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A classical (hard) question

Consider a polynomial in Z[T ] of degree d ≥ 1,

f(T ) = cdT
d + · · · + c1T + c0.

Question. Is f(n) prime in Z (< 0 allowed) for infinitely

many n ∈ Z?

Example. Primes of the form n2 + 1.

Example Prime of the form n2 − n + 2. These are even,

hence prime only finitely often (n = 0, 1).

Example Primes of the form 5n − 7.

There is not a single f with deg(f) > 1 for which an

affirmative answer is proved!
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The classical conjecture

For f(T ) = cdT
d + · · · + c1T + c0, if f(n) is prime infinitely

often then f(T ) is irreducible in Z[T ].

But h(T ) = T 2 − T + 2 is irreducible and h(n) is always

even.

Definition. Say f(T ) has a local obstruction at p if p|f(n)

for all n.

Conjecture. (Hardy–Littlewood) For irreducible f ∈ Z[T ]

with no local obstructions,

πf (x) := #{1 ≤ n ≤ x : f(n) prime} ?∼ C(f)

deg f
· x

log x

where C(f) > 0 is a certain infinite product over primes.

Not even “πf (x) → ∞” is proved for a single f with

deg(f) > 1.
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An analogy

For a prime p, let Fp be the finite field of integers mod p.

Example. F5 = {0, 1, 2, 3, 4}, 2 + 4 = 1, etc.

There is a dictionary between Z and Fp[u]. For example:

• The rings Z and Fp[u] share algebraic and finiteness

properties.

• The analogue of “prime number” in Z is “irreducible

polynomial” in Fp[u].

Example. Determining if an integer is squarefree is

analogous to determining if a polynomial in Fp[u] has

repeated irreducible factors or not.

To check if n ∈ Z is squarefree, must factor n.

For h(u) ∈ Fp[u] just compute gcd(h(u), h(u)′): no

factoring!
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Why consider Fp[u]?

Problems over Z often have analogues over Fp[u], and we

may get insight or make progress this way.

• Elements of Fp[u] are functions on a “line”; can access

geometric techniques unavailable in Z.

• There are more operations, such as differentiation

h(u) 7→ h′(u) (no analogue in Z).

• Generalized Riemann Hypothesis is proved for function

fields over finite fields, by work of Weil, Grothendieck,

Deligne. It gives the best “proved evidence” for usual

Riemann Hypothesis (in Z), and suggests how to think

about the Riemann Hypothesis and its conjectural

generalizations.
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Fp[u]-analogue of the classical question

Fix a prime p. The analogue of Z[T ] is Fp[u][T ] = Fp[u, T ].

f(T )
def
= f(u, T ) = cd(u)T d + · · · + c1(u)T + c0(u).

Question. When should

f(g(u))
def
= f(u, g(u)) =

∑

cj(u)g(u)j

be prime (i.e., irreducible) in Fp[u] for infinitely many

g ∈ Fp[u]?

Analogue of classical “sampling” of values at 1 ≤ n ≤ x as

x → ∞ is “sampling” values of f(u, T ) at g ∈ Fp[u] with

deg(g) ≤ D as D → ∞. This is a finite sampling space.

The study of this Question reveals features unlike anything

known (or expected) in the classical case. It has

consequences for abelian varieties over global function fields.
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Counting prime values in Fp[u]

Let

f(T ) = cd(u)T d + · · · + c1(u)T + c0(u)

be in Fp[u][T ]. Count by separate degrees; for m ≥ 0,

πf (m) := #{g ∈ Fp[u] : deg(g) = m, f(g) prime} < ∞.

Example. f(T ) = T 3 + u2T 2 + u over F2[u].

g f(g)

1 u2 + u + 1

u u(u3 + u2 + 1)

u + 1 u4 + u3 + 1

u2 u

u2 + 1 u4 + u + 1

u2 + u u(u2 + u + 1)2

u2 + u + 1 u5 + u4 + u3 + u2 + 1

πf (0) = 1, πf (1) = 1, πf (2) = 3, · · · , πf (10) = 68.
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T 12 + (u + 1)T 6 + u4 over F3[u]

m Actual Approx. Ratio

1 2 1.603 1.248

2 6 2.404 2.496

3 6 4.808 1.248

4 20 10.818 1.849

5 30 25.963 1.155

6 80 64.907 1.233

7 250 166.904 1.498

8 572 438.125 1.306

9 1624 1168.332 1.390

10 4228 3154.498 1.340

11 11248 8603.175 1.307

12 31202 23658.732 1.319

13 87114 65516.488 1.330

14 244246 182510.217 1.338

Ratios seem to tend to ≈ 1.33, not 1!
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T 3 + u over F3[u]

m Actual Approx. Ratio

1 2 2.00 1

2 6 3.00 2

3 6 6.00 1

4 0 13.50 0

5 36 32.40 1.111

6 144 81.00 1.778

7 216 208.29 1.037

8 0 546.75 0

9 1404 1458.00 0.963

10 7776 3936.60 1.975

11 10746 10736.18 1.001

12 0 29524.50 0

13 82140 81760.25 1.005

14 455256 227760.43 1.999

Ratios appear to have four interlaced statistics!

Is πf (m) = 0 for m ≡ 0 mod 4, m > 0?
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T 5 + u3 over F5[u]

m Actual Approx. Ratio

1 4 4.0 1

2 0 10.0 0

3 0 33.3 0

4 0 125.0 0

5 0 500.0 0

6 0 2083.3 0

7 0 8928.6 0

8 0 12686.5 0

9 0 173611.1 0

10 0 781250.0 0

11 0 3551136.4 0

12 0 16276041.7 0

13 0 75120192.3 0

14 0 348772321.4 0

Polynomial is irred. and has no local obstructions.

Does it have irred. values only finitely many times?!?
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Observations

Analogue of Hardy–Littlewood:

πf (m)
?∼ C(f)

degT f
· (p − 1)pm

log(pm)
.

Properties of apparent counterexamples:

• Such f(T ) is a polynomial in T p (but not conversely).

• The ratio appears to fall into 1, 2, or 4 interlaced

limiting sequences depending on deg g mod 4.

• Those 1, 2, or 4 limits appear to lie in Q ∩ [0, 2].

The key discovery is a new global obstruction to

primality/irreducibility with no classical analogue.

Get computable “correction factor” Λf (m) ∈ Q ∩ [0, 2] to

predict πf (m), and the main theorem is that it depends on

m mod 4 for m ≫ 0.
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The Möbius function

Are factorization properties of f(n) “random”?

Example. How often does n2 + 1 have an even or odd

number of prime factors (for 1 ≤ n ≤ x, x → ∞)?

The classical Möbius function µZ : Z → {0, 1,−1} is:

µZ(m)
def
=







0, if p2|m,

(−1)r, if m = ±p1 · · · pr.

Example. Parity of prime-factor counting for n2 + 1 is

governed by asymptotics for (1/x)
∑

1≤n≤x µZ(n2 + 1) as

x → ∞. Mysterious!

For nonzero h in Fp[u], define the Möbius function

µ(h)
def
=







0, if π2|h,

(−1)r, if h = π1 · · ·πr.

We will see that µ is a lot more tractable than µZ!
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Global obstruction via Möbius bias

Main point: for f ∈ Fp[u][T p], µ(f(u, g(u))) will be a

non-random quantity as g varies.

Example. Recall the polynomial (with “4/3 discrepancy”)

f(T ) = T 12 + (u + 1)T 6 + u4 ∈ F3[u][T ].

We prove µ(f(g)) = −1 twice as often as µ(f(g)) = 1 (when

f(g) is squarefree), so the “average” nonzero value of

µ(f(g)) is −1/3, and this deviates from 1 by

1 − (−1/3) = 4/3. Aha!

Qualitative principle: if µ(f(g)) is “skewed” toward −1 as g

varies, then f(g) should be more likely to be irreducible

than Hardy–Littlewood predicts.

Quantitative idea: use a suitable “average” of µ(f(g)) to

define a correction factor. Does such an average have good

mathematical properties?
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Proved counterexample

The “4/3” example is merely suggestive that

Hardy–Littlewood fails and a Möbius average provides the

right correction factor. We can do better:

Example. For f(T ) = T 5 + u3 ∈ F5[u][T ] we prove

µ(f(g)) 6= −1 if deg g > 1. Thus, f(g) is reducible for all

such g, so the Hardy–Littlewood analogue conjecture is

provably false.

There is no formula for how to factor g(u)5 + u3. We infer

reducibility through understanding µ(g(u)5 + u3).

How can we prove anything about µ(f(g)) as g varies? In

contrast, µZ(n2 + 1) is intractable.

The starting point is Swan’s formula: computes µ(h) by a

mechanism unrelated to factoring, instead using structures

related to to algebraic geometry over Fp.
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Swan’s formula (p 6= 2)

For h ∈ Fp[u], let d = deg h and let lead(h) denote the

leading coefficient of h.

Let χp : Fp → {0, 1,−1} be the “quadratic character”:

χp(0) = 0, χp(c) = 1 if c ∈ Fp is a nonzero square,

χp(c) = −1 if c ∈ Fp is not a square.

If h′ 6= 0 we have Swan’s formula:

µ(h) = (−1)dχp

(

(−1)
d(d−1)

2

lead(h)deg h+deg h′
· Res(h, h′)

)

.

Example. In the special case h = f(u, g(u)) with

f(u, T ) ∈ Fp[u, T p], the Chain Rule gives

h′ = (∂uf)(u, g) + (∂T f)(u, g)g′ = (∂uf)(u, g)

because ∂T f = 0 (characteristic p with f ∈ Fp[u, T p]!).

Significance. For h = f(g),

Res(h, h′) = Res(f(g), (∂uf)(g))

is an algebraic function of g (for deg g ≫ 0).

To understand this function of g, we study the geometry of

its zero locus on the space of g’s of fixed degree.
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Main periodicity theorem (p 6= 2)

Pick a squarefree f(T ) ∈ Fp[u][T ] with f ∈ Fp[u][T p], p 6= 2.

Swan’s formula for µ(f(g)) can be replaced with a much

better formula, using the geometry of the plane curve

{f = 0}. Let B be its set of branch points over T -axis.

Let Mf ∈ Fp[u] be the monic polynomial whose (geometric)

roots are the u-coordinates of points of B.

Periodicity Theorem. For f as above, there is a formula

for µ(f(g)) that only depends on g mod Mf , deg g mod 4,

and lead(g) mod � for deg g ≫ 0.

Example. Let f(T ) = T 9 + (2u4 + u3 + u + 2)T 6 + 2 in

F3[u][T ], and χ3 be the quad. character on F3. Then

Mf (u) = u − 1, and for g(u) = cun + · · · in F3[u] (n > 0),

µ(f(g)) = (−1)n(χ3(−1))n(n−1)/2χ3(c)χ3(g(1) + 2).

This only depends on g mod (u− 1), n mod 4, and c mod �.
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Application to corrected conjecture (p 6= 2)

Modified H-L Conjecture for Fp[u]. For f ∈ Fp[u][T p]

irreducible in Fp(u)[T ] and without local obstructions,

πf (n)
?∼ Λf (n) · C(f)

degT f
· (p − 1)pn

log(pn)
,

where

Λf (n) := 1 −
∑

deg g=n,gcd(f(g),Mf )=1 µ(f(g))
∑

deg g=n,gcd(f(g),Mf )=1 |µ(f(g))| .

Though Λf (n) looks horrible, averaging over g’s of large

degree n kills the dependence of µ(f(g)) on

• lead(g) mod � (since g exhausts both options equally

often),

• g mod Mf (g exhausts all congruence classes equally

often for n > deg Mf ).

Upshot. Only the dependence of µ(f(g)) on deg g mod 4

survives! So despite appearances, Λf (n) has period 1, 2, or

4 when n ≫ 0.
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Examples of Λ-periodicity (p 6= 2)

Here are examples of the tail of values Λf (n) (first three

over F3[u], last over F5[u]), beginning with n ≡ 1 mod 4:

Polynomial f(T ) Λf (n) (n ≫ 0)

T 12 + (u + 1)T 6 + u4 4/3

T 3 + u 1, 2, 1, 0

T 12 + (u4 + u2 + 2u + 2)T 6 + 2 18/25

(2u2 + u + 3)T 15 + (4u2 + u + 3)T 5 13/10, 1

+(4u2 + u + 3)

The right column fits numerical deviations from

Hardy–Littlewood!

But we can ask more about Λf (n) . . .
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Asymptotic question

Katz philosophy. For Fp[u]-analogues of classical

problems over Z, the “large finite field limit” should reflect

the classical behavior.

Interpretation. Fix f ∈ Fp[u, T p] as above, consider

f(u, g(u)) for g ∈ Fpr [u] with r → ∞. Can define Λf,r(n)

for conjecture on f(g)’s with g ∈ Fpr [u].

Let λf,r : Z/4Z → Q ∩ [0, 2] be the periodic tail of Λf,r(n).

Example. Let f(T ) ∈ F3[u][T ] be

f(T ) = T 9 + (2u2 + u)T 6 − (u + 1)T 3 + (u + 1)2.

We have λf,r(c) = 1 for c = 0, 2, but for c = 1, 3:

λf,r(c) =







1 + 2·(−1)(c+1)/2

(3r−1)(3r−2) , r odd,

1 + 2
(3r−1)(3r−2) , r even.

This depends on r, but λf,r(c) 6= 1 for odd c and

λf,r(c) → 1 as r → ∞ for all c ∈ {0, 1, 2, 3}.
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Asymptotic theorems I (p 6= 2)

What can be said about limr→∞ λf,r(c) for fixed

c = 0, 1, 2, 3?

Katz’ philosophy suggests it should be 1, since we believe

the classical Hardy–Littlewood conjecture!

Geometric information in the proof of Main Periodicity

Theorem, coupled with point-counting on varieties over

finite fields, gives:

Limit Theorem. Fix f ∈ Fp[u][T p] with no local

obstructions. If {f = 0} has non-empty branch locus Bf

over the T -axis and some x ∈ Bf has odd branch

multiplicity, then λf,r(c) → 1 as r → ∞ for each c.

Question 1. Are the branch locus hypotheses on f in the

Limit Theorem generic, say if f varies in an algebraic family

of polynomials?

Answer. Yes. By using Bertini theorems, if f varies in the

algebraic family
∑

cj(u)T pej with each δj = deg(cj) fixed

and some δj0 > 1 then generic such f has Bf 6= ∅ and some

x ∈ Bf has multiplicity in pZ (odd!).
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Asymptotic theorems II (p 6= 2)

For “most” f , in the large finite-field limit the correction

factors are very close to 1. Might they be identically 1?

Question 2. Is the phenomenon of non-trivial correction

factors an artifact of working over small finite fields? Is the

“correction-factor” function λf,r : Z/4Z → Q ∩ [0, 2] not

identically 1 for infinitely many r?

To prove non-triviality properties of the function λf,r on

Z/4Z for r → ∞ and f generic in an algebraic family, we

need a better understanding of this function.

Key point. The function λf,r can be related to

point-counting on a hyperelliptic curve over a finite field.

The Riemann Hypothesis for such curves, together with

some geometric arguments, provides estimates to ensure

non-triviality:

Non-triviality Theorem. Let f(u, T ) vary in an algebraic

family whose generic member has degT f and degT ∂uf both

odd. For generic such f and sufficiently divisible r, the

function λf,r on Z/4Z is not identically 1.
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Möbius periodicity proof I (p 6= 2)

The key to exploiting the Swan formula for µ(f(g)) is to

understand the quadratic nature of the nonzero values of

the resultant function

Rn : g 7→ Res(f(g), (∂uf)(g)) ∈ Fp,

an algebraic function on the space of g’s of degree n ≫ 0.

The geometric meaning of vanishing of resultants gives

Rn(g) = cn(lead(g))bn

∏

x∈B

Px(g mod Mf )ex,n ;

• B is branch locus of {f = 0} over T -axis,

• bn, ex,n ∈ Z>0 and cn ∈ Fp − {0} are abstract,

• Px is an irreducible algebraic function on space of

remainders Fp[u]/(Mf ).

Key Problem. Understand cn mod �, bn mod 2, and

ex,n mod 2 as n varies.
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Interlude: an explicit resultant formula

Let us give an example of the preceding resultant analysis.

Example. For f(T ) ∈ F3[u][T 3] given by

T 12 + (u + 1)T 6 + u4,

the projection of {f = 0} to the T -axis has as branch points

B = {(0, 0), (1,±
√
−1)}.

The respective intersection numbers ex = ix(f, ∂uf) at these

branch points are

e(0,0) = 18, e(1,±
√
−1) = 9.

For g ∈ F3[u] with degree n ≫ 0, the resultant

Rn(g) = Res(f(g), (∂uf)(g))

is given by the formula

Rn(g) = (lead(g))72n−36g(0)18(g(1)2 + 1)9.

Note the exponents 18 and 9: so ex,n = ex when n ≫ 0 for

each x ∈ B. Moreover, the mystery coefficient cn is 1, and

the mystery exponent bn is 72n − 36 for large n.
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Möbius periodicity proof II (p 6= 2)

We have a formula for Res(f(g), (∂uf)(g)), deg g = n ≫ 0:

Rn(g) = cn(lead(g))bn

∏

x∈B

Px(g mod Mf )ex,n ∈ Fp.

For x ∈ B, let ex be intersection number for {f = 0} and

{∂uf = 0} at x.

Local deformation theory along zero locus of resultant

function Rn on space of g’s implies ex,n ≤ ex for n ≫ 0.

Global argument gives
∑

x ex,n =
∑

x ex for n ≫ 0, so

ex,n = ex for n ≫ 0.

So by Swan, µ(f(g)) rests on quadratic nature of Rn(g):

involves g mod Mf , lead(g) mod �, cn mod �, and

bn mod 2 (n = deg g).

Do cn mod � and bn mod 2 depend on n mod 4 (n ≫ 0)?

This analysis works for Res(f1(g), f2(g)) with any plane

curves {f1 = 0} and {f2 = 0} without common components.

This yields bn linear in n and cn = β0β
n
1 for β0, β1 ∈ F×

p

and n ≫ 0. Gives desired dependence on n mod 4.
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Higher genus and p = 2

Generalization I. We can replace Fp[u] with the

coordinate ring of a higher-genus smooth affine curve C over

Fp with one (geometric) point ξ at infinity, say with p 6= 2.

• Use genus-0 theory for squarefree norms

Nφf ∈ Fp[u][T p] with many branched covers

φ : C → {u-line} tot. ramified over ∞.

• Weierstrass gaps at ξ obstruct algebraic methods. Use

more geometry.

Generalization II. What about p = 2?

New structure intervenes in Periodicity Theorem: residues

of differential forms! Get good result for polynomials in T 4;

case of T 2 is mysterious.

Have to use formal and rigid geometry, non-algebraic 2-adic

deformations into characteristic 0.

Asymptotic and non-triviality results for the correction

factor carry over via more sophisticated methods, and

numerics look good.
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