OK ⊆ [NΦ(s)]−1
K . In this case

the canonical mapping
Vf(A)→ [NΦ(s)]−1

K ⊗OK
Vf(A)

is inverse to the vertical multiplication mapping in (5.6), so the map A→ [NΦ(s)]−1
K ⊗OK

A induced by the
canonical inclusion OK → [NΦ(s)]−1

K may be taken to be ψs. (The compatibility of this map with K-linear
Q-polarizations follows from property (3) in Lemma 5.1, taking α = 1 and β = 1/s.) The Main Theorem of
complex multiplication is now proved.

Remark 5.4. Without recourse to replacing s with cs for a sufficiently divisible nonzero c ∈ OK as in the
preceding proof, the map ψs can always be described by the same recipe as at the end of the proof: it is the
element in

Hom0
K(A, [NΦ(s)]−1

K ⊗OK
A) ' [NΦ(s)]−1

K ⊗OK
Hom0

K(A,A) ' K
corresponding to 1 (where the second isomorphism is induced by multiplication and the first isomorphism is
[X, Lemma 1.4]).

6. Analytic version of Main Theorem and generalized Serre construction

We conclude these notes by explaining how to express the Main Theorem in terms of adelic operations
and analytic uniformizations. This recovers the traditional statement of the Main Theorem, except that we
formulate things in more intrinsic terms; for example, our formulation of the analytic version of the Main
Theorem omits all mention of bases of tangent spaces, in contrast with [S, 18.6]. We also explain how to
translate such adelic operations into purely algebraic language by generalizing the Serre tensor construction
within the framework of certain abelian varieties of CM type over a field, and this provides a purely algebraic
generalization of Theorem 5.2 to the case of any CM order.

Let (A, i) be a CM abelian variety over C with CM type (K,Φ), for Φ ⊆ Hom(K,C) = Hom(K,Q). The
pair (A, i) and any morphism among such pairs uniquely and functorially descends to the subfield Q, so to
avoid far-out things such as Aut(C/Q) we work with such abelian varieties over Q.

Consider the canonical analytic exponential uniformization V/Λ ' A(C). Clearly Λ is a module for the
CM order i−1(End(A)) ⊆ OK , and A(C)tor = ΛQ/Λ. Hence, ΛQ is a 1-dimensional K-vector space and the
R-vector space R⊗Q ΛQ ' V with its complex structure is isomorphic to (R⊗QK)Φ '

∏
ϕ∈Φ Cϕ = Cg as a

C⊗QK-module (where K acts on Cϕ = C through ϕ). Traditionally, an identification of V with (R⊗QK)Φ
as C ⊗Q K-modules is chosen in the analytic formulation of the Main Theorem, apparently because this
identifies the “abstract” Λ with something more concrete, namely a Z-lattice in (R ⊗Q K)Φ = Cg that is
stable under some order of OK . However, we do not understand what benefit is obtained in this way, and so
we avoid such a choice. Given σ ∈ Aut(Q/K∗), our goal is to describe an analytic uniformization of Aσ(C)
in terms of the canonical one for A such that the mapping A(C)tor = A(Q)tor

σ' Aσ(Q)tor = Aσ(C)tor is
easily described via an adelic operation on lattices arising from these analytic uniformizations.

We need to first discuss adelic operations on ΛQ/Λ. Somewhat more abstractly, let W be a finite-
dimensional nonzero K-vector space and let Λ ⊆W be a Z-lattice that is stable under some order O ′ of OK .
We call such a lattice Λ an order lattice in W . There are many orders O ′ that preserve Λ, but there is a
unique largest one, namely EndZ(Λ)∩K ⊆ OK inside of EndQ(W ), and it is called the endomorphism order
for Λ in K. The quotient W/Λ is a torsion Z-module, so it is a torsion O ′-module. Under contraction each
maximal ideal of OK gives rise to one of O ′ (though several on OK may give rise to the same on O ′), and for
each maximal ideal v′ of O ′ we write O ′

v′ to denote the corresponding completion of O ′, so this completion is
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a local order in the semi-local product
∏
v|v′ Ov of the local rings for K at places over v′. In particular, O ′

v′

has total ring of fractions Kv′
def=

∏
v|v′ Kv. For all but finitely many v on K we have that v is the only prime

of OK over its contraction v′ on O ′ and then O ′
v′ = OKv

inside of Kv. There is a canonical isomorphism

W/Λ '
⊕
v′

(Wv′/Λv′)

with Wv′ =
∏
v|v′(Kv ⊗K W ) a free module of rank 1 over Kv′ =

∏
v|v′ Kv and Λv′ = O ′

v′ ⊗O′ Λ; concretely,
Wv′/Λv′ is identified with the m′

v′ -power torsion submodule of W/Λ. It is easy to check that Λv′ ⊆ Wv′ is
the closure of Λ in Wv′ , and that if we shrink the order O ′ to some O ′′ ⊆ O ′ then for each maximal ideal
v′′ of O ′′ we have Wv′′ =

∏
v′|v′′Wv′ and Λv′ =

∏
v′|v′′ Λv′ . In this sense, the description of the primary

decomposition of W/Λ is well-behaved with respect to change in the choice of order O ′ in K preserving Λ
(as there is a unique maximal such O ′ containing all others).

Lemma 6.1. Let O ′ be the endomorphism order for Λ in K. For any s ∈ A×
K,f , there is a unique order

lattice sΛ in W with endomorphism order O ′ such that (sΛ)v′ = sv′Λv′ inside of Wv′ for all v′ on O ′, where
sv′ ∈

∏
v|v′ sv denotes the v′-part of the idele s, and its endomorphism order in K is equal to that of Λ.

There is a unique O ′-linear isomorphism W/Λ ' W/(sΛ) such that on v′-factors it is the mapping
Wv′/Λv′ 'Wv′/(sv′Λv′) induced by multiplication by sv′ on Wv′ .

If s, s′ ∈ A×
K,f then s′(sΛ) = (s′s)Λ inside of W .

A quick proof of Lemma 6.1 can be given by working with AQ,f -modules and Ẑ-algebras (such as O ′∧),
but we prefer to give a proof that is “intrinsic” to the order O ′ and avoids the crutch of the subring Z over
which O ′ is finite and flat.

Proof. For all but finitely many v′, the endomorphism order O ′ for Λ is maximal at v′ and sv′ ∈ O×
Kv′

.
Hence, by multiplying Λ by a suitable divisible nonzero element of OK we get an OK-lattice Λ′ ⊆ Λ such
that

∏
v|v′ Λ

′
v ⊆ sv′Λv′ for all v′. Moreover, for all but finitely many v′ we have

∏
v|v′ Λ

′
v = sv′Λv′ = Λv′

inside of Wv′ . Our construction problem therefore takes place inside of the OK-module W/Λ′, and we need
to look inside of the I-torsion submodule for a suitably divisible nonzero ideal I of OK . Such a torsion
submodule is of finite length over OK , and so decomposing along the finitely many primes in its support
gives a solution to our O ′-module existence problem via finitely many local constructions. The uniqueness
is seen in the same way.

The uniqueness implies s′(sΛ) = (s′s)Λ. By working locally, we see that the endomorphism orders for
Λ and sΛ coincide. The existence and uniqueness of the desired isomorphism W/Λ ' W/(sΛ) is proved by
using the decomposition into v′-components for each v′. �

Example 6.2. If Λ ⊆W is an OK-submodule then sΛ = [s]KΛ, where [s]K is the fractional K-ideal associated
to s ∈ A×

K,f .

We can now prove the Main Theorem in its analytic guise as originally stated by Shimura and Taniyama
in a coordinatized manner (but we avoid their “coordinates” on tangent spaces). There are two parts to
this theorem: the first gives a description of analytic uniformizations for a Galois twist preserving the reflex
field and the second describes the Riemann form of a Galois twist of a K-linear polarization (providing an
analytic version of the observation in §3 that λσ,s carries φσ back to qsφ with qs ∈ Q×

>0 the unique positive
generator of [NK∗/Q(s)]Q).

Theorem 6.3 (Main Theorem of CM; analytic form). Pick σ ∈ Aut(Q/K∗) and s ∈ A×
K∗,f such that

(s|K∗) = σ|(K∗)ab in Gal((K∗)ab/K∗). Let φ be a K-linear Q-polarization of A. There is a unique C⊗QK-
linear identification of V = T0(A(C)) with T0(Aσ(C)) under which the canonical analytic uniformization of
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Aσ(C) is identified with V/NΦ(1/s)Λ and the diagram

ΛQ/Λ
' //

'NΦ(1/s)

��

A(C)tor A(Q)tor
'oo

[σ]'
��

ΛQ/NΦ(1/s)Λ '
// Aσ(C)tor Aσ(Q)tor

'oo

commutes. Under the identification of H1(Aσ(C),Q) with ΛQ, the Q(1)-valued Riemann form Ψφσ is iden-
tified with qsΨφ, where qs is the unique positive generator of the fractional Q-ideal [NK∗/Q(s)]Q.

See Remark 2.5 for the reason 1/s rather than s intervenes in this diagram.

Proof. Any two such isomorphisms V ' T0(Aσ(C)) are related through the action of an automorphism of V
that preserves Λ and induces on V/Λ ' A(C) an analytic self-map that is the identity on all torsion points
and so is the identity. This establishes uniqueness.

For existence, we use the algebraic form of the Main Theorem over Q in Theorem 2.4. As we saw at
the start of §3, this provides a (necessarily unique) K-linear isomorphism in the isogeny category λσ,s ∈
Hom0

Q
(A,Aσ) (possibly not a genuine morphism of abelian varieties) such that the diagram

(6.1) Vf(A)
[σ]

'
//

NΦ(1/s) '
��

Vf(Aσ)

Vf(A)
Vf (λσ,s)

::uuuuuuuuu

commutes and λσ,s carries φσ back to qsφ.
Letting Vσ/Λσ be the canonical analytic uniformization of Aσ(C), there is a well-defined K-linear map

H1(λσ,s) : ΛQ ' (Λσ)Q on rational homology lattices. The R-scalar extension of this Q-vector space
isomorphism is the C-linear isomorphism V ' Vσ induced by λσ,s on tangent spaces at the identity. I claim
that H1(λσ,s) carries NΦ(1/s)Λ isomorphically onto Λσ. It suffices to check this inside of the Af -modules
obtained through extension of scalars, but the above commutative diagram of Vf ’s can be rewritten as a
commutative diagram

(6.2) Af ⊗Z Λ '

[σ]Af //

NΦ(1/s)

��

Af ⊗Z Λσ

Af ⊗Z Λ
H1(λσ,s)

88qqqqqqqqqqq

where [σ]Af is obtained by applying the scalar extension Ẑ→ Af to the isomorphism

Ẑ⊗Z Λ = Tf(A)
[σ]
' Tf(Aσ) = Ẑ⊗Z Λσ

of finite free Ẑ-modules. Hence, the image Ẑ⊗Z (NΦ(1/s)Λ) of Ẑ⊗Z Λ along the left side of (6.2) (check this
really is the image!) is carried by the Af -module map Af ⊗Q H1(λσ,s) isomorphically onto Ẑ ⊗Z Λσ. This
confirms that H1(λσ,s) carries NΦ(1/s)Λ onto Λσ, since Z→ Ẑ is faithfully flat.

In this way, we get an analytic isomorphism V/NΦ(1/s)Λ ' Vσ/Λσ = Aσ(C). This identifies Aσ(C)tor
with ΛQ/NΦ(1/s)Λ. Due to how this identification has been constructed, when it is used in conjunction with

the identification ΛQ/Λ ' A(C)tor the map A(C)tor = A(Q)tor
[σ]
' Aσ(Q)tor = Aσ(C)tor is identified with

the isomorphism ΛQ/Λ ' ΛQ/NΦ(1/s)Λ induced by multiplication by NΦ(1/s) on primary components (as
in Lemma 6.1). �

We leave it as an exercise for the reader to check that this analytic theorem implies Theorem 6.8, the
algebraic version over Q that we have called the Main Theorem in these notes. (Briefly, one runs the
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preceding proof in reverse to see how to reconstruct λσ,s ∈ Hom0
Q

(A,Aσ) from the specification of how to
identify V/NΦ(1/s)Λ with Vσ/Λσ.)

Remark 6.4. For a principal CM abelian variety (A, i) of type (K,Φ) over Q, Theorem 6.3 and Example 6.2
provide an K-linear analytic isomorphism

Aσ(C) ' V/NΦ(1/s)Λ ' [NΦ(1/s)]K ⊗OK
(V/Λ) ' ([NΦ(1/s)]K ⊗OK

A)(C),

and by GAGA this is induced by anK-linear isomorphism Aσ ' [NΦ(1/s)]K⊗OK
A over Q. This isomorphism

is precisely the isomorphism θσ,s that is uniquely characterized in Theorem 5.2. In this sense, Theorem 6.3
may be considered to be a generalization of Theorem 5.2 to the non-principal case.

The interested reader may check as an exercise that the identification of Ψφσ with qsΨφ in Theorem 6.3
is equivalent to the description of Ψφσ in terms of Ψφ given in [S, 18.6] using the classical description of
Riemann forms of K-linear Q-polarizations via 4-tuples (K,Φ, a, ζ) (resting on choosing bases for tangent
spaces as rank-1 free modules over (R⊗Q K)Φ).

Let us finish the discussion of adelic operations by using a generalization the Serre tensor construction to
give an algebraic formulation and proof of the adelic multiplication formalism in Theorem 6.3.

Let (A, i) and (A′, i′) be CM abelian varieties over a field k of characteristic 0, with CM field K. (Much
of the discussion that follows can be carried out over rather general base schemes at the expense of more
technical language.) Thus, Homk((A′, i′), (A, i)) is a lattice in the K-vector space Hom0

k((A
′, i′), (A, i)) that

has dimension ≤ 1. Hence, for any finite idele s ∈ A×
K,f another such lattice is sHomk((A′, i′), (A, i)). For a

fixed (A, i), consider the following functor F = F(A,i) from such pairs (A′, i′) to the category of order lattices
in finite-dimensional K-vector spaces: F (A′, i′) = sHomk((A′, i′), (A, i)). In the case k = C, if A = V/Λ
and A′ = V ′/Λ′ then working locally over Z shows that F (A′, i′) = Homk((V ′/Λ′, i′), (V/sΛ, is)) inside of
HomK(Λ′Q,ΛQ), with is denoting the action map for (an order in) K on sΛ. Thus, an algebraic version of
the adelic operation on lattices is provided by:

Lemma 6.5. Let (A, i) over k be as above, and work in the category of K-linear maps over k in what follows.
The functor F(A,i) is represented by a pair (sA, is) and there is a canonical K-linear equality

Homk(A′, sA) = Hom0
k(A

′, A) ∩Homk(Tf(A′), sTf(A))

inside of Homk(Vf(A′),Vf(A)).
In particular, there is a canonical isomorphism (sA)∨ ' s−1A∨ and the formation of the representing

object sA commutes with extension of the base field k′/k in the sense that the canonical map (sA)k′ → s ·Ak′
is an isomorphism.

Proof. It is harmless to multiply s by a sufficiently divisible nonzero integer so that it lies in the profinite
completion O∧ of a common order O ⊆ OK acting on A and A′. Hence, suppressing explicit mention of
the K-action maps, sHomk(A′, A) ⊆ Homk(A′, A) is given by local conditions: its `-adic completion is
s`(Z` ⊗Z Homk(A′, A)) for all primes ` (with s` ∈ (Q` ⊗Q K)×). Under the injection of Homk(A′, A) into
the O`-module Homk(A′[`∞], A[`∞]) such elements are precisely those that kill the kernel of the isogeny s`
on A′[`∞]. By O`-linearity of the maps under consideration, it is equivalent to require that the dual map
of `-divisible groups kills the kernel of s` acting on A∨[`∞] through duality (without the intervention of
complex conjugation on K).

Hence, if we let G` ⊆ A∨[`∞] be the k-finite kernel of the isogeny given by the dual action of s` then
G` = 0 for all but finitely many ` and so there is a unique k-finite subgroup G in A∨ whose `-component
is G` for all `. Dualizing again, F(A,i) consists of those O-linear maps A′ → A over k that lift (necessarily
uniquely) through the isogeny (A∨/G)∨ → A. That is, (A∨/G)∨ represents the functor. It is clear from this
construction that the other properties hold. �

The proof of the lemma also provides a canonical AK,f -linear k-isomorphism Vf(sA) = Vf(A) within
which Tf(sA) goes over to sTf(A), and this respects duality and extension of the base field. There is likewise
a unique K-linear k-isomorphism s′(sA) ' (s′s)A compatible with the total Tate module description (so
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these isomorphisms are associative with respect to any three ideles). By the construction, in the case
k = C these Tate-module descriptions are the Ẑ-scalar extensions arising from unique analytic isomorphisms
V/(sΛ) ' s · (V/Λ). In this sense, the formation of sA is an algebraic substitute for adelic operations on
uniformization lattices and so (via the Lefschetz principle) it follows that the CM type of sA coincides with
that of A.

Example 6.6. By [X, Lemma 1.4], in the case of CM order OK there are canonical K-linear k-isomorphisms
sA ' [s]K ⊗OK

A that respect iteration of the idelic multiplication and Serre tensor operations. In the case
s = NΦ(1/s′) for s′ ∈ A×

K∗,f , the resulting identification Vf(A) = Vf(sA) ' Vf([s]K ⊗OK
A) is Vf(ψs′) for

ψs′ as in §5, due to Remark 5.4.

The following lemma is obvious, and by the proof of Lemma 5.1 it recovers the construction in Theorem
5.2 in the principal case:

Lemma 6.7. Let φ be a K-linear polarization on a pair (A, i) over Q with CM type (K,Φ). For all
s ∈ A×

K∗,f there is a unique K-linear polarization φs on NΦ(s)A such that the AK,f-linear identification
Vf(A) = Vf(NΦ(s)A) carries eφs

to q−1
s eφ as total Weil pairings, where qs ∈ Q×

>0 is the unique positive
generator of [NK∗/Q(s)]Q.

The algebraic version of Theorem 6.3 is:

Theorem 6.8. Let (A, i) be a CM abelian variety over Q with CM type (K,Φ). Choose σ ∈ Gal(Q/K∗)
and s ∈ A×

K∗,f mapping to σ|(K∗)ab under the Artin map. There is a unique K-linear isomorphism θσ,s :
NΦ(1/s) ·A ' Aσ with respect to which the composite map

Tf(A)
σ' Tf(Aσ)

θ−1
σ,s' Tf(NΦ(1/s) ·A) = NΦ(1/s)Tf(A)

is multiplication by NΦ(1/s) ∈ A×
K,f .

Moreover, for any K-linear polarization φ the isomorphism θσ,s carries φσ to φ1/s.

The analogue of Remark 5.3 carries over by essentially the same argument (chasing actions on Vf ’s rather
than at torsion levels).

Proof. This can be deduced from the analytic version in Theorem 6.3, but let us instead give a purely
algebraic proof. In the special case that A has CM order OK , the theorem is exactly Theorem 5.2. In the
general case, uniqueness for θσ,s is clear. For existence, first observe that if we construct θσ,s merely in
the isogeny category subject to the condition that composing Vf(θ−1

σ,s) and [σ] is multiplication by NΦ(1/s)
on Vf(A) then consideration with total Tate modules forces θσ,s to be a genuine isomorphism of abelian
varieties. Hence, it is enough to carry out the existence proof in the isogeny category. Moreover, if A′ → A is
a K-linear isomorphism in the isogeny category then it is equivalent to solve the existence problem for A or
for A′ (by functoriality of the idelic multiplication operation on abelian varieties with a fixed CM type). But
every A of type (K,Φ) over Q is K-linearly isogenous to one with CM order OK . Hence, we are done. �

Theorem 6.8 accomplishes something remarkable: without Galois theory or complex analysis, it gives a
purely adelic construction of (Aσ, i∗, φσ) from (A, i, φ): this σ-twisted triple is (NΦ(1/s) · A, iNΦ(1/s), φ1/s)
with the canonical AK,f -linear identification Vf(NΦ(1/s)A) = Vf(A) carrying eφ1/s

to qseφ, and the K-linear
isomorphism θσ,s : NΦ(1/s)A ' Aσ is uniquely characterized by the fact that it fits into the commutative
diagram

Vf(A)

'NΦ(1/s)

��

[σ]

'
// Vf(Aσ)

Vf(A) '
// Vf(NΦ(1/s)A)

' Vf (θσ,s)

OO

with the bottom side given by the canonical identification (that in turn arises from a unique K-linear isogeny
ψs : A→ NΦ(1/s)A).
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