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Abstract. A classical conjecture predicts how often a polynomial in Z[T ] takes prime
values. The natural analogous conjecture for prime values of a polynomial f(T ) ∈ κ[u][T ],
where κ is a finite field, is false. The conjecture over κ[u] was modified in earlier work by
introducing a correction factor that encodes unexpected periodicity of the Möbius function
at the values of f on κ[u] when f ∈ κ[u][T p], where p is the characteristic of κ.

In this paper, for p 6= 2 we extend the Möbius periodicity results for κ[u] – the affine
κ-line – to the case when f has coefficients in the coordinate ring A of any higher-genus
smooth affine κ-curve with one geometric point at infinity. The basic strategy is to pull
up results from the genus-0 case by means of well-chosen projections to the affine line.
Our techniques can also be used to prove nontrivial properties of a correction factor in the
conjecture on primality statistics for values of f ∈ A[T p] on A, even as f and κ vary.

1. Introduction

This paper establishes a higher-genus generalization of theorems proved for the affine line
in [2]. To motivate what we will do here, which otherwise may seem idiosyncratic, we begin
by reviewing the main conclusions in [2] and two interesting applications.

There is a classical conjecture predicting how often an irreducible polynomial in Z[T ]
takes prime values. (One has to assume there are no local obstructions, unlike T 2 − T + 2,
which is irreducible but only has even values on Z, thus having a local obstruction at 2.)
The well-known analogies between Z and κ[u] for a finite field κ lead to a natural conjecture
for how often an irreducible polynomial in κ[u][T ] takes prime values on κ[u]. For example,
if we work with T 3 + u over F3[u], we ask how often g3 + u is irreducible as g runs over
F3[u]. We will sample over all g of a common degree n and see what happens as the degree
gets large. Analogies with the classical setting over Z suggest that

(1.1) #{g ∈ F3[u] : deg g = n, g3 + u is prime in F3[u]} ∼ 2 · 3n−1

n

as n → ∞. In particular, the number of prime specializations in degree n is predicted
to grow exponentially with n. However, this is false in a rather surprising way. When
n ≡ 0 mod 4 and n > 0, it can be proved that g3 + u has an even number of irreducible
factors when g has degree n and thus g3 + u is not irreducible (so the count on the left side
of (1.1) is 0). When n ≡ 2 mod 4, the count on the left side of (1.1) appears numerically to
be approximately twice as large as the right side. On the other hand, when n is odd (1.1)
looks correct numerically. (See [1, Table 2] for data when 9 ≤ n ≤ 16.) Thus it seems that
we can correct (1.1) by including a periodic sequence of correction factors 1, 2, 1, 0 on the
right side according as n ≡ 1, 2, 3, 0 mod 4.
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There are more f(T ) ∈ κ[u][T ] such that the number of g ∈ κ[u] with deg g = n and f(g)
prime in κ[u] does not appear to fit an asymptotic estimate resembling (1.1) that is suggested
by analogies with Z. All such known f(T ) lie in κ[u][T p], where p is the characteristic of
κ. (Incidentally, this avoids the case degT f = 1 for which the expected frequency of prime
values of f(g) is the proved κ[u]-analogue of Dirichlet’s theorem.) Numerically, it appears
that the asymptotic prediction can always be fixed by introducing a correction factor which
is a function of n mod 4, as we saw above for T 3 + u over F3[u].

Of course, basing a correction factor on numerical evidence is hardly satisfying. The
main discovery in [2], which is joint work with R. Gross, is that there is a systematic and
heuristically reasonable way to predict these new correction factors in advance, in terms
of the following feature of the Möbius function on κ[u]. (The Möbius function on κ[u] is
defined by µ(h) = (−1)r when h is squarefree in κ[u] with r monic irreducible factors and
µ(h) = 0 otherwise.)

Theorem 1.1 ([2, Thm. 4.8]). Let κ be a finite field of odd characteristic p, and fix f(T ) ∈
κ[u][T p] that has positive T -degree and is squarefree in κ[u][T ]. The function g 7→ µ(f(g))
for g ∈ κ[u] is “quasi-periodic” in the sense that there is a nonzero polynomial Mf,κ ∈ κ[u]
such that, for any g1 = c1u

n1 + · · · and g2 = c2u
n2 + · · · in κ[u] with sufficiently large

degrees n1 and n2,

g1 ≡ g2 mod Mf,κ, χ(c1) = χ(c2), n1 ≡ n2 mod 4 =⇒ µ(f(g1)) = µ(f(g2)),

where χ is the quadratic character on κ×.

This theorem, which has no known parallel for the Möbius function on values of a poly-
nomial in Z[T ], has its most interesting applications for irreducible f(T ). However, for
the proof of the theorem it is convenient to work in the generality of squarefree f(T ). In
characteristic 2, similar periodicity results are described in [2] in terms of more intricate
methods resting on 2-adic liftings.

A consequence of Theorem 1.1 is that the ratio

(1.2)

∑
deg g=n,(f(g),Mf,κ)=1 µ(f(g))∑

deg g=n,(f(g),Mf,κ)=1 |µ(f(g))|
∈ Q ∩ [−1, 1],

which appears at first to be a complicated function of n, is in fact periodic in n � 0 with
period dividing 4. We found that for irreducible f(T ) that is inseparable over κ(u), using
1 minus the periodic values as a correction factor numerically appears to fix deviations
between primality counts on f(g) for deg g = n and asymptotic predictions for these counts
(as n → ∞) such as on the right side of (1.1). For example, when f(T ) = T 3 + u and
κ = F3, the ratio (1.2) has periodic values 0,−1, 0, 1 for n ≥ 1, so 1 minus this sequence is
1, 2, 1, 0 for n ≥ 1, which matches the numerical data mentioned above. See [1] and [2, §6]
for a further discussion of the correction factor (1.2), including its properties as f and κ
vary.

There are two additional reasons that Möbius periodicity in our Theorem 1.1 is an inter-
esting phenomenon:

(1) The effect of nonzero Möbius averages in characteristic p is reminiscent of the parity
problem in sieve methods. It implies that, unlike the classical case over Z, the parity
problem in the function field case is not simply a problem of technique in prime-
counting questions but is a real phenomenon in prime-counting itself, as we saw
with g3 + u over F3[u] when deg g ≡ 0 mod 4.
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(2) In [4], which is joint work with H. Helfgott, we used Möbius periodicity to find a
non-isotrivial elliptic curve E over κ(u)(T ), for any finite κ of odd characteristic,
such that rank(E(κ(u)(T ))) < rank(Et(κ(u))) for all t ∈ κ(u) if we grant the parity
conjecture for ranks of elliptic curves over κ(u). This is interesting because, by other
work of Helfgott, any elliptic curve over Q(T ) with rank less than the rank of all but
finitely many of its smooth specializations over Q must be isotrivial if certain widely
believed conjectures in analytic number theory are true; such isotrivial examples over
Q(T ) have been highlighted elsewhere, e.g., in [8].

Since the unexpected behavior of µ(f(g)) in characteristic p is related to two basic themes
in number theory (counting prime values of polynomials and Mordell–Weil ranks for an
elliptic curve), it is natural to go beyond the case of κ[u] and study the Möbius function
on values of a polynomial over the coordinate ring of a higher-genus smooth affine curve
instead of κ[u]. The starting point for this paper was the following question: does the
periodicity in Theorem 1.1 carry over when κ[u] is replaced with a higher-genus coordinate
ring? Since the proofs in [2] for the case of κ[u] made essential use of properties of κ[u] that
do not hold in higher genus (such as the absence of Weierstrass gaps at ∞), answering this
question is not merely an exercise in adapting the earlier proofs to a more general setting.
Our affirmative answer to this motivating question is given in Theorem 1.3, below which
we describe some of its applications.

Let us now formulate our setup more precisely. When counting prime values of a poly-
nomial on the ring of integers of a number field, the simplest case to consider is when there
is just one archimedean place (Q or an imaginary quadratic field). Counting prime values
in such cases has been checked numerically and gives a good fit with standard predictions,
even when the class number exceeds 1. In the higher-genus function field case we shall
likewise restrict our attention to cases with one (geometric) point at infinity. To this end,
let k be a perfect field with characteristic p > 0, let A be the coordinate ring of a smooth
geometrically connected affine curve C over k such that C has exactly one geometric point
ξ at infinity (so ξ is k-rational), and let K = k(C) be the fraction field of A. For example,
C could be the affine part of an elliptic curve over k given by a Weierstrass equation. For
a ∈ A− {0}, define the degree of a to be

(1.3) deg(a) := − ordξ(a) ≥ 0;

this is the analogue of the degree on k[u].
For finite k and f ∈ A[T p], we want to prove an analogue of Theorem 1.1. Define

µ : A → {0, 1,−1} by µ(α) = 0 if the ideal αA is divisible by the square of a prime ideal
(this holds if α = 0) and µ(α) = (−1)# Spec(A/αA) otherwise. For later purposes, it is also
convenient to make another definition:

Definition 1.2. For nonzero f =
∑

i αiT
i ∈ A[T ], its total degree is

degu,T f = max
i

(− ordξ(αi) + i).

If A = k[u] then this definition recovers the usual notion of total degree for a 2-variable
polynomial. (This is the reason for the notation, with u considered to be a parameter along
C.) For emphasis (and to avoid confusion), we shall sometimes write degT f rather than
deg f to denote the usual T -degree of a nonzero f ∈ A[T ].

The main goal of the present paper is to develop the higher-genus theory of Möbius
periodicity in odd characteristic. Since the theory in genus 0 in [2] only required f to be
squarefree rather than irreducible, we will work with f(T ) ∈ A[T p] that is squarefree in



4 BRIAN CONRAD AND KEITH CONRAD

K[T ] (not necessarily irreducible). We will require p 6= 2 and leave the much more difficult
case of characteristic 2 to [3].

To formulate our main result about Möbius periodicity, we introduce some notation. We
let A, K, and C be as above, let f ∈ A[T p] be squarefree in K[T ] with positive degree,
and let Z = Spec(A[T ]/(f)) be the associated zero scheme in C × A1

k. We assume that
the projection Z → C has finite fibers, which is a geometric analogue of the classical
condition that a polynomial in Z[T ] has no prime dividing all of its coefficients. Under
these assumptions the projection Z → A1

k turns out to be generically étale, and we let
B ⊆ Z be its finite branch scheme. Finally, we let I = If ⊆ A be the nonzero radical ideal
whose zero locus is the image of B in C.

Theorem 1.3. With notation and hypotheses as above, if k is finite then the function
a 7→ µ(f(a)) is “quasi-periodic” modulo I in the sense that if a, a′ ∈ A are nonzero and
deg(a),deg(a′) � 0 then

(1.4) a ≡ a′ mod I,
a

a′
∈ (K×

ξ )2, deg(a) ≡ deg(a′) mod 4 ⇒ µ(f(a)) = µ(f(a′)).

Here Kξ is the completion of K at ξ and the “sufficient largeness” of deg(a) and deg(a′)
only depends on the genus of K/k and the total degree degu,T f (but not on k).

If −1 is a square in k× or if degT f is even then the condition deg(a) ≡ deg(a′) mod 4
in (1.4) may be relaxed to congruence modulo 2 without affecting the largeness condition on
deg(a) and deg(a′).

The special case of Theorem 1.3 in genus 0 (that is, A = k[u]) is a more precise version
of Theorem 1.1 in the sense that it gives geometric meaning to Mf,k in Theorem 1.1 with
κ = k (and it refines the periodicity criterion if −1 is a square in k× or degT f is even). It is
this more precise version that is proved in [2, Thm. 4.8] and used in the proof of Theorem
1.3. In [3] we give two applications of Theorem 1.3 (and its proof): (i) the definition of
a correction factor in a higher-genus primality-counting conjecture for values of f on A (a
prime value of f on A is a value that generates a prime ideal), and (ii) asymptotic and
nontriviality properties of this correction factor as f and the finite constant field vary. It
is these applications that are the reason for interest in Theorem 1.3. Our treatment of
characteristic 2 in [3] builds on the techniques used here in odd characteristic and also
requires some input from rigid and formal geometry.

Remark 1.4. Although Theorem 1.3 imposes a primitivity requirement on f ∈ A[T ] (via
the assumption that Z → C has finite fibers), no primitivity condition is used in the genus-0
case given in [2, Thm. 4.8]. In fact, the inductive method of proof used in [2] is ill-suited
to a primitivity hypothesis. We impose a primitivity restriction for our work in higher
genus due to crucial intermediate results such as Theorem 2.5, Lemma 5.1, and Theorem
5.2 below. Our intended arithmetic applications satisfy the primitivity hypothesis anyway,
and it is straightforward to check that to prove [2, Thm. 4.8] it is sufficient to treat just the
primitive case.

Now we turn to an overview of the basic strategy underlying our proof of Theorem 1.3
over a finite field k = κ. We have to construct some finite projections π : C → A1

κ such that
(among other things) the associated “norm polynomials” Nπ(f) ∈ κ[u][T p] are squarefree in
κ(u)[T ] and primitive with respect to κ[u]. Periodicity results in higher genus shall thereby
be inferred by applying our genus-zero results in [2] to Nπ(f) and to several other auxiliary
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norm polynomials over κ[u]. Due to the way we use [2] here, the methods in the present
paper are not sufficient to reprove the main results in [2].

An important difference between the case of genus zero and the case of higher genus is il-
lustrated by our work with discriminants. In [2], for p 6= 2 we used an idea of Swan to express
µ(h) (for nonzero h ∈ κ[u]) in terms of the discriminant of h: µ(h) = (−1)deg hχ(discκ h),
where χ is the quadratic character on κ× (see Theorem 3.1 below as well). Resultants have
more convenient algebraic properties than discriminants, so it is useful to express discκ h in
terms of the resultant Rκ[u](h, h′) of h and h′, where discκ h denotes the discriminant of the
κ-algebra κ[u]/(h) with respect to the ordered basis {1, u, . . . , udeg h−1}. (This agrees with
the usual definition of the discriminant of a polynomial when the leading coefficient is 1,
but not necessarily otherwise.) Taking care to account for the possibility deg h′ < deg h− 1
in positive characteristic,

(1.5) discκ h =
(−1)d(d−1)/2

(leadh)d+deg h′
Rκ[u](h, h′)

when h and h′ are both nonzero in κ[u], where d = deg h.
Since Rκ[u](h, h′)/(leadh)deg h′ is the norm N(κ[u]/(h))/κ(h′) when h′ 6= 0, (1.5) may be

restated as the identity (valid even if h′ = 0)

(1.6) discκ(κ[u]/(h)) =
(−1)d(d−1)/2

(leadh)d
N(κ[u]/(h))/κ(h′).

The higher-genus analogue of (1.6) computes discκ(A/(α)) for α ∈ A − {0} via a formula
in Theorem 4.1. This analogous formula works over an arbitrary field in the role of κ (as
does (1.6)), but it is not as explicit as (1.6): it depends on the choice of a κ-basis ε = {εi}
of A with −ordξ(εi) strictly increasing in i (see §3) and the choice of a nonzero vector field
D on C in place of the constant vector field ∂u in (1.6). The factor (−1)d(d−1)/2 in (1.6) is
replaced with a constant bD,d,ε ∈ κ×, where d = − ordξ(α). This constant is not affected
by replacing κ with any extension field, and it seems hopeless in general to determine how
bD,d,ε depends on d. Since the mod-4 (as opposed to mod-2) periodicity properties in d
for the Möbius function in the case of genus 0 (proved in [2]) are largely due to the fact
that (−1)d(d−1)/2 in (1.6) depends on d mod 4, our lack of understanding of bD,d,ε in the
general case presents an obstacle that we did not encounter in the earlier work in genus 0.
It is essentially for this reason that we are forced to use indirect “reduction to genus 0”
arguments in our study of Möbius periodicity in higher-genus cases.

The key to our Möbius periodicity results is a new identity for discriminants (whose proof
does not use reduction to genus 0):

Theorem 1.5. Keep hypotheses and notation as in Theorem 1.3, except that we allow k to
be any perfect field with any positive characteristic p. For any d ≥ 0, let V 0

d be the variety
of regular functions on C with a pole of order exactly d at ξ. Also, let B ⊆ C be the image
of the non-étale locus of the generically étale projection Z → C from the zero scheme Z of
f in C ×A1

k.
If d is sufficiently large (only depending on the total degree degu,T f and genus g of K/k),

then for any k-algebra k′ and any a ∈ V 0
d (k′) we have

disck′((k′ ⊗k A)/(f(a))) = wd(a)
∏

x=(ux,tx)∈B

Nk′⊗kk(x)/k′(a(ux)− tx)`(OB,x)(1.7)

= wd(a)NBk′/k′(a− T )
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for a suitable unit wd on V 0
d , where the exponent `(OB,x) is the length at x for B.

Remark 1.6. In [3, §2] we propose a correction factor in the standard conjecture for
primality statistics of values of f on A. The local geometric interpretation of the exponents
`(OB,x) in Theorem 1.5 is the key to proving asymptotic and nontriviality properties of this
correction factor as f varies in suitable families. This suggests that the standard conjecture
for primality statistics of values of f on A is false for “many” f ∈ A[T p].

Some important technical issues have been deliberately omitted in the statement of The-
orem 1.5, such as how to define the discriminant in (1.7) as an element of k′ so that, as
in the classical k[u]-case, there is no unit-square ambiguity. This matter is addressed by
Lemma 3.3 and the subsequent discussion there by using a k-basis ε = {ε1, ε2, . . . } of A
with −ordξ(εi) strictly increasing in i; the unit wd in (1.7) depends on ε. The significance
of Theorem 1.5 is that the norm factors have nothing to do with d and are determined by a
modulo the ideal I as in Theorem 1.3. For finite k and odd p, discriminants are connected
to Möbius values through their quadratic characters (see Theorem 3.1). By Theorem 1.5,
upon specifying the congruence class of a modulo I the remaining variation in the quadratic
character of the discriminant of A/(f(a)) as d and a ∈ V 0

d (k) vary is encoded in the qua-
dratic character of wd(a) ∈ k×. Since V 0

d is the complement of a hyperplane in an affine
space when d ≥ 2g (with g the genus of K/k), the structure of the unit wd for d ≥ 2g is
simple: wd = bd`

ed
d for some bd ∈ k× and ed ∈ Z with `d the unique linear form defining

the hyperplane and satisfying `d(εd+1−g) = 1. To prove Theorem 1.3, by Theorem 1.5 and
(3.1) we only need to study the “discrete invariants” bd mod (k×)2 and ed mod 2 thereby
attached to wd as d varies with d mod 4 fixed. This is done by algebraic methods in [2] in
the case of genus 0, where explicit formulas are given for bd and ed as functions of d � 0
when using the standard monomial basis ε = {1, u, u2, . . . } of k[u]. It is hopeless to find
explicit formulas in general. Also, although ed mod 2 is independent of ε, the residue class
bd mod (k×)2 enjoys no such independence in general unless ed mod 2 vanishes. Thus, to
study bd mod (k×)2 and ed mod 2 we relate them to analogous discrete invariants attached
to norm polynomials Nπ(f) ∈ k[u][T p] for many suitable finite flat maps π : C → A1.

We now give a brief outline of the paper. In §2 we study the ideal I in Theorem 1.3.
In §3, we use the results in §2 to define the unit wd in Theorem 1.5 and to formulate a
variant on Theorem 1.5 (see Theorem 3.6) that describes how the unit wd varies with d
when p 6= 2. In §4 we use deformation theory and the product formula for Gm-valued
local symbols to prove Theorem 1.5 (it follows from (4.10) and Theorem 4.5). Some “good”
projections π : C → A1 are constructed in §5, and these are used along with Theorem 1.5
to prove Theorem 3.6 in §6; this proof rests on analogous results proved in the case of genus
0 (by entirely different methods) in [2]. At the end of §6 we bring together these results
and methods to prove Theorem 1.3.

Notation and Terminology. For two nonzero polynomials f(T ) and g(T ) in A[T ],
where A is a commutative ring, their resultant is denoted RA(f, g) ∈ A. Usually A = A
(the higher-genus ring under study). We write the degree of f(T ) as either deg f or degT f .
The context should remove any confusion due to the other meaning of deg as in (1.3). We
refer to Definition 1.2 for our “total degree” notation degu,T . The radical of an ideal J is
denoted Rad(J). We write k for a general (perfect) field and κ for a finite field. If V is a
finite-dimensional vector space over a field k then P(V ) := Proj(Sym(V ∨)) is the projective
space over k that classifies families of hyperplanes in V .
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2. Branch points and squarefreeness

It will be technically useful both here and in geometric arguments in later sections to
work with a ground field that is perfect and not necessarily finite, so we let k denote a
perfect field of positive characteristic p (even allowing p = 2). We let C be a smooth and
geometrically connected affine curve over k. Its coordinate ring is denoted A, so C ' Spec A
and the function field K = k(C) is the fraction field of A. In contrast with §1, we do not
require C to have only one geometric point at infinity.

We now carry out a preliminary study of properties of the ideal I that was introduced in
Theorem 1.3. The importance of this ideal is that it controls squarefreeness properties: for
f ∈ A[T ] as in Theorem 1.3 and a ∈ A, the property of the ideal (f(a)) in A being squarefree
only depends on a mod I. (This is made precise in Theorem 2.5.) As a consequence, the
condition µ(f(a)) 6= 0 is governed by the congruence class of a mod I. This is crucial in our
later study of periodicity properties for µ(f(a)) as a varies in A.

Definition 2.1. A nonzero f ∈ A[T ] is primitive over C (or with respect to A) if, for all
closed points c ∈ C, the specialization fc ∈ k(c)[T ] of f ∈ A[T ] is nonzero.

Pick a nonzero f ∈ A[T ] with degT f > 0. Let

(2.1) Z = Zf = Spec(A[T ]/(f)) ↪→ C ×A1
k

be the zero-scheme of f . The polynomial f is squarefree in K[T ] and primitive with respect
to A if and only if Zf is reduced and the projection pr1 : Zf → C is quasi-finite. Throughout
this section we assume that the polynomial f in A[T ] is squarefree in K[T ] and primitive
with respect to A, and that degT f > 0.

Since k is perfect, the (possibly reducible) curve Z = Zf is generically smooth over k.
By consideration of each of the irreducible components of the reduced Z, we see that Z is
flat over C.

We now assume f ∈ A[T p]. This is equivalent to the geometric condition that the flat
first projection pr1 : Z → C is non-étale at all generic points of Z (i.e., pr1 is nowhere étale).
If {φi} is the set of monic irreducible factors of f in K[T ] then the φi’s correspond bijectively
to the irreducible components of Z, and φi ∈ K[T p] for all i. Since degT φi ≥ p > 1 for all i,
f(a) ∈ A is nonzero for all a ∈ A. Also, no φi lies in k[T ] because otherwise we would have
φi ∈ k[T p] and so by perfectness of k this φi would be a pth power, contrary to f being
squarefree in K[T ]. Thus, the projection pr2 : Z → A1

k is quasi-finite and flat.

Lemma 2.2. For f and Z = Zf as above, the second projection pr2 : Z → A1
k is generically

étale.

Proof. We can assume k is algebraically closed, and it suffices to prove that for every
z ∈ Z(k) the finite flat induced map O∧

A1
k,pr2(z)

→ O∧
Z,z on complete local rings has étale

generic fiber. By linear translation in T we can assume pr2(z) = 0. Letting u be a local
parameter on C at pr1(z), the map induced by pr2 on complete local rings is a finite flat map
k[[T ]] → k[[u, T ]]/(ϕ) where ϕ ∈ k[[u, T p]]. Moreover, the nonzero ϕ is squarefree in k[[u, T ]]
because k[[u, T ]]/(ϕ) = O∧

Z,z is reduced (as Z is reduced and excellent). Using Weierstrass
Preparation, we may suppose (by passage to a unit multiple) that ϕ is a monic Weierstrass
polynomial in k[[T ]][u] that is squarefree in k[[u, T ]] and lies in k[[u, T p]]. Thus, the monic
irreducible factorization of ϕ in k((T ))[u] consists of Weierstrass polynomials in k[[T p]][u], so
if the generic fiber k((T ))[u]/(ϕ) of the finite flat k[[T ]]-algebra k[[u, T ]]/(ϕ) = k[[T ]][u]/(ϕ)
has non-étale generic fiber then in k[[u, T ]] the element ϕ is divisible by an element of
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k[[T p]][u]∩k((T ))[up] = k[[up, T p]] that is a non-unit in k[[u, T ]]. Such elements are pth powers
of non-units in k[[u, T ]], contradicting the condition that (ϕ) is a nonzero radical ideal in
this ring. �

By Lemma 2.2, Ω1
Z/A1

k
has finite support in Z. A natural scheme structure on this support

is provided by the annihilator ideal of Ω1
Z/A1

k
, and we call this k-finite scheme the branch

scheme B for pr2. We shall study the properties of the following ideal:

Definition 2.3. The ideal I = If is the nonzero radical ideal in A whose zero locus in
C = Spec A is the image of B under the projection pr1 : Z = Zf → C.

Example 2.4. If A = k[u], then in the notation of [2, Def. 3.4], I = (Mgeom
f ). Also, since

k is perfect, the formation of If is compatible with any extension of the ground field.

We are interested in studying the prime factorization of the (nonzero) principal ideal
(f(a)) in A as a varies. An element α ∈ A is called squarefree if α 6= 0 and the ideal (α) is
squarefree.

Theorem 2.5. Let f ∈ A[T p] be squarefree in K[T ] and primitive with respect to A, and
assume degT f > 0. For any a ∈ A, f(a) is not squarefree if and only if a(c) = t in k(x) for
some x = (c, t) ∈ B ⊆ Z ⊆ C ×A1

k. In particular, the property that f(a) ∈ A is squarefree
only depends on the image of a in A/I.

Proof. The nonzero ideal (f(a)) is squarefree if and only if the finite k-algebra A/(f(a)) is
reduced. Since k is perfect, this property is equivalent to A/(f(a)) being étale over k, so we
conclude that f(a) is squarefree in A if and only if it is squarefree in k′⊗k A, where k′/k is
any extension field. Thus, we may assume k is algebraically closed.

We wish to study the property that ordc(f(a)) ≥ 2 for some closed point c ∈ C. Let D
be a k-derivation of A that is nonzero in the cotangent space at c, so for any a ∈ A we have
ordc(f(a)) ≥ 2 if and only if f(a) and D(f(a)) vanish at c. Since a intervenes in f(a) only
through ap (as f ∈ A[T p]), we get the crucial identity

(2.2) D(f(a)) = (Df)(a),

where h 7→ Dh is the k[T ]-linear derivation of A[T ] that acts as D on A. Thus, ordc(f(a)) ≥
2 if and only if

(2.3) fc(a(c)) = (Df)c(a(c)) = 0.

In particular, it is necessary that z := (c, a(c)) ∈ C ×A1
k lies on Z.

Assuming z ∈ Z, we claim that (2.3) says exactly that pr2 : Z → A1
k is not étale at z

(i.e., (c, a(c)) ∈ B). Fix a local parameter u at c. On complete local rings, pr2 induces a
map

k[[T − a(c)]] = ÔA1
k,a(c)

→ ÔZ,z = ÔC,c[[T − a(c)]]/(f) = k[[u, T − a(c)]]/(f)

with D restricting to a unit multiple of ∂u on ÔC,c = k[[u]]. Hence, the vanishing conditions
on f and Df at z say that f(u, a(c)) has vanishing linear and constant terms. The map
pr2 : Z → A1

k has fiber scheme over a(c) with artin local coordinate ring k[[u]]/(f(u, a(c)))
at z, so f(u, a(c)) = u2(· · · ) if and only if pr−1

2 (a(c)) is non-reduced at z = (c, a(c)), and
since pr2 is quasi-finite and flat such non-reducedness says that pr2 is not étale at z. �

A variant on the proofs of Lemma 2.2 and Theorem 2.5 yields the following result that
will be used below and in our study of characteristic 2 in [3]; we omit the proof.
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Theorem 2.6. Suppose h ∈ A[T ] is primitive and has the property that h(T p) is squarefree
of positive degree in K[T ]. The zero-scheme Zh ⊆ C×A1

k of h is a reduced curve with quasi-
finite flat projections to C and A1

k, and Zh → A1
k is generically étale. If B ⊆ Zh is the

k-finite branch scheme of this latter projection, then for any a ∈ A the nonzero h(ap) ∈ A
is not squarefree if and only if a(c)p = t in k(x) for some x = (c, t) ∈ B.

3. Discriminants of finite algebras

Fix f as in Theorem 2.5 and assume k = κ is a finite field with characteristic p > 2. By
Theorem 2.5, to prove Theorem 1.3 over κ we may restrict attention to those a ∈ A that lie
in a congruence class of A/I on whose members the values of f are squarefree in A (so the
finite κ-algebra A/(f(a)) is étale). For such a, we want a formula for µ(f(a)) = ±1 other
than the definition of µ(f(a)). A preliminary such formula is provided by the generalized
Swan identity from [2, Thm. 2.3] that we now recall:

Theorem 3.1. Let R be a finite étale algebra over a finite field κ of odd characteristic.
Set µ(R) = (−1)# Spec(R) = ±1. Let χ be the quadratic character on κ× and let discκR ∈
κ×/(κ×)2 be the discriminant of R. Then

µ(R) = (−1)dimκ Rχ(discκR).

Applying Theorem 3.1 to R = A/(f(a)) for elements a as above (i.e., a lies in a congruence
class of A/I on which the values of f are squarefree), we have

(3.1) µ(f(a)) = (−1)dimκ(A/(f(a)))χ(discκ(A/(f(a)))) 6= 0.

Our first task is to rewrite this formula in a manner that is well-suited to variation in a. In
particular, although the discriminant of A/(f(a)) is just a coset in κ×/(κ×)2, we need to
promote it to an algebraic function of a.

It is now convenient to assume that k is merely a perfect field with arbitrary positive
characteristic p. Let C be the unique k-smooth proper curve containing C as a dense open
subset, and let g be the genus of C. We now assume that C−C consists of a single k-rational
point ξ. Letting lead(f) ∈ A− {0} denote the leading coefficient of f , the product formula
on C gives the vector-space dimension formula

dim(A/(f(a))) = − ordξ(f(a)) = dim(A/(a)) · deg(f) + dim(A/(lead(f)))(3.2)
= (− ordξ(a)) · deg(f) + dim(A/(lead(f))).

provided that a has a pole of sufficiently high order at ξ (depending on degT f and the
ξ-orders of the coefficients of f ∈ A[T ], so only depending on degu,T f). Explicitly, if
f =

∑m
j=0 αjT

j with m = degT f and αj ∈ A then (3.2) holds if − ordξ(a) > ν(f), with

(3.3) ν(f) := max
0≤i≤m−1

ordξ(αm)− ordξ(αi)
m− i

;

note that for some i < m we have αi 6= 0 because f ∈ A[T p] with f squarefree in K[T ] and
degT f > 0. Clearly ν(f) is unaffected by extension of the constant field k.

Consider nonzero elements a and a′ in A such that ordξ(a) ≡ ordξ(a′) mod 2 and both a
and a′ lie in a common congruence class of A/I whose representatives yield squarefree spe-
cialization for f . Clearly (3.1) and (3.2) reduce Theorem 1.3 to the problem of determining
whether or not the ratio of the nonzero discriminants of the finite étale algebras A/(f(a))
and A/(f(a′)) is a square in the constant field when p > 2, k is finite, and both − ordξ(a)
and − ordξ(a′) are greater than ν(f). We now begin a study of such discriminants over any
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perfect ground field k with any positive characteristic, with f satisfying the hypotheses in
Theorem 2.5; we will not use oddness of the characteristic until the middle of §6 (where
we prove Theorem 3.6), and some of what is done before this point will be used in the
characteristic-2 setting in [3].

For d ∈ Z, define Vd = L(d · ξ) to be the vector space of regular functions on C with at
worst a pole of order d at ξ. We shall write

V d := Spec(Sym(V ∨
d ))

to denote the affine space over Spec k defined by Vd (so V d(k′) = k′⊗k Vd for any k-algebra
k′). If d ≥ 2g − 1 then V d has dimension d + 1 − g, and if d ≥ 2g then the inclusion
V d−1 ↪→ V d is a hyperplane (by Riemann–Roch). For d ≥ 0, we define

V 0
d = V d − V d−1 ⊆ V d

to be the open complement of V d−1 in V d (so for d ≥ 2g and any extension field k′ of k the
set V 0

d(k
′) is the complement of the hyperplane k′ ⊗k Vd−1 in the k′-vector space k′ ⊗k Vd).

Provided that d > ν(f) (see (3.3)), it follows from (3.2) that for a ∈ A with a pole of
order d at ξ,

(3.4) − ordξ(f(a)) = ρ(d) := d · degT f + dimk(A/(lead(f))).

Hence, for d > ν(f) the evaluation of f ∈ A[T ] at varying a ∈ A defines a map of sets

(3.5) Vd − Vd−1 → Vρ(d) − Vρ(d)−1.

To make the algebraic nature of this map precise, it will be convenient to relativize it as
follows. For any k-scheme S, we write CS , ξS , and CS to denote the base-changes of C, ξ,
and C to S, so CS is the open complement of ξS(S) in CS . For any d ≥ 0, k-flatness of S
yields the equality

V d(S) = H0(CS ,OCS
(d · ξS)),

and the set V 0
d(S) is the subset of sections σ ∈ V d(S) such that {1, σ} generates OCS

(d ·ξS).
By the universal property of P1, we can equivalently say that V 0

d(S) is (functorially in S)
identified with the set of finite flat S-morphisms π : CS → P1

S of constant degree d such
that π−1(∞) = d · ξS as relative effective Cartier divisors on CS .

Evaluation of f ∈ A[T ] defines a map from OCS
back to itself as a sheaf of sets, and the

relativization of (3.4) asserts that this evaluation carries V d(S) into V ρ(d)(S) for d > ν(f)
and carries V 0

d(S) into V 0
ρ(d)(S) for such d; this relativization is easily verified on geometric

points, and the general case follows since V 0
δ is an open subscheme of V δ for all δ. For

d > ν(f), we thereby get a k-morphism

(3.6) f : V 0
d → V 0

ρ(d)

inducing (3.5) on k-points.
Our goal is to study

a 7→ disck(A/(f(a)))

as an algebraic function V 0
d → A1

k for d > ν(f), so the first problem we need to address is
how to systematically compute such discriminants without unit-square ambiguity.

Choose a basis {ε1, . . . , εg} of V2g−1 whose elements have increasing pole-order at ξ, and
for d ≥ 2g choose a representative εd−g+1 ∈ Vd for a basis of the 1-dimensional quotient
space Vd/Vd−1.
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Let 0 = w1 < · · · < wg ≤ 2g − 1 be the Weierstrass gap sequence at ξ; that is, for
d ≤ 2g − 1 we have Vd−1 6= Vd if and only if d ∈ {w1, . . . , wg}. Hence, − ordξ(εr) = wr for
r ≤ g, so − ordξ(εi) is strictly increasing in i and − ordξ(εi) = i + g − 1 for i > g. Since
A = ∪Vd, we get a basis {ε1, ε2, . . . } of A as a k-vector space. For d ≥ 2g, an element
α ∈ A−{0} with − ordξ(α) = d (i.e., α ∈ V 0

d ) is uniquely written as α =
∑

j≤d+1−g cj(α)εj

with cd+1−g(α) 6= 0. An important point is that for all α with pole order at ξ equal to a
fixed d ≥ 2g we can use the same d-element subset of {ε1, . . . , εd+g} to represent a basis
of the finite k-algebra A/(α). This is an analogue of the division algorithm in k[u] (using
εi = ui−1), and it is influenced by the nature of Weierstrass gaps at ξ:

Lemma 3.2. Fix d ≥ 2g. For all α ∈ A with − ordξ(α) = d, a set of representatives of a
k-basis of A/(α) is given by

(3.7) {ε1, . . . , εd+g} − {εd+wr+1−g}1≤r≤g.

Proof. By the product formula, dimk A/(α) = − ordξ(α) = d. Since the set (3.7) has
size d, it suffices to check it has linearly independent image in A/(α). Suppose there is
a linear combination

∑
m≤d+g cmεm ∈ Vd+2g−1 that lies in (α), where cm = 0 whenever

m = d+wr +1−g for some 1 ≤ r ≤ g. We want cm = 0 for all m. The ideal (α) has k-basis
given by the αεi’s. Since − ordξ(αεi) = d− ordξ(εi) is strictly increasing in i, for a k-linear
combination

∑
bjαεij with pairwise distinct ij ’s and all bj in k× we have

∑
bjαεij ∈ Vδ if

and only if all αεij ’s lie in Vδ. We are interested in the case δ = d + 2g − 1, and clearly the
only αεi’s lying in Vd+2g−1 are the αεr’s with − ordξ(εr) ≤ 2g− 1, which is to say that such
an αεi is one of the elements αε1, . . . , αεg. For 1 ≤ r ≤ g, clearly αεr ∈ V 0

d+wr
.

Thus, we get a linear equation

(3.8)
d+g∑
m=1

cmεm −
g∑

r=1

c′rαεr = 0

with c′1, . . . , c
′
g ∈ k. Since cm = 0 whenever m = d + ws + 1 − g for some 1 ≤ s ≤ g, in

which case m ≥ g + 1 and hence − ordξ(εm) = m + g − 1 = d + ws runs over the set of
pole-orders of the αεr’s at ξ for 1 ≤ r ≤ g, any two terms in (3.8) with a nonzero coefficient
have distinct pole orders at ξ. Thus, the vanishing of (3.8) forces all coefficients in (3.8) to
vanish. �

Here is the analogue of Lemma 3.2 over k-schemes.

Lemma 3.3. For d ≥ 2g, any k-scheme S, and any a ∈ V 0
d(S), the zero-scheme Za of a

on CS has structure map pr : Za → S that is finite and locally free of rank d, and pr∗OZa

is a finite free OS-module with basis represented by (3.7).

Proof. Since Za is the zero-scheme of a fiberwise nonvanishing section a of a line bundle
OCS

(d·ξS) on a proper smooth S-curve CS whose geometric fibers are connected, the proper
map Za → S must be quasi-finite and hence finite. Thus, the formation of pr∗OZa commutes
with base change on S. Lemma 3.2 implies that the fiber of Za over each s ∈ S has rank
d and that (3.7) projects to a set of global sections of OZa = OCS

/(a) that, as a set of
sections of the OS-module pr∗OZa , induces a k(s)-basis on the s-fiber for all s ∈ S. Hence,
it remains to show that the finite and finitely presented S-scheme Za is flat (then pr∗OZa

will be a locally free OS-module, necessarily of rank d with (3.7) necessarily providing a
global basis). This S-flatness problem is intrinsic to the section a|CS

of OCS
since Za is

disjoint from ξS(S) (because a ∈ V 0
d(S) is a generating section of O(d · ξS) near ξS(S)). We
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may reduce to the case of noetherian S. By the local flatness criterion, the S-flatness of
OZa = OCS

/(a) follows from the S-flatness of CS and the fact that the induced section as

of each fiber-sheaf OCs is a regular section (i.e., nowhere a zero divisor). �

For d ≥ 2g and a k-scheme S, pick a section a ∈ V 0
d(S). By Lemma 3.3, the S-finite

zero-scheme Za in CS has structure sheaf OZa = OCS
/(a) that we view as a finite free OS-

module of rank d (we suppress the pushforward notation relative to the finite structure map
Za → S). We wish to compute discS(OZa) as a global section of OS by using a basis that is
independent of a. More specifically, we define this discriminant to be a determinant relative
to the ordered OS-basis (3.7) of OZa provided by Lemma 3.3. Let us write discS,ε(OZa) for
this well-defined section of OS .

Since we are using a choice of basis that is independent of a and is compatible with base
change on S, the construction

(3.9) a 7→ discS,ε(OZa)

from V 0
d(S) to Γ(S, OS) defines a k-scheme morphism

(3.10) discε,d : V 0
d → A1

k

for d ≥ 2g. We will be interested in the composite

(3.11) discε,ρ(d) ◦ f : V 0
d → A1

k

which makes sense for d > max(ν(f), 2g) by (3.6).
For d ≥ 2g, the specification of the basis ε1, . . . , εd+1−g for Vd gives an identification

V d ' Spec k[c1, . . . , cd+1−g]

where {cj}j≤d+1−g is the dual basis to {εj}j≤d+1−g, so we have a coordinatization

V 0
d ' Spec k[c1, . . . , cd+1−g][1/cd+1−g]

for the complement of the hyperplane V d−1 = {cd+1−g = 0}. In terms of such coordinates,
we can concretely summarize the construction (3.10) as follows: for each extension field k′/k
and a ∈ A′ = k′⊗kA with pole-order d ≥ 2g at ξ, we have computed disck′(A′/(a)) ∈ k′ as an
algebraic function of the ε-coordinates of a =

∑
j≤d+1−g cj(a)εj with cd+1−g(a) invertible.

If we change our initial basis ε = {εi} to another basis ε′ = {ε′i} then for d ≥ 2g and
a ∈ V 0

d(S) the invertible change-of-basis matrix between the two resulting OS-module bases
of OZa has entries in Γ(S, OS) that depend functorially on a. We conclude that the algebraic
function discε′,d on V 0

d is a unit-square multiple of the algebraic function discε,d.
The following definition uses the finite branch scheme provided by Theorem 2.5.

Definition 3.4. For each point x = (ux, tx) ∈ C ×A1
k in the k-finite branch scheme B of

pr2 : Z → A1
k and for each d ≥ 0, let Px,d : V d → A1

k be the algebraic function defined
functorially on k′-points by

(3.12) a 7→ Px,d(a) = Nk′⊗kk(x)/k′(a(ux)− 1⊗ tx) ∈ k′

for k-algebras k′ and a ∈ V d(k′) = k′ ⊗k Vd ⊆ k′ ⊗k A, with a(ux) denoting the image of a
under the natural map k′ ⊗k A � k′ ⊗k k(ux) ⊆ k′ ⊗k k(x).

We view Px,d as an element of the coordinate ring of V d, a polynomial ring over k. If
k′/k is an extension over which x splits into physical points {x′i} then k′⊗k k(x) '

∏
i k

′(x′i)
since k(x)/k is separable (as k is perfect), and so we have a compatible factorization Px,d =∏

i Px′i,d
as algebraic functions on V d/k′ . This simple behavior of Px,d’s with respect to
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extension of k will be implicitly used without comment when we enlarge the ground field
in later arguments. The coordinate ring of V d is a unique factorization domain. How does
Px,d factor in this ring?

Lemma 3.5. For positive d ≥ 2g, Px,d is irreducible in the coordinate ring of V d and,
for x 6= x′, the elements Px,d and Px′,d in this coordinate ring are not unit multiples of
each other. Geometrically, the zero schemes {Px,d = 0} for x ∈ B are pairwise-distinct
irreducible and reduced hypersurfaces in V d.

Proof. The finite separable extension k(x)/k is a quotient of k(ux) ⊗k k(tx), and hence is
generated over k by k(ux) and k(tx). Consider the polynomial function of degree 1

`x : a =
∑

j≤d+1−g

cjεj 7→
∑

cjεj(ux)− tx = a(ux)− tx ∈ k(x)

on k(x) ⊗k Vd, where tx is the image of T in the residue field at x ∈ C ×A1
k. The norm

map of symmetric algebras Sym(k(x) ⊗k V ∨
d ) → Sym(V ∨

d ) carries `x to Px,d. It is obvious
that `x is nonconstant for positive d ≥ 2g, since by Riemann–Roch we can find elements
a1, a2 ∈ k(x)⊗k Vd with a1(ux) = 0 and a2(ux) 6= 0 for such d. Hence, Px,d is nonconstant
for such d.

To prove the irreducibility of Px,d over k it is equivalent to prove that for a Galois
extension k′/k into which k(x)/k embeds, distinct k-embeddings σ, σ′ : k(x) ⇒ k′ carry
`x to polynomials on k(x) ⊗k Vd of degree 1 that are not scalar multiples of each other.
Pick k′ and choose k-embeddings σ, σ′ : k(x) ⇒ k′. Suppose there exists θ ∈ k′× such that
σ(`x) = θ · σ′(`x), so σ(tx) = θ · σ′(tx) and σ(εj(ux)) = θ · σ′(εj(ux)) for 1 ≤ j ≤ d + 1− g.
We need to prove that σ = σ′. Taking j = 1 gives εj(ux) ∈ k×, so θ = 1. Since d > 0
and d ≥ 2g, Vd generates A as a k-algebra. Thus, {ε1(ux), . . . , εd+1−g(ux)} generates the
k-algebra quotient k(ux) of A. Hence, we get that σ|k(ux) = σ′|k(ux), so σ and σ′ coincide
because k(x) is generated over k by k(ux) and k(tx). This proves the irreducibility of Px,d

over k.
To see that the Px,d’s are not unit multiples of each other as we vary x (with fixed positive

d ≥ 2g), unique factorization allows us to pass to the case of algebraically closed k, where
we just have to show that the polynomials `x and `x′ of degree 1 are not scalar multiples
of each other for x 6= x′. Equivalently, we want `x and `x′ to have distinct zero loci in
Vd. Since d > 0 and d ≥ 2g, by Riemann–Roch we can find a ∈ Vd with a(ux) = tx and
a(ux′) 6= tx′ . Hence, `x(a) = 0 and `x′(a) 6= 0. �

Since the nonzero radical ideal I ⊆ A as in Definition 2.3 cuts out the reduced locus in
C whose support is the union of the ux’s, we see via (3.12) that Px,d(a) only depends on
a modulo I. Write P 0

x,d to denote Px,d|V 0
d
. For fixed positive d ≥ 2g and varying x ∈ B,

Lemma 3.5 ensures that the Px,d’s have distinct (nonempty) irreducible zero-loci on V d.
By Riemann–Roch, none of these zero-loci are contained in the hyperplane V d−1, so the
P 0

x,d’s are nonassociate irreducibles in the coordinate ring of the hyperplane complement
V 0

d = V d − V d−1. For our purposes, the importance of the irreducible zero-loci {P 0
x,d = 0}

in V 0
d is that, for d > max(ν(f), 2g), Theorem 2.5 identifies the union of these irreducible

hypersurfaces with the locus of points a ∈ V 0
d(k

′) (for varying field extensions k′/k) such
that (k′ ⊗k A)/(f(a)) is non-étale over k′.
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The unit group of the coordinate ring O(V 0
d) ' k[c1, . . . , cd+1−g][1/cd+1−g] of V 0

d fits into
a canonical short exact sequence

(3.13) 1 // k× // O(V 0
d)
×

ordV d−1 // Z // 0

(using the normalized order-function at the generic point ηd−1 of V d−1 in V d).
Using the UFD property of O(V 0

d) and the structure of O(V 0
d)
× as in (3.13) for such d,

there exist unique bd,ε ∈ k×, ed,ε ∈ Z, and positive integers ex,d,ε such that

(3.14) discε,ρ(d) ◦ f = bd,εc
ed,ε

d+1−g

∏
x∈B

(P 0
x,d)

ex,d,ε

in the coordinate ring of V 0
d. Here we have fixed ε = {εi} to define the discriminant function

on the left side of (3.14), and cd+1−g is the dual functional to εd+1−g with respect to the
resulting basis {ε1, . . . , εd+1−g} of Vd. We emphasize that (3.14) is an equality of algebraic
functions on V 0

d and not on V d because the function discε,δ is only defined on the open locus
V 0

δ in V δ for varying δ. By (3.1), the proof of Theorem 1.3 will require a good understanding
of the abstract exponents in (3.14) as d and ε vary.

Since O(V 0
d) is a UFD, the exponents ex,d,ε in (3.14) are independent of the coordinatiza-

tion ε because they are the exponents for an irreducible factorization of a nonzero element
of O(V 0

d) that is intrinsic up to unit-square factor in O(V 0
d) and the Px,d’s are independent

of coordinates. Thus, we shall now write ex,d rather than ex,d,ε.
Changing the basis ε changes the left side of (3.14) by a unit square on V 0

d, so ed,ε mod 2
is independent of ε. However, ed,ε ∈ Z is not independent of ε, due to the description (3.13)
of O(V 0

d)
× as the product of k× and the infinite cyclic group of powers of a defining equation

for the hyperplane Vd−1 in Vd. Unfortunately, bd,ε mod (k×)2 does depend on ε in general,
so we must keep track of ε when using (3.14), but if ed,ε mod 2 vanishes (a condition that
is independent of ε) then bd,ε mod (k×)2 is independent of ε.

For ease of notation we shall now write bd and ed instead of bd,ε and ed,ε; however, we must
not forget the dependence on ε. Note that the parity of the differences ed−ed′ is independent
of ε since the parities of ed and ed′ are independent of ε (even though ed, ed′ ∈ Z depend on
ε). The parity of such differences will be our main focus of study in the proof of Theorem
1.3.

It is difficult to analyze ed mod 2 directly in the higher-genus case, and the structure of
the constant bd seems to be beyond the reach of geometric methods (e.g., for genus zero
we can say little about bd,ε except when ε = {ui−1}i≥1 is the monomial basis with respect
to some global coordinate u on the affine line). We saw in [2] that for finite k the source
of mod-4 periodicity properties for average values of a 7→ µ(f(a)) in the genus-zero case is
entirely due to the dependence of bd mod (k×)2 on d mod 4 and the dependence of ed mod 2
on d mod 2 for large d, and our understanding of such dependence is restricted to the case
ε = {ui−1} for which there are formulas for ed,ε ∈ Z and bd,ε ∈ k× (see [2, Thm. 4.1]). Thus,
the proof of Theorem 1.3 will require more work beyond the identification of the exponents
ex,d in (3.14) as branch-scheme multiplicities in Theorem 1.5.

By (3.14), to prove Theorem 1.3 we are motivated to show that for finite k of odd
characteristic and d and d′ in the same congruence class mod 2 the difference ed − ed′ is
even provided that d and d′ are large enough (where “large” depends only on the total degree
degu,T f of f and the genus g of K/k). It is also necessary to understand the dependence
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of bd mod (k×)2 on d mod 4 for such large d. Both of these problems have a satisfactory
solution in odd characteristic without finiteness restrictions on the base field:

Theorem 3.6. Under the hypotheses as in Theorem 1.5, assume also that p > 2. With
notation as above, the difference ed − ed′ is even when d ≡ d′ mod 2 and d, d′ � 0, and if
the common parity of such ed and ed′ is even then the ratio bd/bd′ is a square in k× when
d ≡ d′ mod 4 and d, d′ � 0. If −1 ∈ k× is a square or degT f is even, then bd/bd′ is a square
in k× if ed and ed′ are even with d ≡ d′ mod 2 and d, d′ � 0. These largeness conditions
on d and d′ depend only on the total degree degu,T f and the genus g.

Remark 3.7. The proof of Theorem 1.3 only requires Theorem 3.6 in the case of finite
fields, and we do not know any application of Theorem 3.6 in the generality of infinite
perfect fields. Hence, we will only prove Theorem 3.6 for finite base fields and we leave it
as an exercise for the interested reader to work out the reduction of the general case to the
case of finite fields by using EGA-style direct limit methods. The two interesting points
in the reduction step are: (i) the setup over k is not finitely presented over Fp, due to the
choice of the infinitely many εi’s, and (ii) to prove that the ratio bd/bd′ is a square when ed

and ed′ are even, one needs to show that if a unit u on a normal scheme X of finite type
over Fp is an nth power in the residue field at each closed point of X then u is an nth power
on X when p - n.

To handle (ii) one uses the Lang–Weil estimate. For (i) the key observation is that
for each irreducible factor P 0

x,d+1 of discε,ρ(d+1) ◦ f on V 0
d+1, the irreducible zero-locus of

P 0
x,d+1 on V 0

d+1 has Zariski closure in V d+1 that is the zero locus of Px,d+1, and for d ≥ 2g

this closure meets the hyperplane V d in the zero locus of Px,d+1|V d
= Px,d. In this way,

P 0
x,d+1 determines P 0

x,d for d > max(ν(f), 2g), and this mechanism for relating irreducible
factorizations in coordinate rings of disjoint varieties V 0

d for different d’s is independent of
ε.

The assertion in Theorem 3.6 is independent of the choice of ε because ed mod 2 is
independent of ε, as is bd mod (k×)2 when ed is even. This is important because the strategy
for proving Theorem 3.6 is to make choices of ε adapted to some well-chosen projections
π : C → P1

k that will enable us to pull up results from the genus-0 case that we settled in
[2, Thm. 4.1]. The proof of Theorem 3.6 (for finite k) is given in §6, building on preliminary
work in §5 where we construct the necessary projections. In contrast with our proofs of
Theorems 1.3 and 3.6 in §6, our proof of Theorem 1.5 in the next section does not use
reduction to the case of genus 0.

4. Factoring discriminants and norms

The main results we establish in this section are a factorization for a kind of generalized
discriminant (Theorem 4.4) and a refinement that determines the exponents in this factor-
ization (Theorem 4.5). The second of these two results yields Theorem 1.5 as a special case
(as we explain below (4.10)). We emphasize at the outset that it is essential that we prove
Theorems 4.4 and 4.5 without restriction on the characteristic because these results shall
be applied over 2-adic fields in [3].

The starting point for our proof of Theorem 1.5 is a generalization of the classical identity

(4.1) disc(k[u]/(h)) =
(−1)d(d−1)/2

lead(h)d
·
∏
ρ

h′(ρ) =
(−1)d(d−1)/2

lead(h)d
·N(k[u]/(h))/k(h

′)
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for a nonzero polynomial h ∈ k[u] of degree d ≥ 1 over any field k, with the discriminant
computed relative to the ordered k-basis {1, u, . . . , ud−1} of k[u]/(h) and ρ running through
the set of roots of h in a splitting field.

To set up the geometric generalization of (4.1) for higher genus, given in Theorem 4.1,
we now let k be an arbitrary field (possibly of characteristic 0, such as a 2-adic field) and as
usual we fix a smooth proper geometrically connected curve C of genus g over k and we let
ξ ∈ C(k) be a rational point. We let A denote the coordinate ring of the affine complement
C = C − {ξ}, and as in §3 we define V d and V 0

d = V d − V d−1 in terms of C and ξ. Fix
a nonzero vector field on C, and identify it with a nonzero k-linear derivation D : A → A.
Let Z(D) ⊆ C be the k-finite zero-scheme of this vector field.

For d ≥ 2g, we functorially define algebraic functions

NZ(D)/k,d : V d → A1
k, ND,d : V 0

d → A1
k

on points valued in k-algebras k′ as follows:

(4.2) NZ(D)/k,d(a) = NZ(D)k′/k′(a) ∈ k′, ND,d(a0) = N((k′⊗kA)/(a0))/k′(Da0) ∈ k′

for a ∈ V d(k′) = k′ ⊗k Vd and a0 ∈ V 0
d(k

′); recall from Lemma 3.3 that (k′ ⊗k A)/(a0) is a
finite free k′-module of rank d, since d ≥ 2g. When Z(D) is empty, NZ(D)/k,d denotes the
constant function 1.

By Riemann–Roch, NZ(D)/k,d is nonconstant for d ≥ 2g if Z(D) is nonempty. Using
Bertini’s theorem over an algebraic closure k of k, when d ≥ 2g + 1 (so the linear system
|d · ξ| is very ample) there exists a0 ∈ V 0

d(k) with an étale divisor of zeros that is disjoint
from Z(D)k, so Da0 is nonvanishing everywhere along the étale zero-locus of a0 and hence
ND,d(a0) 6= 0. Thus ND,d 6= 0 for d ≥ 2g + 1.

Upon choosing a k-basis ε of A adapted to the Vd’s as in §3, we define the algebraic
function discε,d on V 0

d as in (3.9). The generalization of (4.1) is:

Theorem 4.1. Fix a choice of ε and let eD,d = 2g − 2− ordξ(D)− d ∈ Z. For d ≥ 2g + 2,
there exists bD,d,ε ∈ k× such that

(4.3) NZ(D)/k,d · discε,d = bD,d,εc
eD,d

d+1−g ·ND,d

as algebraic functions on V 0
d.

In the special case C = A1
k = Spec k[u], εi = ui−1, and D = ∂u, we have Z(D) = ∅ and

eD,d = −d, so (4.3) recovers (4.1) for d ≥ 2 by taking bD,d,ε = (−1)d(d−1)/2. It follows that in
this specific genus-zero case bD,d,ε only depends on d through the congruence class d mod 4,
but for higher genus we do not expect there to exist an ε and D such that dependence of
bD,d,ε mod (k×)2 on d is as simple as it is in genus 0 with ε = {ui−1} and D = ∂u. For ease
of notation, we shall write bD,d rather than bD,d,ε, but we must not forget the dependence
on ε.

Proof. An equivalent formulation of (4.3) is the statement that the nonzero rational function

NZ(D)/k,d · discε,d

c
eD,d

d+1−g ·ND,d

∈ k(V 0
d)
×

is in k×. Since k is algebraically closed in the function field of V 0
d, it suffices to prove the

theorem after base-change to an algebraic closure of k. Thus, we now suppose that k is
algebraically closed.
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The k-rational zeros of the left side of (4.3) consist of those a ∈ A with ordξ(a) = −d
such that A/(a) is non-reduced or a vanishes at a zero of D. This is exactly the condition
that Da and a have a common zero on C, which says precisely that the image of Da in the
finite k-algebra A/(a) has vanishing norm. Hence, the zero loci of the nonzero functions
NZ(D)/k · discε,d and ND,d on V 0

d are the same. Granting for a moment that these functions
have the same multiplicities at the generic points of their common zero locus, the structure
(3.13) of units on the regular variety V 0

d then yields (4.3) up to the determination of the
exponent eD,d ∈ Z. In order to compute eD,d, we evaluate both sides of (4.3) at λa with
λ ∈ k× and a ∈ V 0

d . The left side acquires the multiplier λdeg Z(D) and the right side acquires
the multiplier λeD,d+dimk A/(a). Thus, eD,d = deg Z(D)−dimk A/(a) = 2g−2−ordξ(D)−d,
as desired.

It remains to compare generic multiplicities. For each z ∈ Z(D) (if Z(D) is nonempty),
the vanishing locus {a ∈ Vd | a(z) = 0} is a hyperplane in Vd that meets V 0

d . A generic a ∈ V 0
d

vanishing on Z(D) vanishes at only one point z ∈ Z(D) since d ≥ 2g +1. In particular, the
zero-scheme of NZ(D)/k,d on V 0

d has its irreducible components in bijection with the points
z of Z(D); physically, these irreducible components are the loci {a ∈ V 0

d | a(z) = 0} for
z ∈ Z(D).

Lemma 4.2. For z ∈ Z(D), the multiplicity of {a ∈ V 0
d | a(z) = 0} as an irreducible

component of the zero-scheme of NZ(D)/k,d in V 0
d is ordz(D).

Proof. Pick a ∈ V 0
d vanishing at some z0 ∈ Z(D) and not vanishing at any other z’s in

Z(D) (we do not need to assume ordz0(a) = 1, though this could be assumed by choosing
a generically). We will prove the lemma by computing the ideal generated by NZ(D)/k,d in
the regular complete local ring at a on V 0

d.
Consider a finite local k-algebra R and ã ∈ V 0

d(R) lifting a. We need to make explicit
the condition that NZ(D)/k,d(ã) ∈ R vanishes. This is the norm of the element ã in the
finite flat R-algebra R ⊗k O(Z(D)). This R-algebra has R ⊗k O(Z(D))z as its local factor
at each z ∈ Z(D), and the component ãz of ã in the z-factor is a unit when z 6= z0 since
the reduction a(z) of ãz is a unit. Hence the vanishing of NZ(D)/k(ã) ∈ R is equivalent
to the vanishing of the norm of ãz0 ∈ R ⊗k O(Z(D))z0 relative to R. Choose a k-algebra
isomorphism O(Z(D))z0 ' k[t]/(te) where e = ordz0(D), so ãz0 = b0+b1t+. . . be−1t

e−1 with
b0 = ã(z0) ∈ mR. The matrix for multiplication by ãz0 relative to the R-basis {1, t, . . . , te−1}
is lower-triangular with all diagonal entries equal to b0, so the determinant of this matrix
is be

0 = ã(z0)e.
It follows that NZ(D)/k,d is a unit multiple of the ordz0(D)th power of “evaluation at z0”

(viewed as an element in V ∨
d ) in the regular complete local ring at a on V 0

d. This evaluation
has kernel equal to a height-1 (principal) prime ideal since evaluation at z0 ∈ C is a linear
function on V d. This completes the proof that the irreducible component {a ∈ V 0

d | a(z) = 0}
in the zero scheme of NZ(D)/k,d on V 0

d has multiplicity ordz0(D). �

To prove (4.3) via a comparison of generic multiplicities, we next check that the two
factors on the left side of (4.3) have zero loci with no irreducible component in common.
Since d ≥ 2g + 1 the Riemann–Roch and Bertini theorems ensure that for each z ∈ Z(D)
there exists a ∈ A with ordξ(a) = −d, a(z) = 0, and a k-étale divisor of zeros div0(a),
so discε,d(A/(a)) 6= 0. Hence, irreducible components of {NZ(D)/k = 0} on V 0

d are not
irreducible components of {discε,d = 0} on V 0

d. Thus, Lemma 4.2 now motivates us to show
that for each z0 ∈ Z(D) we have:
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Lemma 4.3. There is a dense open U in the irreducible smooth zero-locus

{a ∈ V 0
d | a(z0) = 0}

such that for any closed point a ∈ U , the image of ND,d in OV 0
d,a is a unit multiple of the

function ã 7→ ã(z0)ordz0 (D) on V 0
d.

Proof. A generically-chosen closed point a ∈ V 0
d vanishing at z0 does not vanish elsewhere

on Z(D) and has an étale divisor of zeros. Fix such an a. We shall now show that ND,d

viewed as an element of the regular local ring at a vanishes in the same artinian quotients
as does the element ã 7→ ã(z0)ordz0 (D) in the symmetric algebra of the dual space V ∨

d .
More specifically, for any finite local k-algebra R and any ã ∈ V 0

d(R) lifting a, we will
show that ND,d(ã) ∈ R vanishes if and only if ã(z0)ordz0 (D) ∈ R vanishes. By definition,
ND,d(ã) ∈ R is the R-norm of the element Dã in the finite flat R-algebra (R ⊗k A)/(ã).
This algebra is uniquely a product of local rings lifting the decomposition of A/(a) into a
product of local rings. Since a has an étale divisor of zeros, A/(a) is a product of copies
of k with one such factor corresponding to the zero z0 of a. Since D is nonvanishing at
the other zeros of a and hence is dual to a local generator of Ω1

C/k near such points, Da is
nonvanishing at these other (simple) zeros of a. Thus, Dã is a unit in the local factor rings
of (R ⊗k A)/(ã) away from the z0-factor. It follows that ND,d(ã) ∈ R is a unit multiple of
(Dã)(z0) ∈ R. Since D vanishes at z0 to order e := ordz0(D), we can write D = ue∂ near
z0, where ∂ is dual to a local generator of Ω1

C/k near z0 and u ∈ Az0 is a uniformizer. Thus,
upon uniquely extending D and ∂ to R-derivations of R⊗k Az0 we have Dã = (1⊗u)e · (∂ã)
in R ⊗k Az0 . The simplicity of z0 as a zero of a ensures that ∂a is nonvanishing at z0, so
(∂ã)(z0) is a unit in R.

By the definition of ND,d, it follows that ND,d(ã) ∈ R must therefore be a unit multiple
of the eth power of the image of u in the factor ring ((R⊗k A)/(ã))z0 ' R. Hence, we must
check that this image is a unit multiple of ã(z0). Using the isomorphism Âz0 ' k[[u]] we
want to show that in the quotient R[[u]]/(ãz0) ' R, with R[[u]] identified as the complete
local ring on C ⊗k R along the section z0, the residue class of u is a unit multiple of ã(z0).
Since a has a simple zero at z0, the u-adic expansion of ãz0 in R[[u]] has constant term
ã(z0) ∈ mR and has linear-coefficient equal to a unit. Thus, ã(z0) ≡ u · (unit) mod ãz0 , as
desired. �

By Lemmas 4.2 and 4.3, to complete the proof of (4.3) we have to work generically on
an irreducible component Y of {discε,d = 0}: we must prove that at the generic point η of
Y , the order of ND,d in the discrete valuation ring OV 0

d,η is the same as the order of discε,d.
In fact, we will make comparisons in OV 0

d,a, a UFD, for a well-chosen closed point a ∈ Y .
The first step is to construct a suitable a.

The natural scaling-action by Gm on V 0
d preserves the zero-scheme {discε,d = 0}, and

the Gm-action preserves the irreducible components of this zero-scheme because Gm is
geometrically irreducible. Since d ≥ 2g + 1, we have a canonical closed immersion

C ↪→ P := P(H0(C, d · ξ)),
and since d ≥ 2g + 2 the projective tangent line Tx(C) to C in P at any x ∈ C(k) meets C
to order exactly 2 at x and to order 1 at all other intersection points. Pick a closed point
a1 in the smooth locus of Yred such that a1 does not lie on any irreducible component of
{discε,d = 0} except for Y . The point a1 corresponds to a hyperplane H1 in P whose degree-
d intersection with C is supported in C and is non-reduced at a unique point x ∈ C(k).
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The argument immediately preceding Lemma 4.3 shows that for a generic choice of a1 we
have x 6∈ Z(D), and in fact H1 ∩ C ⊆ C − Z(D). Fix such an a1, so ordx(a1) ≥ 2.

Pick a hyperplane H2 in P so that H2 ∩C is supported in C −Z(D) and is étale except
for a double point at x (such H2 can be found since d ≥ 2g + 2). Thus, H2 arises from
some a2 ∈ V 0

d (unique up to the Gm-action) and a2 also lies in the zero locus of discε,d. In
particular, H1 and H2 must both contain the projective tangent line Tx(C). Consider the
pencil of hyperplanes {λH1 + µH2} joining H1 and H2. All hyperplanes H in this pencil
contain Tx(C), so H ∩C contains x to order at least 2. A generic such H does not contain
ξ since ξ 6∈ H2, so the scheme-theoretic intersection H ∩ C is the divisor of zeros div0(aH)
for an aH ∈ V 0

d that is unique up to unit-scaling. Note that aH is in the zero scheme of
discε,d on V 0

d since ordx(aH) ≥ 2.
For generic H in the pencil, the only irreducible component of {discε,d = 0} containing aH

is Y because the point a1 ∈ Y is not in other irreducible components and Y is Gm-stable,
and moreover div0(aH) = H ∩ C is disjoint from Z(D) since H1 ∩ C ⊆ C − Z(D). Also,
for generic H the intersection H ∩ C is non-étale only at x, with order of contact exactly
2: this is immediate by generization from the fact that H2 enjoys this property. Hence, by
picking generic H in the pencil we find a closed point a ∈ Y such that (i) a lies on no other
irreducible components of the zero-scheme of discε,d, and (ii) div0(a) is disjoint from Z(D)
and is étale away from a single double zero at some point x ∈ C(k). We will now prove that
discε,d and ND,d are unit multiples of each other in the regular complete local ring ÔV 0

d,a

for any such a, and hence they are also unit multiples of each other in OV 0
d,a; localizing at

the generic point η of Y will then yield ordη(discε,d) = ordη(ND,d), completing the proof of
Theorem 4.1.

Pick a finite local k-algebra R and ã ∈ V 0
d(R) lifting our above choice of a ∈ V 0

d(k) corre-
sponding to a generic H in the pencil. It suffices to show that the vanishing of discε,d(ã) ∈ R
is equivalent to the vanishing of ND,d(ã) ∈ R. That is, we want the degree-d finite flat R-
algebra (R ⊗k A)/(ã) to have vanishing discriminant in R if and only if the image of Dã
in (R ⊗k A)/(ã) has vanishing norm in R. Since the k-finite Spec(A/(a)) in C is étale at
all points away from x and has a zero at x of order exactly 2, the R-algebra (R ⊗k A)/(ã)
decomposes into a product of copies of R and a single rank-2 local factor ring

((R⊗k A)/(ã))x = (R⊗k A)x/(ã)

that deforms the local ring (A/a)x at x on the zero-scheme of a on C = Spec A. Moreover,
Dã has unit image in the rank-1 local factors of (R ⊗k A)/(ã) because (i) these factors
correspond to the (simple) zeros of a away from x, and (ii) Da is necessarily nonzero at
simple zeros of a since the vector field D on C is nonvanishing at all points of the k-scheme
Spec(A/(a)) ⊆ C. Thus, discε,d(ã) ∈ R is a unit multiple of the discriminant of the rank-2
finite flat R-algebra (R⊗k A)x/(ã). A similar argument using the definition of ND,d in (4.2)
(with k′ = R) shows that the norm ND,d(ã) ∈ R is a unit multiple of the norm of the image
of Dã in the rank-2 algebra (R⊗k A)x/(ã).

In the completion (R ⊗k A)∧x ' R ⊗k A∧
x ' R[[u]], the image of ã has reduction a ∈ k[[u]]

with order 2. Thus, by Weierstrass Preparation, we can find an R-algebra isomorphism
R⊗k A∧

x ' R[[U ]] carrying ã to U2 + rU + s with r, s ∈ mR. Since x 6∈ Z(D), the continuous
R-derivation of R ⊗k A∧

x induced by D must be dual to a generator of Ω̂1
(R⊗kA∧x )/R, or

in other words must be a unit multiple of d/dU , since D is dual to a local generator
of Ω1

C/k,x. Thus, ND,d(ã) is a unit multiple of the norm of the U -derivative 2U + r in
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(R⊗k A)x/(ã) ' (R⊗k A)∧x/(ã) ' R[U ]/(U2 + rU + s). This norm is −r2 +4s. Meanwhile,
the discriminant of this rank-2 algebra computed with respect to the basis {1, U} is r2−4s.
Thus, this norm and discriminant are indeed unit multiples of each other, and so one
vanishes in R if and only if the other does. �

To apply Theorem 4.1 we shall now assume that k is perfect (still possibly of characteristic
0). Pick h ∈ A[T ] with deg h > 0. Assume that its zero scheme Zh ⊆ C×A1

k is reduced with
quasi-finite (necessarily flat) projections to both C and A1

k, and assume that the projection
Zh → A1

k is étale generically on Zh. In characteristic 0, these conditions say that h is both
primitive with respect to A (see Definition 2.1) and squarefree in K[T ] with no irreducible
factor in k[T ]. In particular, h has a nonzero lower-degree coefficient, so it makes sense to
define ν(h) as in (3.3). Recall also from Lemma 2.2 and Theorem 2.6 that in characteristic
p > 0 our assumptions on h hold if h is primitive and either h(T p) is squarefree in K[T ] or
h ∈ K[T p] with h squarefree in K[T ].

Let B ⊆ Zh be the k-finite branch scheme for the map Zh → A1
k, so for each x = (ux, tx) ∈

B we get an algebraic function Px,d on V d defined as in (3.12). If d > ν(h) then as in (3.6)
the polynomial h defines an algebraic map V 0

d → V 0
ρ(d) with ρ(d) = d ·deg h−ordξ(lead(h)).

For any nonzero k-linear derivation D : A → A and d > ν(h) we define the k-morphism
Rd(h, Dh) : V 0

d → A1
k by

(4.4) Rd(h, Dh) : a 7→ N((k′⊗kA)/(h(a)))/k′((Dh)(a)) ∈ k′

for a ∈ V 0
d(k

′) with any k-algebra k′; here (k′⊗k A)/(h(a)) is a finite free k′-module of rank
ρ(d), and Dh ∈ A[T ] is defined by extending D to a k[T ]-linear derivation on A[T ]. In the
genus-0 case A = k[u] with D having no zeros on the affine line, Rd(h, Dh)(a) is essentially
the resultant of h(a) and (Dh)(a) (up to multiplication by a unit bD,d · lead(h(a))eD,d on
V 0

d for some bD,d ∈ k× and eD,d ∈ Z that are independent of a).

Theorem 4.4. Let h ∈ A[T ] and the k-derivation D : A → A be as above. Assume that
Z(D) is disjoint from the image in C of the branch scheme B. For d > max(ν(h), 2g) there
exist positive integers ex,d (independent of D) for all x ∈ B and a unit wD,d on V 0

d such
that on V 0

d

(4.5) Rd(h, Dh) = wD,d · (NZ(D)/k,ρ(d) ◦ h) ·
∏
x∈B

(P 0
x,d)

ex,d ,

and in the coordinate ring of V 0
d the factors NZ(D)/k,ρ(d) ◦ h and {P 0

x,d}x∈B are pairwise
relatively prime.

If D′ : A → A is a second nonzero k-derivation with Z(D′) disjoint from the image of B
in C then wD′,d/wD,d has order deg h · ordξ(D′/D) along the hyperplane V d−1 in V d.

Proof. Due to the simple behavior of Px,d under change in the perfect ground field (as we
recorded above Lemma 3.5), we may assume k is algebraically closed. If B is nonempty,
then for each x = (ux, tx) ∈ B ⊆ C ×A1

k and d > max(ν(h), 2g) the irreducible zero locus
of Px,d on V 0

d is not contained in the zero locus of NZ(D)/k,ρ(d) ◦h. Indeed, since ux 6∈ Z(D)
and d ≥ 2g with d > 0, there exists a ∈ V 0

d such that a(ux) equals tx and a(c) avoids the set
of at most deg h roots of the nonzero specialization hc ∈ k[T ] for each of the finitely many
c ∈ Z(D) (so NZ(D)/k,ρ(d)(h(a)) 6= 0 and Px,d(a) = 0). Since reduced irreducible schemes of
finite type over k (such as {Px,d = 0}) are generically regular and V 0

d is regular, to prove
(4.5) we have to show:
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• for a ∈ V 0
d , Rd(h, Dh)(a) = 0 if and only if some Px,d(a) vanishes or h(a) vanishes

at some zero of D on C (so Dh 6= 0),
• for a generic choice of closed point a of {NZ(D)/k,ρ(d) ◦ h = 0} (if this locus is not

empty), the functions NZ(D)/k,ρ(d) ◦ h and Rd(h, Dh) on V 0
d are unit multiples of

each other in the regular complete local ring on V 0
d at a,

• for a generic choice of closed point a in the irreducible and reduced {Px,d = 0}, the
image of Rd(h, Dh) in the regular complete local ring at a on V 0

d is independent
of D up to unit multiple (this ensures that the multiplicity ex,D,d of the irreducible
Px,d as a factor of Rd(h, Dh) in the coordinate ring of V 0

d is independent of D, and
so may be denoted ex,d).

We shall verify each of these in turn.
Step 1. To compare zero loci, note that Rd(h, Dh)(a) = 0 if and only if some c ∈ C(k)

at which h(a) vanishes is also a zero of (Dh)(a), or equivalently a(c) is a simultaneous zero
of the specializations hc and (Dh)c in k[T ]. This says that the point (c, a(c)) ∈ C ×A1

k is
in the common zero locus of h and Dh. For a point (c, a(c)) in Zh, certainly (c, a(c)) is in
ZDh if c ∈ Z(D). If c 6∈ Z(D), so D is dual to a generator of Ω1

C/k near c, the calculation
in completions in the proof of Theorem 2.5 shows that the vanishing of Dh at (c, a(c)) is
equivalent to the quasi-finite flat projection Zh → A1

k having non-reduced (i.e., non-étale)
fiber at (c, a(c)). This says (c, a(c)) ∈ B; i.e., Px,d(a) = 0 for some x ∈ B.

Step 2. Consider the elements NZ(D)/k,ρ(d) ◦ h and Rd(h, Dh) in the complete local
ring of V 0

d at a closed point a of {NZ(D)/k,ρ(d) ◦ h = 0}, assuming this zero locus is not
empty. For generic such a, (ux, a(ux)) 6∈ Zh for all x = (ux, tx) ∈ B and the function
h(a) ∈ A = k[C] vanishes at exactly one point z0 ∈ Z(D) (i.e., (z, a(z)) lies in Zh for
exactly one z ∈ Z(D)) because d ≥ 2g + 1. We claim that in the complete local ring
on V 0

d at such a generic a, the element NZ(D)/k,ρ(d) ◦ h is a unit multiple of the function
ã 7→ hz0(ã(z0))ordz0 (D) from the symmetric algebra of V ∨

d . To prove this, first use the map
of local rings h∗a : OV 0

ρ(d),h(a) → OV 0
d,a obtained by pullback along h : V 0

d → V 0
ρ(d) to form

the germ

(NZ(D)/k,ρ(d) ◦ h)a = h∗a((NZ(D)/k,ρ(d))h(a)).

The right side is equal to h∗a(ev
ordz0 (D)
z0 ) · (unit) due to the proof of Lemma 4.2, where

evz0 ∈ OV 0
d,a denotes the “evaluate at z0” functional in V ∨

d . Hence, we obtain

(4.6) (NZ(D)/k,ρ(d) ◦ h)a = (ã 7→ h(ã)(z0)ordz0 (D)) · (unit).

Fix a generic a as above. Because (ux, a(ux)) 6∈ Zh for all x ∈ B, each point (c, a(c)) lying
in Zh with Dc 6= 0 (i.e., with c 6= z0) must have the property that projection from Zh to
A1

k is étale at (c, a(c)) and hence (Dh)(c, a(c)) 6= 0. That is, (Dh)(a) ∈ A is nonvanishing
at all zeros of h(a) on C away from z0. Since z0 ∈ Z(D) is not equal to any of the ux’s, so
(z0, a(z0)) 6∈ B, the projection Zh → A1

k is étale at (z0, a(z0)). Equivalently, (z0, a(z0)) is an
étale point in the a(z0)-fiber of the map Zh → A1

k. That is, if we write h =
∑

αj(T−a(z0))j

in A[T ], then α0 has a simple zero at a(z0). Thus, h(a) ≡ α0 + α1 · (a − a(z0)) mod m2
z0

,
so ordz0(h(a)) = 1 if and only if α0 + α1(a − a(z0)) has a simple zero at z0. Since α0

has a simple zero at z0, it is clearly an additional generic condition on our a ∈ V 0
d that

ordz0(h(a)) = 1. In other words, for a generic closed point a on {NZ(D)/k,ρ(d) ◦ h = 0} the
value h(a) ∈ A is a local parameter at z0. Choose such an a.
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For any finite local k-algebra R and ã ∈ V 0
d(R) lifting a,

Rd(h, Dh)(ã) = N((R⊗kA)/(h(ea)))/R((Dh)(ã)) = (unit) ·N((R⊗kA∧z0 )/(h(eaz0 )))/R((Dh)z0(ã))

in R. Let u ∈ A be a uniformizer at z0. The natural map R → (R ⊗k A∧
z0

)/(h(ãz0)) is
an isomorphism and, by writing D = ue∂ near z0 with e := ordz0(D) and ∂ dual to a
local generator of Ω1

C/k near z0, we can use the same argument as in the proof of Lemma

4.3 to conclude that Rd(h, Dh)(ã) is a unit multiple of hz0(ã(z0))ordz0 (D) in R. Thus, by
passing to the inverse limit over artinian quotients R of O∧

V 0
d,a

and using (4.6), Rd(h, Dh)
and NZ(D)/k,ρ(d) ◦ h are unit multiples in OV 0

d,a and thus have the same multiplicity at the
generic points of the zero locus of NZ(D)/k,ρ(d) ◦ h on V 0

d (assuming this zero locus is not
empty).

Step 3. Before passing to consideration of multiplicities of P 0
x,d’s as factors of Rd(h, Dh)

in O∧
V 0

d,a
for generic choices of a closed point a in {Px,d = 0}, we note that since d ≥ 2g and

d > 0 there is no possibility of repetition among irreducible factors when we consider how
different factors on the right side of (4.5) may contribute to the zero-scheme of Rd(h, Dh).
Indeed, for rational points a ∈ V 0

d with Px,d(a) = 0 for some x ∈ B and a near the generic
point of the irreducible hypersurface {Px,d = 0}, the zero locus of h(a) on C is disjoint from
Z(D) (see the argument at the beginning of the present proof) and moreover Px′,d(a) 6= 0
for x′ 6= x. We choose x ∈ B and such an a that is sufficiently generic on the irreducible
and reduced zero scheme {P 0

x,d = 0}; in particular, a lies in the regular locus of {P 0
x,d = 0}.

Thus, up to unit multiple in the complete local ring of V 0
d at a, the element Rd(h, Dh) is a

power of P 0
x,d and we must prove that the positive exponent for this power is independent

of D when a is generic.
Consider two fixed derivations D and D′ compatible with the hypotheses of the theorem,

so by picking our above a generically we may assume that both D and D′ have nonzero
specialization at the zeros of a. Hence, as sections of the sheaf of derivations of OC , both
D and D′ are unit multiples of each other near the zeros of a. It follows that in the regular
local ring O∧

V 0
d,a

, the elements Rd(h, Dh) and Rd(h, D′h) are unit multiples of each other
(i.e., they vanish at the same set of local artinian points). This proves that the multiplicity
of P 0

x,d as a factor of Rd(h, Dh) is independent of the choice of D. This completes Step 3,
and so proves (4.5).

To compute the order of wD′,d/wD,d along the hyperplane V d−1 ↪→ V d for D′ as in the
final assertion of Theorem 4.4, we consider ratio of (4.5) for D′ and (4.5) for D, evaluated
at a generic a ∈ V 0

d . For φ = D′/D ∈ k(C)×, genericity of a ensures that the divisor of h(a)
is disjoint from the divisor of φ away from ξ, so we readily compute that wD′,d(a)/wD,d(a)
is equal to φ(divCh(a))/h(a)(divCφ). The theory of local symbols for rational maps from
smooth algebraic curves to Gm [12, III, §1.4] identifies this ratio with the product of local
symbols (φ, h(a))x for x ∈ C(k), so the product formula for such local symbols gives

(4.7) φ(divCh(a))/h(a)(divCφ) = (φ, h(a))−1
ξ = (−1)ordξ(h(a)) ordξ(φ) · h(a)ordξ(φ)

φordξ(h(a))
(ξ)

for generic a ∈ V 0
d . Since ordξ(h(a)) = −ρ(d) as in (3.4) with f replaced by h ∈ A[T ], we

obtain

(4.8)
wD′,d(a)
wD,d(a)

= (−1)ρ(d) ordξ(D′/D) · h(a)ordξ(D′/D)

φ−ρ(d)
(ξ).
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As a function of the coordinates c1, . . . , cd+1−g of a ∈ Vd relative to a basis ε1, . . . , εd+1−g as
in §3, (4.8) shows that for d > max(ν(h), 2g) the order of wD′,d/wD,d along the hyperplane
V d−1 defined by the equation cd+1−g = 0 is ordξ(D′/D) deg h. �

Combining Theorem 4.1 and Theorem 4.4, when k is perfect and Z(D) is disjoint from
the ux’s we arrive at an identity

(4.9) Rd(h, Dh) · (discε,ρ(d) ◦ h) = w̃D,d,ε · (ND,ρ(d) ◦ h) ·
∏
x∈B

(P 0
x,d)

ex,d

on V 0
d when d > max(ν(h), 2g + 2) (so ρ(d) ≥ 2g + 1), where w̃D,d,ε is a unit on V 0

d and the
explicit formula for both eD,d in (4.3) and ordV d−1

(wD′,d/wD,d) in Theorem 4.4 imply that
ordV d−1

(w̃D,d,ε) is independent of D. A stronger property is true: w̃D,d,ε is independent of
D. This property holds provided that (ND,ρ(d) ◦ h)/Rd(h, Dh) is independent of the choice
of D, and such independence of D follows by inspection of values at generic geometric closed
points (since any two choices of D have ratio given by an element of k(C)×). We shall now
write wd instead of w̃D,d,ε, suppressing explicit mention of the dependence of wd on ε.

Using the structure (3.13) of units on V 0
d, we can rewrite (4.9) as an equality of rational

functions on V 0
d:

(4.10) discε,ρ(d) ◦ h = bdc
ed
d+1−g

∏
x

(P 0
x,d)

ex,d ·
ND,ρ(d) ◦ h

Rd(h, Dh)
,

with any nonzero k-linear derivation D : A → A, where both bd ∈ k× and ed ∈ Z depend
on ε but are independent of D, and ed mod 2 is independent of ε (as is bd mod (k×)2 if
ed is even). Note that (4.10) recovers (3.14) when k has positive characteristic p and h
is a polynomial in T p, since the ratio on the right side of (4.10) then equals 1 because
(Dh)(a) = D(h(a)) for all Yoneda-points a ∈ V 0

d in such cases. Thus, Theorem 1.5 is a
special case of:

Theorem 4.5. In the setting of Theorem 4.4, for all sufficiently large d (only depending on
the genus g and the total degree degu,T h), the exponent ex,d in (4.5) is the length `(OB,x) at
x for the k-finite branch scheme B of the projection from Z = Zh ⊆ C ×A1

k to the T -line.

We shall deduce Theorem 4.5 from a more general setup that does not involve derivations.
First, observe that the hypotheses on h and D in Theorem 4.4 ensure that (i) the exponent
ex,d in (4.5) is the multiplicity of the irreducible P 0

x,d as a factor of Rd(h, Dh) in the UFD
coordinate ring of V 0

d, and (ii) the curves {h = 0} and {Dh = 0} in C × A1
k have finite

intersection that contains B as an open and closed subscheme. (Strictly speaking, the
“curve” {Dh = 0} may be empty, though this can only happen if B is empty.)

Let h1, h2 ∈ A[T ] be nonzero elements whose (possibly empty) zero loci Zhj
in C×A1

k have
finite intersection. For each x = (ux, tx) ∈ Zh1 ∩ Zh2 and d > 0 we define Px,d : V 0

d → A1
k

by a 7→ Nk(x)/k(a(ux) − tx), as usual. We define ν(h1) as in (3.3), with the convention
ν(h1) = 0 if h1 is a monomial, and as in (3.6) for d > ν(h1) we use substitution into h1 to
define an algebraic map V 0

d → V 0
ρ1(d) with ρ1(d) = d · deg h1 − ordξ(lead(h1)). For such d

we may therefore define the k-morphism Rd(h1, h2) : V 0
d → A1

k by

Rd(h1, h2) : a 7→ N((k′⊗kA)/h1(a))/k′(h2(a)) ∈ k′

for a ∈ V 0
d(k

′) with any k-algebra k′; this is a generalization of (4.4), and in the case A = k[u]
with monic h1 and h2 it agrees (up to universal sign conventions) with the function that
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sends a to the resultant of the ordered pair (h1(a), h2(a)) (hence the notation). The same
method as at the beginning of the proof of Theorem 4.4 shows that for d > max(ν(h1), 2g)
we have

(4.11) Rd(h1, h2) = wd ·
∏

x∈Zh1
∩Zh2

(P 0
x,d)

ex,d

for some ex,d > 0 and some unit wd on V 0
d. The exponent ex,d is the multiplicity of the

irreducible P 0
x,d as a factor of Rd(h1, h2), and so Theorem 4.5 is a special case of:

Theorem 4.6. For h1, h2 ∈ A[T ] as above, if d > 2g + 2degu,T h1 · degu,T h2 then the
exponent ex,d in (4.11) is equal to the intersection number ex = ix(Zh1 , Zh2) at x.

Our proof is modelled on the simpler case A = k[u] that is treated in [2, Thm. 4.5].

Proof. Since k is perfect, we may and do take k to be algebraically closed.
Step 1. Let us first treat the cases when degT h1 = 0 or degT h2 = 0. First assume

degT h2 = 0, so h2 = a0 ∈ A − {0}. The case h2 ∈ k× is trivial, so we may assume
degu,T h2 > 0 and hence d > max(ν(h1), 2g). Clearly Rd(h1, h2) is the algebraic function
a 7→ N(A/h1(a))/k(a0) on V 0

d. For all x ∈ Zh1 ∩ Zh2 let Hx be the codimension-1 locus of
points a ∈ V 0

d such that a(ux) = tx. We want to prove that for all such x the function
Rd(h1, h2) on V 0

d has order along Hx equal to ix(Zh1 ∩Zh2). Since h2 = a0 ∈ A− {0}, this
intersection number at x is equal to ordux(a0) ordtx(h1,ux), where h1,ux ∈ k(ux)[T ] = k[T ]
denotes the specialization of h1 ∈ A[T ] at the zero ux of a0 = h2. By computing with
multiplicative local symbols as in (4.7), for generic a ∈ V 0

d we have
(4.12)

Rd(h1, h2)(a) = a0(divCh1(a)) = (−1)ordξ(h1(a)) ordξ(a0) · h1(a)(divCa0) ·
h1(a)ordξ(a0)

a
ordξ(h1(a))
0

(ξ).

For a with − ordξ(a) = d, the exponent ordξ(h1(a)) = −degT (h1)d−dimk(A/(lead(h1))) in
(4.12) only depends on h1 and not on a. Likewise, when the final factor in (4.12) is considered
as a rational function of a ∈ V 0

d it is clearly a unit near the generic point of Hx. Hence, it
is sufficient to study the order along Hx of the algebraic function a 7→ h(a)(divCa0) on V 0

d

with h ∈ A[T ] any nonzero element satisfying hux(tx) = 0 and hu0 6= 0 for all u0 ∈ divC(a0);
we wish to prove that this order along Hx is ordux(a0) ordtx(hux).

The only remaining role of a0 ∈ A− {0} is through its divisor, the principality of which
is now irrelevant, and the problem is visibly additive in this divisor. Since a 7→ h(a)(u0) =
hu0(a(u0)) is a unit near the generic point of Hx for u0 ∈ C(k)− {ux}, it clearly suffices to
treat the case of the divisor {ux}: we claim that the algebraic function a 7→ hux(a(ux)) on
V 0

d has order along Hx = {a(ux) = tx} equal to ordtx(hux). Replacing a with a− tx and h
with h(T + tx) reduces us to the case tx = 0, so for any nonzero h0 ∈ k[T ] (such as hux)
we want the algebraic function a 7→ h0(a(ux)) on V d to vanish to order ord0(h0) along the
hyperplane killed by evaluation at ux. This claim is multiplicative in h0, so by factoring h0

it is enough to treat to the cases h0 = c ∈ k× and h0 = T − c′ (with c′ ∈ k). These cases
are all trivial.

Next, assume h1 = a0 ∈ A− {0}, so Rd(h1, h2) sends a to h2(a)(divCa0). The preceding
argument shows

ordHx(Rd(h1, h2)) = ordux(a0) ordtx(h2,ux) = ix(Zh1 ∩ Zh2),

as required.
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Step 2. Now we may suppose degT h1,degT h2 > 0. The key is to prove ex,d ≥
ix(Zh1 , Zh2) for all x ∈ Zh1 ∩Zh2 and sufficiently large d as in the statement of the theorem.
We shall prove this in Steps 3 and 4 by a deformation technique that generalizes the method
used to handle the case of genus 0 in [2, §4], and the conditions degT hj > 0 will not be
used until near the end of Step 4. Granting these lower bounds on the ex,d’s for now, let us
show that they must be equalities.

It is enough to verify equality upon adding up all of these inequalities. That is, we wish
to prove

∑
x ex,d = `(Zh1∩Zh2) for our large d. Using linear coordinates {y1, . . . } on Vd dual

to the basis {ε1, . . . , εd+1−g} with ε1 = 1, each P 0
x,d ∈ k[V 0

d] = k[y1, . . . , yd+1−g][1/yd+1−g]
is a linear form in the yj ’s that has degree 1 in y1 (but for j > 1 this linear form does
not involve yj if εj(ux) = 0). Hence,

∑
x ex,d is the y1-degree of the algebraic function

Rd(h1, h2) on V 0
d.

Fix a choice of ad ∈ V 0
d that vanishes to order exceeding ix(Zh1 , Zh2) at ux for all

x ∈ Zh1 ∩ Zh2 ; such an ad exists if d ≥ 2g + 2`(Zh1 ∩ Zh2), and by intersection theory on
C ×P1 we can bound `(Zh1 ∩Zh2) from above by degu,T h1 · degu,T h2. Hence, we can find
ad subject to the desired lower bound on d determined by the degu,T hj ’s and the genus.

Consider the algebraic function ad + T ∈ A[T ] on C ×A1
k. Its specialization over each k-

point of the affine k-line is a function on C with a pole of exact order d at ξ (since d > 0), so
by universality it is the pullback of the universal function

∑
j≤d+1−g εj⊗yj on C×V 0

d along
a unique k-morphism A1

k → V 0
d. Algebraically, since ε1 = 1 this k-morphism corresponds

to the k-algebra map k[V 0
d] → k[T ] that carries yj to yj(ad) for j > 1 and carries y1 to

T + y1(ad), so the product of linear forms Rd(h1, h2) ∈ k[V 0
d] is pulled back to an element

in k[T ] with T -degree
∑

x ex,d. But this pullback is N(A[T ]/(h1(ad+T )))/k[T ](h2(ad + T )), so
our problem is to prove

degT N(A[T ]/(h1(ad+T )))/k[T ](h2(ad + T )) ?= `(Zh1 ∩ Zh2)

for all large d, with largeness that is determined in the desired manner in terms of the
degu,T hj ’s and the genus. In fact, the largeness will only depend on degT h1 and the
ξ-orders of the coefficients of h1.

It shall be convenient first to give a direct proof that for d > degu,T h1 the zero-scheme

Spec(A[T ]/(h1(ad + T ))) = Zh1(ad+T ) ⊆ C ×A1
k

is finite flat over the T -line A1
k and this goes as follows. The constant term h1(ad) ∈ A−{0}

has pole-order at ξ that is larger than the pole-order of all positive-degree coefficients of
h1(ad + T ) ∈ A[T ] when d > degu,T h1, so the restriction of h1(ad + T ) to each fiber of
C × A1 → A1 is not a zero-divisor. Hence, quasi-finiteness over A1

k follows and by the
local flatness criterion (as in [11, Cor. to 22.5]) we see that Zh1(ad+T ) is flat over the T -
line. Consideration of pole-orders at ξ for coefficients of h1(T ) shows that the geometric
fibers of Zh1(ad+T ) → A1

k all have the same rank when d > degu,T h1, namely the rank is
− ordξ(h1(ad)) because for any nonzero rational function on C the number of zeros equals
the number of poles with multiplicity. Thus, finiteness follows from the fact that a quasi-
finite separated flat map between locally noetherian schemes is finite if its fiber-rank is
locally constant on the base [6, II, 1.19]. (The noetherian restriction can be removed.)

Let gj(T ) = hj(ad+T ) ∈ A[T ], so there is an evident equality of sets Zh1∩Zh2 = Zg1∩Zg2

in C ×A1
k because ad(ux) = 0 for all x ∈ B. Since ad as a function on C vanishes at ux to

order exceeding ix(Zh1 , Zh2), formally at x ∈ Zg1∩Zg2 each Zgj is described as a deformation
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of Zhj
at x that is the identity up to order ix(Zh1 , Zh2). Hence, as we argued at the end of

the proof of [2, Thm. 4.5], such deformation does not change the local intersection number.
This gives `(Zh1 ∩ Zh2) = `(Zg1 ∩ Zg2), so our problem is a special case of the following
general situation. Consider any nonzero g1, g2 ∈ A[T ] such that the constant term (in A)
of g1 is nonzero with larger pole-order at ξ than the pole-orders at ξ for the positive-degree
nonzero coefficients of g1. We also assume that Zg1 ∩Zg2 is finite. These hypotheses suffice
to make Zg1 finite and flat over the T -line, so NZg1/A1(g2) makes sense as an element of
k[T ], and these hypotheses also ensure that this norm is nonzero. Our claim is that this
nonzero norm in k[T ] has T -degree `(Zg1 ∩ Zg2). This norm is the k[T ]-determinant of
multiplication by g2 on the finite flat k[T ]-algebra A[T ]/(g1), so by [7, Lemma A.2.6] the
degree of this norm (or equivalently, the length of its zero-scheme in A1

k) is equal to the
Herbrand quotient for multiplication by g2 on A[T ]/(g1). This latter multiplication map
has cokernel with length `(Zg1∩Zg2), so we just need the kernel to be 0, which is to say that
g2|Zg1

is not a zero divisor. Since Spec(A[T ]) = C ×A1 is a regular surface, this property
of g2|Zg1

follows from the fact that it is a generic unit on the effective Cartier divisor Zg1

in C ×A1.
Step 3. We now return to the task of proving ex,d ≥ ix(Zh1 , Zh2) for all x ∈ Zh1 ∩ Zh2 .

Consider any h̃j ∈ k[[τ ]]⊗k A[T ] that lifts hj and has T -degree degT hj such that the nonzero
leadT (h̃j) ∈ k[[τ ]] ⊗k A has leading coefficient in k[[τ ]]× for its Laurent expansion along ξ;
that is, its pole-order at ξ on Ck((τ)) is the same as the pole-order at ξ ∈ C for its nonzero
reduction leadT (hj) ∈ A. We also assume that the total degree degu,T h̃j over k((τ)) is equal
to degu,T hj . Such deformations h̃j with additional convenient properties will be constructed
in Step 4. Note that each zero-scheme Zehj

is k[[τ ]]-flat, and so is equal to the closure in
(C ×A1)k[[τ ]] of its k((τ))-fiber.

We may use such h̃j ’s to deform Rd(h1, h2) to an algebraic function (V 0
d)k[[τ ]] → A1

k[[τ ]]

over k[[τ ]] defined functorially by

Rd(h̃1, h̃2) : a 7→ NZeh1(a)
/ Spec(R)(h̃2(a)) = N

((R⊗kA)/(eh1(a)))/R
(h̃2(a)) ∈ R

for all k[[τ ]]-algebras R and a ∈ V 0
d(R). To make sense of this definition we have to show

that (R⊗k A)/(h̃1(a)) is a finite locally free R-module for all such R and a if d is sufficiently
large (e.g., as large as in the statement of the theorem that we are presently trying to prove).
This property follows from Lemma 3.3, as we now explain. By hypothesis, h̃1 has the same
T -degree over the generic and closed points of Spec k[[τ ]] and its leading coefficient as an
element of k[[τ ]] ⊗k A has the same pole order at ξ considered as a rational point on both
the generic and closed fibers of Ck[[τ ]] → Spec k[[τ ]]. Thus, provided that d is large enough
(as is determined by the pole-orders along ξ for the coefficients of h̃1 ∈ (k((τ)) ⊗k A)[T ]
and h1 ∈ A[T ]), the pole-order at ξ on each fiber over Spec R is the number ρ1(d) =
d · degT h1 − ordξ(leadT (h1)) that only depends on d. That is, for large enough d we have
h̃1(a) ∈ V 0

ρ1(d)(R) for all R and a. Due to the degree properties we are assuming for h̃1

(especially degu,T h̃1 = degu,T h1), the d’s in the statement of the theorem are large enough
for this purpose. By Lemma 3.3, the zero-scheme of h̃1(a) on CR is therefore indeed finite
and locally free over R for a ∈ V 0

d(R) with such large d.
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We wish to exploit information on the k((τ))-fiber, so let us next check that the k[[τ ]]-
scheme Zeh1

∩ Zeh2
is quasi-finite; that is, we have to show that the generic fibers (Zehj

)k((τ))

have no common irreducible component in (C × A1)k((τ)). If such a component Z exists,
consider the closure of Z in (C × P1)k[[τ ]]. This closure has irreducible closed image in
Ck[[τ ]] that meets the generic fiber, so this image is either all of Ck[[τ ]] or is the closure of
a closed point of Ck((τ)). We shall deduced a contradiction in either case. First assume
that the closure of Z surjects onto Ck[[τ ]]. This closure is contained in the closure of each
Zehj

in (C ×P1)k[[τ ]], so the closures of the Zehj
’s in (C ×P1)k[[τ ]] have overlap that surjects

onto Ck[[τ ]]. Hence, the reductions of these closures modulo τ have overlap in C ×P1 that
surjects onto C. But the reductions Zhj

are closed in C × A1 with finite overlap, so the
closure Yj of each Zehj

in (C×P1)k[[τ ]] must have reduction modulo τ that contains C×{∞}
as an irreducible component. Since Yj is defined by the homogenization of h̃j in A[T0, T1]
(with T = T0/T1), its reduction modulo τ contains C × {∞} = {T0 = 0} if and only if
leadT (h̃j) ∈ k[[τ ]]⊗k A is divisible by τ . Such divisibility for either j contradicts our initial
hypotheses on the Laurent expansions of each h̃j along ξ.

Next, consider the possibility that the closure of Z in (C × P1)k[[τ ]] has image in Ck[[τ ]]

equal to the closure c ⊆ Ck[[τ ]] of a closed point cη ∈ Ck((τ)). Such a closed point clearly
must lie in Ck((τ)), and its reduction into C is some k-point c0. If c0 ∈ C(k) (that is,
c0 6= ξ) then the closure of Z in (C ×A1)k[[τ ]] has reduction containing the line {c0} ×A1

k,
yet this closure is contained in each of the Zehj

’s because each Zehj
⊆ (C × A1)k[[τ ]] is the

closure of its own generic fiber. The reductions Zhj
⊆ C ×A1

k therefore each contain the
line {c0} × A1

k, yet by hypothesis Zh1 ∩ Zh2 is finite. This is a contradiction, so c0 = ξ.
The same argument implies that the closure of each Zehj

in (C × A1)k[[τ ]] has reduction
containing {ξ} ×A1

k, so we need to rule out this possibility. In fact, for both j’s this gives
a contradiction, as follows. Working with j = 1, say, we may write h̃1 =

∑
i αiT

i with
αi ∈ k[[τ ]]⊗k A. Each αi viewed in k((τ))⊗k A must vanish at the point cη. For d = degT h̃1

we have αd = leadT (h̃1), and if y is a local parameter along ξ on C then the completion of
the regular surface Spec(k[[τ ]] ⊗k A) at the k-point ξ is identified with k[[τ, y]]. By faithful
flatness of completion, it follows that the image of αd in the Dedekind domain k[[τ, y]][1/y]
has a prime factor and so is not a unit. But the initial hypothesis on the Laurent expansion
of αd = leadT (h̃1) is that its k[[τ ]]-coefficient in minimal y-degree is a unit, and this forces αd

to have unit image in k[[τ, y]][1/y]. Hence, we again get a contradiction, and this completes
the proof that Zeh1

∩ Zeh2
is quasi-finite over Spec(k[[τ ]]).

Step 4. The sequence {h̃1, h̃2} in k[[τ ]] ⊗k A[T ] has reduction {h1, h2} in A[T ] that is
regular, so by the local flatness criterion the overlap Zeh1

∩ Zeh2
is k[[τ ]]-flat at all points

of its closed fiber. Hence, this overlap is k[[τ ]]-flat. We may apply the structure theorem
[9, IV4, 18.5.11] to this quasi-finite separated and flat k[[τ ]]-scheme, so its “finite part” has
connected components that are finite flat over k[[τ ]]. The component that lifts x ∈ Zh1 ∩Zh2

has k[[τ ]]-rank ix(Zh1 , Zh2) for each such x.
Let L be an algebraic closure of k((τ)), and let O be the integral closure of k[[τ ]] in L.

By viewing h̃1 and h̃2 in (AL)[T ], we get a factorization of Rd(h̃1, h̃2) in L[V 0
d] by using

pairwise relatively prime linear forms on (V d)L associated to the L-points of Zeh1
∩Zeh2

. More
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specifically, for each L-point x̃ specializing to x ∈ Zh1 ∩Zh2 , the corresponding linear factor
P 0ex,d over L lies in the coordinate ring of (V 0

d)O over O and has reduction P 0
x,d ∈ k[V 0

d] that
is not zero and not a unit. Using Gauss’ Lemma over a sufficiently large finite extension of
k((τ)) in L implies that the reduction Rd(h1, h2) of Rd(h̃1, h̃2) ∈ O[V 0

d] is divisible by P 0
x,d

with multiplicity at least as large as the number of points x̃ ∈ (Zeh1
∩Zeh2

)(L) that specialize
to x.

Since the component of the finite part of Zeh1
∩Zeh2

lifting x has rank ix(Zh1 , Zh2), it has
at most ix(Zh1 , Zh2) distinct L-points, with equality if and only if the generic fiber of this
component is k((τ))-étale. Hence, if we can choose the deformations h̃j so that Zeh1

∩ Zeh2

has étale k((τ))-fiber then we will be done.
As a first step, we show how to pick the deformation h̃j so that each Zehj

has smooth

k((τ))-fiber. Upon choosing such an h̃j for j = 2 we shall then refine the construction of h̃1

to force the overlap Zeh1
∩ Zeh2

to be k((τ))-étale. Fix j and consider the finite-dimensional
subspace of A[T ] spanned by the following elements: the monomials that occur in hj , a
basis of the k-vector space L((2g + 1)ξ) that generates the k-algebra A, and the element
T . This defines an isomorphism of C ×A1 onto a smooth closed surface S in some affine
space ANj such that Zhj

is one of the hyperplane sections of S. Also, since dj = degT hj

is positive, a generic hyperplane section is defined by an element of A[T ] with T -degree
dj and with T i-coefficient having the same pole-order at ξ as does the T i-coefficient of hj

for 0 < i ≤ dj . By Bertini’s theorem, there is a Zariski-dense open locus Wj of affine
hyperplanes in ANj whose intersection with S is smooth. For a generically chosen member
hj,0 ∈ Wj , all but finitely members of the pencil h̃j = hj + τhj,0 in the parameter τ have
smooth zero-locus on C ×A1. This pencil considered over k[[τ ]] satisfies the T -degree and
ξ-order requirements, and its k((τ))-fiber obviously has smooth zero locus on (C ×A1)k((τ)).
Fixing such a choice of h2,0 and hence h̃2, we can argue exactly as in the proof of the case
of genus zero [2, Thm. 4.5] to find a suitable h1,0 so that Zeh1

∩Zeh2
has étale k((τ))-fiber. �

As an application of Theorem 4.5, consider f as in Theorem 3.6 (so k is perfect with
characteristic p > 2). Write f = h(T pm

) with maximal m > 0. Let Z ′ ⊆ C ×A1
k be the

zero scheme of h and B′ ⊆ Z ′ the k-finite branch scheme for the projection Z ′ → A1
k. (The

k-finiteness of B′ follows from Theorem 2.6.) Finally, let φ : A1
k → A1

k be the relative
Frobenius map. The induced mapping 1× φm : Z → Z ′ is finite flat with degree pm and so
by a cartesian square argument it satisfies (1× φm)−1(B′) = B as schemes. For a suitable
notion of “genericity” for f it is shown in the proof of [3, Thm. 3.6] that the k-scheme B′

has an étale point, so the length of the artin local ring at some point of B is a power of
p (and in particular is odd) for suitably “generic” f . Since the lengths of B at its points
arise as exponents in Theorem 4.5, oddness of such a length for “generic” f has interesting
consequences in the context of asymptotic and nontriviality questions concerning a proposed
correction factor in the standard (false) conjecture predicting primality statistics for f(a)
in A as deg(a) →∞; see [3, Thms. 3.6, 3.8].

5. Good projections

We return to the notation as in §3: k is a perfect field with arbitrary positive characteristic
p. This section develops the formalism for finding “good projections” π : C → P1 that are
totally ramified at ∞ with ξ as the unique point over ∞. Such projections realize A as a
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finite extension of k[u], and suitable such π will enable us to later deduce results for f by
applying the theory for genus 0 in [2] to the norm Nπ(f) ∈ k[u, T p]. The main task we
therefore wish to address now is arranging for such norms to be squarefree in k(u)[T p] and
primitive with respect to k[u]; it is hopeless to expect such norms to be irreducible over
k(u). The squarefreeness property over k(u) is subtle because k(u) is not a perfect field.

For any d ≥ 1, the open subvariety V 0
d = V d−V d−1 within the affine space V d associated

to the vector space Vd = L(d · ξ) classifies degree-d maps C → P1 that are totally ramified
over ∞ with ξ lying over ∞. Clearly V 0

d is a hyperplane complement in V d of dimension
d + 1− g when d ≥ 2g; we will be interested in certain open loci within V 0

d, so to avoid the
burden of notation such as V 00

d for such opens we shall now write Hd instead of V 0
d; this

also emphasizes the interpretation of V 0
d as a Hom-scheme rather than as a Zariski-open

locus in an affine space. We will use the notation Hd for both the scheme V 0
d as well as

the Hom-functor that it represents. Since there will be other degree-parameters of interest
that we prefer to denote as d, we will write r in the role of d above, and so we will write
Hr rather than Hd.

Let S be a k-scheme. For any r ≥ 1, any degree-r map π ∈ Hr(S), and any s ∈ S, the map
πs : Ck(s) → P1

k(s) is generically étale if and only if s is in the image under pr2 : C ×S → S

of the open étale locus in C × S for the finite locally free S-map π : C × S → P1
S . Since

C × S is S-smooth and smooth maps are open, the locus of points s ∈ S such that πs is
generically étale is therefore Zariski-open in S. Thus, by considering the universal case over
S = Hr we see that the subfunctor of Hr classifying degree-r S-maps π : C × S → P1

S such
that all πs are generically étale is represented by a Zariski-open locus H0

r in Hr. Since r · ξ
is very ample when r ≥ 2g + 1, for such r we see by Bertini’s theorem that H0

r is nonempty
(i.e., over an algebraic closure k of k, the divisor r · ξ is linearly equivalent to x1 + · · ·+ xr

for some distinct points x1, . . . , xr ∈ C(k) = C(k) − {ξ}). Our interest is in the locus H0
r ,

or rather in certain nonempty opens within H0
r .

For any k-scheme S, the polynomial f ∈ A[T ] induces a polynomial fS ∈ Γ(C × S, O)[T ]
via pullback along pr1 : C × S → C, so for π ∈ Hr(S) we may define the norm polynomial

FS := Nπ(fS) ∈ Γ(A1
S ,OA1

S
)[T ]

by using the finite locally free map OA1
S
[T ] → π∗(OC×S)[T ] defined by π : C × S → A1

S .
Clearly FS has exact T -degree equal to r degT f in the sense that F has its coefficient in
T -degree r degT f that is fiberwise nonzero over S and FS has vanishing coefficients in all
higher T -degrees. We also have FS(h) = Nπ(fS(h)) for all global functions h on A1

S , and
the formation of FS is compatible with base-change on S. To keep the notation uncluttered
we shall often write F rather than FS and (inside of the Nπ’s) f rather than fS ; the context
should make this abuse of notation tolerable.

Lemma 5.1. For all s ∈ S, the s-specialization Fs ∈ k(s)[u, T ] of F has no irreducible
factor in k(s)[u] and no irreducible factor in k(s)[T ].

Proof. It suffices to treat the case S = Spec k′ with k′ algebraically closed. If F has an
irreducible factor in k′[T ] then by specializing T to a root t0 ∈ k′ of this factor we would
get that the element f(t0) in the domain k′ ⊗k A has norm 0 in the subring k′[u] over
which k′ ⊗k A is finite flat, so f(t0) ∈ k′ ⊗k A vanishes. This contradicts the fact that the
projection from Zf ⊆ C ×A1 to A1 is quasi-finite. Likewise, if F has an irreducible factor
in k′[u] then by specializing u to a root u0 ∈ k′ of this factor we would get that f ∈ A[T ]
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specializes to an element in the finite flat k′[T ]-algebra

((k′ ⊗k A)/(π∗(u− u0)))[T ] '
∏

c∈π−1(u0)

Oπ−1(u0),c[T ]

with norm 0 in k′[T ], so f has nilpotent specialization in some Oπ−1(u0),c[T ]. That is, f

specializes to 0 in k′(c)[T ] for some c ∈ π−1(u0), contradicting the primitivity hypothesis
on f (i.e., that the projection from Zf ⊆ C ×A1 to C is quasi-finite). �

The absence of fiberwise-factors purely in u or in T is crucial in the proof of:

Theorem 5.2. For π ∈ H0
r (S), the locus of s ∈ S such that Nπ(f) ∈ Γ(A1

S ,OA1
S
)[T ] has

squarefree specialization in k(s)[u, T ] is Zariski-open in S. In the special case S = H0
r with

π corresponding to its universal point, this locus is nonempty when r ≥ 2g + 1.

The squarefreeness property in this theorem is algebraic and not geometric because re-
duced plane curves over k(s) need not be generically smooth (as k(s) may not be perfect).

Proof. Since f ∈ K[T p] is squarefree in K[T ], we have f(T ) =
∏

fi(T pei ) with separable
fi ∈ K[T ] and 1 ≤ e1 < e2 < . . . such that gcd(fi(T ), fj(T pej−ei )) = 1 for all i < j and
deg fi > 0 for all i; the ei’s are intrinsic to f and the fi’s are unique up to K×-multiple.
Conversely, the existence of such a factorization of f in K[T ] forces f to be squarefree
in K[T ]. Note that the formation of the ei’s and the ideals (fi) in K[T ] commutes with
extension of k. Beware that there may be a nontrivial common factor of (fi) and (fi′) for
some i 6= i′ even though f(T ) is squarefree in K[T ].

Step 1. We first prove the Zariski-openness claim in the theorem. Let a0 = lead(f) ∈
A − {0}. Since f has unit leading coefficient over the Dedekind domain A[1/a0], clearly
the elements fi ∈ K[T ] can be chosen in A[1/a0][T ] with unit leading coefficients. Let
Y ⊆ C = Spec A be the k-finite locus where a0 vanishes. The image π(Y × S) in A1

S is
S-finite, so U = A1

S − π(Y × S) is an open subset in A1
S that is fiberwise-dense over S.

Note that all coefficients of each fi ∈ K[T ] are regular functions on C − Y and hence are
regular functions on the open subset π−1(U) ⊆ C − Y that is finite flat (of degree r) over
U . Letting

π : π−1(U) = C − π−1(π(Y )) → U

be the restriction of π over U , we may therefore define Nπ(fi) := Nπ(fi|π−1(U)) over U .
Clearly

(5.1) Nπ(f)|U =
∏

i

Nπ(fi)(T pei ),

and the section Nπ(fi) of OU [T ] over U has unit leading coefficient since the leading coeffi-
cient of fi is a unit over π−1(U) (as it is even a unit over C − Y = Spec A[1/a0]).

For s ∈ S the specialization Nπ(f)s ∈ k(s)[u, T ] has no irreducible factor in k(s)[u]
(by Lemma 5.1), so it is squarefree if and only if it is squarefree in k(s)(u)[T ]. Since the
specialization of π ∈ H0

r (S) in H0
r (s) is generically étale as a finite map from Ck(s) to

P1
k(s) for each s ∈ S (by definition of the functor H0

r ), we conclude that each irreducible
factor of Nπ(fi)s ∈ k(s)(u)[T ] is separable over k(s)(u). Thus, for any s ∈ S and any
i the polynomial Nπ(fi)s ∈ k(s)(u)[T ] is squarefree if and only if it is separable, so by
(5.1) the polynomial Nπ(f)s over k(s)(u) is squarefree if and only if several nonvanishing
conditions hold: the discriminant of Nπ(fi)s ∈ k(s)(u)[T ] is nonzero for each i and the
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resultant of Nπ(fi)s and Nπ(fj)s(T pej−ei ) = Nπ(fj(T pej−ei ))s is nonzero for all i < j. Since
Nπ(fi) has leading coefficient that is a unit over U and it has exact T -degree r degT fi, we
can form these discriminants and resultants in OU [T ]. The projection U → S is flat and
finitely presented (even smooth), hence open, so if V is the open locus in U where these
discriminants and resultants are nonvanishing then V has open image in S and this open
image in S is exactly the locus of s ∈ S such that Nπ(f)s ∈ k(s)[u, T ] is squarefree. This
proves the Zariski-openness claim.

Step 2. To prove the nonemptiness assertion for a given r, we may assume k is alge-
braically closed and we shall reduce the problem to finding certain configurations of r points
on C. Since all fi in A[1/a0][T ] have unit leading coefficient and each is separable in K[T ],
the ideal rad(

∏
fi) in K[T ] has a generator h ∈ A[1/a0][T ] that has leading coefficient in

A[1/a0]× and is unique up to A[1/a0]×-multiple. Fix such an h; note that fi|h in A[1/a0][T ]
for all i. The element h ∈ A[1/a0][T ] is not divisible by any nonconstant element of k[T ]
since the same is true for f (the absence of such factors in k[T ] for f says exactly that
f ∈ K[T ] has no roots algebraic over k, which holds by Lemma 2.2, and this is a property
inherited by the fi’s and hence h). It suffices to find π ∈ H0

r (k) such that several conditions
hold: Nπ(h) ∈ k(u)[T ] has nonvanishing discriminant (so all Nπ(fi) are k(u)-separable) and
the polynomials Nπ(fi) and Nπ(fj)(T pej−ei ) are relatively prime in K[T ] for all i < j.

Pick π ∈ H0
r (k) and let U = A1

k − π(Y ). The norm Nπ(h) may be formed in OU [T ] as
a polynomial with unit leading coefficient, as may the norms Nπ(fi) and Nπ(fj)(T pej−ei )
for each pair i < j. Hence, the discriminant of Nπ(h) and the resultant of Nπ(fi) and
Nπ(fj)(T pej−ei ) for i < j may be formed as algebraic functions on U via universal formulas
in the sheaf OU . It suffices to find π such that these discriminants and resultants on U have
nonvanishing specialization at some common k-rational point. That is, we seek π ∈ H0

r (k)
and u0 ∈ U(k) = k − π(Y ) such that Nπ(h)u0(T ) ∈ k[T ] has as many distinct roots as its
degree r deg h and such that no root of Nπ(fi)u0(T ) has pej−eith power that is a root of
Nπ(fj)u0(T ) for any i < j.

If we can find π ∈ H0
r (k) and r distinct k-rational points x1, . . . , xr ∈ C − π−1(π(Y ))

such that

• the xα-specialization hxα(T ) ∈ k[T ] of h of degree deg h has deg h distinct geometric
roots for all 1 ≤ α ≤ r,

• hxα(T ) and hxβ
(T ) have disjoint zero loci for any α 6= β,

• for all i < j and any 1 ≤ α ≤ β ≤ r, we have gcd(fi,xα(T ), fj,xβ
(T pej−ei )) = 1 in

k[T ],
• the points π(xα) ∈ A1 − π(Y ) for 1 ≤ α ≤ r are all equal to a common point u0,

then Nπ(h)u0(T ) =
∏

hxα(T ), this polynomial has r deg h distinct roots, and no pej−eith
power of any root of Nπ(fi)u0(T ) =

∏
fi,xα(T ) is a root of Nπ(fj)u0(T ) with i < j. For

such a π, Nπ(f)u0(T ) is squarefree in k[T ]. Since Nπ(f) ∈ k[u][T ] has leading T -coefficient
in k[u] that is a unit in k[u][1/Nπ(a0)], and hence deg Nπ(f) = deg Nπ(f)u0 , we conclude
that Nπ(f) ∈ k[u, T ] is squarefree for any such π and x1, . . . , xr as above (if any such data
exist!). This is precisely the nonemptiness conclusion that we are trying to deduce, so it
suffices to find such π and x1, . . . , xr for suitably large r.

Step 3. We reduce the problem of finding such π and x1, . . . , xr to a geometric property of
an incidence relation on hyperplane sections for the projective embedding of C defined by the
complete linear system |r ·ξ|. For h as defined above and any c ∈ C−Y , the c-specialization
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hc(T ) ∈ k(c)[T ] of h ∈ A[1/a0][T ] has degree equal to deg h, so the discriminant of hc(T ) is
the c-specialization of discA[1/a0](h) ∈ A[1/a0] = H0(C −Y, O). Since h ∈ K[T ] is separable
(i.e., discKh ∈ K is nonzero), it follows that over a dense open locus of points c ∈ C − Y ,
hc(T ) has deg h distinct geometric roots.

Consider the locus of points (c, c′) in (C − Y ) × (C − Y ) such that the polynomials
hc(T ) and hc′(T ) have disjoint geometric zero-loci at a geometric point over (c, c′). This is
Zariski-open in (C − Y ) × (C − Y ) and is cut out by the nonvanishing of the resultant of
the polynomials h ⊗ 1, 1 ⊗ h ∈ (A[1/a0] ⊗k A[1/a0])[T ] with unit leading coefficients over
the domain A[1/a0] ⊗k A[1/a0]. To see that this Zariski-open subset is nonempty, we just
have to check that the resultant of h ⊗ 1, 1 ⊗ h ∈ (K ⊗k K)[T ] is nonzero, or equivalently
that h ⊗ 1 and 1 ⊗ h have no positive-degree common factor over the fraction field of the
domain K ⊗k K. Assuming such a common factor γ were to exist, say h ⊗ 1 = γG1 and
1⊗h = γG2, we could specialize on the first tensor factor (after some denominator-chasing)
to conclude that the specialization h ∈ K[T ] of 1⊗ h has a positive-degree factor in k[T ], a
contradiction since h has no roots algebraic over k.

We conclude that in the irreducible scheme (C−Y )r there is a dense Zariski-open locus of
r-tuples (x1, . . . , xr) of pairwise distinct points such that the hxα ’s each have deg h distinct
geometric roots and the geometric zero-loci of hxα and hxβ

are disjoint whenever α 6= β.
Within this dense open subset is the open locus W of r-tuples (x1, . . . , xr) such that the
zero loci of fi,xα(T ) and fj,xβ

(T pej−ei ) are disjoint for all i < j and all 1 ≤ α ≤ β ≤ r. We
claim that this open W is nonempty. Due to irreducibility of (C − Y )r, it suffices to check
nonemptiness for each fixed 4-tuple (i, j, α, β) with i < j. The above resultant argument
takes care of the case α 6= β, since no fi’s have roots algebraic over k. To handle the case
α = β, we just have to show that for i < j, the resultant of fi,c(T ) and fj,c(T pej−ei ) is
nonzero for some c ∈ C − Y . Taking c to be the generic point, it is enough to show that
fi(T ) and fj(T pej−ei ) are relatively prime in K[T ] for all i < j. Even better, the product
fi(T )fj(T pej−ei ) is squarefree, since upon substituting T pei in place of T this product is a
factor of the squarefree f ∈ K[T ]. This completes the proof that W 6= ∅.

For r ≥ 2g + 1, we will construct a finite map π : C → P1 of degree r satisfying
π−1(∞) = {ξ} and π(x1) = · · · = π(xr) = 0 with (x1, . . . , xr) ∈ W . Once this is done, π
will be étale at the xα’s with π−1(0) = {x1, . . . , xr} by degree reasons. Thus, the entire fiber
π−1(0) is disjoint from Y and so the xα’s lie in C − π−1(π(Y )). In view of the definition of
W , such a π and xα’s would satisfy all of our desired properties. Thus, it suffices to find r
points x1, . . . , xr ∈ C(k)− Y such that

∑
α(xα− ξ) = 0 in Pic0

C/k(k) and (x1, . . . , xr) ∈ W .
Any r-tuple in W works if g = 0, so we may assume g ≥ 1. Looking back at how W was
defined, each irreducible component of its complement in C

r is defined by pullback of a
nontrivial closed condition on one or two factors of C

r. Since the complete linear system
|r · ξ| embeds X as a degree-r curve in a projective space of dimension r − g ≥ g + 1 ≥ 2,
we just need the next theorem. �

Theorem 5.3. Let X be a smooth and geometrically connected proper curve over a field
k, and let X ↪→ P be a closed immersion into a projective space of dimension n ≥ 2 that
realizes X as a curve of degree r ≥ 1. Let P∗ denote the dual projective space of hyperplanes
in P.

The incidence scheme

Σr = {(x1, . . . , xr,H) ∈ Xr ×P∗ |H ∩X =
∑

xi}
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has image in Xr that is not contained in a finite union of closed loci Zj such that each
Zj is defined by pullback of nontrivial closed conditions on one or two factors of Xr. In
particular, if W ⊆ Xr is a nonempty open subset such that each irreducible component of
Xr −W is defined by pullback of a nontrivial closed condition on one or two factors of Xr,
then there exists a point (x1, . . . , xr,H) ∈ Σr with (x1, . . . , xr) ∈ W .

With slightly more technique, the proof below shows that the preimage of W in Σr is a
dense open. In positive characteristic it is not known in general if Σr is geometrically irre-
ducible. If this were known then Theorem 5.3 could be proved quickly by a symmetry-group
argument. (In characteristic 0, geometric irreducibility follows from a famous topological
monodromy argument of J. Harris. The only obstacle to making Harris’ argument work
in positive characteristic, with étale fundamental groups replacing topological ones, is the
problem of finding a hyperplane section that is tangent at one point and transverse at r− 2
other points when r > 1.)

Proof. The case r = 1 is trivial, so we may assume r ≥ 2. We can also assume that k is
algebraically closed. Within the dual projective space P∗ of hyperplanes in P, let U be the
locus of H’s such that H ∩ X is étale. This is a dense open subset of P∗, by properness
and Bertini’s theorem. If Σ0

r ⊆ Σr is the preimage of U under the projection Σr → P∗ then
Σ0

r → U is a finite étale torsor for the symmetric group on r letters. We shall show that for
any k-rational point x ∈ X and any irreducible closed curve Z ⊆ X ×X that maps finitely
onto each factor, the locus of points (x1, . . . , xr,H) ∈ Σ0

r with x1 6= x and (x1, x2) 6∈ Z
is a dense open subset of Σ0

r . Using the symmetric-group action on Σ0
r over U , this will

complete the proof.
The condition on P∗ that a hyperplane not pass through x is a dense open condition,

so the locus of points H ∈ P∗ with x 6∈ H meets U in a dense open subset and hence has
dense open preimage in Σ0

r . Consider the incidence scheme

Σ0
2 = {(x1, x2,H) ∈ X2 × U |x1, x2 ∈ H, x1 6= x2}.

This is readily seen to be finite étale (of degree 2) over U , so the projection Σ0
r → Σ0

2 over
U defined by (x1, . . . , xr,H) 7→ (x1, x2,H) is finite étale. We shall show that the preimage
of Z in Σ0

2 is a proper closed set and that the smooth Σ0
2 is geometrically connected, hence

geometrically irreducible. Thus, the preimage of Z in Σ0
2 will be a nowhere-dense closed

set, and the same must then hold for the preimage of this locus in Σ0
r .

Pick a point (x1, . . . , xr,H) ∈ Σ0
r . The intersection ({x1} × X) ∩ Z consists of finitely

many points (x1, y1), . . . , (x1, ys). Within the hyperplane Λ ⊆ P∗ consisting of those H ′

that pass through x1, it is a dense open condition on a point H ′ ∈ Λ that as a projective
hyperplane in P it does not contain any of y1, . . . , ys. On the other hand, the point H lies in
Λ, so Λ contains a dense open locus of points H ′ that meet X transversally. These various
dense open loci in Λ must intersect, so the preimage of Z in Σ0

2 is indeed a proper closed
set.

The geometric connectivity of Σ0
2 is a well-known fact. Let us recall the proof. Consider

the projection π2 : Σ0
2 → X2. This is a map between smooth k-schemes of respective

dimensions n and 2. Moreover, for any point (x1, x2,H) ∈ Σ0
2, the fiber π−1

2 (x1, x2) is
isomorphic to the scheme of hyperplanes passing through x1 and x2 and having transverse
intersection with X. The transversality condition is open, and the existence of (x1, x2,H)
makes this open set nonempty (hence dense) in the (n − 2)-dimensional projective space
of hyperplanes passing through the distinct points x1 and x2. Hence, π2 has each of its
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nonempty fibers with the “expected” (pure) dimension n − 2. It follows by a standard
flatness result [11, 23.1] that π2 must be flat, and in fact even smooth since it has smooth
fibers. This shows that π2 is an open map, so since its open image inside of the irreducible
X2 is connected and its fibers are connected, it follows that Σ0

2 is connected (and hence
geometrically connected, since k is algebraically closed). �

6. Pulling up from the affine line

Now we turn to a proof of Theorem 3.6 over a finite field k = κ (see Remark 3.7). For
later purposes in [3] we initially avoid any assumption on the parity of the characteristic.
After we prove Theorem 3.6, we will deduce Theorem 1.3.

We are going to have to replace κ with a well-chosen finite extension later on in this
section. To ensure a plentiful supply of such extensions, we record the trivial:

Lemma 6.1. If κ is a finite field and ` is any prime, then for any nonempty open U in an
affine space An

κ there exist closed points in U with residue field κ′ such that [κ′ : κ] is an
arbitrarily large power of `. In particular, there exist closed points u ∈ U such that [κ(u) : κ]
is relatively prime to any fixed nonzero integer.

Proof. Let q = |κ|. Let κm be a degree-m extension of κ. Since An
κ − U has dimension

≤ n − 1, the number of κm-valued points of this complement is O(qm(n−1)) = o(qmn) as
m →∞. The count |An

κ(κm)| = qmn therefore gives the result. �

Remark 6.2. Using the Lang–Weil estimate [10, §2, Cor. 2] (or [5, Cor. 3.3.4]), the same
result can be proved with U replaced by any geometrically irreducible κ-scheme of finite
type.

Fix a choice of κ-basis ε = {εi} for A as in §3. To prove Theorem 3.6 for f over A we
shall study the Möbius function on κ[u] applied to values of the norm Nπ(f) ∈ κ[u][T p]
constructed by using κ-maps π : C → P1 that are totally ramified over ∞ with π−1(∞) =
{ξ}. Recall that for any r ≥ 1, Hr denotes the Hom-functor classifying degree-r finite
locally free S-maps π : CS → P1

S with fiber r · ξ over ∞ for varying κ-schemes S, and this
is represented by the open locus V 0

r complementary to V r−1 in V r (where V d is the affine
space over κ associated to L(d · ξ) for any d ≥ 0). By Theorem 5.2, the open subfunctor
H0

r ⊆ Hr classifying those π for which πs is generically étale for all s ∈ S is nonempty for
r ≥ 2g + 1.

Fix an odd r ≥ 2g + 1. Let a1, . . . , ar ∈ A be nonzero elements relatively prime to
f(0) 6= 0 such that the integers dj = − ordξ(aj) form a set of representatives of Z/rZ with
each dj divisible by 4 (resp. divisible by 2 if −1 is a square in κ or if degT f is even); by
Riemann–Roch, such aj ’s may be found with dj bounded in terms of r and g. We scale each
aj by κ× so that cdj+1−g(aj) = 1 for all j, where {ci} is the set of κ-linear functionals on
A dual to the basis ε. The polynomials f(aiT ) satisfy the same initial hypotheses as f in
Theorem 3.6; the primitivity of the f(aiT )’s with respect to A follows from the hypothesis
that ai is relatively prime to f(0) for all i. We shall write fi(T ) to denote f(aiT ); there is no
risk of confusion with the rather different polynomials denoted fi in the proof of Theorem
5.2, as these latter polynomials (that did not even have to have coefficients in A in general)
will not arise in the remainder of this paper.

Applying Lemma 6.1 to nonempty opens in the geometrically irreducible H0
r , by Theorem

5.2 applied separately to f1, . . . , fr we can pick a finite extension κ′ of κ such that:
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• the degree [κ′ : κ] is relatively prime to any chosen nonzero integer; for example,
we may take κ′ to be linearly disjoint from the κ(x)’s over κ for all x ∈ B as in
Definition 3.4, so all such x’s remain physical points over κ′, and we may also take
such κ′ to be of odd degree over κ,

• there exists a generically étale degree-r map π : Cκ′ → P1
κ′ such that π−1(∞) = {ξ}

and each
Fi := Nπ(fi) = Nπ(f(aiT )) ∈ κ′[u, T p]

is squarefree in κ′[u][T ].
By Lemma 5.1, each Fi has no irreducible factor in κ′[u] or κ′[T ]. Note that degT Fi =
r degT fi = r degT f is even when degT f is even. Also, the maximum u-degree among the
coefficients of powers of T that appear in Fi can be bounded in terms of r, degT f , the dj ’s,
and the ξ-orders of the coefficients of f ∈ A[T ].

The ability to make the construction of π’s over two linearly disjoint extensions κ′1 and
κ′2 of κ will be important later when we want to bring results down to our original κ.
Since any nonempty open in H0

r is a nonempty open in an affine space, and hence has a
rational point over any infinite field, we see that π can trivially be found without increasing
the perfect constant field if this constant field is infinite. Thus, for the reader who is
interested in Theorem 1.3 for a general perfect ground field that is not assumed to be finite,
the importance of working over a finite base field is not yet apparent. For convenience of
exposition we shall now rename κ′ as κ; in view of the conditions that we imposed on [κ′ : κ]
this renaming is harmless for the purpose of proving Theorem 3.6, but it is an issue we will
have to address when proving Theorem 1.3.

We now fix a π as above that realizes A as a degree-r finite flat extension of κ[u]. The
strategy of our proof of Theorem 3.6 is to relate evaluation of the norm Fi at a degree-δ
polynomial γ ∈ κ[u] and evaluation of f at the element aiπ

∗(γ) ∈ A whose pole-order at ξ
is di + rδ. As we let i vary from 1 to r and let δ vary through sufficiently large integers,
the pole-orders di + rδ vary through all large integers. Provided that the κ-basis ε of A is
chosen to contain the π-pullback of the κ-basis {uj−1}j≥1 of κ[u], we will be able to use the
settled case of genus 0 in [2, Thm. 4.8] (applied to the Fi’s) to establish Theorem 3.6 for f .
We remind the reader that the assertion in Theorem 3.6 is independent of the choice of ε.

Proof. (of Theorem 3.6). We only treat the interesting case of a finite base field, so we may
suppose we are in the setup over a finite field κ as at the end of the preceding considerations.
For large δ and any γ =

∑
γju

j ∈ κ[u] of degree δ, clearly Fi(γ) = NA/κ[u](f(aiγ)) in κ[u]
and − ordξ(aiγ) = di + rδ for 1 ≤ i ≤ r. For the purpose of proving Theorem 3.6, we may
(as in the preceding discussion) choose the basis ε adapted to π by taking π∗(u)j to be the
basis vector for pole-order rj at ξ for large j, and more generally εj+r = π∗(u)εj for large j.
Letting δi = di + rδ for large δ (only depending on r, the genus g of K/κ, the total degree
degu,T f , and the di’s), we have cδi+1−g(aiγ) = cdi+1−g(ai)lead(γ) for all 1 ≤ i ≤ r, so by
Theorem 1.5 we therefore have
(6.1)

discε(A/(fi(γ))) = bδi
(cdi+1−g(ai)lead(γ))eδi

∏
x

Px(aiγ)ex = bδi
lead(γ)eδi

∏
x

Px(aiγ)ex

since cdi+1−g(ai) = 1. The key idea for studying eδi
mod 2 is to compare the quadratic

character of (6.1) with that of discκ(κ[u]/(Fi(γ))).
Since Fi ∈ κ[u, T p] is squarefree in κ[u, T ] and has no irreducible factor in κ[u] or in κ[T ],

as long as δ is sufficiently large we know by Theorem 2.5 (applied now to the Fi’s and the
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affine line) that in the κ-scheme Aδ×Gm of degree-δ polynomials there is a unique nonempty
open subset Wδ,i such that for any perfect extension k of κ, Fi(γ) ∈ k[u] is squarefree if
and only if γ ∈ Wδ,i(k). Moreover, the complement of Wδ,i is a hypersurface admitting
a defining equation that, viewed as a function on the space of degree-δ polynomials in a
variable u, is invariant under additive translation by the degree-δ polynomials that lie in a
certain nonzero ideal Ji of κ[u]. This ideal Ji will be used later.

For γ ∈ Wδ,i(κ) we have Fi(γ) = NA/κ[u](fi(γ)), so squarefreeness of Fi(γ) in κ[u] forces
fi(γ) to be squarefree in A and the points of Spec(A/(fi(γ))) ⊆ C to lie in distinct fibers
of the finite flat map π|C : C → A1

κ. Since Fi(γ) ∈ κ[u] has degree equal to −r ordξ(fi(γ))
for large δ = deg γ, we have deg Fi(γ) ≡ − ordξ(fi(γ)) mod 2 because r is odd. The map π
sets up a bijection between the physical points in the zero loci of fi(γ) on C and Fi(γ) on
A1

κ, so the (nonzero) parity counts µ(fi(γ)) and µ(Fi(γ)) must coincide!
Now we require the characteristic to be odd and use that κ is finite: applying Theorem

3.1 to the equality µ(fi(γ)) = µ(Fi(γ)) implies

(6.2) (−1)− ordξ(fi(γ))χ(discκ(A/(fi(γ)))) = (−1)deg Fi(γ)χ(discκ(κ[u]/(Fi(γ)))).

Observe that the powers of −1 in (6.2) cancel out. Due to how we chose the − ordξ(aj)’s,
the theory for the affine line [2, Thm. 4.8] tells us that after replacing the above nonzero
ideal Ji with a suitable nonzero multiple we may ensure that for any finite extension κ′ of κ
and any polynomial γ ∈ κ′[u] with sufficiently large degree δ (where the largeness now only
depends on r, g, degT f , and the ξ-orders of the coefficients of f), the quadratic character of
discκ′(κ′[u]/(Fi(γ))) ∈ κ′× only depends on three pieces of data: δ mod 4, the congruence
class of γ modulo κ′ ⊗κ Ji, and the quadratic character of lead(γ) in κ′×; the same theory
ensures that this dependence may be relaxed to δ mod 2 rather than δ mod 4 if either −1
is a square in κ or if degT f is even (as then all degT Fi are even).

Thus, as long as γ varies through Wδ,i(κ′) for such large δ, it follows that the quadratic
character of discκ′((κ′⊗κ A)/(f(aiγ))) ∈ κ′× only depends on δ mod 4, the congruence class
of γ modulo κ′ ⊗κ Ji, and the quadratic character of lead(γ) in κ′×. With i fixed, for large
δ and δ′ we see that the large integers δi = di + rδ and δ′i = di + rδ′ in the same residue
class mod r are congruent modulo 4 if and only if δ ≡ δ′ mod 4. Assume such a mod-4
congruence holds, and consider the algebraic functions

(6.3) γ 7→ bδi
lead(γ)eδi

∏
x

Px(aiγ)ex , γ′ 7→ bδ′i
lead(γ′)

eδ′
i

∏
x

Px(aiγ
′)ex

on Wδ,i and Wδ′,i respectively. For any k/κ, the set of k-points of the complements of
Wδ,i(k) and Wδ′,i(k) in their respective polynomial spaces of exact degrees δ and δ′ over k
is invariant under additive translation by elements of k ⊗κ Ji; here, δ and δ′ only need to
exceed a lower bound determined by r, g, degu,T f , and the di’s.

For each finite extension κ̃ of κ, let γ and γ′ vary over Wδ,i(κ̃) and Wδ′,i(κ̃) respec-
tively, subject to lying in the same congruence class modulo κ̃ ⊗κ JiNA/κ[u](I) and having
lead(γ)/lead(γ′) ∈ κ̃× be a square; here, I is the nonzero ideal in A defined as in Theorem
2.5 for f . By Theorem 2.5 applied to κ[u] and Fi, there does exist such a γ′ ∈ Wδ′,i(κ̃) for
any γ ∈ Wδ,i(κ̃) when δ, δ′ � 0 (in particular, Wδ′,i(κ̃) 6= ∅ if and only if Wδ,i(κ̃) 6= ∅) since
κ̃-points of the complements of Wδ,i and Wδ′,i correspond to those γ and γ′ in respective
degrees δ and δ′ at which Fi has value that is not squarefree in κ̃[u]. These largeness con-
ditions on δ and δ′ only depend on r, g, degu,T f , and the di’s. The respective values of the
two functions in (6.3) at such γ and γ′ are nonzero and have ratio that is a square in κ̃×.
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Since Px(aiγ) = Px(aiγ
′) for all x, as NA/κ[u](I) ·A ⊆ I, we conclude that the element

(6.4)
bδi

bδ′i

· lead(γ)
|eδi

−eδ′
i
|
=

bδi

bδ′i

· γ
|eδi

−eδ′
i
|

δ ∈ κ̃×

is a square in κ̃ for all γ ∈ Wδ,i(κ̃).
Thus, when (6.4) is viewed as an element in κ[γ0, . . . , γδ] it has square-value in κ̃ at each

κ̃-point of the dense open Wδ,i ⊆ Aδ
κ×Gm ⊆ Aδ+1

κ as κ̃ varies over all finite extensions of κ.
As [κ̃ : κ] →∞, the ratio |Aδ+1

κ (κ̃)|/|Wδ,i(κ̃)| tends to 1. Thus, by choosing κ̃ to be a finite
extension of κ of sufficiently large degree, we can find points γ0, γ

′
0 ∈ Wδ,i(κ̃) with leading

coefficients γ0,δ, γ
′
0,δ ∈ κ̃× of opposite quadratic character. Taking ratios of the elements

(6.4) at these points, we conclude that (γ0,δ/γ′0,δ)
|eδi

−eδ′
i
|
is a square in κ̃×, so eδi

− eδ′i
must

be even. Feeding this evenness back into (6.4) and choosing κ̃ as above to be of odd degree
over κ, if the common parity of eδi

and eδ′i
is even then the ratio bδi

/bδ′i
∈ κ× must be a

square in κ̃× and hence is a square is κ×.
Recalling how δi and δ′i were defined, we conclude that for large integers d and d′ in the

same residue class modulo 4r (with largeness depending only on r, g, degu,T f , and the
di’s), the difference ed− ed′ is even and if the resulting common parity of ed and ed′ is even
then the ratio bd/bd′ is a square in κ. Upon choosing an odd r′ ≥ 2g + 1 relatively prime to
r, the same conclusion holds with r′ replacing r. Thus, for large d and d′ congruent either
modulo 4r or modulo 4r′ (resp. either modulo 2r or modulo 2r′ when −1 is a square in κ
or when degT f is even), the difference ed − ed′ is even and when the common parity of ed

and ed′ is even then the ratio bd/bd′ is a square in κ×. By the Chinese remainder theorem
we therefore get the same conclusion for large d and d′ that are congruent mod 4 (resp.
mod 2 when −1 is a square in κ or degT f is even), and the largeness only depends on g
and degu,T f . Since the definition and parity of ed are unaffected by extension of the base
field, if −1 is not a square in κ then to prove the refinement that ed − ed′ is even for large
d and d′ with the same parity (with largeness depending only on g and degu,T f) we may
work over the base field κ(

√
−1). This concludes the proof of Theorem 3.6. �

By refining the above projection methods, we get the following further consequence that
will be used to prove some results in [3] concerning nontriviality of the correction factor in
higher-genus conjectures on statistics for prime specialization of f :

Theorem 6.3. Assume p 6= 2 and let f ∈ A[T p] be as in Theorem 1.3. Let ed = ed,ε be
as in the discussion preceding Theorem 3.6. Assume that N = degT f is odd, and that the
highest-degree coefficient of f not in Ap either occurs in some odd T -degree N0 < N or
occurs in degree N but has divisor on C that is not divisible by p. Under these hypotheses
there are arbitrarily large d such that the parity ed mod 2 is even.

The hypothesis on the divisor of the leading coefficient of f (in case N0 = N) is related
to the possibility of nontrivial κ-rational p-torsion in the Jacobian of C. (In particular,
no such hypothesis is necessary if this p-torsion group scheme is infinitesimal.) For the
intended applications in [3] this hypothesis will present no difficulties, so we have not tried
to eliminate it here.

Proof. In the case of genus 0 (with A = k[u]), the degree hypotheses say that f and ∂uf have
odd T -degree. Moreover, [2, Thm. 4.1] (with f1 = f , f2 = ∂uf , and ε = {ui−1}i≥1) gives the
explicit formula ed = m1d+m0 for large d with some m0 ∈ Z and m1 = (degT f)(degT ∂uf).
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Thus m1 is odd, so the case of genus 0 is settled. We will deduce the general case from the
case of genus 0.

Now consider the case of arbitrary genus g ≥ 0. We are only interested in the case of
finite k, so we only give the proof in this case. (To reduce the general case to the finite case
requires the arguments that we omitted for reducing the proof of Theorem 3.6 to the case
of finite k.) Using notation as in the proof of Theorem 3.6 and the discussion preceding it,
fix an odd integer r ≥ 2g + 1 and nonzero elements a1, . . . , ar ∈ A relatively prime to f(0)
such that the pole-orders di = − ordξ(ai) are divisible by 4 and are a set of representatives
for Z/rZ. For specificity, say di ≡ i mod r. Let π : C → A1

κ be a degree-r generically étale
finite covering chosen as in the proof of Theorem 3.6 (this may require replacing κ with
a finite extension, which is harmless for our purposes), and let Fi ∈ κ[u][T p] denote the
π-norm of fi(T ) = f(aiT ), so degT Fi is odd. A key point is to arrange that degT (∂uFi0)
is odd for some i0, provided that we make a preliminary finite extension on κ (harmless for
our purposes) and choose π sufficiently generically for some large r.

Suppose for a moment that we have such oddness for some ∂uFi0 . By the definition of ed

and the formula of Swan in Theorem 3.1 relating Möbius values and quadratic characters
of discriminants over finite fields with odd characteristic, for any sufficiently large integer
δ we see that edi0

+rδ is even if and only if the value of µ(fi0(γ)) for γ ∈ κ[u] of degree δ

depends just on δ mod 4 and on a congruence condition on γ (as opposed to depending on
this data together with the quadratic character of the leading coefficient of γ). The choice
of π ensures that µ(fi0(γ)) = µ(Fi0(γ)). Hence, if we let eδ,i0 denote the exponent of lead(γ)
arising in the formula for discκ(κ[u]/Fi0(γ)) expressed as an algebraic function of γ ∈ κ[u]
with large degree δ (so ai0γ ∈ A has pole-order di0 + rδ at ξ), we conclude that edi0

+rδ is
even for large δ of a fixed parity if and only if eδ,i0 is even for such large δ. The settled
result in genus zero for Fi0 (here we use the hypothesis that degT (∂uFi0) is odd) therefore
gives the desired result for f .

It remains to show that for an arbitrarily large r we can find π and i0 (and ai0 for a
suitable di0 ≡ i0 mod r with 4|di0) so that Fi0 defined as above has derivative ∂uFi0 with
odd T -degree. Any choice of i0 will suffice for our purposes, so we just fix one such choice
(and we will have to take di0 large in a way to be explained shortly). Let N = degT f and let
N0 be the maximal T -degree among monomials in f whose coefficient in A is not a pth power,
so 0 ≤ N0 ≤ N with both N and N0 odd, and by hypothesis if N0 = N then the leading
coefficient of f ∈ A[T ] has divisor on C that is not a multiple of p. Let a ∈ A− {0} be the
leading coefficient of f (in T -degree N) and let a′ ∈ A−Ap be the coefficient of f in T -degree
N0. For any choice of π we let Dπ denote the unique κ-linear derivation of K extending ∂u

on κ(u). Provided we choose π appropriately (with large degree r), after possibly passing
to a finite extension on κ, we want that for some i and di and a suitable choice of ai ∈ A the
polynomial Fi = Nπ(fi) (with fi = f(aiT )) yields a ratio ∂u(Fi)/Fi having the “expected”
T -degree (N0 +(r− 1)N)− rN = N0−N (which is even) when viewed in K((1/T )); keep in
mind that ai may be chosen generically with pole-order di at ξ, where {d1, . . . , dr} ⊆ 4Z is a
set of representatives for Z/rZ (with di ≡ i mod r). Since ∂u(Fi)/Fi = Trπ(Dπfi/fi), with
Trπ denoting the evident trace map K((1/T )) → κ(u)((1/T )), and the nonzero coefficient of
Dπfi/fi in maximal T -degree N0−N is Dπ(a′)/aaN−N0

i (as N0, N ∈ pZ), we are reduced to
proving that Trπ(Dπ(a′)/aaN−N0

i0
) ∈ κ(u) is nonzero if di0 , π, and ai0 are chosen suitably,

at least after passing to a finite extension κ′/κ.
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Let ω = da′/a ∈ Ω1
K/κ, so ω 6= 0 and if N = N0 (so a′ = a) then ω = da/a has a pole

away from ξ (since it is assumed that div(a) is not divisible by p if N0 = N). Choose
π : C → A1

κ of large odd degree r generically (after a finite extension on κ if necessary),
so π−1(0) is étale, κ-split, and avoids the supports of the divisors of a, a′, and ai0 . Hence,
Trπ(Dπ(a′)/aaN−N0

i0
) ∈ κ(u) is regular at the origin with value

∑
c∈π−1(0) Resc(ω/aN−N0

i0
aπ)

where aπ := π∗(u) ∈ A is a generic element with exact pole-order r at ξ. If N−N0 > 0 then
by taking generic ai0 with large enough pole-order di0 at ξ we can assume that ω/aN−N0

i0
has a pole away from ξ.

Hence, we are reduced to the following problem for a smooth pointed proper connected
curve (C, ξ) over an algebraically closed field k: if η is a rational 1-form on C with a pole
away from ξ, r is sufficiently large, and φ ∈ L(r · ξ) is chosen generically (so it has an
étale divisor of zeros) then

∑
φ(c)=0 Resc(η/φ) 6= 0. By taking r large enough (depending on

ordξ(η)) the 1-form η/φ has no pole at ξ for generic φ and so the sum in question is the same
as the sum of the residues of η/φ at all points in the divisor of φ. Choosing φ generically
also ensures that the divisor of φ is disjoint from the polar locus P of η away from ξ, so for
such φ we have

∑
φ(c)=0 Resc(η/φ) = −

∑
c∈P Resc(η/φ). It is therefore equivalent to prove

that for generic φ ∈ L(rξ) the residues of η/φ at the poles of η away from ξ do not add up
to zero. But this polar locus P is a finite non-empty set that is independent of φ, and if
r is large enough (depending on the genus and the size of P ) then by Riemann–Roch we
can freely control low-degree parts of the Laurent expansion of generic φ ∈ L(rξ) at each
of the points of P , so for generic such φ the residues of η/φ at these points do not add up
to zero. �

We now prepare for the proof of Theorem 1.3; we shall use some constructions and
notation from the above proof of Theorem 3.6. In the proof of Theorem 3.6 for a finite
κ, the construction of the degree-r map π required replacing κ with a finite extension κ′,
where κ′ can be chosen such that [κ′ : κ] is relatively prime to any desired positive integer:
indeed, π came from picking a closed point in a certain nonempty open in H0

r (so Lemma
6.1 applies). A single such κ′ could have been chosen for two relatively prime choices r and
r′, with corresponding projections π, π′ : Cκ′ ⇒ P1

κ′ of respective degrees r and r′. Let us
keep track of this κ′ and write A′ = κ′ ⊗κ A.

Recall that the ratios bd/bd′ and b′d/b′d′ in κ′× arose from the coordinatizations ε and ε′

of A′ adapted to π and π′ respectively, and we saw above that if ed and ed′ are even then
the ratios bd/bd′ and b′d/b′d′ are squares in κ′ when d and d′ are large and congruent modulo
4 (or modulo 2 when −1 is a square in κ or degT f is even). Likewise, we saw that the
intrinsic parity of the differences ed − ed′ is even when d and d′ are large and in the same
residue class modulo 2. These largeness conditions on d and d′ only depend on r, r′, g, and
degu,T f . We must analyze the relationship between the choices of bases ε and ε′ and the
property that certain ratios of nonzero elements in A′ are squares in the local field at ξ.

Proof. (of Theorem 1.3). Let tξ ∈ K× be a uniformizer at ξ, and consider a, a′ ∈ A with
poles of respective large orders d and d′ at ξ where d ≡ d′ mod 4r. Let {d1, . . . , dr} be a set
of integers that is a set of representatives for Z/rZ and assume that each dj is divisible by
4 (resp. is divisible by 2 if −1 is a square in κ or if degT f is even) and that dj ≥ g for all
j. Let di be the unique representative among {d1, . . . , dr} for the common congruence class
of d and d′ mod r, so d = di + rδ and d′ = di + rδ′ with δ ≡ δ′ mod 4; when −1 is a square
in κ or degT f is even then we can replace 4r and 4 with 2r and 2 respectively. Clearly for
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d, d′ ≥ di we have εd+1−g = π∗(u)δεdi+1−g and εd′+1−g = π∗(u)δ′εdi+1−g, and via the identity
π∗(u) = t−r

ξ wξ with a local unit wξ we get tdξ = tdi
ξ wδ

ξπ
∗(u)−δ and td

′
ξ = tdi

ξ wδ′
ξ π∗(u)−δ′ . Thus,

td−d′

ξ = wδ−δ′

ξ π∗(u)δ′−δ = wδ−δ′

ξ εd′+1−g/εd+1−g.
The ratio a/a′ has ordξ equal to the even integer d′−d, so a/a′ is a square in the local field

Kξ if and only if the local unit (a/a′)td−d′

ξ = wδ′−δ
ξ (a/εd+1−g)(a′/εd′+1−g)−1 at ξ has value at

ξ that is a square in κ′. This nonzero value at ξ is equal to wξ(ξ)δ′−δcd+1−g(a)/cd′+1−g(a′),
and δ′ − δ is even. Hence, under the coordinatization {cj} dual to the κ′-basis ε that is
adapted to π, the intrinsic property of a/a′ being a square in Kξ is equivalent to the ratio
cd+1−g(a)/cd′+1−g(a′) being a square in κ′×. A similar conclusion holds for the coordinati-
zation {c′j} dual to the κ′-basis ε′ that is adapted to the projection π′.

Let χ′ be the quadratic character on κ′× (and define χ′(0) = 0). Using Theorem 3.6 and
the property that bd/bd′ = bd,ε/bd′,ε is a square in κ′, the equations (3.14) in degrees d and
d′ relative to the ε-coordinatization of κ′ ⊗κ A′ yield

(6.5) χ′(discκ′(A′/(f(a)))) = χ′(discκ′(A′/(f(a′))))

when three conditions hold: a, a′ ∈ A′ are congruent modulo I, a/a′ is a local square
at ξ, and ordξ(a) and ordξ(a′) are large (with largeness that is determined by r, g, and
degu,T f) and congruent modulo 4r (resp. modulo 2r when −1 is a square in κ′ or degT f
is even). The same conclusion holds with r′ replacing r (using the version of (3.14) for the
ε′-coordinatization). Taking [κ′ : κ] to be odd without loss of generality, χ′|κ× = χ. Thus,
when a and a′ in A satisfy the conditions in Theorem 1.3 and also satisfy the stronger
requirement that ordξ(a) and ordξ(a′) are congruent either modulo 4r or modulo 4r′ (resp.
either modulo 2r or modulo 2r′ when −1 is a square in κ or degT f is even) then (6.5) implies
that the κ-discriminants of A/(f(a)) and A/(f(a′)) have the same quadratic character in
κ. Hence, by Theorem 3.1, µ(f(a)) = µ(f(a′)) in such cases.

By the Chinese remainder theorem, if d and d′ are large integers that are congruent mod
4, then we can find a larger integer d′′ with d ≡ d′′ mod 4r and d′ ≡ d′′ mod 4r′, and likewise
with 4 replaced by 2. Hence, to conclude the proof of Theorem 1.3, it suffices to show that
for any large d′′ with the same parity as d, there exists a′′ ∈ A such that ordξ(a′′) = −d′′,
a′′ ≡ a mod I, and a′′/a is a local square at ξ. (It is then automatic that a′′ ≡ a′ mod I
and a′′/a′ is a square in Kξ.)

In terms of α = a′′ − a ∈ A, we seek an element

α ∈ L0
d′′ := L(d′′ · ξ − I)− L((d′′ − 1) · ξ − I)

such that α has a Laurent expansion at ξ (relative to some fixed uniformizer tξ) with leading
coefficient in the same quadratic residue class as that of a. By Riemann–Roch, for any large
d′′ we see that L0

d′′ is the complement of a hyperplane in a κ-vector space L(d′′ · ξ − I) of
large dimension, and the lead-coefficient function with respect to the Laurent expansion in
tξ is described by the surjective projection from L(d′′ · ξ − I) onto the line

H0(C, O(d′′ · ξ)/O((d′′ − 1) · ξ)).

Thus, α is an element in the complement of (q + 1)/2 affine κ-hyperplanes in L(d′′ · ξ − I),
where q = #κ. For any positive integer N < q (such as N = (q + 1)/2), a nonzero finite-
dimensional κ-vector space cannot be a union of N affine κ-hyperplanes, so there must exist
an α ∈ A of the desired type. �
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