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1. Introduction

In p-adic Hodge theory there are fully faithful functors from certain categories
of p-adic representations of the Galois group GK := Gal(K/K) of a p-adic field K
to certain categories of semi-linear algebra structures on finite-dimensional vector
spaces in characteristic 0. For example, semistable representations give rise to
weakly admissible filtered (ϕ, N)-modules, and Fontaine conjectured that this is
an equivalence of categories. For many purposes (such as in Galois deformation
theory with artinian coefficients) it is useful to have a finer theory in which p-adic
vector spaces are replaced with lattices or torsion modules. Fontaine and Laffaille
gave such a theory in the early 1980’s under stringent restrictions on the Hodge-
Tate weights and absolute ramification in K. The aim of these lectures on integral
p-adic Hodge theory is to explain a more recent theory, due largely to Breuil and
Kisin, that has no ramification or weight restrictions. We are essentially giving
a survey of [11], to which the reader should turn for more details. (If we omit
discussion of a proof of a result, this should not be interpreted to mean that the
proof is easy; rather, it may only mean that the techniques of the proof are a
digression from the topics that seem most essential for us to discuss.)

This work is partially supported by NSF grant DMS-0600919. I am grateful to the organizers
of the conference for the invitation to speak on this material, and to Bryden Cais for making an
initial conversion of my hand-written lecture notes into a more organized presentable format.
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1.1. Notation. — We fix a perfect field k of characteristic p > 0, and as usual
we denote by W := W (k) the ring of Witt vectors of k and by K0 := Frac(W )
the fraction field of W . Let K be a finite and totally ramified extension of K0,
and fix a uniformizer π ∈ OK . Let | · | : K → R≥0 be the unique normalized
p-adic absolute value on K satisfying |p| = p−1. We fix once and for all a choice
K of algebraic closure of K, and again denote by | · | the unique extension to K
of | · | on K. Let E ∈ W [u] be the minimal polynomial of π over K0, and denote
by ∆ the rigid-analytic open unit disc over K0; recall that the points of ∆ are
identified with the orbits of Gal(K/K0) acting on the set

{x ∈ K
∣∣ |x| < 1}.

2. First Lecture

We shall begin by introducing several categories of “linear algebra data.”
Among these is a certain category of vector bundles (with extra structure, de-
pending on the uniformizer π ∈ OK) over the rigid-analytic open unit disc ∆
over K0. Our aim is to sketch the proof of the equivalence of this category with
the category MFϕ,N,Fil≥0

K of filtered (ϕ, N)-modules over K whose filtration is ef-
fective (i.e., Fil0(M) = M , or equivalently the associated graded module over K
has its grading supported in non-negative degrees). Roughly speaking, the idea
behind the construction of this equivalence is to show that any (effective) filtered
(ϕ, N)-module D can be naturally “promoted” to a vector bundle M over ∆,
with D recovered as the “fiber of M to the origin.” See Theorem 2.2.1 for a pre-
cise statement. Using Kedlaya’s theory of slopes [10] (as a black box), we then
explain how to translate the condition that D be weakly admissible into a certain
condition (“slope zero”) on M . This description will motivate the introducion
another category of “integral” linear algebra data that enables us to study broad
classes of interesting p-adic Galois representations in the next two lectures.

2.1. Modules with ϕ and connection. — Fix a choice of coordinate u on
∆ and let O ⊆ K0[[u]] be the K0-algebra of rigid-analytic functions on ∆. For

0 < r < 1 (and r always understood to lie in the value group pQ = |K×|), the
closed disc ∆r := {|u| ≤ r} is an admissible open subspace of ∆, and the ring of
rigid-analytic functions Or on ∆r is equipped with the supremum norm

||f ||r := sup
x∈∆r

|f(x)| <∞.

These norms make O into a Fréchet space (i.e. we topologize O by uniform
convergence on the ∆r’s for r → 1−). Concretely, O is the K0-subalgebra of
K0[[u]] consisting of power series that converge on every closed subdisc of ∆ with
radius r < 1.
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If we denote by ϕ : W → W the Frobenius automorphism of W (lifting the
Frobenius automorphism α 7→ αp of the perfect field k), then ϕ naturally extends
to an endomorphism ϕO : O → O over ϕ by

ϕO

(∑
n≥0

anu
n

)
=
∑
n≥0

ϕ(an)unp.

Note that ϕO is finite and faithfully flat with degree p.
We will denote by λ the infinite product

(2.1.1) λ :=
∏
n≥0

ϕn
O

(
E(u)

E(0)

)
,

which converges (uniformly on closed subdiscs) on ∆. (In fact, if s(u) ∈
W [[u]]

[
1
p

]
⊆ O has constant term 1, then the product

∏
n≥0 ϕn

O(s) converges in

O [9, Rem. 4.5].) Note that λ depends on the choice of uniformizer π, and that
the zeroes of λ in the closed unit disc are precisely the pnth roots of the zeroes
of E(ϕn) for all n ≥ 0, where h(ϕn)(u) =

∑
m≥0 ϕn(cm)um for h =

∑
cmum ∈ O.

We easily calculate

(2.1.2) ϕO(λ) =
∏
n≥0

ϕn+1
O

(
E(u)

E(0)

)
=

(
E(0)

E(u)

)
λ,

so in particular ϕO(1/λ) = E(u)/E(0)
λ

and hence ϕO naturally acts on the ring

O
[

1
λ

]
.

Example 2.1.1. — Let ζp be a primitive pth root of unity and suppose K =
K0(ζp). Choose π = ζp − 1 and extend ϕ to O via ϕO(u) := (u + 1)p − 1. We
claim that with these choices, the analogous definition of λ gives

λ =
log(1 + u)

u
.

Indeed, we have E(u) = Φp(u+1), and hence (keeping in mind that we have also
modified the definition of ϕO) we get

λ = lim
N→∞

N∏
n=0

Φpn(u + 1)

p
=

1

u
· lim

N→∞

(u + 1)pN − 1

pN
=

log(1 + u)

u
,

where the final equality follows from the binomial theorem and simple p-adic es-
timates on the explicit binomial coefficients (to also recover uniform convergence
on each ∆r).

Definition 2.1.2. — Define the differential operator N∇ : O → uO ⊆ O by
N∇ := −λu d

du
.
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The minus sign in this definition is due to the fact that λ(0) = 1, and we cannot
say more to justify this sign intervention at the outset other than that it makes
certain calculations later in the theory (for semistable non-crystalline represen-
tations) work out well, such as [11, Prop. 1.7.8]. A straightforward calculation
(using (2.1.2)) shows that the relation

(2.1.3) N∇ ◦ ϕO = p
E(u)

E(0)
ϕO ◦N∇

holds, which at u = 0 recovers the familiar relation “Nϕ = pϕN” between
Frobenius and monodromy operators in p-adic Hodge theory. Thus, we may
think of the operators N∇ and ϕO as deformations of the usual N and ϕ.

Since K is discretely-valued, every invertible sheaf on ∆ is trivial. (Indeed,
for c ∈ K× with 0 < |c| < 1, the Dedekind coordinate ring of each of the
exhausting discs {|t| ≤ |c|1/n} is a UFD and hence has trivial Picard group.
A line bundle on ∆ therefore admits compatible trivializations on the ∆r’s (and
hence is globally trivial) via an infinite product trick used in the proof of [2, 1.3.3];
the discreteness of |K×| implies the exponentially decaying coefficient-estimates
which ensure the convergence of the intervening infinite products.) In particular,
every effective divisor on ∆ is the divisor of an analytic function (which is false
for more general K [7, Ex. 2.7.8]), so O is a Bezout domain; i.e. every finitely
generated ideal is principal. In general O is not noetherian. For example, let
{xn} be a collection of K-points of ∆ with |xn| → 1 and let the nonzero fr ∈ O
have divisor

∑
n≤r[xn]+

∑
n>r 2[xn]. If the ideal (fr)r≥1 is finitely generated then

by the Bezout property it must be principal, (g), and g must have divisor
∑

n[xn].
But such a g obviously does not lie in (fr)r≥1, so we get the non-noetherian claim
for O. Nonetheless, the Bezout property for O ensures that coherent O-modules
behave much as if they were modules over a principal ideal domain:

Lemma 2.1.3. — Let M be free O-module of finite rank, and N ⊆ M an
arbitrary submodule. The following are equivalent:

1. N is a closed submodule of M ,
2. N is finitely generated as an O-module,
3. N is a free O-module of finite rank.

Proof. — See [11, Lemma 1.1.4]. �

We remark that the implication (1) =⇒ (3) will be especially useful for our
purposes. With these preliminaries out of the way, we can now define the first
category of “linear algebra data” over O that we shall consider.

Definition 2.1.4. — Let Modϕ
/O be the category whose objects are pairs

(M , ϕM ) consisting of a finite free O-module M and an endomorphism ϕM of
M satisfying the following two conditions:
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1. The map ϕM : M →M is ϕO-semilinear and injective.
2. The cokernel coker(1⊗ϕM ) of the O-linearization of ϕM is killed by a power

Eh for some integer h ≥ 0.

Morphisms in Modϕ
/O are O-module homomorphisms that are ϕ-equivariant. We

will abbreviate condition (2) by saying that the pair (M , ϕM ) has finite E-height.
The least integer h that works in (2) is the E-height of M .

Observe that a ϕO-semilinear operator ϕM : M → M is injective if its O-
linearization

1⊗ ϕM : ϕ∗OM = O ⊗O,ϕO
M →M

is injective, and this latter injectivity is equivalent to coker(1 ⊗ ϕM ) having
nonzero O-annihilator. If condition (1) is satisfied and annO(coker(1⊗ϕM )) 6= 0
then by arguing in terms of vector bundles we see that the cokernel of 1 ⊗ ϕM

(which corresponds to a coherent sheaf on ∆ that is killed by a nonzero element
of O) has discrete support in ∆. Geometrically, the condition (2) says that the
cokernel of 1 ⊗ ϕM is supported in the single point π ∈ ∆ (recall that points of
∆ correspond to Gal(K/K0)-orbits of points x ∈ K with |x| < 1).

We can enhance the category Modϕ
/O by equipping a module in Modϕ

/O with

the data of a monodromy operator over the differential operator N∇ : O → O.
This gives rise to the following category:

Definition 2.1.5. — Let Modϕ,N∇
/O be the category whose objects are triples

(M , ϕM , NM
∇ ) where

1. the pair (M , ϕM ) is an object of Modϕ
/O ,

2. NM
∇ : M →M is a K0-linear endomorphism of M satisfying the relations:
(a) for every f ∈ O and m ∈M ,

NM
∇ (fm) = N∇(f)m + fNM

∇ (m),

(b)

NM
∇ ◦ ϕM = p

E(u)

E(0)
ϕM ◦NM

∇ ,

and whose morphisms are O-module homomorphisms that are compatible with
the additional structures.

Remark 2.1.6. — Given NM
∇ : M →M , we obtain a map

∇ : M

[
1

λu

]
→M

[
1

λu

]
⊗O Ω1

∆/K0
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by defining

∇(m) := −1

λ
NM
∇ (m)

du

u
,

where the sign is due to the appearance of the sign in the definition of the operator
N∇ on O. The condition (2a) ensures that ∇ satisfies the Leibnitz rule, and so
is a meromorphic connection on M with at most simple poles supported in the
zero locus of λu, and a straightforward calculation shows that the condition (2b)
guarantees that ∇ is compatible with evident actions of ϕM . Moreover, we can
reverse this construction, and associate a monodromy operator NM

∇ on M to
any ϕM -compatible meromorphic connection on M with at most simple poles
supported in the zero locus of λu. Note that at u = 0, the relation (2b) recovers
the familiar relation “Nϕ = pϕN” between Frobenius and monodromy operators
in p-adic Hodge theory.

Observe that both the categories Modϕ
/O and Modϕ,N∇

/O have evident notions of

exactness and tensor product, and the forgetful functor from the second of these
two categories to the first is neither fully faithful nor essentially surjective (but in
Lemma 2.4.2 we will establish full faithfulness on the full subcategory of triples
(M , ϕM , NM

∇ ) such that NM
∇ (M ) ⊆ uM ). Also, neither Modϕ

/O nor Modϕ,N∇
/O is

an abelian category, as the cokernel of a morphism of finite free O-modules need
not be free.

2.2. The equivalence of categories. — In this subsection, we will sketch the
proof of the following remarkable result:

Theorem 2.2.1. — There are exact tensor-compatible functors

MFϕ,N,Fil≥0
K

M // Modϕ,N∇
/O

D
oo

and natural isomorphisms of functors

M ◦D
' // id and D ◦M

' // id.

Remarks 2.2.2. — Recall that each object of MFϕ,N,Fil≥0
K is equipped with a

descending, exhaustive, and separated filtration by K-subspaces. The notion
of exactness in this category includes the filtration data (in the sense that an
exact sequence of finite-dimensional filtered vector spaces is an exact sequence
of vector spaces such that the natural subspace and quotient filtrations on the
common kernel and image at each stage coincide). Hence, MFϕ,N,Fil≥0

K is not an
abelian category since maps with vanishing kernel and cokernel may fail to be
filtration-compatible in the reverse direction.

The definitions of M and D as module-valued functors, as well as the con-
struction of the natural transformations as in Theorem 2.2.1, will not use N∇.
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For example, the definition of D(M ) as a K0-vector space does not use the data
of NM

∇ and the definition of M (D) in Modϕ
/O comes before its N∇-structure is

defined. Moreover, once M and D have been defined, it turns out to be easy to
show that for any M ∈ Modϕ

/O there is a natural map of vector bundles over ∆

M ◦D(M )→M

that is an isomorphism away from the point π ∈ ∆. That this latter map is
an isomorphism on π-stalks (and hence is an isomorphism) crucially uses the
operator NM

∇ .

Rather than give the proof of Theorem 2.2.1, we will content ourselves with
giving the definitions of M and D. Moreover, we will only define M on objects
D with ND = 0, as this simplifies the exposition. For a complete discussion, see
[11, Theorem 1.2.15].

Let D be an object of MFϕ,N,Fil≥0
K and denote by Filj DK the jth filtered piece

of DK = K⊗K0 D. As we just noted above, to simplify the exposition of the con-
struction of M (D), we shall assume ND = 0. We will define M (D) as a certain
O-submodule of O

[
1
λ

]
⊗K0 D by imposing “polar conditions” at specific points

in ∆. Roughly, we can think of elements of O
[

1
λ

]
⊗K0 D as certain meromorphic

D-valued functions on ∆ with poles supported in the divisor of λ, and we will
use the additional data on D (Frobenius and filtration) to restrict the order of
poles that we allow for elements of M (D).

For each integer n ≥ 0, let xn be the point of ∆ corresponding to the
(irreducible) Eisenstein polynomial E(upn

) ∈ K0[u] (so xn corresponds to the
Gal(K/K0)-conjugacy class of a choice of πn := pn√

π ∈ K). If O∧
∆,xn

denotes the
complete local ring of ∆ at xn, then the specialization map

O∧
∆,xn
→ K0(πn)

sending a function to its value at xn realizes K0(πn) as the residue field of O∧
∆,xn

.
It follows that O∧

∆,xn
is a complete equicharacteristic discrete valuation ring with

maximal ideal (u− πn)O∧
∆,xn

; i.e. we have a K0-algebra isomorphism

O∧
∆,xn
' K0(πn)[[u− πn]]

of O∧
∆,xn

with the ring of xn-centered power series over K0(πn). Since

K0(πn) ⊇ K0(π0) = K,

we see that O∧
∆,xn

uniquely contains K over K0.
Denote by ϕW : O → O the “Frobenius operator” given by acting only on

coefficients:

ϕW

(∑
n≥0

anu
n

)
:=
∑
n≥0

ϕ(an)un,
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so in particular ϕW is bijective and ϕO is the composition of ϕW with the pth
power map u 7→ up. From this description and the product formula (2.1.1) defin-
ing λ, we see that ϕ−n

W (λ) has a simple zero at each zero of ϕ−n
W ◦ϕn

O(E(u)/E(0)) =
E(upn

)/E(0) in K, and so as a function on ∆ it has a simple zero at xn ∈ ∆. We
conclude that that under the natural localization map

(2.2.1) O → O∧
∆,xn

the element ϕ−n
W (λ) ∈ O maps to a uniformizer. Recalling that ϕD : D → D is

bijective, the composite map

O ⊗K0 D
'

ϕ−n
W ⊗ϕ−n

D

// O ⊗K0 D
(2.2.1)⊗1

// O∧
∆,xn
⊗K0 D = O∧

∆,xn
⊗K DK

thus induces a map

ιn : O
[

1
λ

]
⊗K0 D // O∧

∆,xn

[
1

u−πn

]
⊗K DK .

Concretely, up to the intervention of the isomorphism ϕ−n
W ⊗ ϕ−n

D , the map ιn is
nothing more than the map sending a D-valued meromorphic function on ∆ to
its Laurent expansion at xn ∈ ∆.

Define

M (D) :=

{
δ ∈ O

[
1

λ

]
⊗K0 D

∣∣∣∣∣ ιn(δ) ∈
∑
j∈Z

(u− πn)−j Filj DK for all n ≥ 0

}
.

Observe that the sum occurring in the definition of M (D) is a finite sum, as

Filj DK = DK for all j < 0 (D is an object of MFϕ,N,Fil≥0
K ) and Filj DK = 0 for

all j sufficiently large (the filtration on DK is separated). Thus, this sum really
makes sense as a “finite” condition on the polar part of δ at xn.

Remark 2.2.3. — Let A be any ring and let N1 and N2 be A-modules endowed
with decreasing filtrations. Suppose that the filtration on N2 is finite, exhaustive,
and separated in the sense that Filj N2 = N2 for j � 0 and Filj N2 = 0 for j � 0.
The tensor product N1 ⊗A N2 has a natural filtration given by

Filj(N1 ⊗A N2) :=
∑

m+n=j

image((Film N1)⊗A (Filn N2)→ N1 ⊗A N2),

and this sum is finite because of the hypotheses on the filtration on N2 and
the fact that the filtration on N1 is decreasing. We apply this with A = K,

N2 = DK , and N1 equal to the fraction field O∧
∆,xn

[
1

u−πn

]
of the complete local

ring O∧
∆,xn

endowed with its natural (u− πn)-adic filtration. The sum occurring
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in the definition of M (D) is the O∧
∆,xn

[
1

u−πn

]
-module

Fil0
(

O∧
∆,xn

[
1

u− πn

]
⊗K DK

)
.

If h ≥ 0 is any integer with Filh+1 DK = 0, then it is easy to see that we have
(u−πn)hM (D) ⊆ O⊗K0 D, and so (since ιn(λ) is (u−πn) times a unit in O∧

∆,xn
)

M (D) ⊆ λ−hO ⊗K0 D.

Moreover, one readily checks from consideration of finite-tailed Laurent expan-
sions that M (D) is a closed submodule of λ−hO⊗K0 D (because the membership
condition at each xn in the definition of M (D) is obviously a closed condition
on λ−hO ⊗K0 D). Thus, by Lemma 2.1.3, we conclude that M (D) is a finite free
O-module.

From the computation (2.1.2) we have seen that ϕO acts on O
[

1
λ

]
, and an easy

calculation shows that N∇ (see Definition 2.1.2) also acts on O
[

1
λ

]
. We define

operators ϕM (D) and N
M (D)
∇ on O

[
1
λ

]
⊗K0 D by the formulae

ϕM (D) := ϕO ⊗ ϕD and N
M (D)
∇ := N∇ ⊗ 1.

The relation (2.1.3) ensures that ϕM (D) and N
M (D)
∇ satisfy the desired “defor-

mation” (Definition 2.1.5(2b)) of the usual Frobenius and monodromy relation

Nϕ = pϕN , and one easily calculates using Definition 2.1.2 that N
M (D)
∇ satisfies

the Leibnitz rule (2a). We remark that the above constructions can be general-
ized to allow for ND 6= 0. (Beware that the definition of M (D) must be changed
if ND 6= 0.) The following lemma makes no assumptions on ND (although we
have only explained the definition of M (D) when ND = 0).

Lemma 2.2.4. — The operators ϕM (D) and N
M (D)
∇ preserve the submodule

M (D) of O
[

1
λ

]
⊗K0 D. Moreover, the O-linear map

1⊗ ϕM (D) : ϕ∗M (D)M (D)→M (D)

is injective, and has cokernel isomorphic to⊕
i≥0

(
O/E(u)iO

)hi ,

where hi = dimK gri DK (so M (D) 6= 0 if D 6= 0).

Proof. — This is essentially [11, Lemma 1.2.2]. �

It follows at once from Lemma 2.2.4 that ϕM (D) and N
M (D)
∇ make M (D) into

an object of Modϕ,N∇
/O and that if D 6= 0 then the E-height of M (D) is bounded

above by the largest i for which hi is nonzero. We have thus defined the functor
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M on objects. To define M on morphisms (assuming the vanishing of the ND’s,
which is the only case in which we have explained how to define M (D)), one must
check that for any morphism α : D → D′ of effective filtered (ϕ, N)-modules such
that ND = 0 and ND′ = 0, the map

1⊗ α : O

[
1

λ

]
⊗K0 D → O

[
1

λ

]
⊗K0 D

restricts to a morphism M (α) : M (D) → M (D) of (ϕ, N∇)-modules over O;
this is an easy exercise using the definition of M and the fact that α respects
filtrations.

We will define

D : Modϕ,N∇
/O → MFϕ,N,Fil≥0

K

by sending a (ϕ, N∇)-module given by the data (M , ϕM , NM
∇ ) to its fiber at the

origin of the disc:

D(M ) := M /uM .

(Similarly, the functor D takes a morphism to its specialization at u = 0.) We
equip D(M ) with Frobenius and monodromy operators

ϕ := ϕM mod u and N := NM
∇ mod u.

Observe that M /uM is a finite-dimensional K0-vector space, and that Nϕ =
pϕN thanks to Definition 2.1.5(2b).

In order to show that D(M ) := M /uM is an object of MFϕ,N,Fil≥0
K , we must

equip the K-vector space D(M )K with an effective filtration. To do this, we
proceed as follows. Recall that we have normalized | · | on K by |p| = 1/p.

For any r ∈ (|π|, 1) that is in the value group pQ of the absolute value on K
×
,

“specialization at π” defines a map

(2.2.2) D(M )⊗K0 Or → D(M )⊗K0 (Or/E(u)Or) = D(M )⊗K0 K = D(M )K

(recall from §2.1 that Or is the ring of rigid-analytic functions on the closed
rigid-analytic disc ∆r of radius r over K0 centered at the origin).

For any r ∈ pQ with r < 1 we write (·)|∆r to denote the functor (·) ⊗O Or

from O-modules to Or-modules. If |π| < r < |π|1/p then we will define an
infinite descending filtration on the left side of (2.2.2) by Or-submodules. The
K-linear pushforward of this filtration will be the desired filtration on D(M )K ;
it is independent of the choice of such r. The definition of this filtration of
D(M )⊗K0 Or by Or-submodules requires:

Lemma 2.2.5. — Let M be any object of Modϕ
/O with E-height h.
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1. There exists a unique O-linear and ϕ-compatible map ξ = ξM

D(M )⊗K0 O

ϕD(M )⊗ϕO

UU

ξ // M

ϕM

WW

with the property that

ξ mod u = idD(M ) .

2. The map ξ is injective, and coker(ξ) is killed by λh.

3. If r ∈ (|π|, |π|1/p) is in the value group of K
×
, then ξ

∣∣
∆r

has the same image

in M
∣∣
∆r

as does the linearization

1⊗ ϕM : ϕ∗OM →M

over ∆r.

Before sketching the proof of Lemma 2.2.5, let us apply it to define a filtration
on D(M ) ⊗K0 Or. It follows at once from (2) that ξ

[
1
λ

]
is an isomorphism.

Moreover, (3) readily implies that for r as in the Lemma, ξ
∣∣
∆r

is an isomorphism

away from every πn ∈ ∆r and that ξ
∣∣
∆r

induces an isomorphism

(2.2.3) D(M )⊗ Or
' // (1⊗ ϕM )(ϕ∗OM )

∣∣
∆r

.

The right side of (2.2.3) is naturally filtered by its intersections with the EiM
∣∣
∆r

.

That is, we define

Fili(1⊗ ϕM )(ϕ∗OM )
∣∣
∆r

:= (1⊗ ϕM )(ϕ∗OM )
∣∣
∆r
∩ EiM

∣∣
∆r

.

Since Or is Dedekind, each Fili is a finite free Or-module. Via (2.2.3), we get a
filtration on D(M )⊗K0 Or; the image of this filtration under (2.2.2) is the desired
K-linear filtration on D(M )K . Obviously this filtration is independent of r.

Remark 2.2.6. — Note that the definition of E-height implies that

Fili(1⊗ ϕM )(ϕ∗OM )
∣∣
∆r

= EiM
∣∣
∆r

for i ≥ h; in particular, for i ≥ h the map ξ
∣∣
∆r

induces an isomorphism

Fili(D(M )⊗K0 Or) ' D(M )⊗K0 Ei−hOr.

Specializing at π shows that Fili(D(M )K) = 0 for all i ≥ h + 1.
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Proof of Lemma 2.2.5. — The uniqueness aspect of the lemma is a standard “ϕ-
argument” that we omit. For the existence of ξ, note that the data of ξ is
equivalent to a K0-linear section

s : D(M )→M

to the natural surjection such that

ϕM ◦ s = s ◦ ϕD(M ).

Begin by choosing any K0-section s0 : D(M )→M . We would like to define

s = lim
n→∞

ϕn
M s0ϕ

−n
D(M )

pointwise on D(M ). To see that this limit does indeed converge pointwise, one
works on a fixed lattice L ⊆ D(M ) and makes p-adic estimates in L and in
M
∣∣
∆ρ

for all ρ ∈ (0, 1) ∩ pQ. By construction s is ϕ-compatible, so ξ exists,

establishing (1).
To prove (2) and (3), we fix r ∈ (|π|, |π|1/p)∩ pQ and proceed as follows. Since

ξ mod u is an isomorphism, it follows that ξ
∣∣
∆

rpi
is an isomorphism for some

(possibly large) i ≥ 1. By devissage, we will get to the case i = 1. If i > 1,
then consider the following diagram of finite O-modules (which we think of as
coherent sheaves over ∆):

(2.2.4) ϕ∗O (D(M )⊗K0 O)
ϕ∗O(ξ)

//

'
��

ϕ∗O(M )
� _

1⊗ϕM

��
D(M )⊗K0 O

ξ
// M

Due to the fact that ξ is ϕ-compatible, this diagram commutes. Moreover, since
the cokernel of the right vertical map 1 ⊗ ϕM is killed by Eh, where h is the
E-height of M , we see that this map is an isomorphism away from the point
π ∈ ∆; in particular, it is an isomorphism over ∆rp ⊇ ∆rpi−1 since |π| > rp.

Since ϕ−1
O (∆rpi ) = ∆rpi−1 and ξ is an isomorphism over ∆rpi by hypothesis,

we deduce that the top arrow ϕ∗O(ξ) is an isomorphism over ∆rpi−1 . The right
vertical map is also an isomorphism over ∆rpi−1 , so the bottom arrow ξ must be
an isomorphism over ∆rpi−1 as well. It follows by descending induction that ξ is

an isomorphism over ∆rp , and hence ϕ∗O(ξ) is an isomorphism over ∆r. Thus, ξ
∣∣
∆r

is injective, so ξ is injective by analytic continuation (any element of the kernel
of the O-module map ξ must vanish over ∆r, and therefore vanishes identically
on ∆). The diagram (2.2.4) also shows that ξ

∣∣
∆r

and (1⊗ϕM )
∣∣
∆r

have the same

image. Finally, coker
(
ξ
∣∣
∆r

)
is killed by Eh, as this is true of coker(1⊗ ϕM ) (by
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definition), so running the above analysis of the diagram (2.2.4) in reverse shows
that ϕn

O(Eh) kills coker(ξ
∣∣
∆

r1/pn
) for all n ≥ 0, and hence λh kills coker(ξ). �

2.3. Slopes and weak admissibility. — We now recall Kedlaya’s theory of
slopes [10] and apply it to translate weak admissibility across the equivalence of
categories in Theorem 2.2.1. Kedlaya’s theory works over a certain extension of
O, the Robba ring:

R := lim−→
r→1−

O{r<|u|<1},

where O{r<|u|<1} denotes the ring functions on the rigid-analytic (open) annulus
{r < |u| < 1} over K0. Observe that the transition maps in the direct limit
are injective, thanks to analytic continuation, and it follows in particular that O
is naturally a subring of R. One easily identifies R as a certain set of formal
Laurent series over K0. The ring R is equipped with a Frobenius endomorphism

ϕR : R → R

restricting to ϕO on O; one easily checks that ϕR is faithfully flat.
The bounded Robba ring is the ring

Rb := lim−→
r→1−

Obnd
{r<|u|<1},

where Obnd
{r<|u|<1} denotes the subring of O{r<|u|<1} consisting of those functions

which are bounded. We also define

(2.3.1) R int :=

{∑
n∈Z

anu
n ∈ R

∣∣∣an ∈ W for all n ∈ Z

}
;

this is a henselian discrete valuation ring with uniformizer p.
Observe that Rb = Frac(R int), so in particular Rb is a field. In fact, the

nonzero elements of Rb are precisely the units of R. Moreover, since R int is
henselian, roots of polynomials with coefficients in Rb have canonical p-adic
ordinals.

Example 2.3.1. — As E is a polynomial in u with W -coefficients, we clearly
have E ∈ R int ⊆ Rb. Since the leading coefficient of E is a unit in W , we see
that 1

p
E ∈ Rb is not in R int. It follows that the p-adic ordinal of E is 0, so

E ∈ (R int)×.

Definition 2.3.2. — Let Modϕ
/R be the category whose objects are pairs

(M, ϕM) with M a finite free R-module and

ϕM : M →M
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a ϕR-semilinear endomorphism whose R-linearization 1⊗ϕM : ϕ∗RM →M is an
isomorphism. Morphisms in Modϕ

/R are ϕ-compatible morphisms of R-modules.

We define the category Modϕ
/Rb similarly.

Warning 2.3.3. — The natural inclusion map Rb ↪→ R allows us to view any
R-module as an Rb-module. However, R is not finitely generated as an Rb-
module (since Rb is a field but the domain R is not), so the induced restriction
functor from the category of R-modules to Rb-modules does not restrict to a
functor from Modϕ

/R to Modϕ
/Rb .

The following example will play a crucial role in what follows:

Example 2.3.4. — Let (M , ϕM ) ∈ Modϕ
/O . We claim that the R-module

MR := M ⊗O R equipped with ϕMR
:= ϕM ⊗ ϕR is an object of Modϕ

/R .

Obviously the R-module MR is free. Since O → R is flat and

1⊗ ϕM : ϕ∗OM →M

is injective with cokernel killed by a power of E, we see that the R-linearization
of ϕMR

is an isomorphism, as E is a unit in R (even in R int) by Example 2.3.1.

Definition 2.3.5. — Let (M, ϕM) be a nonzero object of Modϕ
/R . We say that

(M, ϕM) is pure of slope zero if it descends to an object of Modϕ
/Rb such that

the matrix of ϕ on the descent has all eigenvalues with p-adic ordinal 0. By a
suitable twisting procedure [10, Def. 1.6.1] we define pure of slope s similarly, for
any s ∈ Q. If (M , ϕM ) is a nonzero object of Modϕ

/O , we say that (M , ϕM ) is

pure of slope s if (MR , ϕMR
) ∈ Modϕ

/R is.

Remarks 2.3.6. — 1. The notion of “pure of some slope s” is well-behaved
with respect to tensor and exterior products; see [10, Cor. 1.6.4] (whose
proof also applies to exterior products).

2. The condition “pure of slope zero” is equivalent to the existence of a ϕM -
stable R int-lattice L ⊆ M with the property that the matrix of ϕM acting
on L is invertible. This follows by a lattice-saturation argument with the
linearization of ϕM viewed over a sufficiently large finite extension of the
fraction field Rb of the henselian discrete valuation ring R int (where “suffi-
ciently large” means large enough to contain certain eigenvalues).

3. Since (Rb)× = R×, a linear map M ′ → M of finite free Rb-modules is a
direct summand (respectively surjective) if and only if the scalar extension
M ′

R →MR to R is a direct summand (respectively surjective).

The following important theorem of Kedlaya [10, Thm. 1.7.1] elucidates the
structure of R-modules.
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Theorem 2.3.7 (Kedlaya). — For any nonzero object (M, ϕM) of Modϕ
/R,

there exists a unique filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M

in Modϕ
/R such that each successive quotient Mi/Mi−1 is a nonzero object of

Modϕ
/R that is pure of slope si, with the rational numbers si satisfying

s1 < s2 < · · · < sr.

The filtration on a nonzero object (M, ϕM) guaranteed by Kedlaya’s theorem

is called the slope filtration of M . Given a nonzero object M of Modϕ,N∇
/O , we

know that (MR , ϕMR
) is a nonzero object of Modϕ

/R , and it is natural to ask if

the slope filtration on (MR , ϕMR
) has an interpretation purely in terms of M in

the category Modϕ,N∇
/O . This is indeed the case, as it is possible to use ϕ and N∇

to obtain the following refinement of Theorem 2.3.7:

Theorem 2.3.8. — Let M be a nonzero object of Modϕ,N∇
/O . There exists a

unique filtration

(2.3.2) 0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M

in Modϕ,N∇
/O whose successive quotients Mi/Mi−1 are nonzero objects of Modϕ,N∇

/O

such that (2.3.2) descends the slope filtration of MR.

We are now able to translate the condition of weak admissibility for a filtered
(ϕ, N)-module across the equivalence of categories in Theorem 2.2.1.

Theorem 2.3.9. — A nonzero object D of MFϕ,N,Fil≥0
K is weakly admissible if

and only if the nonzero M (D) is pure of slope zero.

Proof. — Since M is an exact covariant tensor-compatible functor, we have

∧iM (D) 'M (∧iD)

for all i ≥ 0. But M is an equivalence, so therefore it preserves rank (using the
characterization of rank in terms of exterior algebra). It follows that

det M (D) 'M (det D).

Recalling that

(2.3.3) tN(D) = tN(det D) and tH(D) = tH(det D),

we are motivated to first treat the case that dimK0 D = 1.
If dimK0 D = 1 then since N is nilpotent, we must have N = 0. Setting

h := tH(D), by the definition of tH(D) we have Filj DK = DK for all j ≤ h and
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Filj DK = 0 for all j ≥ h + 1. Thus, from the definition of M (D) (given in §2.2)
we easily see that

M (D) = λ−h(O ⊗K0 D).

If we select a K0-basis e of D, then ϕD(e) = αe for some α ∈ K×
0 ; by the definition

of tN(D), we have ordp(α) = tN(D). Viewing e as a O-basis of O ⊗K0 D, we
calculate (using (2.1.2))

(2.3.4) ϕM (D)(λ
−he) = ϕO(λ)−hαe =

(
E(u)

E(0)

)h

α(λ−he).

Now E(u) ∈ (R int)× by Example 2.3.1, and E(0) ∈ p · W× ⊆ p · (R int)× so

(E(u)/E(0))h ∈ p−tH(D) ·(R int)× by the definition of h. Since α ∈ ptN (D) ·(R int)×,
we conclude from (2.3.4) that M (D) is pure of slope tN(D) − tH(D) (by the
definition of “pure slope”). This settles the case that D has rank 1.

It now follows formally from the properties of M (such as det-compatibility)
and of slopes, and the identities (2.3.3), that a nonzero D is weakly admissible
when M (D) is pure of slope zero.

For the converse, suppose that D is nonzero and weakly admissible. By Theo-
rem 2.3.8, the slope filtration of M (D)R descends to

(2.3.5) 0 = M0 ⊆M1 ⊆ · · · ⊆Mr = M (D)

in Modϕ,N∇
/O with nonzero Mi/Mi−1 ∈ Modϕ,N∇

/O pure of slope si ∈ Q such that

s1 < s2 < · · · < sr.

Our goal is to show that r = 1 and s1 = 0.
Set di := rkO Mi/Mi−1 and note that di ≥ 1. Since ∧di(Mi/Mi−1) is pure

of slope sidi by the proof of [10, Cor. 1.6.4], it follows that det M (D) '
⊗ det(Mi/Mi−1) is pure of slope

∑
i sidi. On the other hand, we deduce from

our calculations in the rank-1 case that M (det(D)) is pure of slope

tN(det D)− tH(det D) = tN(D)− tH(D) = 0

by (2.3.3) and the weak admissibility hypothesis. Since det M (D) = M (det D)
as observed before, we conclude that

(2.3.6)
∑

i

sidi = 0.

As s1 < s2 < · · · < sr, in order to show what we want (r = 1 and s1 = 0) it is
therefore enough to show that s1 ≥ 0.

Since M is an equivalence of categories by Theorem 2.2.1, corresponding to
the nonzero subobject M1 of M (D) (in Modϕ,N∇

/O ) is a nonzero subobject D1 of

D (in MFϕ,N
K ) with

M1 = M (D1).
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We have calculated that det M1 is pure of slope s1d1, so since det M1 =
M (det D1), which is pure of slope tN(D1) − tH(D1) (again by the rank-1 case),
we conclude that

s1d1 = tN(D1)− tH(D1) ≥ 0

as D1 is a nonzero subobject of the weakly admissible filtered (ϕ, N)-module D
(and therefore tN(D1)−tH(D1) ≥ 0 by the definition of weak-admissibility). This
gives s1 ≥ 0, as required. �

2.4. Integral Theory. — We now describe a certain “integral theory” that
will be used in the next lecture to study semi-stable Galois representations. To
motivate this theory, we first define a new category of linear algebra data.

Definition 2.4.1. — Let Modϕ,N
/O be the category whose objects are triples

(M , ϕM , N) where

1. the pair (M , ϕM ) is an object of Modϕ
/O ,

2. N : M /uM →M /uM is a K0-linear endomorphism satisfying

Nϕ = pϕN,

where ϕ := ϕM mod u.

Morphisms in Modϕ,N
/O are O-module homomorphisms compatible with ϕM and

N .

Note that Modϕ,N
/O is defined exactly like Modϕ,N∇

/O , except that we only impose a

monodromy operator “at the origin.” Denote by Modϕ,N∇,0
/O and Modϕ,N,0

/O the full

subcategories of Modϕ,N∇
/O and Modϕ,N

/O , respectively, consisting of those objects

that are 0 or of pure slope zero (where M is said to be pure of slope zero if
M ⊗O R is; cf. Definition 2.3.5). There is a natural “forgetful” functor

(2.4.1) Modϕ,N∇
/O → Modϕ,N

/O

defined by sending the triple (M , ϕM , N∇) to the triple (M , ϕM , N∇ mod u).
Using the quasi-inverse equivalences of categories M and D, one proves (see [11,
Lemma 1.3.10(2)]):

Lemma 2.4.2. — The functor (2.4.1) is fully faithful.

By Theorems 2.2.1 and 2.3.9, we obtain an exact, fully faithful tensor-functor

(2.4.2) w.a.MFϕ,N,Fil≥0
K

'
M

// Modϕ,N∇,0
/O

� �

(2.4.1)
// Modϕ,N,0

/O .

The purpose of the “integral” theory that we will introduce is to describe the
category Modϕ,N,0

/O and the essential image of (2.4.2) in more useful terms. Before
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we embark on this task, let us remark that by the exactness of D, the “inverse”
to (2.4.2) on its essential image is also exact.

Let S := W [[u]], and denote by ϕS the unique semi-linear extension of the
Frobenius endomorphism of W to S that satisfies ϕS(u) = up. We now define

analogues of Modϕ
/O and Modϕ,N

/O using S-modules.

Definition 2.4.3. — Let Modϕ
/S be the category whose objects are pairs

(M, ϕM) where:

1. M is a finite free S-module and ϕM is a ϕS-semilinear endomorphism,
2. M is of finite E-height in the sense that the cokernel of the S-linearization

1⊗ ϕM : ϕ∗SM→M

is killed by some power Eh of E (so 1⊗ϕS is injective, and hence so is ϕM).

Morphisms in Modϕ
/S are ϕ-equivariant morphisms of S-modules.

As usual, we enhance the category Modϕ
/S by adding a “monodromy operator”:

Definition 2.4.4. — Let Modϕ,N
/S be the category whose objects are triples

(M, ϕM, NM) where:

1. the pair (M, ϕM) is an object of Modϕ
/S,

2. NM is a K0-linear endomorphism of (M/uM)⊗W K0 which satisfies

NM ◦ ϕM = pϕM ◦NM

(with ϕM := ϕM mod u).

Morphisms in Modϕ,N
/S are morphisms in Modϕ

/S compatible with N mod u.

Remark 2.4.5. — Note that the definition of Modϕ,N
/S parallels that of Modϕ,N

/O ,

except that we only impose NM on (M/uM) ⊗W K0 and not on M/uM. (This
lack of integrality conditions on NM is solely because it is unclear if Lemma 2.4.7
is true with an integrality requirement on NM.) Further, observe that Modϕ

/S

embeds as a full subcategory of Modϕ,N
/S by taking NM = 0. We will not need the

category Modϕ
/S until the next lecture.

Remark 2.4.6. — Observe that S
[

1
p

]
= Obnd (the subring of functions on the

open unit rigid-analytic disc that are bounded), and that the natural inclusion

S

[
1

p

]
→ O

is faithfully flat. Moreover, it follows at once from the definition (2.3.1) of R int

that we have a natural inclusion

S(p) → R int



SURVEY OF CRYSTALLINE REPRESENTATIONS AND F -CRYSTALS 19

which is moreover faithfully flat, as it is a local extension of discrete valuation
rings.

For the convenience of the reader, we summarize the relationships between the
various rings considered above in the following diagram:

(2.4.3) S := W [[u]] � � //
� _

��

S
[

1
p

]
Obnd � � //

� _

��

O� _

��
S(p)

� � // R int � � // Frac(R int) = Rb � � // R

Rb \ {0}
?�

OO

R×
?�

OO

Let M be any object of Modϕ,N
/S . Then M := M ⊗S O is easily seen to be

an object of Modϕ,N
/O . In fact, since the natural inclusion S ↪→ O ↪→ R has

image in R int and E ∈ (R int)×, it follows from Remark 2.3.6(2) that M ⊗S O
is pure of slope zero if M 6= 0. Since p is invertible in O, the resulting functor
Modϕ,N

/S → Modϕ,N
/O factors through the p-isogeny category, so we obtain a functor

(2.4.4) Θ : Modϕ,N
/S ⊗Qp → Modϕ,N,0

/O M 7→M⊗S O.

that respects tensor products and is exact.

Lemma 2.4.7. — The functor Θ of (2.4.4) is an equivalence of categories.

Proof. — We just explain how to functorially (up to p-isogeny) equip any object

M of Modϕ,N,0
/O with a S-structure, and refer the reader to the proof of [11,

Lemma 1.3.13] for the complete argument. The key algebraic inputs are:

Rb ∩ O = Obnd = S

[
1

p

]
and R int ∩ O = S,

where both intersections are taken inside of the Robba ring R; see (2.4.3). The
idea to exploit this is the following: by definition of pure slope zero (Definition
2.3.5 and Remark 2.3.6(2)), there is a descent of MR := M ⊗O R ∈ Modϕ

/R to

an object MRb of Modϕ
/Rb with a ϕ-stable R int-lattice L ⊆MRb . We “glue” the

O-module M and the R int-lattice L to get a module M over O ∩R int = S.
To be more precise, MRb is functorial in MR [10, Prop. 1.5.5], and under the

isomorphism
MRb ⊗Rb R 'MR

there exists a subset of MR that is both an O-basis of M and an Rb-basis
of MRb . Indeed, if we choose an O-basis {vi} of M and an Rb-basis {wj} of
MRb then each is an R-basis of MR , so there is an invertible matrix A over R
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carrying {vi} to {wj}. By the first part of [8, Proposition 6.5], we can express
A as a product (in either order) of an invertible matrix over O and an invertible
matrix over Rb, so by using such factor matrices to change the respective choices
of {vi} over O and {wj} over Rb we get the asserted “common basis”. It follows
that

M b := M ∩MRb ⊆MR

is a ϕ-stable, finite free Rb ∩ O = S
[

1
p

]
-module descending (M , ϕM ). This

shows that Θ is fully faithful, since for any object M of Modϕ,N
/S , the object

M := M⊗S O satisfies

M b = M

[
1

p

]
,

so we recover M up to p-isogeny from M .
Now for any object M of Modϕ,N

/O , the R int-lattice L inside MRb allows one

to equip M b = M ∩MRb with the desired S-structure (up to p-isogeny); see
the proof of [11, Lemma 1.3.13] for the details. �

Using the fully faithful functor (2.4.2) and the “inverse” of Θ in (2.4.4), we
have:

Corollary 2.4.8. — There exists an exact and fully faithful tensor functor

(2.4.5) Θ̃ : w.a.MFϕ,N,Fil≥0
K ↪→ Modϕ,N

/S ⊗Qp.

Thus, for any object D of w.a.MFϕ,N,Fil≥0
K , there is a canonical S-structure on

M (D) up to p-isogeny. For example, in the next section, we will be particularly
interested in the case that

D = Dst∗(V ) :=
(
Bst ⊗Qp V

)GK

for some object V of Repst
GK

.

We now wish to describe the essential image of Θ̃. To do this, we must answer
the following question: for which objects M of Modϕ,N

/S does the object M :=

M ⊗S O of Modϕ,N,0
/O admit an operator NM

∇ as in Definition 2.1.5(2) that lifts

NM ⊗ 1 on (M/uM)⊗W K0 = M /uM and makes the triple (M , ϕM , NM
∇ ) into

an object of Modϕ,N∇
/O ?

Thanks to Lemma 2.2.5, for any object M of Modϕ,N
/O we have an injective

map of finite free O-modules

ξ : D(M )⊗K0 O ↪→M
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with cokernel killed by λh (where h is the E-height of M ), so in particular ξ is
an isomorphism after inverting λ. Therefore, there exists a unique connection

(2.4.6) ∇M : M

[
1

λu

]
→M

[
1

λu

]
⊗O Ω1

∆/K0

satisfying ∇M (d) = −N(d)du
u

for all d ∈ D(M ). Moreover, ∇M commutes with
ϕM and has poles of order at most h supported on the zeroes of λ, and at worst
a simple pole at u = 0.

Defining NM
∇ : M [1/λu]→M [1/λu] by the relation

(2.4.7) ∇M (m) = −1

λ
NM
∇ (m)

du

u

for all m ∈M , as in Remark 2.1.6, gives the only possible NM
∇ for M = M⊗S O

as above. In case M has O-rank 1, it follows from a calculation (see the proof of
[11, 1.3.10(3)]) that ∇M has at worst simple poles; that is, NM

∇ carries M into
itself in the rank-1 case. Thus:

Corollary 2.4.9. — Let M be an object of Modϕ,N
/S ⊗Qp and let M := M⊗S O

be the corresponding object of Modϕ,N,0
/O . Then M is in the image of Θ̃ if and only

if the connection ∇M as in (2.4.6) has at worst simple poles (equivalently, if and
only if the operator NM

∇ defined by (2.4.7) is holomorphic). In particular, any

such M with S-rank 1 is in the image of Θ̃.

3. Second Lecture

This lecture introduces the category of S-modules, roughly an integral version
of the category of vector bundles with connection from §2, and we set up a fully
faithful functor from the category of effective weakly admissible filtered (ϕ, N)-
modules to the isogeny category of S-modules (and we describe the essential
image). In the reverse direction we construct a fully faithful functor from the
category of S-modules into the category of GK∞-stable lattices in semistable
GK-representations, where K∞/K is generated by compatible p-power roots of
a uniformizer π of OK . As applications, we obtain a proof of the conjecture of
Fontaine that the natural fully faithful functor from semistable representations
to weakly admissible modules is an equivalence and we obtain a proof of the
conjecture of Breuil that restriction from crystalline GK-modules to underlying
GK∞-modules is fully faithful. We also use S-modules to describe the category
of all GK∞-stable lattices in crystalline representations of GK .
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We begin by using the fully faithful tensor-compatible functor

w.a.MFϕ,N,Fil≥0
K

� � eΘ // Modϕ,N
/S ⊗Qp

D
� // “S-structures on M (D)”

to study Repst
GK

. Let us first introduce the following notation: fix a profinite
group H (e.g., H = GK) and let

Reptor
H = category of continuous H-representations on

finite abelian p-groups,

RepH/Zp
=

category of continuous H-representations on
finite free Zp-modules,

RepH =
category of continuous H-representations on
finite dimensional Qp-vector spaces.

Morphisms in each category are the obvious ones; observe that RepH is the p-
isogeny category of RepH/Zp

.
Recall that K/K0 is a totally ramified extension of K0 = Frac(W ) with uni-

formizer π ∈ OK . Choose a compatible sequence of p-power roots of π:

πn := pn√
π ∈ K (π0 = π),

set K∞ := ∪K0(πn) ⊆ K, and let GK∞ := Gal(K/K∞) ⊆ GK .
The main goals of this lecture are:

1. Show that weakly admissible implies admissible; i.e. that if D is a nonzero
object of w.a.MFϕ,N

K then

D = Dst∗(V ) :=
(
Bst ⊗Qp V

)GK

for some object V of Repst
GK

.
2. Show that the restriction of the natural functor

RepGK
→ RepGK∞

to the subcategory of crystalline representations Repcris
GK
⊆ RepGK

is fully
faithful, and describe GK∞-stable Zp-lattices in crystalline p-adic represen-
tations of GK using Modϕ

/S (recall from Definition 2.4.3 that this is “the

category Modϕ,N
/S with N = 0”).

3.1. Étale ϕ-modules. — The starting point is a fundamental theory of
Fontaine that describes the entire category RepGK∞

in terms of semilinear
algebra data over an extension of S. Recall the following definition from Breuil’s
lectures:
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Definition 3.1.1. — Let R be the Fp-algebra

R := lim←−
c 7→cp

OK/pOK .

This is easily seen to be a perfect domain. (Note also that OK/pOK =
OCK

/pOCK
.)

Remark 3.1.2. — There is a natural map

lim←−
c 7→cp

OCK
→ lim←−

c 7→cp

OK/pOK = R

given by reduction modulo p at each finite level. This map is a multiplicative
bijection (cf. [5, §1.2.2]). We can therefore think of any element x ∈ R as a
sequence (x(m))m≥0 of elements of OCK

satisfying (x(m))p = x(m−1) for all m ≥ 1.
In particular, x = 0 in R if and only if x(0) = 0 in OCK

. The ring structure of these
sequences in characteristic 0 is given by (x+y)(m) = limn→∞(x(n+m)+y(n+m))pn ∈
OCK

. The motivation for considering R is probably the desire to find a Witt-type
construction of a complete discrete valuation ring with residue field CK .

Defining |(x(m))m≥0|R := |x(0)|CK
makes R into a complete valuation ring of

characteristic p; evidently R contains k, so W (k) ⊆ W (R) ⊆ W (Frac(R)). More-
over, Frac(R) is algebraically closed (this is not obvious, and is part of the general
Fontaine–Wintenberger theory of norm fields but also admits a direct proof), and
GK acts by isometries (with respect to | · |R) on R.

Example 3.1.3. — Let π := (πn)n≥0 ∈ R. The isotropy subgroup of π in GK

is clearly GK∞ .

There is a natural map

(3.1.1) S = W [[u]]

ϕS

		
� � // W (R)

FrobR

		

∑
n≥0 anu

n � //
∑

n≥0 an[π]n

which is GK∞-invariant (by Example 3.1.3) and ϕ-compatible (as [πp] = [π]p).
Since π ∈ Frac R is nonzero we have [π] ∈ W (Frac R)×, so (3.1.1) extends to a
map

(3.1.2) S
[

1
u

]
� � // W (Frac R) .

The source of this map is a Dedekind domain in which (p) is a prime ideal and the
target is a complete discrete valuation ring with uniformizer p, so (3.1.2) gives a
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map

j : S
[

1
u

]∧
(p)

� � // W (Frac R)

that fits into a commutative diagram

(3.1.3) OE := S
[

1
u

]∧
(p)

� � j //

����

W (Frac R)

����
k((u)) // Frac R

(with both horizontal maps defined by sending u to [π], and the bottom map
over k). Since Frac(R) is algebraically closed, the bottom side of the diagram
provides a separable closure of k((u)) in Frac(R).

Clearly, OE in (3.1.3) is a complete discrete valuation ring with uniformizer
p, and it has a “Frobenius endomorphism” ϕOE

induced by ϕS; due to the ϕ-
equivariance of (3.1.1), the horizontal maps in (3.1.3) are ϕ-compatible. Let
Oun

E /OE be the maximal unramified extension of OE with respect to the separable
closure k((u))sep ⊆ Frac(R) of k((u)). We define

E := Frac(OE ) and E un := Frac(Oun
E ).

By the universal property of the strict henselization Oun
E of OE , there exists a

unique map

j̃ : Oun
E ↪→ W (Frac R)

over j which lifts the inclusion k((u))sep ↪→ Frac R on residue fields. We thus
obtain a commutative diagram

Ôun
E [1/p] = Ê un � � // W (Frac R)[1/p]

� _

��

Ôun
E

?�

OO

� w

**UUUUUUUUUUUUUUUUUUUUU

Oun
E

?�

OO

� �
ej // W (Frac R)

OE

?�

OO

' �
j

44iiiiiiiiiiiiiiiiiiiii

The unicity of j̃ implies that the GK∞-action on W (Frac R) over OE preserves

the subring j̃(Oun
E ).

Remark 3.1.4. — The natural map S → OE is flat, and the natural map
S(p) → OE is faithfully flat. Moreover, since E ≡ ue mod p (e = [K : K0]),
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we see that E ∈ O×
E because OE is a discrete valuation ring having residue field

k((u)).

The following important theorem (a special case of a general result in the
Fontaine–Wintenberger theory of norm fields) will allow us to study GK∞-
representations via characteristic-p methods:

Theorem 3.1.5. — The natural action of GK∞ on Oun
E via the inclusion j̃ in-

duces an isomorphism of topological groups

GK∞
' // Aut(Oun

E /OE ) ' Gk((u)).

Definition 3.1.6. — An étale ϕ-module is a finitely generated OE -module M
equipped with a ϕOE

-semilinear map M → M whose OE -linearization ϕ∗OE
M →

M is an isomorphism. We denote by Modϕ
/OE

the category whose objects are étale

ϕ-modules that are free over OE , and by Modϕ,tor
/OE

the category of étale ϕ-modules

that are killed by a power of p. Morphisms in these categories are ϕ-compatible
maps of OE -modules.

Example 3.1.7. — It follows easily from Remark 3.1.4 that for any object M
of Modϕ

/S, the scalar extension M := OE ⊗S M is an object of Modϕ
/OE

.

We define contravariant functors

Modϕ,tor
/OE

V ∗OE // Reptor
GK∞

D∗
OE

oo

by

V ∗
OE

(M) := HomOE ,ϕ (M, E un/Oun
E )

D∗
OE

(T ) := HomGK∞
(T,E un/Oun

E ) .

Similarly, we define

V ∗
OE

: Modϕ
/OE

// RepGK∞ /Zp

by

V ∗
OE

(M) := HomOE ,ϕ

(
M, Ôun

E

)
,

and likewise D∗
OE

: RepGK∞/Zp
→ Modϕ

/OE
is defined by

D∗
OE

(T ) := HomGK∞
(T, Ôun

E ).

(It is not obvious that V ∗
OE

(M) and D∗
OE

(T ) lie in the asserted target categories.)
It will always be clear from the context on what category of objects (torsion or
finite free) we are considering the functors V ∗

OE
and D∗

OE
.
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Lemma 3.1.8 (Fontaine). — With the notation above, we have the following
properties.

1. The functors V ∗
OE

and D∗
OE

between torsion categories are quasi-inverse
equivalences of categories that are exact and tensor-compatible and preserve
“invariant factors”: i.e. we have as modules

M '
⊕

i

OE /pniOE if and only if V ∗
OE

(M) '
⊕

i

Z/pniZ.

2. The contravariant functors V ∗
OE

and D∗
OE

between the “finite free” module
categories are rank-preserving, exact, tensor-compatible quasi-inverse equiv-
alences of categories.

Proof. — This is a special case of [4, 1.2.4, 1.2.6, 1.2.7] (which works with k((u))
replaced by an arbitrary field of characteristic p). �

Remark 3.1.9. — There are dualities on Modϕ,tor
/OE

, Modϕ
/OE

and on Reptor
GK∞

,

RepGK∞/Zp
given by HomOE ,ϕ (−, E /OE ), HomOE ,ϕ (−, OE ), HomGK∞

(−,Qp/Zp),

and HomZp[GK∞ ] (−,Zp) respectively. The functors V ∗
OE

and D∗
OE

naturally com-
mute with these dualities. Moreover, we have a covariant analogue of V ∗

OE
defined

by

V OE ∗(M) :=

{(
M ⊗OE

Oun
E

)ϕ=id
if M ∈ Modϕ,tor

/OE
,(

M ⊗OE
Ôun

E

)ϕ=id
if M ∈ Modϕ

/OE
.

Our aim is to adapt Fontaine’s theory of étale ϕ-modules to study S-modules
(rather than OE -modules), and to find an analogue of Lemma 3.1.8 describing the
essential image of Repcris

GK
in RepGK∞

in terms of S-modules and certain linear

algebra data on them. To do this, we will replace Oun
E and Ôun

E with

Sun := OE un ∩W (R) ⊆ W (Frac R),

Ŝun := ÔE un ∩W (R) ⊆ W (Frac R).

Note that S ⊆ OE ∩W (R) (so Sun is a flat S-module) and that Ŝun is isomorphic
to the p-adic completion of Sun (justifying the notation), as W (R) is p-adically
separated and complete.

Warning 3.1.10. — Unlike the case of modules over the discrete valuation ring
OE , finitely generated p-power torsion S-modules need not be isomorphic to a
direct sum of modules of the form S/pnS (for example, let I ⊆ S be the ideal
I = (p2−u, u2), and consider the module S/I). The correct analogue of “finitely
generated p-power torsion OE -module” in this context turns out to be a finite
p-power torsion S-module of projective dimension at most 1.
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3.2. S-modules and GK∞-representations. — Recall the definition (Defi-
nition 2.4.3) of the category Modϕ

/S. We will treat this category as an analogue

of Modϕ
/OE

. We now define the S-module analogue of the category Modϕ,tor
/OE

:

Definition 3.2.1. — Let Modϕ,tor
/S be the category whose objects are finite S-

modules M such that:

1. M is killed by some power of p and projdim M ≤ 1,
2. there is a ϕS-semilinear map ϕM : M→M such that the S-linearization

1⊗ ϕM : ϕ∗SM→M

is injective and has cokernel killed by some power Eh of E (so ϕM is injec-
tive).

Morphisms in Modϕ,tor
/S are ϕ-compatible maps of S-modules.

Observe that if M is a direct sum of S-modules of the type S/pnS then
any ϕS-semilinear map ϕM : M → M has S-linearization that is automatically
injective since the image of E in (S/pS)[1/u] = k((u)) is a unit. Although not
every object M of Modϕ,tor

/S is a direct sum of objects of the form S/pnS, we do

have:

Lemma 3.2.2. — Every object M of Modϕ,tor
/S is a successive extension of ob-

jects that are free over S/pS.

Proof. — See the proof of [11, Lemma 2.3.2], and note that although that proof
assumes that the cokernel of 1 ⊗ ϕM : ϕ∗SM → M is killed by E, the same
argument works with any power Eh of E. �

Using the (obvious) fact that

S/pS = k[[u]] ⊆ k((u)) = OE /pOE ,

calculations of Fontaine give:

Lemma 3.2.3. — Let M be any object of Modϕ,tor
/S . Then there is a natural

isomorphism of Zp[GK∞ ]-modules

V ∗
S(M) := HomS,ϕ

(
M, Sun

[
1
p

]
/Sun

)
' // V ∗

OE
(OE ⊗S M) .

It follows immediately from Lemma 3.1.8 and Remark 3.1.4 that V ∗
S is exact,

commutes with tensor products, and

if M '
⊕

i

S/pniS then V ∗
S(M) '

⊕
i

Z/pniZ.

Passing to inverse limits gives:
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Corollary 3.2.4. — We have:

1. Let M be any object of Modϕ
/S. Then

V ∗
S(M) := HomS,ϕ

(
M, Ŝun

)
is a finite free Zp-module of rank equal to rkS(M) and the natural map of
Zp[GK∞ ]-modules

V ∗
S(M) // V ∗

OE
(M⊗S OE )

obtained by extending scalars to OE is an isomorphism.
2. Let V ∗

S : Modϕ
/S → RepGK∞/Zp

be the functor defined in (1). For all n ≥ 1,

there are natural isomorphisms

V ∗
S(M)/(pn)

' // HomS,ϕ (M/pnM, Sun/pnSun)
' // V ∗

S(M/pnM).

Thus, the functor V ∗
S on the category Modϕ

/S is exact and commutes with

tensor products.

Remark 3.2.5. — For any object M of Modϕ
/S, the Zp[GK∞ ]-module

V S∗(M) :=
(
M⊗S Ŝun

)ϕ=1

satisfies
V S∗(M)∨ ' V ∗

S (M∨) .

Recall from Lemma 3.1.8 that the functor D∗
OE

provides a quasi-inverse to V ∗
OE

.
The S-module analogue of this is:

Lemma 3.2.6. — Let M be an object of Modϕ
/S with S-rank equal to d, and

define

M′ := HomZp[GK∞ ]

(
V ∗

S(M), Ŝun
)

.

Then M′ is a finite-free S-module of rank d, and the natural map M → M′ is
injective.

Using Corollary 3.2.4 and Lemma 3.2.6, we can now prove:

Proposition 3.2.7. — The functor Modϕ
/S → Modϕ

OE
given by

(3.2.1) M 7→M⊗S OE

(see Example 3.1.7) is fully faithful.

The proof of Proposition 3.2.7 is a straightforward adaptation of the “gluing
argument” in the proof of Lemma 2.4.7, replacing R and O with OE and S.
However, it requires one extra ingredient:
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Lemma 3.2.8. — Let h : M′ →M be a morphism in Modϕ
S. If

h⊗ 1 : M′ ⊗S OE →M⊗S OE

is an isomorphism, then so is h.

Proof. — Since M′ and M must have the same S-rank, we can pass to deter-
minants to reduce to the case that M′ and M both have rank 1. Let M ′ :=
Θ(M′) = M′ ⊗S O and M := Θ(M) = M⊗S O be the corresponding objects of

Modϕ,N,0
/O under the equivalence Θ of (2.4.4). The map h thus induces a nonzero

map between rank-1 O-modules

(3.2.2) h⊗ 1 : M ′ →M .

By the equivalence of categories of Theorem 2.2.1, this map corresponds to a
nonzero map

D(h⊗ 1) : D(M ′)→ D(M )

of rank-1 objects of MFϕ,N,Fil≥0
K . By the final part of Corollary 2.4.9, these filtered

(ϕ, N)-modules are weakly admissible. But a 1-dimensional weakly admissible
filtered (ϕ, N)-module has its unique filtration jump determined by its slope,
so any nonzero map between such rank-1 objects is not only a K0-linear ϕ-
compatible isomorphism, but also respects the filtrations in both directions. (This
is not true without the weak admissibility property!) Hence, D(h ⊗ 1) is an
isomorphism. Since D is an equivalence, it follows that (3.2.2) is an isomorphism,

whence as S
[

1
p

]
→ O is faithfully flat by Remark 2.4.6, the map

h

[
1

p

]
: M′

[
1

p

]
→M

[
1

p

]
is an isomorphism as well. To conclude that h itself is an isomorphism, it remains
to show that it is an isomorphism over S(p) since S is a normal noetherian domain.
But S(p) → OE is faithfully flat by Remark 3.1.4, so this is clear. �

Recall [6, 5.5.2 (iii)] that the functor

Dcris∗ : Repcris,≤0
GK

// w.a.MFϕ,Fil≥0
K

V
� //

(
Bcris ⊗Qp V

)GK

is fully faithful (with inverse given by the restriction of V cris ∗ to the image of
Dcris ∗). Combining this with Corollary 2.4.8, we obtain a fully faithful functor

(3.2.3) Repcris,≤0
GK

� �

Dcris∗

// w.a.MFϕ,Fil≥0
K

� � eΘ // Modϕ
/S⊗Qp.
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On the other hand, by Proposition 3.2.7 and Lemma 3.1.8(2), we have a fully
faithful functor

(3.2.4) Modϕ
/S⊗Qp

� �

(3.2.1)
// Modϕ

/OE
⊗Qp

V ∗OE

' //
(
RepGK∞ /Zp

)
⊗Qp ' RepGK∞

(which coincides with the functor V ∗
S on p-isogeny categories thanks to Corollary

3.2.4(1)). An object in the essential image of (3.2.4) is called a p-adic GK∞-
representation with finite E-height.

We will see later that Dcris∗ is an equivalence of categories (i.e. weakly admis-
sible implies admissible) and that the composite functor

Repcris,≤0
GK

� �

(3.2.3)
// Modϕ

/S⊗Qp
� �

(3.2.4)
// RepGK∞

coincides with the “restriction functor” RepGK
→ RepGK∞

evaluated on crys-
talline representations.

Using S-modules, we can now describe GK∞-stable Zp-lattices in p-adic GK∞-
representations of finite E-height:

Lemma 3.2.9. — Fix an object M of Modϕ
/S with S-rank at most d, let V :=

V ∗
S(M) ⊗ Qp be the corresponding d-dimensional object of RepGK∞

, and set
ME := M⊗S E . Then the functor

V ∗
S : Modϕ

/S
// RepGK∞ /Zp

restricts to a bijection between objects N of Modϕ
/S that are contained in ME and

have S-rank d, and GK∞-stable Zp-lattices L ⊆ V with rank d.

The proof shows that the E-height of N as in the lemma is independent of N
(and is equal to the E-height of M).

Idea of proof. — By Fontaine’s theory (Lemma 3.1.8(2)), for any GK∞-stable Zp-
lattice L ⊆ V there is a unique object N of Modϕ

/OE
that is contained in ME

with full OE -rank and satisfies

L = V ∗
OE

(N )

(recall N is given explicitly by N = HomZp[GK∞ ]

(
L, ÔE un

)
). The key idea is to

adapt the gluing method used in the proof of Lemma 2.4.7, using Corollary 3.2.4
and Proposition 3.2.7 to show that

N := N ∩M

[
1

p

]
⊆ME

is an object of Modϕ
/S (e.g., it is finite and free over S) and that the natural map

N⊗S OE → N
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is an isomorphism. See the proof of [11, Lemma 2.1.15] for the details. �

3.3. Applications to semistable and crystalline representations. — Re-
call that the ring of p-adic periods Bst = Bst,K depends on our choice of uni-
formizer π [5, §3–4], and that the functor

Dst∗ : RepGK
// MFϕ,N

K

V
� //

(
V ⊗Qp Bst

)GK

has restriction to Repst
GK

that is fully faithful and has image in the subcategory
w.a.MFϕ,N

K of weakly admissible filtered (ϕ, N)-modules [6, 5.3.5 (iii)]. On the full

subcategory Repst,≤0
GK

of representations having non-positive Hodge-Tate weights,

the functor Dst∗ has image contained in the subcategory w.a.MFϕ,N,Fil≥0
K . We have

the following diagram of categories, in which all sub-diagrams commute, except
possibly the large rectangle near the bottom:

Repst,≤0
GK

� � Dst // w.a.MFϕ,N,Fil≥0
K

'
Thm.2.3.9

// Modϕ,N∇,0
/O

� � (2.4.1)
// Modϕ,N,0

/O

Repcris,≤0
GK

res

��

?�

OO

� � Dcris // w.a.MFϕ,Fil≥0
K

?�

OO

'
Thm.2.3.9

// Modϕ,N∇,0,N=0
/O

?�

OO

� � // Modϕ,0
/O

?�

(†)

OO

Modϕ,N
/S ⊗Qp

(2.4.4)FF

'
bbFFFFF

;;

(†)
- 
 xx

xx
xx

xx
xx

��

RepGK∞
Modϕ

OE
⊗Qp

V OE ∗

'oo Modϕ
/S⊗Qp? _

(3.2.7)
oo

(2.4.7) '

OO

V S∗

hh

Note that if we start at Repcris,≤0
GK

and move around the large rectangle in the
bottom of the diagram in the clockwise direction, then we obtain a fully faithful
embedding Repcris,≤0

GK
↪→ RepGK∞

. If we know that this rectangle commutes, we
thus deduce a conjecture of Breuil:

Corollary 3.3.1. — The natural restriction map

res : Repcris
GK
→ RepGK∞

is fully faithful.

Remarks 3.3.2. — Before sketching the proof of Breuil’s conjecture, we make
the following remarks:
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1. Recall that the essential image of the curving map in the upper right corner
of the diagram is described by Corollary 2.4.9.

2. The two maps labeled (†) in the diagram are not essentially surjective. This
prevents us from generalizing Corollary 3.3.1 to the case of semistable rep-
resentations (and rightly so: the analogous conjecture for semistable repre-
sentations is false, as one sees by using Tate elliptic curves).

To prove Corollary 3.3.1, we first observe that after twisting by Qp(−n) for
large enough n, it is enough to show that the restriction map

Repcris,≤0
GK

→ RepGK∞

is fully faithful. As noted above, this follows if we can show that the large
rectangle in the diagram commutes. Such commutativity follows once we know
that the entire outside edge of the diagram commutes. Using the fact that

V st∗ : w.a.MFϕ,N,Fil≥0
K → Repst,≤0

GK

is quasi-inverse to Dst∗ on the essential image of Dst∗, it therefore suffices to prove
the commutativity of

(3.3.1) w.a.MFϕ,N,Fil≥0
K

V st∗
��

� � eΘ // Modϕ,N
/S ⊗Qp

(V S)∗⊗Qp

��
Repst,≤0

GK res
// RepGK∞

where the right side “forgets N” and the top horizontal arrow is (2.4.5). Note
that we do not yet know that the left side is an equivalence, since we have not
yet proved “weakly admissible implies admissible”.

To show that (3.3.1) commutes, let D be any object of w.a.MFϕ,N,Fil≥0
K . Let

M := M (D) be the corresponding object of Modϕ,N∇,0
/O (via Theorems 2.2.1 and

2.3.9), and choose an object M of Modϕ,N
/S such that M ⊗S O ' M in Modϕ,N

/O

(via the equivalence of Lemma 2.4.7), so M = Θ̃(D). Recall that M is functorial
in D, up to p-isogeny. The commutativity of (3.3.1) follows immediately from
the following statement (by dualizing in RepGK∞

; cf. Remark 3.1.9):
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Proposition 3.3.3. — With the notation above, there is a natural Qp[GK∞ ]-
linear isomorphism

HomS,ϕ

(
M, Ŝun

)
⊗Zp Qp

' // HomFil,ϕ,N

(
D, B+

st

)

V ∗
S(M)⊗Zp Qp HomFil,ϕ,N (D, Bst)

V ∗
st(D)

Before we explain the proof of this proposition, note that by Corollary 3.2.4(1)
we have

dimQp V ∗
S(M)⊗Qp = rkS(M) = dimK0 M /uM = dimK0 D,

and so as a nice consequence of Proposition 3.3.3, which says in particular that
dimQp V ∗

st(D) = dimQp V ∗
S(M) ⊗Qp, we deduce that dimQp V ∗

st(D) = dimK0 D.
Thus, by weak admissibility of D and an argument of Fontaine and Colmez [3,
Proposition 4.5], the natural map

Bst ⊗Qp V ∗
st(D)→ Bst ⊗K0 D

is an isomorphism. Hence, D is admissible by [6, Proposition 5.3.6].

Remark 3.3.4. — Since D above was any object in w.a.MFϕ,N,Fil≥0
K , this shows

that “weakly admissible implies admissible” in full generality, as we can always
shift the filtration to be effective.

Proof of Proposition 3.3.3. — By [3, Proposition 4.5], if D is weakly admissible
and dimQp V ∗

st(D) ≥ dimK0 D then D is admissible, and conversely. Thus, it
suffices to construct a natural Qp[GK∞ ]-linear injection

(3.3.2) V ∗
S(M)⊗Qp

� � //V ∗
st(D) = Homϕ,Fil,N(D, Bst).

We will just do this in the case that ND = 0, as it contains the essential ideas
for the general case (see the proof of [11, Proposition 2.1.5] for the details in the
general case).

Recall that Bcris ⊗K0 K is equipped with a filtration via its inclusion into the
discretely-valued field BdR, and that a K0-linear map D → Bcris is compatible
with filtrations if the extension of scalars DK → Bcris⊗K respects filtrations (i.e.
if the composite DK → BdR is compatible with filtrations). Defining

V ∗
cris := Homϕ,Fil (−, Bcris)
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and replacing Bst with (Bst)
N=0 = Bcris and V ∗

st with V ∗
cris in (3.3.2), we have

V ∗
cris(D) = V ∗

st(D) since ND = 0, so our aim is to construct a natural Qp[GK∞ ]-
linear injection
(3.3.3)

V ∗
S(M)⊗Qp = HomS,ϕ(M, Ŝun)⊗Zp Qp

� � //Homϕ,Fil(D, B+
cris) = V ∗

cris(D)

(the final equality using the effectivity of the filtration on DK).
An element of O has a Taylor expansion

∑
cmum with cm ∈ K0 = W (k)[1/p]

and |cm|rm → 0 for all 0 < r < 1. For p−1/(p−1) < r0 < 1 we have |m!|/rm
0 → 0,

so

|m!cm| = (|cm|rm
0 ) · |m!|

rm
0

→ 0.

Thus, by [5, 4.1.3] there is a natural map of K0-algebras

(3.3.4) O → B+
cris

extending the natural map S ↪→ W (R) ⊆ B+
cris defined by “evaluation at [π]”

(i.e. u 7→ [π]). Using the the natural topologies on O and B+
cris, one checks that

this map is moreover continuous, and since K0[u] is dense in O it is the unique

such continuous K0-algebra map. Since S
[

1
p

]
is dense in O, the map (3.3.4) is

also ϕ-compatible, as this is true of

S

[
1

p

]
↪→ W (R)

[
1

p

]
(thanks to the relation [πp] = [π]p).

We will define the map (3.3.3) as the composite of two maps. First, recalling
that M := M⊗S O, consider the map

(3.3.5) HomS,ϕ(M, Ŝun) // HomS,ϕ(M, B+
cris) HomO,ϕ(M , B+

cris)

defined by composition with the natural map Ŝun ↪→ W (R) ⊆ B+
cris. This map is

obviously injective.
Second, we consider the map

(3.3.6) HomO,ϕ(M , B+
cris)

// HomO,ϕ(D ⊗K0 O, B+
cris) Homϕ(D, B+

cris) .

given by composition with the ϕ-compatible O-linear map

ξ : D ⊗K0 O = D(M )⊗K0 O ↪→M

of Lemma 2.2.5. We claim that (3.3.6) is injective with image contained in

Homϕ,Fil(D, B+
cris) ⊆ Homϕ(D, B+

cris).

To verify these claims, we proceed as follows.



SURVEY OF CRYSTALLINE REPRESENTATIONS AND F -CRYSTALS 35

Obviously E(u) = (u− π)G(u) in K[u], for some G(u) ∈ K[u] with G(π) 6= 0.
It follows that the map

(3.3.7) S→ B+
cris ⊆ B+

dR

(defined by u 7→ [π]) carries E to

E([π]) = ([π]− π) ·G([π]).

As [π] − π is a uniformizer of B+
dR and G(π) 6= 0, we see that G([π]) ∈ (B+

dR)×

and hence that E([π]) is a uniformizer of B+
dR. Therefore, (3.3.7) induces a local

map of local K0-algebras

S

[
1

p

]
(E)

→ B+
dR.

Passing to completions (and recalling that B+
dR is a complete discrete valuation

ring) we see that the map (3.3.4) extends to a K0-algebra map

O∧
∆,π = S

[
1

p

]∧
(E)

→ B+
dR

which is even a map of K-algebras, as can be seen (via Hensel’s Lemma) by
examining the induced map on residue fields.

Thus, given an O-linear map M → B+
cris ⊆ B+

dR, the map

(1⊗ ϕM )(ϕ∗OM )→ B+
dR

induced by restriction carries (1 ⊗ ϕM )(ϕ∗OM ) ∩ EiM into Fili B+
dR, and hence

is compatible with these filtrations. Moreover, ξ : D(M ) ⊗K0 O ↪→ M is ϕ-
compatible and so has image landing in

ϕM (M ) ⊆ (1⊗ ϕM )(ϕ∗OM ).

But [11, 1.2.12(4)] gives that the induced map

O∧
∆,π ⊗K D(M )K = O∧

∆,π ⊗K0 D(M ) // O∧
∆,π ⊗O (1⊗ ϕM )(ϕ∗OM )

is a filtration-compatible isomorphism (where the filtrations are the usual tensor-
filtrations; cf. Remark 2.2.3). It follows at once that (3.3.6) has image contained
in Homϕ,Fil(D, B+

cris); moreover the resulting map

(3.3.8) HomO,ϕ(M , B+
cris)

// Homϕ,Fil(D, B+
cris)

is injective since the injective map

(1⊗ ϕM )(ϕ∗OM ) ↪→M

has cokernel killed by some Eh and E([π]) ∈ B+
dR is a nonzero element of a

domain.



36 BRIAN CONRAD

Composing the injective maps (3.3.8) and (3.3.5) gives a Qp-linear injective
map

HomS,ϕ(M, Ŝun)
� � // Homϕ,Fil(D, B+

cris) .

This map is moreover Qp[GK∞ ]-linear because the action of GK∞ on B+
cris leaves

the map O → B+
cris invariant, as this holds on S ⊆ O due to the fact that [π] is

GK∞-invariant (Example 3.1.3). This gives the desired map (3.3.3). �

4. Third Lecture

We keep our notation from the previous two sections. In this final lecture, we
will apply the theory of S-modules developed in Lecture 2 to the study of p-
divisible groups and finite flat group schemes over OK . (For us, a finite flat group
scheme is a finite, commutative, locally free group scheme with constant p-power
order.) We will also discuss applications to torsion and lattice representations
of GK in the context of the earlier work of Fontaine and Laffaille, and we study
the restriction from GK to GK∞ for representations arising from finite flat group
schemes over OK . This builds on ideas and results of Breuil.

4.1. Divided powers and Grothendieck-Messing theory. — Classical
Dieudonné theory classifies p-divisible groups over the perfect field k. We wish
to find an analogue of this classification over OK . To do this, we will use
Grothendieck-Messing theory as our starting point, and to review this we begin
with the concept of a divided power structure on an ideal in a ring.

Definition 4.1.1. — Let I be an ideal in a commutative ring A. A PD-
structure on I is a collection of maps

γn : I → I n ≥ 0

such that the γn satisfy the “obvious” properties of tn/n! in characteristic zero:

1. For all x ∈ I, we have γ0(x) = 1, γ1(x) = x, and γn(x) ∈ I for n ≥ 1.
2. For all x, y ∈ I and all n ≥ 0,

γn(x + y) =
∑

i+j=n

γi(x)γj(y).

3. If a ∈ A and x ∈ I then γn(ax) = anγn(x) for all n ≥ 0.
4. For all x ∈ I and all m, n ≥ 0,

γm(x)γn(x) =
(m + n)!

m!n!
γm+n(x).
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5. For all x ∈ I and all m, n ≥ 0,

γn(γm(x)) =
(mn)!

(m!)nn!
γmn(x)

Remark 4.1.2. — The “PD” standard for puissances-divisée–literally “divided
powers.” Note that the combinatorial coefficients appearing in (4) and (5) are in
fact integers and hence can be viewed in a unique way as elements of A.

If I ⊆ A is an ideal in a commutative ring that is equipped with a PD-structure
{γn} then for x ∈ I we will often write x[n] for γn(x).

Example 4.1.3. — It follows easily from (4) and (1) that n!γn(x) = xn for all
n and all x ∈ I, so when A is Z-flat there is at most one PD-structure on any
ideal I of A: γn(x) = xn/n!. At the other extreme, if A is a Z/NZ-algebra for
some N ≥ 1 and I ⊆ A admits a PD-structure then xN = 0 for all x ∈ I.

We say that a PD-structure {γn} on I is PD-nilpotent if the ideal I [n] gener-

ated by all products x
[i1]
1 · · ·x

[ir]
r with

∑
ir ≥ n is zero for some (and hence all)

sufficiently large n. This forces In = 0.
For I ⊆ OK the maximal ideal, a PD-structure exists on I if and only if the

absolute ramification index e satisfies e ≤ p − 1. On the other hand, the ideal
pOK always has a PD-structure, as γn(py) = (pn/n!) · yn with pn/n! ∈ Zp.

In general, there can be many choices of PD-structure {γn} on an ideal I.

Example 4.1.4. — Recall that Acris is Zp-flat and comes equipped with a
canonical surjection Acris � OCK

. The kernel of Fil1 Acris of this surjection has
a (necessarily unique) PD-structure.

Theorem 4.1.5 (Grothendieck-Messing). — Let A0 be a ring in which p is
nilpotent and let G0 be a p-divisible group over A0. For any surjection h : A� A0

such that I := ker h is endowed with a PD-structure {γn} and some power IN

vanishes, there is attached a finite locally free A-module

D(G0)(A) = D(G0) (A� A0, {γn})
with rkA(D(G0)(A)) = ht G0. This association is contravariant in G0 and com-
mutes with PD-base change in A (i.e. base change that respects h and the divided
power structure on ker h).

Moreover, the locally free A0-module Lie(G0) is naturally a quotient of
D(G0)(A0), and if {γn} is PD-nilpotent then there is an equivalence of categories
between the category Def(G0, A) of deformations of G0 to A and the category of
locally free quotients D(G0)(A)� E lifting D(G0)(A0)� Lie(G0).

Remarks 4.1.6. — The classification of deformations at the end of the theorem
can also be formulated in terms of subbundles rather than quotients. Colloquially
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speaking, we may say that in order to lift G0 through a nilpotent divided power
thickening A of A0, it is equivalent to lift its Lie algebra to a locally free quotient
of D(G0)(A).

1. The equivalence of categories at the end of the theorem associates to any
deformation G of G0 to A the module Lie(G), which is naturally a quotient
of D(G0)(A).

2. This equivalence also works for deforming maps of p-divisible groups G0 →
H0. That is, a map f0 : G0 → H0 has at most one lift to a map f : G→ H,
and f exists if and only if D(f0) : D(G0)(A)→ D(H0)(A) is compatible with
the quotients associated to the liftings G and H of G0 and H0 respectively.

3. If p > 2 then pn/n! → 0 in Zp, whereas 22j
/(2j)! ∈ 2Z×

2 for all j ≥ 0. It
follows that the (unique) PD-structure on the ideal (p) in Zp is topologically
PD-nilpotent for p > 2 but not for p = 2.

4. The right way to state Theorem 4.1.5 is to use the language of crystals.
In this terminology, D is a contravariant functor from the category of p-
divisible groups over a base scheme S on which p is locally nilpotent to the
category of crystals in locally free OS-modules.

5. By taking projective limits, the Grothendieck-Messing Theorem has an
analogue for A0 merely p-adically separated and complete (for example,
A0 = OK) and A� A0 any surjection of p-adically separated and complete
rings with kernel I ⊆ A that is topologically nilpotent (resp. endowed with
topologically PD-nilpotent divided powers).

4.2. S-modules. — In earlier work of Breuil, a certain ring S played a vital
role in the description of p-divisible groups and finite flat group schemes over OK .
Breuil’s method began by studying finite flat group schemes over OK in terms of
S-modules, and then gave a theory for p-divisible groups by passage to the limit.
Kisin provided an approach in the other direction, using Grothendieck–Messing
theory to derive Breuil’s description of p-divisible groups via S-modules without
any preliminary work at finite level, and then used this to deduce a classification
for p-divisible groups and finite flat group schemes (with S-modules rather than
S-modules). We now introduce Breuil’s ring S.

Let W [u]
[

E(u)i

i!

]
i≥1

be the subring of K0[u] generated over W [u] by the set

{Ei/i!}i≥1 (this is the divided power envelope of W [u] with respect to the ideal
E(u)W [u]). Clearly this ring is W -flat. Further, there is an evident surjective
map

(4.2.1) W [u]

[
E(u)i

i!

]
i≥1

� OK
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defined via u 7→ π. with kernel generated by all Ei/i!. Let S be the p-adic com-

pletion of W [u]
[

E(u)i

i!

]
i≥1

and let Fil1 S ⊆ S be the ideal that is (topologically)

generated by all Ei/i!. We view S as a topological ring via its (separated and
complete) p-adic topology. The ring S is local and W -flat (but not noetherian),
and the map (4.2.1) induces an isomorphism

S/ Fil1 S
' //OK .

Moreover, there is a unique continuous map ϕS : S → S restricting to the
Frobenius endomorphism of W and satisfying ϕS(u) = up. Note that ϕS(Fil1 S) ⊆
pS and ϕS mod pS = FrobS/pS.

The ideal Fil1 S admits (topologically PD-nilpotent) divided powers, so for any
p-divisible group G over OK with Cartier dual G∗ we get a finite free (as S is
local) S-module

M (G) := D(G∗)(S � OK)

= lim←−
N

D(G∗ mod pN)(S/pNS � OK/pNOK)

with rkS M (G) = ht(G). Here, the kernel of S/pNS � OK/pNOK is given the
PD-structure induced by that on Fil1 S, and M (G) is contravariant in G.

Since the ideal
Fil1 S + pS = ker(S � OK/pOK)

is also equipped with topologically PD-nilpotent divided powers if p > 2, and the
formation of D is compatible with base change (i.e., it is a crystal), by setting
G0 = G mod p we also have

M (G) := D(G∗
0)(S � OK/pOK)

if p > 2. This shows, in particular, that M (G) depends contravariantly functo-
rially on G0 if p > 2. With some more work (see [11, Lemma A.2]), for all p the
S-module M (G) can naturally be made into an object of the following category
that was introduced by Breuil.

Definition 4.2.1. — Let BTϕ
/S be the category of finite free S-modules M

that are equipped with an S-submodule Fil1 M ⊆M and a ϕS-semilinear map
ϕM : Fil1 M →M such that

1. (Fil1 S) ·M ⊆ Fil1 M ,
2. the finitely generated S/ Fil1 S ' OK-module M / Fil1 M is free,
3. the subset ϕM (Fil1 M ) spans M over S.

Morphisms are S-module homomorphisms that are compatible with ϕM and Fil1.
A three-term sequence of objects of BTϕ

/S is said to be a short exact sequence if

the sequences of S-modules and Fil1’s are both short exact.



40 BRIAN CONRAD

Example 4.2.2. — We give the two “canonical” examples of S-modules arising
from p-divisible groups over OK via the functor M . Both examples follow from
unraveling definitions (including the construction of the crystal D in terms of a
universal vector extension).

For G = Gm[p∞] = lim−→n
Gm[pn] we have

M (G) = S, Fil1 M (G) = Fil1 S, and ϕM (G) =
ϕS

p
: Fil1 S → S.

Meanwhile, for G = Qp/Zp = lim−→
1
pn Z/Z we have

M (G) = S, Fil1 M (G) = S, and ϕM (G) = ϕS : S → S.

Example 4.2.3. — The classical contravariant Dieudonné module D(G0) of
G0 = G mod π (equipped with its F and V operators) can be recovered from
M (G); for example, the underlying W (k)-module of D(G0) is the scalar exten-
sion of M (G) along the map S � S/uS = W followed by scalar extension by
the inverse of the Frobenius automorphism of W . In particular, G is connected
if and only if m 7→ ϕM (G)(E(u)m) viewed on M (G)/uM (G) is topologically
nilpotent for the p-adic topology. (This evaluation of ϕM (G) makes sense since

E(u)m ∈ (Fil1S) ·M ⊆ Fil1M for any M in BTϕ
/S.) Thus, we say M in BTϕ

/S

is connected if m 7→ ϕM (E(u)m) on M /uM is topologically nilpotent for the
p-adic topology.

Using results for p-torsion groups, Breuil proved (for p > 2) the following
theorem classifying p-divisible groups over OK .

Proposition 4.2.4. — If p > 2 then the contravariant functor M from the cat-
egory of p-divisible groups over OK to the category BTϕ

/S is an exact equivalence of

categories with exact quasi-inverse. The same statement holds for p = 2 working
only with connected objects.

Proof. — For p > 2, one uses Grothendieck-Messing theory (Theorem 4.1.5) to
“lift” from OK/πiOK to OK/πi+1OK , beginning with the analogous statement for
p-divisible groups over k as furnished by classical Dieudonné theory. For p = 2,
one must adapt this method using Zink’s theory of windows [12]. �

Lemma 4.2.5. — If p > 2 then HomS,ϕ,Fil(M (G), Acris) is a finite free Zp-
module, and there is a natural Zp[GK∞ ]-linear isomorphism

TpG
' // HomS,ϕ,Fil(M (G), Acris) .

The same holds for p = 2 provided that G is connected.
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Proof. — We only address the case p > 2. There is a unique map of W -algebras
S → Acris such that u 7→ [π] (and hence Ei/i! ∈ S maps to E([π])i/i!). Since
GK∞ acts trivially on S and is equal to the isotropy subgroup of π ∈ R (Example
3.1.3), this map is GK∞-equivariant. Furthermore, the diagram

S // //

��

OK� _

��
Acris

θ
// // OCK

commutes, so by the “crystal” condition we have a natural isomorphism

D(G∗
OCK

)(Acris) ' D(G∗)(S)⊗S Acris(4.2.2)

= M (G)⊗S Acris.(4.2.3)

Thus, since D(G) is covariant in G, we get a Zp-linear map

TpG := HomCK
(Qp/Zp, GCK

) =HomOCK
(Qp/Zp, GOCK

)

D((·)∗)
// HomAcris

(
D(G∗

OCK
)(Acris),D(Gm[p∞])(Acris)

)
=HomS(M (G), Acris)

and one checks that this map lands in the submodule HomS,ϕ,Fil(M (G), Acris).
Here, the last equality above uses both the identification D(Gm[p∞])(Acris) '
Acris of Example 4.2.2 and the isomorphism (4.2.3). Since S → Acris is GK∞-
equivariant, the map

(4.2.4) TpG // HomS,ϕ,Fil(M (G), Acris)

thus obtained is Zp[GK∞ ]-linear. When G = Gm[p∞] and p > 2, the map (4.2.4)
is seen to be an isomorphism by direct calculation, using Example 4.2.2 and the
fact that Aϕ=1,Fil≥0

cris = Zp; this case of (4.2.4) is not an isomorphism if p = 2.
Provided p > 2, combining this special isomorphism with the Cartier duality
between G and G∗ yields that (4.2.4) is an isomorphism for any G when p > 2.
(This is an instance of a duality argument due to Faltings.) The isomorphism
claim for p = 2 requires more work. �

4.3. From S to S. — Let S = W [[u]] be as in §2.4. We have a unique W [u]-
linear map S→ S, and the diagram

AcrisW (R) ⊆JJ

8� ��
��
��

S // S

OO
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commutes. Denote by ϕ : S→ S the composite map

S //S
ϕS //S

and for any object M of Modϕ
/S define

M := S ⊗ϕ,S M.

If E-ht(M) ≤ 1 then (see [11, 2.2.3]) M can be naturally made into an object of
BTϕ

/S for p > 2 (and one has an analogue using Zink’s theory of windows when

p = 2 if M is connected in the sense that ϕM on M is topologically nilpotent).
This motivates the following definition.

Definition 4.3.1. — Denote by BTϕ
/S the full subcategory of Modϕ

/S consisting

of those S-modules M that have E-height at most 1.

For p > 2 Breuil showed that the functor

BTϕ
/S

// BTϕ
/S

M
� // S ⊗ϕ,S M

is exact and fully faithful; as before, when p = 2 one has an analogue for con-
nected objects M of BTϕ

/S. By Proposition 4.2.4, we have an anti-equivalence of
categories

BTϕ
/S {p-divisible groups over OK}

'oo

that is exact with exact quasi-inverse for p > 2 (and a similar result for p = 2
using connected objects), so we get a contravariant and fully faithful functor

G : BTϕ
/S

// {p-divisible groups over OK}

when p > 2 (and a similar functor working with connected objects when p = 2).
Using Dieudonné theory over k, one shows that a 3-term complex in BTϕ

S is short
exact if and only if its image under G is short exact.

Theorem 4.3.2. — For p > 2, the functor G is an equivalence of categories.
The same statement holds for p = 2 if we work with connected objects.

Proof. — We only discuss the case p > 2 (and the case p = 2 is treated in [12]).
We will construct a contravariant functor

M : {p-divisible groups over OK} // BTϕ
/S

for any p, and will show that this functor is quasi-inverse to G when p > 2.
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Since the Tate module Vp(G) := Tp(G) ⊗Zp Qp is an object of Repcris
GK

with
Hodge-Tate weights in {0, 1}, it is in the image of the functor

V ∗
cris : w.a.MFϕ,Fil≥0

K
// Repcris

GK
.

Thus, using the fully faithful functor

Θ̃ : w.a.MFϕ,Fil≥0
K

� � // Modϕ
/S⊗Qp

of §3, corresponding to the representation Vp(G) is an S-module M, uniquely
determined by and functorial in G up to p-isogeny. Moreover, we have E-ht(M) ≤
1. If h is the height of G then by Lemma 3.2.9, the functor

V ∗
S : Modϕ

/S
//RepGK∞ /Zp

induces a one to one correspondence between GK∞-stable lattices L ⊆ Vp(G) with
rank h and objects N of Modϕ

S that are contained in ME := M ⊗S E and have
S-rank h. Furthermore, since the functor

Modϕ
/S

// Modϕ
/OE
' RepGK∞

is fully faithful by Proposition 3.2.7, we see that N is functorial in and uniquely
determined by L. Taking L = Tp(G) thus gives an object N of Modϕ

/S with

V ∗
S(N) = Tp(G); by our discussion N is contravariant in G and we define

M(G) := N.

To show that M ◦ G ' id for p > 2, one uses Lemma 4.2.5 to reduce to

comparing divisibility by p in Ŝun and Acris; this comparison works if p > 2.
To show that G ◦M ' id for p > 2, one must construct an isomorphism of

p-divisible groups. Using Tate’s theorem, the crystalline property of the repre-
sentations arising from p-divisible groups, and the full-faithfulness of Repcris

GK
→

RepGK∞
(Corollary 3.3.1), one reduces this to a problem with Zp[GK∞ ]-modules,

again solved by Lemma 4.2.5. �

4.4. Finite flat group schemes and strongly divisible lattices. — For
an isogeny f : Γ1 → Γ2 between p-divisible groups over OK , ker f is a finite flat
group scheme. Conversely, Oort showed that every finite flat group scheme G over
OK arises in this way. (Raynaud proved a stronger result, using abelian schemes
instead of p-divisible groups [1, 3.1.1].) If the Cartier dual G∗ is connected then
we may arrange that Γ∗1 and Γ∗2 are connected as well.

The anti-equivalence of categories

BTϕ
/S ' {p-divisible groups over OK}
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of Theorem 4.3.2 for p > 2 and its “connected” analogue for p = 2 motivate the
following definition due to Breuil.

Definition 4.4.1. — Let (Mod /S) be the category of pairs (M, ϕM) in
Modϕ,tor

/S such that E-ht(M) ≤ 1.

We can also define the full subcategory of “connected” objects by requiring
ϕM to be nilpotent.

Example 4.4.2. — If M is an object of (Mod /S), then OE ⊗S M is an object
of Modtor

/OE
(Definition 3.1.6); indeed, the image of E ∈ S under the natural map

S→ OE lands in O×
E by Remark 3.1.4.

Objects in (Mod /S) are precisely cokernels of maps in BTϕ
/S that are isomor-

phisms in the isogeny category, so (with more work for p = 2) we get the following
result, which was conjectured by Breuil and proved by him in some cases.

Theorem 4.4.3. — If p > 2 then there is an anti-equivalence of categories be-
tween (Mod /S) and the category of finite flat group schemes over OK. For
p = 2, one has such an equivalence working with connected objects in (Mod /S)
and connected finite flat group schemes.

Remark 4.4.4. — These equivalences are compatible with the ones for p-
divisible groups. Thus, if the finite flat group scheme G over OK corresponds
to the object M of (Mod /S), then we have an isomorphism of GK∞-modules
G(K) ' V ∗

S(M), since the analogous statement holds for p-divisible groups (as
one sees via the proof of Theorem 4.3.2).

Definition 4.4.5. — We say that an object T of Reptor
GK

is flat (resp. connected)

if T ' G(K) for some finite flat (resp. finite flat and connected) group scheme
G over OK .

Corollary 4.4.6. — The natural restriction functor

Reptor
GK

// Reptor
GK∞

is fully faithful on flat (respectively connected) representations if p > 2
(respectively p = 2).

Proof. — This proof is due to Breuil. We only treat the cases p > 2. Using
the equivalence of categories Reptor

GK∞
' Modϕ,tor

OE
of Lemma 3.1.8(1) and the fact
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that the diagram

Reptor
GK

// Reptor
GK∞

{
finite flat group
schemes over OK

}
'

(4.4.3)
//

G(K)

OO

(Mod /S)
(·)⊗SOE

// Modϕ,tor
OE

V ∗OE
'

OO

commutes (due to Lemma 3.2.3 and Remark 4.4.4), it suffices to prove the fol-
lowing statement. Let T1 and T2 be flat representations and let G1 and G2 be the
corresponding finite flat group schemes over OK , so T1 ' G1(K) and T2 ' G2(K)
(Definition 4.4.5). Denote by M1 and M2 the objects of (Mod /S) correspond-
ing to G1, G2 via Theorem 4.4.3 and let Mi = OE ⊗S Mi for i = 1, 2 be the
corresponding objects of Modϕ,tor

OE
. If h : M1 → M2 is a morphism in Modϕ,tor

OE

then, after possibly modifying the Mi without changing the generic fibers (Gi)K

(so the Galois representations Gi(K) remain unaffected), there is a morphism
M1 →M2 inducing h after extending scalars to OE .

Due to Lemma 3.2.2, every object of (Mod /S) has a filtration with successive
quotients that are isomorphic to ⊕jS/pS, so by a standard devissage we may
restrict to the case that each Mi is killed by p. In this situation, the natural map

Mi
// OE ⊗S Mi = k((u))⊗k[[u]] Mi

is injective, so

M′
2 := M2 + h(M2) ⊆M2

makes sense and is a ϕ-stable (as h is ϕ-equivariant) S-submodule of M2. More-
over, M2 is clearly an object of (Mod /S) and so corresponds to a finite flat
group scheme G′

2 over OK . Since M2 and M′
2 are both ϕ-stable lattices in M2,

one shows that (G2)K ' (G′
2)K . The map h then restricts to a map h′ : M1 →M′

2

that induces h after extending scalars to OE ; this is the desired map. �

Now we turn to strongly divisible lattices and Fontaine-Laffaille modules. For
the remainder of this section, we assume that K = K0 and we take π = p, so
E = u− p.

Definition 4.4.7. — Let D be an object of w.a.MFϕ,Fil≥0
K . A strongly divisible

lattice in D is a W -lattice L ⊆ D such that

1. ϕD(L ∩ Fili D) ⊆ piD for all i ≥ 0 (so ϕD(L) ⊆ L by taking i = 0),
2.
∑

i≥0 p−iϕD(L ∩ Fili D) = L.

We set Fili L = L ∩ Fili D, and we say that L is connected if ϕD : L → L is
topologically nilpotent for the p-adic topology.
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Theorem 4.4.8. — There are exact quasi-inverse anti-equivalences between the
category of strongly divisible lattices L with Filp L = 0 and the category of Zp[GK ]-
lattices Λ in crystalline GK-representations with Hodge-Tate weights in the set
{0, . . . , p− 1}.

Proof. — Let V be a crystalline GK-representation with Hodge-Tate weights in
{0, . . . , p − 1} and let Λ ⊆ V be a GK-stable Zp-lattice. Because of Corollary
3.3.1 and Lemma 3.2.9, the lattice Λ corresponds to a unique object M of Modϕ

/S

such that V ∗
S(M) ' Λ (as GK∞-representations); moreover, M is functorial in

Λ. Letting D := D∗
cris(V ), we have that Fil0D = D and FilpD = 0 due to the

condition on the Hodge-Tate weights of the crystalline representation V , and
there is a natural injection

D
� � // O ⊗K0 D � � ξ // O ⊗S M

� � // S
[

1
p

]
⊗S M ,

so twisting by Frobenius defines a natural injection

D ϕ∗(D)
'

1⊗ϕD

oo � � // S
[

1
p

]
⊗S,ϕ M = S

[
1
p

]
⊗S ϕ∗SM .

Viewing D as a K0-submodule of S
[

1
p

]
⊗S,ϕ M in this way, we define

L := D ∩ (S ⊗ϕ,S M) ⊆ S

[
1

p

]
⊗S,ϕ M.

Clearly L is a ϕ-stable W -lattice in D. We claim that L is strongly divisible.
Indeed, this follows from the fact that p|ϕS(E) in S and D = D∗

cris(V ) with V
crystalline. (1) Furthermore, one shows that the association Λ  L is exact by1
using the filtration bounds (in {0, . . . , p− 1}) to deduce that ξ as above induces
an isomorphism L 'M/uM. (2)2

Conversely, let L be any strongly divisible lattice in an object D of w.a.MFϕ,Fil≥0
K

with FilpL := L ∩ FilpD = 0 (so FilpD = 0). Note that Fil0L = L since
Fil0D = D. We set

Λ := Homϕ,Fil(L, Acris).

This is a GK-stable lattice in the crystalline representation V ∗
cris(D) with D =

L[1/p]. One shows that L  Λ is exact and quasi-inverse to the other functor
built above. (3)3

One shows that these associations are quasi-inverse. �

(1)need to say more
(2)must say more here.
(3)should say more here.
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We now wish to apply this theory to torsion representations. In order to do
this, we need a torsion replacement for strongly divisible lattices:

Definition 4.4.9. — A Fontaine-Laffaille module over W is a finite length W -
module M equipped with a finite and separated decreasing filtration {Fili M}
and ϕ-semilinear endomorphisms ϕi

M : Fili M →M such that

1. the map pϕi+1
M : Fili+1 M → M coincides with the restriction of ϕi

M to
Fili+1

M ⊆ FiliM ,
2.
∑

i ϕ
i
M(Fili M) = M ,

3. Fil0 M = M .

We say M is connected if ϕ0
M : M →M is nilpotent.

Example 4.4.10. — If L is a strongly divisible lattice, then for each n > 0 we
obtain a Fontaine-Laffaille module M by setting M = L/pnL, taking Fili M to
be the image of Fili L under the natural quotient map, and letting ϕi

M := p−iϕL.
This is connected if and only if L is connected.

More generally, if L′ → L is an isogeny of strongly divisible lattices, then L/L′

has a natural structure of Fontaine-Laffaille module (and it is connected if L is
connected).

Lemma 4.4.11. — Let M be any Fontaine-Laffaille module with a one-step
filtration (i.e. there is some i0 ≥ 0 such that Fili M = M for all i ≤ i0 and
Fili M = 0 for all i > i0). Then there exists an isogeny of strongly divisible
lattices L′ → L with cokernel M . (4) 4

By using such presentations and the functoriality and exactness properties of
strongly divisible lattices, we get:

Theorem 4.4.12. — Consider the contravariant functor

M  HomFil,ϕ(M, Acris ⊗ (Qp/Zp))

from the category of Fontaine-Laffaille modules M with one-step filtration that
satisfies Fil0 M = M and Filp M = 0 to the category of p-power torsion discrete
GK-modules. If p > 2 this is an exact and fully faithful functor into the category
Reptor

GK
(i.e., image objects are finite abelian groups). If p = 2, the same statement

holds if one restricts to connected Fontaine-Laffaille modules. (5) 5

(4)should sketch proof or give reference
(5)should sketch proof or give reference
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