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1. Introduction

The aim of this paper is to rework [GZ, Ch III] based on more systematic deformation-theoretic methods so
as to treat all imaginary quadratic fields, all residue characteristics, and all j-invariants on an equal footing.
This leads to more conceptual arguments in several places and interpretations for some quantities which
appear to otherwise arise out of thin air in [GZ, Ch III]. For example, the sum in [GZ, Ch III, Lemma 8.2]
arises for us in (9.6), where it is given a deformation-theoretic meaning. Provided the analytic results in
[GZ] are proven for even discriminants, the main results in [GZ] would be valid without parity restriction on
the discriminant of the imaginary quadratic field. Our order of development of the basic results follows [GZ,
Ch III], but the methods of proof are usually quite different, making much less use of the “numerology” of
modular curves.

Here is a summary of the contents. In §2 we consider some background issues related to maps among
elliptic curves over various bases and horizontal divisors on relative curves over a discrete valuation ring.
In §3 we provide a brief survey of the Serre-Tate theorem and the Grothendieck existence theorem, since
these form the backbone of the deformation-theoretic methods which underlie all subsequent arguments.
Due to reasons of space, some topics (such as intersection theory on arithmetic curves, Gross’ paper [Gr1]
on quasi-canonical liftings, and p-divisible groups) are not reviewed but are used freely where needed.

In §4 we compute an elementary intersection number on a modular curve in terms of cardinalities of
isomorphism groups between infinitesimal deformations. This serves as both a warm-up to and key ingredient
in §5–§6, where we use cardinalities of Hom groups between infinitesimal deformations to give a formula (in
Theorem 5.1) for a local intersection number (x.Tm(xσ))v, where x ∈ X0(N)(H) is a Heegner point with
CM by the ring of integers of an imaginary quadratic field K (with Hilbert class field H), σ ∈ Gal(H/K)
is an element which corresponds to an ideal class A in K under the Artin isomorphism, and Tm is a Hecke
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correspondence with m ≥ 1 relatively prime to N . An essential hypothesis in Theorem 5.1 is the vanishing
of the number rA (m) of integral ideals of norm m in the ideal class A . This corresponds to the requirement
that the divisors x and Tm(xσ) on X0(N) are disjoint. Retaining the assumption rA (m) = 0, in §7 we
develop and apply a construction of Serre in order to translate the formula in Theorem 5.1 into the language
of quaternion algebras. The resulting quaternionic formulas in Corollary 7.15 are a model for the local
intersection number calculation which is required for the computation of global height pairings in [GZ],
except the condition rA (m) = 0 in Corollary 7.15 has to be dropped.

To avoid assuming rA (m) = 0, we have to confront the case of divisors which may contain components in
common. Recall that global height pairings of degree 0 divisors are defined in terms of local pairings, using
a “moving lemma” to reduce to the case in which horizontal divisors intersect properly. We want an explicit
formula for the global pairing 〈c, Tm(dσ)〉H where c = x−∞ and d = x− 0, so we must avoid the abstract
moving lemma and must work directly with improper intersections. Whereas [GZ] deal with this issue by
using a technique from [Gr2, §5] which might be called “intersection theory with a tangent vector”, in §8
we develop a more systematic method which we call “intersection theory with a meromorphic tensor”. This
theory is applied in §9 to give a formula in Theorem 9.6 which expresses a global height pairing in terms of
local intersection numbers whose definition does not require proper intersections.

In §10 we use deformation theory to generalize Corollary 7.15 to include the case rA (m) > 0, and
Appendix A (by W.R. Mann) recovers all three main formulas in [GZ, Ch III, §9] as consequences of the
quaternionic formulas we obtain via intersection theory with meromorphic tensors. The appendix follows the
argument of Gross-Zagier quite closely, but explains some background, elaborates on some points in more
detail than in [GZ, Ch III, §9], and works uniformly across all negative fundamental discriminants without
parity restrictions. This parity issue is the main technical contribution of the appendix, and simply requires
being a bit careful.

Some conventions. As in [GZ], we normalize the Artin map of class field theory to associate uniformizers
to arithmetic Frobenius elements. Thus, if K is an imaginary quadratic field with Hilbert class field H, then
for a prime ideal p of K the isomorphism between Gal(H/K) and the class group ClK of K associates the
ideal class [p] to an arithmetic Frobenius element.

Following [GZ], we only consider Heegner points with CM by the maximal order OK in an imaginary
quadratic field K. A Heegner diagram (for OK) over an OK-scheme S is an OK-linear isogeny φ : E → E′

between elliptic curves over S which are equipped with OK-action which is “normalized” in the sense that
the induced action on the tangent space at the identity is the same as that obtained through OS being a
sheaf of OK-algebras via the OK-scheme structure on S. For example, when we speak of Heegner diagrams
(or Heegner points on modular curves) over C, it is implicitly understood that an embedding K ↪→ C has
been fixed for all time.

Under the action of ClK ' Gal(H/K) on Heegner points X0(N)(H) ⊆ X0(N)(C), with N > 1 having
all prime factors split in K, the action of [a] ∈ ClK sends the Heegner point ([b], n) def= (C/b→ C/n−1b) to
([b][a]−1, n). The appearance of inversion is due to our decision to send uniformizers to arithmetic (rather
than geometric) Frobenius elements. This analytic description of the Galois action on Heegner points will
play a crucial role in the proof of Corollary 7.11.

If x is a Heegner point with associated CM field K, we will write ux to denote the cardinality of the group
of roots of unity in K (so ux = 2 unless K = Q(

√
−1) or K = Q(

√
−3)).

If S is a finite set, we will write either |S| or #S to denote the cardinality of S.
If (R,m) is a local ring, we write Rn to denote R/mn+1. If X and Y are R-schemes, we write HomRn(X,Y )

to denote the set of morphisms of mod mn+1 fibers.
If B is a central simple algebra of finite dimension over a field F , we write N : B → F and T : B → F to

denote the reduced norm and reduced trace on B.
It is recommended (but not necessary) that anyone reading these notes should have a copy of [GZ] at

hand. One piece of notation we adopt, following [GZ], is that rA (m) denotes the number of integral ideals of
norm m > 0 in an ideal class A of an imaginary quadratic field K which is fixed throughout the discussion.
Since rA = rA−1 due to complex conjugation inducing inversion on the class group without chaging norms,
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if we change the Artin isomorphism Gal(H/K) ' ClK by a sign then this has no impact on a formula for
〈c, Tmdσ〉v in terms of rA , where A ∈ ClK “corresponds” to σ ∈ Gal(H/K).

2. Some properties of abelian schemes and modular curves

We begin by discussing some general facts about elliptic curves. Since the proofs for elliptic curves are
the same as for abelian varieties, and more specifically it is not enough for us to work with passage between
a number field and C (e.g., we need to work over discrete valuation rings with positive characteristic residue
field, etc.) we state the basic theorem in the more natural setting of abelian varieties and abelian schemes.
Theorem 2.1. Let A,B be abelian varieties over a field F .

(1) If F is separably closed and F ′ is an extension field, then HomF (A,B)→ HomF ′(A/F ′ , B/F ′) is an
isomorphism. In other words, abelian varieties over a separably closed field never acquire any “new”
morphisms over an extension field.

(2) If F = Frac(R) for a discrete valuation ring R and A, B have Néron models A , B over R which
are proper (i.e., A and B have good reduction relative to R), then

HomF (A,B) = HomR(A ,B)→ Homk(A0,B0)

is injective, where k is the residue field of R and (·)0 denotes the “closed fiber” functor on R-schemes.
In other words, (·)0 is a faithful functor from abelian schemes over R to abelian schemes over k. In
fact, this latter faithfulness statement holds for abelian schemes over any local ring R whatsoever.

Proof. The technical details are a bit of a digression from the main aims of this paper, so although we do not
know a reference we do not give the details. Instead, we mention the basic idea: for ` invertible on the base,
`-power torsion is “relatively schematically dense” in an abelian scheme (in the sense of [EGA, IV3, 11.10]);
this ultimately comes down to the classical fact that such torsion is dense on an abelian variety over an
algebraically closed field. Such denseness, together with the fact that `n-torsion is finite étale over the base,
provides enough rigidity to descend morphisms for the first part of the theorem, and enough restrictiveness
to force injectivity in the second part of the theorem.

�

We will later need the faithfulness of (·)0 in Theorem 2.1(2) for cases in which R is an artin local ring, so
it is not adequate to work over discrete valuation rings and fields.

Let’s now recall the basic setup in [GZ]. We have fixed an imaginary quadratic field K ⊆ C with
discriminant D < 0 (and we take Q to be the algebraic closure of Q inside of C). We write H ⊆ Q for the
Hilbert class field of K, and we choose a positive integer N > 1 which is relatively prime to D and for which
all prime factors of N are split in K. Let X = X0(N)/Z be the coarse moduli scheme as in [KM], so X
is a proper flat curve over Z which is smooth over Z[1/N ] but has some rather complicated fibers modulo
prime factors of N . We have no need for the assumption that D < 0 is odd (i.e, D ≡ 1 mod 4), whose main
purpose in [GZ] is to simplify certain aspects of calculations on the analytic side of the [GZ] paper, so we
avoid such conditions (and hence include cases with even discriminant).

Let x ∈ X(H) ⊆ X(C) be a Heegner point with CM by the maximal order OK . Because of our explicit
knowledge of the action of Gal(H/Q) on Heegner points, we see that the action of Gal(H/Q) on x ∈ X(H)
is “free” (i.e., non-trivial elements in Gal(H/Q) do not fix our Heegner point x ∈ X(H)), so it follows that
the map x : Spec(H)→ X/Q is a closed immersion. For each closed point v of Spec OH , by viewing H as the
fraction field of the algebraic localization OH,v we may use the valuative criterion for properness to uniquely
extend x to a point in X(OH,v). A simple “smearing out” argument involving denominator-chasing shows
that all of these maps arise from a unique morphism x : Spec(OH)→ X.

It is not a priori clear if the map x is a closed immersion (in general it isn’t). More specifically, if Zx ↪→ X
is the scheme-theoretic closure of x (i.e., the scheme-theoretic image of x), then Zx → Spec(Z) is proper,
flat, and quasi-finite, hence finite flat, so it has the form Zx = Spec(Ax) with Q⊗ZAx = H. Thus, Ax is an
order in OH , but it isn’t obvious if Ax = OH . This is an important issue in subsequent intersection theory
calculations because the intersection theory will involve closed subschemes of (various base chages on) X.
For this reason, we must distinguish SpecAx ↪→ X and x : Spec OH → X.
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To illustrate what can go wrong, consider the map Zp[T ] → Zp[ζp2 ] defined by T 7→ pζp2 . Over Qp

this defines an immersion φη : Spec(Qp(ζp2)) ↪→ A1
Zp
⊆ P1

Zp
which is a closed immersion since Qp(ζp2) =

Qp[pζp2 ], and φη comes from a map φ : Spec(Zp[ζp2 ])→ P1
Zp

which is necessarily the one we would get from
applying the valuative criterion for properness to φη.

The “integral model” map φ is not a closed immersion because Zp[T ] → Zp[ζp2 ] defined by T 7→ pζp2

is not a surjection. In fact, the generic fiber closed subscheme of P1
Qp

defined by φη has scheme-theoretic
closure in P1

Zp
given by Spec(A) where A = image(φ) = Zp+pZp[ζp2 ] is a non-maximal order in Zp[ζp2 ]. The

moral is that even if we can compute the “field of definition” of a point on a generic fiber smooth curve, it is
not true that the closure of this in a particular proper integral model of the curve is cut out by a Dedekind
subscheme or that it lies in the relative smooth locus. It is a very fortunate fact in the Gross-Zagier situation
that this difficulty usually does not arise for the “horizontal divisors” they need to consider.

Here is the basic result we need concerning Heegner divisors in the relative smooth locus.

Lemma 2.2. Let x ∈ X(H) be a Heegner point and Λv denote the valuation ring of the completion Hv at a
place v over a prime p. The map Spec(Λv) → X/Zp corresponding to the pullback xv ∈ X(Hv) of x factors
through the relative smooth locus, and the induced natural map xv : Spec(Λv)→ X ×Z Λv arising from xv is
a closed immersion into the relative smooth locus over Λv (and hence lies in the regular locus).

Proof. Using smoothness of X over Z[1/N ] when p doesn’t divide N and [GZ, Ch III, Prop 3.1] when p|N ,
we see that the image of the closed point under xv lies in the smooth locus over Λv. Since xv is a section to
a separated map, it is a closed immersion and necessarily lands inside of the relative smooth locus over Λv.

�

Remark 2.3. One reason for the importance of Lemma 2.2 is that the curve Xv = X ×Z Λv is usually not
regular, so to do intersection theory one must resolve singularities. A minimal regular resolution Xreg =
Xreg
/Z(p)

can be obtained by means of successive normalizations and blow-ups over the non-regular locus
(thanks to a deep theorem of Lipman [L]), so the resolution process doesn’t do anything over the relative
smooth locus.

Thus, even though we can’t expect to do intersection theory on Xv, we are assured by Lemma 2.2 that
the intersection numbers among properly intersecting Heegner divisors will be computable directly on Xv.
We need to keep track of smoothness because regularity is often destroyed by ramified base change, such as
Z(p) → OH,v when p is ramified in K (in such cases the relative curve Xreg ×Z(p) Λv can be non-regular, but
some Heegner divisor intersection numbers may still be computed on this curves, such as happens in [GZ,
Ch III, Prop 3.3]).

With v fixed as above, let W denote the completion of a maximal unramified extension of Λv (if p ramifies
in K, this is not a Witt ring). The section xv ∈ X/W (W ) lies in the relative smooth locus. Although X/W

is not a fine moduli scheme, the point xv does arise from a Γ0(N)-structure over W . This is an important
point. Before we prove it, as a preliminary step recall that from the classical CM theory we can find an
algebraic model φ : E → E′ over H which represents our Heegner point in X(H). It is not true in general
that E and E′ have to admit everywhere good reduction over OH . But what is true, and suffices for us, is
that we can always find such good models over W . This is given by Theorem 2.5, but before proving this
we recall a general lemma concerning good reduction for CM elliptic curves.

Lemma 2.4. Let R be a complete discrete valuation ring with fraction field F of characteristic 0, and let
E/F be an CM elliptic curve with CM field K ⊆ F (so the CM-action is automatically defined over F ). If
K = Q(

√
−1) or K = Q(

√
−3), assume moreover that E/F actually has CM by the full ring of integers of

K. Then there exists a “twist” E′ of E over an unramified extension of F (so E′ is CM with the same CM
ring) such that E′ has good reduction over R.

When E begins life over a number field (which is the only case we really need for treating Heegner points),
this lemma follows from Corollary 2 to Theorem 9 in [ST]. Since the argument in [ST] rests on class field
theory, we prefer the argument below which uses only general principles concerning abelian varieties. The
argument in [ST] has the merit of treating more cases when K = Q(

√
−1) and K = Q(

√
−3).
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Proof. Since End(E/F ) = OK , so End(E/Fs) = OK and hence Aut(E/Fs) = O×K = Aut(E/F ), twisted
forms are described in terms of Galois cohomology H1(Gal(Fs/F ),O×K) with O×K given a trivial action by
Gal(Fs/F ). Passing to completions on a henselian discrete valuation ring doesn’t affect the Galois group in
characteristic 0, so without loss of generality we can assume that R has a separably closed residue field k
(i.e., pass to the completion of the maximal unramified extension). Now we seek to find a twist E′ of E over
F with good reduction over R.

A priori E has potentially good reduction (as does any CM type abelian variety over F ), so there exists
a finite Galois extension F ′/F such that E/F ′ has good reduction. Let R′ be the integral closure of R in
F ′ and let E/R′ denote the Néron model of E/F ′ . Note in particular that the residue field extension k′/k
is purely inseparable (since k is separably closed), so Aut(k′/k) = {1}. Let Γ = Gal(F ′/F ), so for each
σ ∈ Γ there is (by the Néronian property of abelian schemes over R) a unique isomorphism φσ : E ' σ∗(E )
of elliptic curves over R′ which extends the evident descent data isomorphism E/F ′ ' σ∗(E/F ′) of elliptic
curves over F ′. In particular, we have the cocycle property σ∗(φτ ) ◦ φσ = φστ and also φσ commutes with
the CM actions by K on source and target, as this can all be checked on the generic fibers.

Since σ induces the identity on k′ (as Aut(k′/k) = {1}!), on the closed fiber we therefore get an auto-
morphism φσ of E/k′ which defines an anti-homomorphism ρ : Γ → Autk′(E/k′) landing in the commutator
of the K-action. But an imaginary quadratic field acting (in the isogeny category) on an elliptic curve is
necessarily its own commutator in the endomorphism ring of the elliptic curve (even in the supersingular
case!), so we deduce that ρ(Γ) ⊆ O×K and in particular ρ is actually a homomorphism since O×K is abelian.
Let χ(σ) ∈ O×K be the unique (cf. Theorem 2.1(2)) unit inducing the same action as ρ(σ) on the closed fiber
of E/R′ (recall our initial assumption that when O×K is larger than {±1}, then the whole ring OK acts on E
and hence on the Néron model of E/F ′). Clearly χ is a homomorphism.

For each σ ∈ Γ we see that ψ(σ) def= φσ ◦ χ(σ)−1 : E/R′ ' σ∗(E/R′) makes sense and induces the identity
on the closed fiber. Since passage to the closed fiber is a faithful functor for abelian schemes (see Theorem
2.1(2)), we conclude that σ 7→ ψ(σ) satisfies the Galois cocycle condition on the generic fiber over F ′ (indeed,
to check this condition we may work over R′, and even on closed fibers over R′ by faithfulness). Thus, by
Galois descent we obtain a twist E′ of E over F and an isomorphism E′/F ′ ' E/F ′ of elliptic curves which
carries the canonical descent data on E′/F ′ over to the “twisted” descent data ψ.

I claim that E′ has good reduction over F . To prove this, by Néron-Ogg-Shafarevich it suffices to pick a
prime ` distinct from the residue characteristic of R and to show that the Γ-action on the `-adic Tate module
of E′/F is trivial (note that the Galois action on this Tate module certainly factors through Γ, since at least
over F ′ we know we have good reduction for E′/F ′ ' E/F ′). But this triviality is equivalent to the natural
action of Γ on the closed fiber of the Néron model of E′ over R′ being the identity. This in turn follows from
how E′ was constructed.

�

Recall that W denotes the completion of the maximal unramified extension of the algebraic localization
OH,v of OH at the place v over p.

Theorem 2.5. In the above notation, the point in X(W ) arising from a Heegner point in X(H) is necessarily
induced by a Heegner diagram over W .

It seems likely that Theorem 2.5 is false if we try to replace W with OH,v (or its completion Λv); we
almost surely have to pass to some extension of H unramified over v.

Due to the properness (even finiteness) of the fine moduli scheme of Drinfeld Γ0(N)-structures on a
given elliptic curve over a base, it follows that a diagram over W as in Theorem 2.5 is automatically a
Γ0(N)-structure (i.e., a cyclic N -isogeny) since this is true on the generic fiber of characteristic 0.

Proof. Let’s begin with a Heegner diagram φ : E → E′ over H which induces the given point in X(H). It
is generally not true that this necessarily admits good reduction over W (e.g., make a ramified quadratic
twist), but Lemma 2.4 (whose additional hypothesis for K = Q(

√
−1) or K = Q(

√
−3) is satisfied because

of our general assumption of CM by the maximal order for our Heegner points) shows that over the fraction
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field F of W there exists a twist of E with good reduction. More specifically, such a twist is given by an
element χ ∈ H1(Gal(Fs/F ),O×K) = Homcont(Gal(Fs/F ),O×K). Since φ is OK-equivariant, we can use the
same Galois character χ to twist E′, and the resulting O×K-valued twisted descent data automatically has to
commute with the OK-compatible φ.

Consequently, we can twist the entire given Heegner diagram relative to χ and thereby obtain a Heegner
diagram over F for which the two elliptic curves have good reduction over W and the induced geometric
point in X(Fs) coincides with the original Heegner point. Using Néron functoriality we can extend the
twisted φ over W and thereby get a Heegner diagram over W inducing the point in X(W ) arising from our
given Heegner point in X(H) (recall that X(W )→ X(F ) is bijective).

�

In all that follows, we will fix a Heegner diagram x over W inducing a given Heegner point in X(W )
(or rather, inducing the W -section of X/W arising from an initial choice of Heegner point in X(H)). The
existence of such a diagram follows from Theorem 2.5. It is important to note that the data of x is determined
up to non-unique isomorphism by the corresponding section in X(W ), so this section will also be denoted
x. This uniqueness up to isomorphism follows from the following result, applied to R = W :
Theorem 2.6. Let R be a complete discrete valuation ring with separably closed residue field k and fraction
field L. Let A1 and A2 be two abelian schemes over R. Then for any field extension L′ of L, the natural
map HomR(A1, A2) = HomL(A1/L, A2/L)→ HomL′(A1/L′ , A2/L′) is an isomorphism.

In other words, there are no “new” geometric morphisms between A1 and A2 over an extension of L which
don’t already show up over L (or equivalently, over R).

Proof. By the first part of Theorem 2.1, we are reduced to the case in which L′ is a separable closure of L,
and by direct limit considerations we can even assume L′ is a finite separable extension of L which we may
moreover suppose to be Galois. Let Γ = Gal(L′/L). By Galois descent, it suffices to show that σ∗(f) = f
for any f : A1/L′ → A2/L′ and any σ ∈ Γ. Let A′j denote the Néron model of Aj/L′ over the integral closure
R′ of R in L′ (so R′ is a Dedekind domain which is finite over R), so A′j = Aj ×R R′. Let F : A′1 → A′2
denote the map induced by f on Néron models, so it suffices to prove σ∗(F ) = F for any σ ∈ Γ. The crucial
role of the hypothesis that R is complete is that it ensures R′ is again local (i.e., a discrete valuation ring).

By the second part of Theorem 2.1, it suffices to check equality on the closed fiber over R′. But since
R′ has residue field which is purely inseparable over R (so σ reduces to the idenity!), it is immediate that
σ∗(F ) and F coincide on closed fibers over R′.

�

Throughout all that follows, the prime p will be fixed and we will write F to denote the fraction field of
W . We will also write X to denote X/W , and π to denote a uniformizer of W .

We now record an important immediate consequence of the above considerations (upon recalling how
correspondences act on rational points, via pushforward and pullback).
Corollary 2.7. Fix a positive integer m relatively prime to Np. Consider the Hecke divisor Tm(x/F ) in
X/F . Its scheme-theoretic closure in X/W is a sum of sections lying inside of the relative smooth locus.

By “sum of sections” we mean in the sense of relative effective Cartier divisors, which is to say that
we take products of ideal sheaves (all of which are invertible, thanks to the sections lying in the relative
smooth locus). It is immediate from the corollary, that the closed fiber of this closure is computed exactly by
the habitual “Hecke correspondence” formula on the level of geometric points. Thus, this scheme-theoretic
closure may be denoted Tm(x) without risk of confusion.

Proof. We have to prove that all points in Tm(x/F ) are F -rational with corresponding W -point in the smooth
locus of X over W . It is here that one uses that m is prime to Np, the crux of the matter being that all
prime-to-p torsion on elliptic curves over W is finite étale and hence constant (since W has separably closed
residue field) and all prime-to-N isogenies induce isomorphisms on level N -structures over any base. Thus,
all level structures of interest can be defined over W and we just have to show that if z is a Γ0(N)-structure
over W which is m-isogenous to x, then the resulting section Spec(W ) ↪→ X lands in the smooth locus.
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If p - N then X is W -smooth, so we’re done. If p|N , then by [GZ, Ch III, Prop 3.1] the closed point
x0 ∈ X(W/π) is an ordinary point in either the (0, n) or (n, 0) component of the closed fiber X0 (where
n = ordp(N) ≥ 1). Since z0 is m-isogenous to x0 with gcd(m,N) = 1, we see that the Γ0(N)-structure z0

is another ordinary point on the same component as x0 and in particular is a smooth point. Thus, z lies in
the relative smooth locus.

�

The analogue of this corollary when p|m is much more subtle, and will be treated in §6.

3. The Serre-Tate theorem and the Grothendieck existence theorem

The main technical problem in the arithmetic intersection component of [GZ] is to compute various
intersection numbers by means of counting morphisms between deformations of elliptic curves. We will have
two elliptic curves E and E′ over a complete local noetherian ring (R,m) (often artin local or a discrete
valuation ring) and will want to count the size of the finite set Hn = HomRn(En, E′n), where (·)n denotes
reduction modulo mn+1. By the last line of Theorem 2.1(2), the natural “reduction” map Hn+1 → Hn

(corresponding to base change by Rn+1 � Rn) is injective for every n ≥ 0, so we can view the Hn’s
as a decreasing sequence of subgroups of H0 = Homk(E0, E

′
0) (where k = R/m). When k has positive

characteristic p, the Serre-Tate theorem (to be stated in Theorem 3.3) will “compute” these Hom groups Hn

between elliptic curves in terms of Hom groups between p-divisible groups. In fact, the Serre-Tate theorem
does much more: it essentially identifies the deformation theory of an elliptic curve with that of its p-divisible
group. It will turn out that p-divisible groups are more tractable for our counting purposes, by means of the
theory of formal groups (a theory which is closely connected to that of p-divisible groups in the situations
of interest).

Once we have a way to work with the Hn’s by means of p-divisible groups via the Serre-Tate theorem, it
will still be important to understand one further issue: what is the intersection of the Hn’s inside of H0?
For example, the faithfulness at the end of Theorem 2.1(2) yields a natural inclusion

HomR(E,E′) ⊆
⋂
Hn ' lim←−Hn

inside of H0. Using a special case of the Grothendieck existence theorem, to be recorded in Theorem 3.4,
this inclusion is an equality.

Let us now set forth the general context in which the Serre-Tate theorem takes place. Since the specificity
of elliptic curves leads to no essential simplifications on the argument which is used for abelian schemes, we
will work in the more general setting of abelian schemes (although only the case of elliptic curves intervenes
in [GZ]). We recommend [Mum] as a basic reference for abelian varieties and [GIT, Ch 6] as a basic reference
for abelian schemes. Let S be a scheme, and A,A′ two abelian schemes over S. Assume that a prime number
p is locally nilpotent on S (i.e., every point of S has residue field of characteristic p). The case of most interest
will be S = Spec(W/πn+1) where W is either a ring of Witt vectors or some finite discrete valuation ring
extension thereof (with uniformizer π), though more general base rings are certainly needed for deformation
theory arguments.

Let Γ = A[p∞] and Γ′ = A′[p∞] denote the p-divisible groups arising from the p-power torsion schemes
on A and A′ over S. The problem considered by Serre and Tate was that of lifting morphisms of abelian
schemes through an infinitesimal thickening of the base. More specifically, let S0 ↪→ S be a closed immersion
with defining ideal sheaf I satisfying I N = 0 for some positive integer N . Consider the problem of lifting
an element in HomS0(A0, A

′
0) to an element in HomS(A,A′). Let’s first record that this lifting problem has a

unique solution if it has any at all, and that a similar uniqueness holds for p-divisible groups (not necessarily
coming from abelian schemes):

Lemma 3.1. Let S0 ↪→ S be as above. Let A and A′ be arbitrary abelian schemes over S, and let Γ
and Γ′ be arbitrary p-divisible groups over S. Then the natural maps HomS(A,A′) → HomS0(A0, A

′
0) and

HomS(Γ,Γ′)→ HomS0(Γ0,Γ′0) are injective.
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Proof. In both cases we may assume S is local. By the last line of Theorem 2.1(2), base change to the
residue field is a faithful functor on abelian schemes over a local ring, so the case of abelian schemes is
settled by means of base change to the residue field. For p-divisible groups, use [K, Lemma 1.1.3(2)] (which
also handles the abelian scheme case).

�

As was mentioned above, one aspect of the Serre-Tate theorem is that it identifies solutions to the
infinitesimal lifting problem for morphisms of abelian schemes with solutions to the analogous problem for
their p-divisible groups. In order to put ourselves in the right frame of mind, we first record the fact that
abelian scheme morphisms can be safely viewed as morphisms between p-divisible groups:
Lemma 3.2. If A and A′ are abelian schemes over a base S, and Γ and Γ′ are the associated p-divisible
groups for a prime number p, then the natural map HomS(A,A′)→ HomS(Γ,Γ′) is injective.

Note that this lemma does not impose any requirements on residue characteristics at points in S. We call
a map Γ→ Γ′ algebraic if it arises from a (necessarily unique) map A→ A′.

Proof. We can assume S is local, and by the last line in Theorem 2.1(2) we can even assume S = Spec(k) for
a field k which we may assume is algebraically closed. If p is distinct from the characteristic of k, then the
injectivity can be proven by a relative schematic density argument (this is needed in the proof of Theorem
2.1, and uses results from [EGA, IV3, 11.10]). If p coincides with the characteristic of k, then under the
equivalence of categories between connected p-divisible groups over k and commutative formal groups of finite
height over k, the connected component of the p-divisible group of an abelian variety over k is identified with
the formal group of the abelian variety. Thus, if f, g : A → A′ satisfy f [p∞] = g[p∞] then f and g induce
the same maps ÔA′,0 → ÔA,0 on formal groups at the origin. Thus, f = g.

�

As an example, if E is an elliptic curve over Qp with good reduction over Zp and E is the Néron model
of E, then EndQp

(E) = EndZp(E ) ⊆ EndZp(E [p∞]). We want to describe the image of this inclusion. More
generally, suppose we are given a map f : Γ → Γ′ between the p-divisible groups of two abelian schemes
A and A′ over S, and assume its reduction f0 over S0 is algebraic (in the sense that it comes from a map
A0 → A′0 which is then necessarily unique). The theorem of Serre and Tate asserts that f is also algebraic
(and more):
Theorem 3.3. (Serre-Tate) The natural commutative square (with injective arrows)

HomS(A,A′)

��

// HomS(Γ,Γ′)

��
HomS0(A0, A

′
0) // HomS0(Γ0,Γ′0)

is cartesian. In other words, a map f0 : A0 → A′0 lifts to a map f : A → A′ if and only if the induced map
f0[p∞] : Γ0 → Γ′0 lifts to a map h : Γ→ Γ′, in which case f and h are unique and f [p∞] = h.

Moreover, if the ideal sheaf I of S0 in S satisfies I N = 0 for some N and we are just given an abelian
scheme A0 over S0 and a p-divisible group Γ over S equipped with an isomorphism ι0 : Γ0 ' A0[p∞], then
there exists an abelian scheme A over S and an isomorphism ι : Γ ' A[p∞] lifting ι0. The pair (A, ι) is
unique up to unique isomorphism.

Proof. For an exposition of Drinfeld’s elegant proof of this theorem, see [K, §1]. This proof uses the point
of view of fppf abelian sheaves.

�

In words, Theorem 3.3 says that the infinitesimal deformation theory of an abelian scheme coincides
with the infinitesimal deformation theory of its p-divisible group when all points of the base have residue
characteristic p. We stress that it is crucial for the Serre-Tate theorem that all points of S have residue
characteristic p and that we work with infinitesimal deformations. For example, p-divisible groups are étale
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away from points of residue characteristic p, so there are no obstructions to infinitesimal deformations of p-
divisible group maps at such points, whereas there can certainly be obstructions to infinitesimally deforming
abelian scheme maps at such points (e.g., supersingular elliptic curves over k = Fp always lift to W (k), and
it follows from Corollary 3.5 below that some of the endomorphisms in characteristic p cannot lift through
all infinitesimal levels of the deformation to W (k)).

One reason for the significance of Theorem 3.3 for our purposes is that if A and A′ are abelian schemes
over a complete local noetherian ring R of residue characteristic p > 0 (the case of elliptic curves being the
only one we’ll need), then HomRn(An, A′n) is naturally identified with the group of “algebraic” elements in
Homk(Γ0,Γ′0) which lift (necessarily uniquely) to HomRn(Γn,Γ′n). This is particularly interesting when k is
algebraically closed and we are working with A = A′ equal to a supersingular elliptic curve E0 over k. In
such a case, Γ0 “is” the unique commutative formal group over k of dimension 1 and height 2, so Endk(Γ0)
is identified with the maximal order in the unique quaternion division algebra over Qp. Thus, problems in
the deformation theory of endomorphisms are transformed into problems in quaternion algebras (and some
such problems are solved in [Gr1], as we shall use later on).

The Grothendieck existence theorem addresses the problem of realizing a compatible family of infinitesimal
deformations of a proper variety as the reductions of a common non-infinitesimal deformation.
Theorem 3.4. (Grothendieck) Let R be a noetherian ring which is separated and complete with respect to
the I-adic topology for an ideal I. Let X and Y be proper R-schemes, and Rn, Xn, Yn the reductions modulo
In+1. The natural map of sets HomR(X,Y )→ lim←−HomRn(Xn, Yn) is bijective.

Moreover, if {Xn} is a compatible system of proper schemes over the Rn’s and L0 is an ample line bundle
on X0 which lifts compatibly to a line bundle Ln on each Xn, then there exists a pair (X,L ) consisting of
a proper R-scheme and ample line bundle which compatibly reduces to each (Xn,Ln), and this data over R
is unique up to unique isomorphism.

Proof. See [EGA, III1, §5] for the proof and related theory.
�

The first part of Grothendieck’s theorem identifies the category of proper R-schemes with a full subcate-
gory of the category of compatible systems {Xn} of proper schemes over the Rn’s, and it is really the second
part of the theorem which is usually called the existence theorem (as it asserts the existence of an R-scheme
giving rise to specified infinitesimal data over the Rn’s).

It is not true that all compatible systems {Xn} of proper schemes over the Rn’s actually arise from a
proper scheme X over R, and those which do are usually described as being algebraizable. Since the setup
in Grothendieck’s theorem is compatible with fiber products, to give compatible group scheme structures on
the Xn’s is equivalent to giving a group scheme structure on X. Also, various fundamental openness results
from [EGA, IV3, §11–12] ensure that for many important properties P of morphisms, a map X → Y of
proper R-schemes has property P if and only if each Xn → Yn does. For example, if each Xn is Rn-smooth
of pure relative dimension d, then the same holds for X over R.

Since elliptic curves possess canonical ample line bundles (namely, the inverse ideal sheaf of the iden-
tity section), we see that Grothendieck’s theorem provides the conceptual explanation (i.e., independent of
Weierstrass equations) for why a compatible system of elliptic curve deformations over the Rn’s uniquely lifts
to an elliptic curve over R. In higher relative dimension, formal abelian schemes need not be algebraizable.
However, when given two abelian schemes A and A′ over R we conclude from Grothendieck’s theorem that

HomR(A,A′) =
⋂

HomRn(An, A′n) ⊆ HomR/m(A0, A
′
0).

Combining the Grothendieck existence theorem with the Serre-Tate theorem, we arrive at the following
crucial result (to be applied in the case of elliptic curves over a complete discrete valuation ring W ).
Corollary 3.5. Let (R,m) be a complete local noetherian ring with residue field k = R/m of characteristic
p > 0, and let A,A′ be abelian schemes over R with associated p-divisible groups Γ and Γ′. Then

HomR(A,A′) = Homk(A0, A
′
0)
⋂(⋂

n

HomRn(Γn,Γ′n)

)
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inside of Homk(Γ0,Γ′0).
Let (R,m) be as above, with perfect residue field k of characteristic p > 0. Let A0 be an ordinary abelian

variety over k. Since k is perfect, the connected-étale sequence 0 → Γ0
0 → Γ0 → Γet

0 → 0 of Γ0 = E0[p∞] is
uniquely split. One lifting of Γ0 to a p-divisible group over R is the split form, namely a product of the unique
(up to unique isomorphism) liftings of Γ0

0 and Γet
0 to multiplicative and étale p-divisible groups over R. Such

a split lifting involves no ambiguity in the splitting data. More precisely, if the connected-étale sequence of
a p-divisible group Γ over R is a split sequence, then the splitting is unique. Indeed, any two splittings differ
by a morphism from the étale part to the connected part, so it suffices to show HomR(Γ1,Γ2) = 0 for an étale
p-divisible group Γ1 and a connected p-divisible group Γ2 over R. We may make a local faithfully flat base
change on R to get to the case where R has algebraically closed residue field, in which case Γ1 is a product
of Qp/Zp’s, so it suffices to show that ∩pn · Γ2(R) = 0. Since Γ2 is a formal Lie group in finitely many
variables, with multiplication by p given by Ti 7→ T pi + p(·) in terms of formal parameters Ti, ∩pn · Γ2(R)
vanishes because ∩mn = 0 (as follows from Krull’s intersection theorem for noetherian local rings). With
this uniqueness of splittings in hand, we can make a definition:
Definition 3.6. A Serre-Tate canonical lift of A0 to R is a pair (A, ι) where A is an abelian scheme over
R, ι is an isomorphism between A/k and A0, and the connected-étale sequence of A[p∞] is split.

It is immediate from the above theorems of Serre-Tate and Grothendieck that a Serre-Tate canonical lift
is characterized by the condition that it is a lift of A0 whose p-divisible group has a split connected-étale
sequence over R, and that it is unique up to unique isomorphism (as a lift of A0). Moreover, if A′0 is
another ordinary abelian variety with Serre-Tate canonical lift (A′, ι′), then HomR(A,A′)→ Homk(A0, A

′
0)

is a bijection. In general, when R is not artinian one cannot expect a Serre-Tate canonical lift to exist; the
best one can do is get a formal abelian scheme. However, in the case of elliptic curves the existence is always
satisfied.

4. Computing naive intersection numbers

We are interested in computing the local intersection pairing 〈x − (∞), Tm(xσ) − Tm(0)〉v, with x ∈
X(H) ⊆ X(W ) a Heegner point and σ ∈ Gal(H/K). Serious complications will be caused by the possibility
that x is a component of Tm(xσ). By [GZ, Ch III, Prop 4.3], the multiplicity of x as a component in Tm(xσ)
is rA (m), the number of integral ideals of norm m in the ideal class A associated to σ ∈ Gal(H/K) ' ClK .
Thus, we will first concentrate on the case rA (m) = 0, so all divisors of interest on X intersect properly.
The formula we wish to establish will relate local intersection numbers with Iso groups and Hom groups
for infinitestimal deformations of Heegner points. This section is devoted to some general preliminaries
concerning the simplest situation: intersecting two sections y, y′ in X(W ) whose generic fibers are distinct
and whose closed points y

0
and y′

0
are assumed to be disjoint from the cuspidal divisor and supported in the

smooth locus. Heegner points will play no role here.
Recall that a section through the regular locus on a proper flat curve over a field or discrete valuation

ring is automatically supported in the smooth locus, so we could equivalently be assuming that the closed
points of our two sections lie in the (non-cuspidal part of the) regular locus of the closed fiber or that the
sections lie in the (non-cuspidal part of the) regular locus on X. The most important instance of this setup
is given by sections arising from Heegner points or components of prime-to-p Hecke divisors obtained from
such points (as in Corollary 2.7).

For such sections y and y′ we need to make an additional assumption that there exist Γ0(N)-structure
diagrams over W which actually induce y and y’. This is an additional assumption because X is not a fine
moduli scheme (but we’ll prove in a moment that in many cases this additional assumption is satisfied). Note
in particular (thanks to Theorem 2.6) that such models over W are unique up to non-unique isomorphism,
so it is easily checked that subsequent considerations which use such models (e.g., Theorem 4.1 below) are
intrinsic to the given sections y and y′ in X(W ).

In this setting it makes sense to consider the intersection number

(4.1) (y.y′) def= length(y ∩ y′)
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where y ∩ y′ denotes a scheme-theoretic intersection inside of X. Although general intersection theory on
arithmetic curves usually works with degree 0 divisors and requires passing to a regular resolution of X and
using a moving lemma there, the regular resolution process can be carried out without affecting the relative
smooth locus. Thus, the geometric input needed for an intersection calculation on a regular resolution is
the length as in (4.1). Taking the point of view of the right side of (4.1) avoids general intersection theory
and hence makes sense with no assumption of regularity/smoothness. Thus, we could contemplate trying to
establish a formula for this length with no regularity assumptions at all. However, we’ll see that a regularity
assumption is crucial if we want to avoid restrictions on automorphism groups at closed points. Here is the
formula we wish to prove:
Theorem 4.1. Let y, y′ ∈ X(W ) be sections which intersect properly and reduce to regular non-cuspidal
points in the special fiber (and hence are supported in the relative smooth locus over W ). Assume moreover
that these sections are induced by (necessarily unique) respective Γ0(N)-structures denoted y and y′ over W .
Then length(y ∩ y′) = 1

2

∑
n≥0 #IsomWn

(y′, y), where Wn = W/πn+1.
Before we prove Theorem 4.1, we should record the following result which explains why the condition of

existence of “W -models” for y, y′ ∈ X(W ) is usually automatically satisfied.

Lemma 4.2. If y ∈ X(W ) is a section which is disjoint from the cuspidal locus and has Aut(y
0
) = {±1},

then there exists a Γ0(N)-structure over W which induces y. Moreover, with no assumptions on Aut(y
0
),

the complete local ring of X at the closed point y
0

of y is the subring of Aut(y
0
)-invariants in the universal

deformation ring of y
0

and {±1} acts trivially on this ring.

Since W/π is algebraically closed, every non-cuspidal point in X(W/π) is actually represented by a
Γ0(N)-structure over W/π (unique up to non-unique isomorphism). Thus, the concept of Aut(y

0
) makes

sense prior to the proof of the lemma (and the existence of a universal deformation ring follows from the
theory of Drinfeld structures on elliptic curves).

Proof. (of Lemma 4.2) Since formal deformations of Γ0(N)-diagrams are algebraizable (thanks to Theorem
3.4), it suffices to prove the assertion concerning universal deformation rings.

If one looks at how the coarse moduli scheme X is constructed from a fine moduli scheme X(ι) (away from
the cusps) upon adjoining enough prime-to-p level structure ι, and one notes that formation of coarse moduli
schemes in our context commutes with flat base change (such as Z→W ), it follows that the complete local
ring at y

0
on X is exactly the subring of Γ = Aut(y

0
)-invariants in the complete local ring on X(ι) at a point

corresponding to y
0

with supplementary ι-structure added. The justification of this assertion is a standard
argument in deformation theory which we omit.

Since X(ι) is a fine moduli scheme away from the cusps, its complete local rings are formal deformation
rings. Combining this with the fact that étale level structure ι is “invisible” when considering formal
deformations, we conclude that the complete local ring in question on X really is naturally identified with
the Γ-invariants in the universal deformation ring of y

0
(with the natural action of Γ!). It therefore remains to

check that −1 ∈ Γ acts trivially on this deformation ring. But since inversion uniquely lifts to all deformations
of a Γ0(N)-structure (other closed fiber automorphisms usually don’t lift!), the triviality of the action of −1
on universal deformation rings drops out.

�

Proof. (of Theorem 4.1) If y
0
6= y′

0
, then both sides of the formula are 0 and we’re done. If these closed

points coincide, so y
0
' y′

0
as Γ0(N)-structures over W/π, we at least see that the automorphism groups of

y
0

and y′
0

(by which we mean the automorphism groups of representative Γ0(N)-structures over W/π) are
abstractly isomorphic.

Let z ∈ X(W/π) be the common non-cuspidal point arising from y
0

and y′
0
. For later purposes let’s

also fix choices of isomorphisms of Γ0(N)-structures y
0
' z and y′

0
' z in order to view y and y′ (or more

specifically fixed choices of W -models for these sections) as W -deformations of the Γ0(N)-structure z.
Let Az denote the universal deformation ring for z. This ring is regular of dimension 2 (as is proven in

[KM]) and has a unique structure of W -algebra (compatibly with its residue field identification with W/π), so
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by commutative algebra the existence of a W -section (such as coming from y or y′) forces Az to be formally
W -smooth, which is to say of the form W [[T ]] as an abstract local W -algebra.

By Lemma 4.2, the complete local ring ÔX,z is exactly the subring AΓ
z , where Γ = Aut(z)/{±1} acts

naturally. Let d = |Γ| denote the size of Γ. A crucial point is that Γ acts faithfully on Az (i.e., the only
elements of Aut(z) acting trivially on the deformation ring are the elements ±1). This amounts to the
assertion that ±1 are the only automorphisms of z which lift to all deformations of z. That is, the generic
deformation cannot have automorphisms other than ±1. This follows from the 1-dimensionality of modular
curves and the existence of elliptic curves with automorphism group {±1}.

The finite group Γ of order d now acts faithfully on the formally smooth W -algebra Az ' W [[T ]], and if
we define the “norm” t = NormΓ(T ) =

∏
γ∈Γ γ(T ) then by [KM, p. 508] the subring ÔX,z of Γ-invariants

is exactly the formal power series ring W [[t]] and [Mat, Thm 23.1] ensures that the resulting finite map
W [[t]]→W [[T ]] between 2-dimensional regular local rings is necessarily flat. Moreover, using Artin’s theorem
on the subfield of invariants under a faithful action of a finite group on a field (such as Γ acting on the
fraction field of W [[T ]]) we see that ÔX,z → Az is finite flat of degree d = |Γ|. XC The two sections
y, y′ : ÔX,z � W both arise from specified deformations and hence (uniquely) lift to W -sections of Az. We
can choose T without loss of generality to cut out the section corresponding to the deformation y, and we
let T ′ correspond likewise to the deformation y′. Define t′ to be the Γ-norm of T ′ in ÔX,z. By definition,
we have (y.y′) = length(ÔX,z/(t, t′)) = (1/d)length(Az/(t, t′)) since ÔX,z → Az is finite flat of degree d.

By induction and short exact sequence arguments with lengths, one shows that if A is any 2-dimensional
regular local ring and a, a′ ∈ A are two non-zero elements of the maximal ideal with A/(a, a′) of finite length
and prime factorization a =

∏
pi, a′ =

∏
qj (recall A is a UFD), then A/(pi, qj) has finite length for all i, j

and length(A/(a, a′)) =
∑
i,j length(A/(pi, qj)). Thus, in our setup we have

length(Az/(t, t′)) =
∑
γ,γ′∈Γ

length(Az/(γ(T ), γ′(T ′))) = d
∑
γ′∈Γ

length(Az/(T, γ′(T ′))).

Consequently, we get

(4.2) (y.y′) =
∑
γ′∈Γ

length(Az/(T, γ′(T ′)))

We have Az/T = W corresponding to the deformation y, and Az/(T, γ′(T ′)) is of finite length and hence
of the form W/πkγ′ for a unique positive integer kγ′ . If we let γ′(y′) denote the deformation obtained from
the Γ0(N)-structure y′ by composing its residual isomorphism with z with a representative automorphism
γ̃′ ∈ Aut(z) for γ′ ∈ Γ = Aut(z)/{±1}, then γ′(y′) corresponds to Az/γ

′(T ′) and hence there exists a
(unique!) isomorphism of deformations y mod πk ' γ′(y′) mod πk if and only if k ≤ kγ′ . Equivalently, there
exists a (unique) isomorphism y mod πk ' y′ mod πk lifting γ̃′ ∈ Aut(z) if and only if k ≤ kγ′ .

Any isomorphism y mod πk ' y′ mod πk merely as abstract Γ0(N)-structures (ignoring the deformation
structure with respect to z) certainly either lifts a unique γ̃′ or else its negative does (but not both!). Since
passage to the mod π fiber is faithful (Theorem 2.1(2)), so any Γ0(N)-structure isomorphism between y

and y′ modulo πk is uniquely detected as a compatible system of isomorphisms modulo πn’s for n ≤ k, we
conclude from (4.2) that (y.y′) counts exactly the sum over all n ≥ 1 of the sizes of the sets IsomWn

(y, y′) up
to identifying isomorphisms with their negatives. This is essentially just a jazzed-up way of interchanging
the order of a double summation. Since no isomorphism can have the same reduction as its negative, we
have completed the proof of Theorem 4.1 by purely deformation-theoretic means.

�

5. Intersection formula via Hom groups

The link between intersection theory and deformation theory is given by:
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Theorem 5.1. Let σ ∈ Gal(H/K) correspond to the ideal class A of K, and assume that the number rA (m)
of integral ideals in A of norm m vanishes, where m ≥ 1 is relatively prime to N . Then

(5.1) (x.Tm(xσ)) =
1
2

∑
n≥0

|HomWn
(xσ, x)degm|.

Remark 5.2. Recall that the hypothesis rA (m) = 0 says that x and Tm(xσ) intersect properly, so Theorem
4.1 is applicable (thanks to the description of Tm(xσ) as a sum of Cartier divisors in Corollary 2.7).

In order to prove Theorem 5.1, we have to treat three essentially different cases: p not dividing m, p|m
with p split in K, and p|m with p inert or ramified in K. The first case will follow almost immediately from
what we have already established, while the second case amounts to a careful study of ordinary elliptic curves
and Serre-Tate canonical liftings, and the third case is a subtle variant on the second case where we have
to deal with supersingular reduction and must replace Serre-Tate theory with Gross’ variant as discussed
in [Gr1]. In particular, the phrases “canonical” and “quasi-canonical” liftings will have different meanings
depending on whether we are in the ordinary or supersingular cases (for p|m).

In this section we take care of the easy case p - m and the less involved case where p|m but p splits in
K (i.e., the ordinary case). Our proof will essentially be the one in [GZ], except we alter the reasoning a
little bit to avoid needing to use explicit Hecke formulas on divisors. The supersingular case (i.e., p not
split in K) will roughly follow the same pattern as the ordinary case, except things are a bit more technical
(e.g., it seems unavoidable to make explicit Hecke computations on divisors) and hence we postpone such
considerations until the next section.

Let’s now take care of the easy case p - m. In this case, all m-isogenies are finite étale, so by Corollary 2.7
we see that if {C} denotes the (finite) set of order m subgroup schemes of xσ0, each of which uniquely lifts to
any deformation of xσ0 (thanks to the invariance of the étale site with respect to infinitesimal thickenings).
As relative effective Cartier divisors in the relative smooth locus of X over W we get the equality

Tmx
σ =

∑
C

xσC

where xσC denotes the quotient Γ0(N)-structure on xσ by the unique order m subgroup scheme over W
lifting C modulo π (this makes sense since m is relatively prime to N).

By Theorem 4.1 and the symmetry of intersection products, we obtain the formula

(5.2) (x.Tmxσ) =
∑
C

(x.xσC) =
∑
n≥0

∑
C

1
2
|IsomWn

(xσC , x)|

with all sums implicitly finite (i.e., all but finitely many terms vanish). Since any non-zero map between
elliptic curves over Wn is automatically finite flat (thanks to the fiber-by-fiber criterion for flatness), we
conclude that the inner sum over C’s is equal to 1

2 |HomWn(xσ, x)degm|. This gives Theorem 5.1 in case
p - m.

Now assume p|m, so we have m = ptr with t, r ≥ 1 and p - r. In particular, this forces p - N , so the
Γ0(N)-structures are étale and X is a proper smooth curve over W . Hence, we have a good theory of Cartier
divisors and intersection theory on X without needing to do any resolutions at all, and we can keep track
of compatibilities with Γ0(N)-structures merely by checking such compatibility modulo π. Also, we can
work with Hecke correspondences directly on the level of “integral model” Cartier divisors (rather than more
indirectly in terms of closures from characteristic 0 on abstract regular resolutions). These explications are
important because much of our analysis will take place on the level of p-divisible groups and deformations
thereof (for which level N structure is totally invisible) and we will have to do very direct analysis of
Hecke correspondences on relative effective Cartier divisors in characteristic 0, characteristic p, and at the
infinitesimal level. The a priori knowledge that a deformation of a Γ0(N)-compatible map is automatically
Γ0(N)-compatible will be the reason that we can focus most of our attention on p-power torsion and not
worry about losing track of morphisms within the category of Γ0(N)-structures.
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In X we have the equality of relative effective Cartier divisors Tm(xσ) = Tpt(Tr(xσ)) with Tr(xσ) a sum
of various W -sections z, thanks to Corollary 2.7. Thus,

(5.3) (x.Tm(xσ)) =
∑
z

(x.Tpt(z)).

Before we focus our attention on the proof of Theorem 5.1 when p|m, we make one final observation. Using
the connected-étale sequence for finite flat group schemes over Wn (such as the kernels of dual isogenies
x→ xσ of degree m) and the fact that finite flat group schemes of prime-to-p order in residue characteristic
p are automatically étale (and therefore constant when the residue field is algebraically closed), we see that
both sides of Theorem 5.1 naturally break up into into sums over all z’s. It suffices to establish the equality

(5.4) (x.Tpt(z)) =
1
2

∑
n≥0

|HomWn(z, x)degpt |

for each irreducible component z ∈ X(W ) of Tr(xσ).
We now prove (5.4) when p is split in K, which is to say that all the Heegner points (such as x and xσ)

have ordinary reduction. The key observation is that the W -models corresponding to all such Heegner points
must be (Serre-Tate) canonical lifts of their closed fibers, which is to say that the connected-étale sequences
of their p-divisible groups over W are split (and non-canonically isomorphic to Qp/Zp×Gm[p∞]). To prove
this, we first note that by Tate’s isogeny theorem for p-divisible groups over W it suffices to check that on
the generic fiber, the p-adic Tate modules underlying Heegner points over W are isomorphic to Zp × Zp(1)
as Galois modules.

What we know from ordinary reduction and the fact that W has algebraically closed residue field is that
these p-adic Tate modules must be extensions of Zp by Zp(1). In order to get the splitting, we use the fact
that for any elliptic curve E over F with CM by K, the CM-action by K is defined over K and hence also
over F , so the Galois action commutes with the faithful action of

Zp ⊗Z OK = Zp ⊗Z HomF (E,E) ↪→ HomF (Tp(E), Tp(E)).

Thus, when p is split in K and E has good ordinary reduction then the action of the Zp-algebra Zp⊗Z OK '
Zp × Zp gives rise to a decomposition of Tp(E) into a direct sum of two Galois characters which moreover
must be the trivial and p-adic cyclotomic characters, as desired. This proves that our Heegner points are
in fact automatically the Serre-Tate canonical lifts of their ordinary closed fibers. Note that each section
z ∈ X(W ) of Tr(xσ) has p-adic Tate module isomorphic to that of the Heegner point xσ and hence all
such z’s are Serre-Tate canonical lifts of their closed fibers (even though such z’s generally are not Heegner
points).

By the Serre-Tate theorem, we conclude

(5.5) HomW (xσ, x) ↪→ HomW/π(xσ, x)

is an isomorphism because on the p-divisible groups side it is obvious the endomorphisms of Qp/Zp×Gm[p∞]
over W/π uniquely lift to W (and recall that for the level N -structure we don’t have to check anything once
the residual level respects this data).

The assumption rA (m) = 0 says that there are no degree m isogenies on generic geometric fibers between
xσ and x, so there are no such isogenies over W thanks to Theorem 2.6. Since (5.5) is an isomorphism, there
are no such isogenies modulo πn+1 for each n ≥ 0. This renders the right side of Theorem 5.1 equal to 0.
Thus, to prove the theorem we must prove that (x.Tpt(z)) = 0 for any point z ∈ X(W ) which is prime-to-p
isogenous to xσ. In more explicit terms, we need to show that a Γ0(N)-structure (over some finite extension
F ′ of F ) which is p-power isogenous to z/F ′ (and hence has to have good reduction) must have corresponding
closed subscheme in X which is disjoint from x.

Assuming the contrary, suppose that x actually meets Tpt(z). Thus, some point in Tpt(z) (viewed as a
Γ0(N)-structure over a finite extension W ′ of W ) would have to admit x/W ′ as the canonical lift of its closed
fiber. We have just seen that x is not one of the component points of Tpt(z), yet x as a Γ0(N)-structure
is the Serre-Tate canonical lift of its (ordinary) closed fiber. To get a contradiction, it therefore suffices
to check that for any non-cuspidal generic geometric point z on X which has good reduction and is the
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Serre-Tate canonical lift of its closed fiber, every point in the geometric generic fiber of of Tpt(z) has the
Serre-Tate canonical lift of its closed fiber (with lifted Γ0(N)-structure) as one of the (geometric generic)
points of Tpt(z). Due to the level of generality of this claim (with respect to the hypotheses on z), we can
use induction on t and the recursive formula Tpt+1 = TpTpt − pTpt−1 to reduce to the case t = 1.

By the very definition of Tp, we break up Tp(z)/F (viewed on the level of Néron models of “elliptic curve
moduli” over a sufficiently large extension of W ) into two parts: the quotient by the order p connected
subgroup and the p quotients by the étale order p subgroups. Since z is a Serre-Tate canonical lift, it has
two canonical quotients (one with connected kernel and one with étale kernel) which are visibly Serre-Tate
canonical lifts of their closed fibers. Moreover, these two quotients yield the two distinct geometric points
which we see in Tp(z) on the closed fiber divisor level. This completes the case when p is split in K.

6. Supersingular cases with rA (m) = 0

We now treat the hardest case of Theorem 5.1: p|m with p either inert or ramified in K. All elliptic curves
in question will have (potentially) supersingular reduction. For as long as possible, we shall simultaneously
treat the cases of p inert in K and p ramified in K. We will prove (5.4) for z in Tr(xσ).

Let Kp = K ⊗Q Qp be the completion of K at the unique place over p, so Kp is a quadratic extension
field of Qp, with valuation ring O = OK ⊗Z Zp. The p-divisible groups of our Heegner points over W are
formal O-modules of height 1 over W . Instead of the Serre-Tate theory of canonical lifts, we will have to use
Gross’ theory of canonical and quasi-canonical lifts for height 1 formal O-modules. In this theory, developed
in [Gr1], the role of canonical lifts is played by the unique (up to non-canonical isomorphism) height 1 formal
O-module over W , namely a Lubin-Tate formal group. The formal groups of x, xσ, and z all admit this
additional “module” structure (replacing the property of being Serre-Tate canonical lifts in the ordinary case
treated above). The points in the Tpt(z)’s will correspond to various quasi-canonical lifts in the sense of
[Gr1], and working out the field/ring of definition of such Γ0(N)-structures will play an essential role in the
intersection theory calculations in the supersingular case.

Our first order of business is to give a precise description of Tpt(z) for any section z ∈ X(W ) which
is supported away from the cuspidal locus and is represented by a Γ0(N)-structure φ : E → E′ over W
for which the “common” p-divisible group of E and E′ is endowed with a structure of Lubin-Tate formal
O-module over W (note φ is an N -isogeny and p - N , so φ induces an isomorphism on p-divisible groups).
The z’s we care about will be known to have such properties due to their construction from Heegner points,
but in order to keep straight what really matters we avoid assuming here that z is a CM point or even that
z has any connection to Heegner points at all.

Since W is the completion of the maximal unramified extension of K, by Lubin-Tate theory (or more
specifically local class field theory for K at the unique place over the ramified/inert p) we know that the
Galois representation χ : GF → O× on the generic fiber p-divisible group associated to a Lubin-Tate formal
O-module of height 1 is surjective and (due to the uniqueness of such formal O-modules up to non-unique
isomorphism) this character is independent of the specific choice of such formal group. That is, by thinking
in terms of this character χ we are dealing with a canonical concept. One may object that the data of the
O-action on the p-divisible group of z is extra data which we have imposed, but we’ll see that the “counting”
conclusions we reach will not depend on this choice. Note also that in local class field theory it is shown that
χ is the reciprocal of the reciprocity map for Kp (if one associates local uniformizers to arithmetic Frobenius
elements; if one adopts the geometric Frobenius convention of Deligne then χ is the reciprocity map). This
will lead us to the connection with local ring class fields over Kp, a connection of paramount importance in
the proof of Theorem 6.4 below.

In order to describe Tpt(z) where z = (φ : E → E′)/W , we first determine the geometric generic points of
Tpt(z), which is to say that we consider the situation over F . By definition as a divisor on X/F ,

Tpt(z)/F = Tpt(z/F ) =
∑
C

(φC : E/C → E′/φ(C))

where C runs over all order pt subgroups of E and φC is the naturally induced map (still an N -isogeny since
p - N). We break up the collection of C’s into collections based on the largest u ≥ 0 for which C contains
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E[pu]. We have the natural isomorphism E/E[pu] ' E which carries C over to a cyclic subgroup of order
pt−2u, and we note that φ carries E[pu] isomorphically over to E′[pu]. Letting s = t− 2u ≥ 0, we therefore
get

Tpt(z)/F =
∑

s≡t mod 2,0≤s≤t

∑
|C|=ps

(φC : E/C → E′/φ(C))

with the inner sum now taken over cyclic subgroups of order ps.
We wish to determine which of the F -points onX in this sum correspond to a common closed point onX/F .

By Galois theory, this amounts to working out the Gal(F/F )-orbits on these points, where σ ∈ Gal(F/F )
acting through functoriality on X(F ) carries a point φC to the point φσ(C) where σ acts naturally on
C ⊆ E(F ) (and σ(φ(C)) = φ(σ(C)) since φ is a morphism over F ). Fortunately, σ(C) is something we
can compute because C ⊆ E[p∞](F ) and GF acts on E[p∞](F ) through the character χ! Since χ is a
surjective map onto O×, the problem of working out Galois orbits (for which we may fix s) is exactly the
problem of computing orbits for the natural O×-action on the ps−1(p + 1) cyclic subgroups of order ps in
O/ps ' (Z/ps)⊕2 when s ≥ 1 (the case s = 0 is trivial: in this case t is even and there is a single orbit
corresponding to the subgroup E[pt/2], which is to say the point z).

First suppose p is inert in K, so O/p is a field (of order p2). Every element of additive order ps in O/ps is
a multiplicative unit, so there is a unique orbit. This orbit is a closed point whose degree over F is 1 when
s = 0 and ps−1(p + 1) when s > 0 (since for s > 0 we just saw that the orbit contains ps−1(p + 1) distinct
geometric points). This yields

(6.1) Tpt(z) =
∑

0≤s≤t,s≡t mod 2

y(s)

with each “horizontal divisor” y(s) having its generic fiber equal to a single closed point in X/F of degree
ps + ps−1 over F for s > 0 and of degree 1 over F for s = 0.

From the local class field theory interpretation of the preceding calculation, we see that the generic point
of y(s) is defined over an abelian extension of F which is obtained from the abelian extension of Kp whose
norm group has image in (O/ps)× which is spanned by the stablizer (Z/ps)× of a “line”. This corresponds to
the subgroup Z×p · (1+psO) = (Zp+psO)× of index (p+1)ps−1 in O×. If F (s)/F denotes the corresponding
finite extension (abelian over Kp), we see see that the field of definition of y(s)/F is exactly Spec(F (s)).
We let W (s) denote the corresponding valuation ring and let πs be a uniformizer, so y(s) corresponds to an
element in X(W (s)). It is clear from the construction that the p-divisible group underlying y(s) is exactly

a level s quasi-canonical deformation (in the sense of [Gr1]) of the formal O-module underlying z(pt)
0 ' x0.

Moreover, by taking scheme-theoretic closure from the generic fiber (in conjunction with the generic fiber
description of quasi-canonical deformations in [Gr1]) we see that the point y(s) ∈ X(W (s)) arises from a
Γ0(N)-structure defined over W (s). We stress that from the point of view of coarse moduli schemes this is
a slightly surprising fact (for which we will be very grateful in the proof of Theorem 6.4). By Theorem 2.6
such a W (s)-model is unique up to non-unique isomorphism.

Meanwhile, when p is ramified in K then if π ∈ O is a uniformizer (recall W is unramified over O, so
this is not really an abuse of notation), we see that O/p is a non-split O-module extension of O/π = Fp by
πO/π2O ' O/π. For s > 0, among the ps + ps−1 cyclic subgroups of order ps in O/ps we have a natural
decomposition into the ps−1 such subgroups whose generators map to non-zero elements in πO/π2O ⊆ O/p
and the ps others whose generators have non-zero image in O/π. In the first case the generators are unit
multiples of π and in the second case the generators are units. Thus, both such clumps are orbits, so for
each s > 0 with s ≡ t mod 2 we get an orbit of size ps and an orbit of size ps−1. When t is even, the case
s = 0 also gives rise to another singleton orbit corresponding again to the point z. For both options of the
parity of t, we arrive at t + 1 distinct closed points y(s)/F on X/F of degrees ps over F for 0 ≤ s ≤ t. In
other words, we get

(6.2) Tpt(z) =
∑

0≤s≤t

y(s)
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with the generic fiber of y(s) of degree ps over F . These generic fiber closed points of X/F have residue field
identical to the finite abelian extension F (s) of F corresponding (via local class field theory for Kp) to the
subgroup (Zp + πsO)× in O×. Once again we recover level s quasi-canonical deformations in the sense of
[Gr1], and the points y(s) ∈ X(W (s)) are represented by Γ0(N)-structures over W (s).

The identities (6.1) and (6.2) are precisely the inert and ramified cases in [GZ, Ch III, (5.2)]. In both
the inert and ramified cases, for s > 0 the point y(s) ∈ X(W (s)) is represented by a Γ0(N)-structure over
the valuation ring W (s) of the local ring class field of level s, with its p-divisible group endowed with a
natural structure of formal module of height 1 over a suitable non-maximal order in O (depending on s and
the O-structure specified on z). More specifically, the explicit description above shows that for s > 0 these
formal modules are quasi-canonical deformations (in the sense of [Gr1]) which are not “canonical” (i.e., not
formal modules over O).

When t is even, the point y(0) is z (use the isogeny pt/2), corresponding to a “canonical” deformation
of the closed fiber. When s = 1 in the inert case (so t is odd), the Γ0(N)-structure y(1)0 over W/π is the

quotient of z0 by its unique order p subgroup scheme, which is to say that it is the Frobenius base change z(p)
0

of the Γ0(N)-structure z0 over W/π. Finally, when s = 0 with odd t in the ramified case, then y(0) ' zσp

as Γ0(N)-structures, where σp ∈ Gal(H/K) is the arithmetic Frobenius element at the unique prime p of K
over p. To see this assertion in the ramified case, we just have to construct a p-isogeny between z and zσp

(and then compose it with p(t−1)/2 to realize zσp as the unique W -section y(0) in Tpt(z). Since σp lies in
the decomposition group at p and is the restriction to H of the arithmetic Frobenius automorphism of the
completed maximal unramified extension F of Kp, the existence of a p-isogeny zσp → z as Γ0(N)-structures
follows from Theorem 6.2 below (which does not depend on the preceding discussion).

The next two basic results will help us to construct elements of Hom groups. This is essential in the proof
of (5.4) when p|m.

Theorem 6.1. Let E and E′ be elliptic curves over W with supersingular reduction and CM by OK , so p
is inert or ramified in K. Let f : E′/Wn

→ E/Wn
be an isogeny, with n ≥ 0.

• If n ≥ 1 in the inert case and n ≥ 2 in the ramified case, then the map f has degree divisible by p2

if and only if f mod πn+1/p = [p] ◦ g for some other isogeny g : E′/W/(πn+1/p) → E/W/(πn+1/p).
• For any n ≥ 0 the map [p] ◦ f always lifts (uniquely) to an isogeny over W/pπn+1.
• If p is inert in K, n = 0, and f has degree pr for r ≥ 1 not divisible by p, then f does not lift to an

isogeny over W/π2.

Note that the uniqueness of liftings follows from the second part of Theorem 2.1 over the artinian quotients
of W . The last part of the theorem is crucial for success in the inert case with t odd, and it is not needed
for any other cases. It should also be noted that Theorem 6.1 rests on the fact that W is the completion
of a maximal unramified extension of O = Zp ⊗Z OK (i.e., has algebraically closed residue field and no
ramification over O), as otherwise the theorem is generally false.

Proof. Since W is the completion of the maximal unramified extension of O, we may (and do) take our
uniformizer π of W to come from O.

For the first part of the theorem, we first want to prove that if f has degree divisible by p2, then
f mod πn+1/p factors through the isogeny [p] on E′ mod πn+1/p. Let Γ/W denote a fixed Lubin-Tate formal
O-module of height 1 and let R = EndW0(Γ/W0), a maximal order in a quaternion algebra over Qp. We can
(and do) fix isomorphisms of formal O-modules E[p∞] ' Γ and E′[p∞] ' Γ. By means of these isomorphisms,
the map f [p∞] induced by f on p-divisible groups is converted into an endomorphism of Γ/Wn

as a formal
group (not necessarily respecting the O-structure). It is proven in [Gr1] that the endomorphism ring of Γ/Wn

is exactly the subring O + πnR inside of the endomorphism ring R of the closed fiber of Γ. In this way, f
gives rise to an element α ∈ O + πnR with reduced norm N(α) divisible by p2. By the Serre-Tate theorem
relating the deformation theory of elliptic curves with that of their p-divisible groups, as well as the fact that
infinitesimal deformations are automatically compatible with Γ0(N)-structures when p - N (provided such
compatibility holds over the residue field), the condition that f mod πn+1/p factor through [p] is exactly the
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statement that α as an element of O + (πn/p)R be divisible by p (note that πn/p ∈ O in the ramified case
since we require n ≥ 2 in this case). Now we are faced with a problem in quaternion algebras.

For the factorization aspect of the first part of the theorem, we aim to show for any n ≥ 1 in the inert
case and any n ≥ 2 in the ramified case, p(O + (πn/p)R) = pO +πnR contains the elements α ∈ O +πnR of
reduced norm divisible by p2. Any element of R lies inside of the valuation ring OL of a quadratic extension
L of Qp which lies inside of R ⊗Zp Qp. Moreover, the reduced norm of such an element coincides with its
relative norm from L down to Qp. An element of OL with norm down to Zp divisible by p2 is certainly
divisible by p in OL, so we can definitely write α = pβ for some β ∈ R. Thus, for β ∈ R with pβ ∈ O + πnR
we must prove β ∈ O + (πn/p)R. Choose an element r ∈ R such that R = O ⊕ Or, so if β = a + br with
a, b ∈ O then pb ∈ πnO and we want b ∈ (πn/p)O. This is obvious.

Now consider the assertion that [p] ◦ f lifts to W/pπn+1 for any n ≥ 0. Using the Serre-Tate theorem and
the description in [Gr1] of endomorphism rings of Γ over Wr’s as recalled above, we wish to prove that any
element α ∈ O + πnR has the property that pα ∈ O + pπnR. This is obvious.

Finally, consider the last part of the theorem. Once again using Serre-Tate and [Gr1], we want to show
that if α ∈ R has reduced norm in Zp equal to a unit multiple of p, then α does not lie in the subring O +πR.
Suppose that α ∈ O + πR. Since α is not a unit in R (as its norm down to Zp is not a unit), its image in
R/pR is not a unit. When p is inert in K, so we may take π = p, the non-unit image of α ∈ O +pR in R/pR
lies inside of the field O/p and hence α has vanishing image in R/pR. We conclude that α ∈ pR, so α has
reduced norm divisible by p2, contrary to hypothesis.

�

The case of ramified p and odd t will also require the following theorem.
Theorem 6.2. Let E and E′ be as in Theorem 6.1, but assume p is ramified in K. Let ϕ denote the
Frobenius endomorphism on the completion W of the maximal unramified extension of O. Let (·)ϕ denote
the operation of base change by ϕ on W -schemes. For any positive integer d and any non-negative integer n
there is a natural isomorphism of groups

(6.3) HomWn
(E′, E)degd ' HomWn+1(E′ϕ, E)degpd.

Moreover, if we endow E and E′ with Γ0(N)-structures and give E′ϕ the base change Γ0(N)-structure, then
this bijection carries Γ0(N)-compatible maps to Γ0(N)-compatible maps.

Proof. As usual, we may (and do) choose a uniformizer of W to be taken from a uniformizer of O = OK⊗ZZp.
Consider the p-torsion E′[p], a finite flat group scheme over W with order p2. The action of OK on this
factors through an action of OK/p = OK/p2 ' O/π2, where p is the unique prime of OK over p. Thus, the
torsion subscheme E′[p] coincides with the kernel of the multiplication map by π on the formal O-module
E′[p∞]. In particular, this torsion subscheme is finite flat of order p over W . Let E′′ = E′/E′[p], so there is
a natural degree p isogeny E′ → E′′ whose reduction is uniquely isomorphic to the relative Frobenius map
on the closed fiber of E′. Since p - N there is a unique Γ0(N)-structure on E′′ compatible via E′ → E′′ with
any given Γ0(N)-structure on E′. Consider the degree p dual isogeny ψ : E′′ → E′. Let ψe = ψ mod πe+1

for any e ≥ 0.
We claim that if f : E′/Wn

→ E/Wn
is an isogeny then f ◦ ψn lifts to Wn+1 (with degree clearly divisible

by p), and conversely every isogeny over Wn+1 of degree divisible by p arises via this construction (from a
necessarily unique f). This will establish the theorem with E′′ in the role of E′ϕ (with the Γ0(N)-aspect easily
checked by unwinding the construction process), and we will then just have to construct an isomorphism of
elliptic curves E′′ ' E′

ϕ over W compatible with the recipe for Γ0(N)-structures induced from E′. Using
Serre-Tate, our problem for relating E′′ and E is reduced to one on the level of p-divisible groups.

If Γ = E′[p∞], so Γ is a formal O-module of height 1 over W and we write R for EndW0(Γ), then
multiplication by π makes sense on Γ (whereas it does not make sense on the level of elliptic curves in case
p is not principal). Since all formal O-modules of height 1 over W are (non-canonically) isomorphic, so
there exists a W -isomorphism E[p∞] ' Γ, by using [Gr1] as in the proof of Theorem 6.1 we can reduce our
lifting problem to showing that any element α ∈ O + πnR has the property that απ∨ ∈ O + πn+1R (with
π∨ corresponding to the dual isogeny to π with respect to the Cartier-Nishi self-duality of the p-divisible
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group of any elliptic curve, such as E′/W ), and conversely that any element of O +πn+1R with reduced norm
divisible by p necessarily has the form απ∨ for some α ∈ O + πnR.

The self-duality of E′ induces complex conjugation on OK , and hence induces the unique non-trivial
automorphism on O as a Zp-algebra. We conclude that π∨ is a unit multiple of π in O. Thus, we are
reduced to the algebra problem of proving that (O +πnR)π ⊆ R is exactly the set of elements in O +πn+1R
with reduced norm divisible by p. Since πR = Rπ (due to the uniqueness of maximal orders in finite-
dimensional division algebras over local fields), we need to prove that πO + πn+1R is the set of elements in
O + πn+1R with reduced norm divisible by p. Since π has reduced norm p and an element of O + πn+1R
not in πO + πn+1R is a unit in R and hence has unit reduced norm, we’re done.

It remains to construct a W -isomorphism E′′ ' E′
ϕ compatible with Γ0(N)-recipes from E′. Over W/π

we have a canonical isomorphism E
′′ ' E

′
/ ker(Frob) ' E

′(p) ' (E′ϕ) which is visibly “Γ0(N)-compatible”
(with respect to E′). Thus, we just have to lift this isomorphism to W . By Serre-Tate, it suffices to make
a lift on the level of p-divisible groups. For Γ = E′[p∞] we have E′′[p∞] ' Γ/Γ[π] and E′

ϕ[p∞] ' Γϕ,
so we seek a W -isomorphism Γ/Γ[π] ' Γϕ lifting the canonical isomorphism Γ/Γ[π] ' Γ

(p)
over W/π. In

other words, we seek to construct a p-isogeny Γ → Γϕ over W which lifts the relative Frobenius over W/π.
This assertion is intrinsic to Γ. Since Γ is, up to non-canonical isomorphism over W , the unique formal
O-modules of height 1 over W , it suffices to make such a p-isogeny lifting the relative Frobenius for one
formal O-module of height 1 over W . By base change compatibility, it suffices to do the construction for a
single formal O-module over O. Since O residue field is Fp, as p is ramified in OK , over O we seek a suitable
endomorphism of a formal O-module of height 1. Using a Lubin-Tate formal group Fπ,f for a uniformizer
π of O and the polynomial f(X) = πX +Xp, the endomorphism [π] does the job.

�

The nonzero contributions to (5.4) require some control on closed fibers, and this is provided by:
Lemma 6.3. For z in Tr(xσ), the closed fiber of Tpt(z) is supported at a single point in X(W/π), corre-
sponding to the Γ0(N)-structure z0 when t is even and z(p)

0 when t is odd.

Proof. First consider the inert case. When t is even then y(0) makes sense and we have seen that its

closed fiber is z0. When t is odd then y(1) makes sense and we have seen that its closed fiber is z(p)
0 .

Thus, for the inert case we just have to check that y(s)0 in X(W/π) only depends on s mod 2. From the
explicit construction, we get y(s)0 from z as Γ0(N)-structures over W/π by s-fold iteration of the process of
passing to quotients by the unique order p subgroup scheme (i.e., the kernel of the relative Frobenius) in our
elliptic curves. But over a field (such as W/π) of characteristic p, going through two steps of this process is
exactly the same as passing to the quotient by p-torsion, so it brings us back to where we began! Thus, the
construction only depends on s mod 2.

Now consider the ramified case. This goes essentially as in the preceding paragraph (where we barely
used the property of p being inert). The only difference is that our divisor has contributions from both even
and odd values of s. Looking back at where y(s) came from, we see that the contribution for s ≡ t mod 2

is z0 for t even and z
(p)
0 for t odd. Meanwhile, for s 6≡ t mod 2 our setup is obtained from an order ps+1

quotient on the Γ0(N)-structure z0, so this again corresponds to z0 for t even and to z(p)
0 for t odd.

�

One important consequence of Lemma 6.3 is that the intersection number (x.Tpt(z)) in (5.4) is non-zero
if and only if x0 ' z0 for even t and if and only if x0 ' z

(p)
0 for odd t (or in perhaps more uniform style,

x0 ' z
(pt)
0 ). Here, isomorphisms are as Γ0(N)-structures.

We need one more result before we can prove (5.4). The following theorem rests on the fact that the
points y(s) ∈ X(W (s)) in the support of Tpt(z) are quasi-canonical liftings (in the sense of [Gr1]).
Theorem 6.4. For a point z in Tr(xσ) and a point y(s) in the divisor Tpt(z) with s > 0, we have

(x.y(s)) = (1/2)|IsomW/π(y(s)0, x0)|.



20 BRIAN CONRAD

This result is [GZ, Ch III, Prop 6.1]. Our (very different) proof uses deformation theory.

Proof. We can assume that there exists an isomorphism ι : x0 ' y(s)0 as Γ0(N)-structures over W/π, as
otherwise both sides of the desired equation vanish. Now fix such an isomorphism ι.

Since the p-divisible group underlying x is a “canonical” lifting of its closed fiber (i.e., its endomorphism
ring is a maximal order in a quadratic extension of Zp) while the p-divisible group underlying y(s) for s > 0
is merely a level s quasi-canonical lifting in the sense of [Gr1] (so its endomorphism ring is a non-maximal
order), by [Gr1, Prop 5.3(3)] we see that for s > 0 the p-divisible group of y(s) over W (s) is not isomorphic
modulo π2

s to the p-divisible group of x/W (s) as deformations of x0 (i.e., in a manner respecting the map
induced by ι on p-divisible groups). Consider the universal formal deformation ring A for x0 on the category
of complete local noetherian W -algebras with residue field W/π.

Abstractly A ' W [[t]], and we get Spec(W ) → Spec(A) and Spec(W (s)) → Spec(A) corresponding to
x and y(s) respectively. A key technical point is that both of these maps are closed immersions (i.e., the
ring maps are surjective). In fact, the corresponding ring maps A → W and A → W (s) send t to a
uniformizer (using Lubin-Tate theory for x and [Gr1, Prop 5.3(3)] for y(s)). Since the subscheme of Spec(A)
cut out by x corresponds to the principal ideal generated by t − πu for some unit u ∈ W× and the map
A � W (s) corresponding to y(s) sends t to πsus for a unit us ∈ W (s)×, we compute that the scheme-
theoretic intersection of our two closed subschemes in Spec(A) is Spec(W (s)/(πsus−πu)) ' Spec(W (s)/πs)
since π/πs lies in the maximal ideal of W (s). In geometric terms, the closed subschemes x and y(s) in X
are tranverse.

Let Γ = Aut(x0)/{±1}, so we want d def= |Γ| to equal (x.y(s)) (assuming this intersection number is
non-zero). From Lemma 4.2 and the proof of Theorem 4.1, we see that Γ acts faithfully on A ' W [[T ]] and
that ÔX,x0

is naturally identified with the subring of invariants AΓ 'W [[t]], where t = NormΓ(T ). Consider
the map A→W (s). This map depends on ι, and we showed above that it is surjective. The action of Γ on
A is compatible with making permutations on the choices of ι, so the given map A → W (s) sends γ(T ) to
a uniformizer of W (s) for all γ ∈ Γ. In particular, the map W [[t]] ' ÔX,x0

→ W (s) corresponding to y(s)
sends t to an element of normalized order in W (s) equal to |Γ| = d, whence we see that the closed subscheme
y(s) ↪→ X is not generally Spec(W (s)) but rather corresponds to the order of index d in W (s). Likewise,
the surjective map W [[t]]→W corresponding to x sends t to an element of normalized order d in W . Thus,
the scheme-theoretic intersection x ∩ y(s) in X is the spectrum of the artinian quotient

(6.4) W (s)/(πds (unit)− πdu).

Since W (s) is totally ramified over W of degree ps + ps−1 > 1 in the inert case and of degree ps > 1 in the
ramified case, we see that πds has strictly smaller order than πd in W (s), so the artinian quotient (6.4) has
length d, as desired.

�

We are now in position to prove Theorem 5.1 when p|m.
When s = 0 occurs, we have z 6= x when t is even. Indeed, since z is pt-isogenous to itself (via pt/2) and

hence occurs as a point in Tpt(z) ⊆ Tm(xσ), the vanishing of rA (m) forces z 6= x. Thus, y(0) = z in X(W )
is distinct from x for even t. Likewise, when t is odd and the s = 0 case occurs (i.e., p is ramified in K),
then y(0) = zσp is again distinct from x. The reason is that zσp is p-isogenous to z, whence (by multiplying
against p(t−1)/2) is pt-isogenous to z, so if y(0) = x then x would occur in Tpt(z) ⊆ Tm(xσ), contradicting
that rA (m) = 0. Theorem 4.1 therefore gives us a formula for (x.y(0)) in all cases when s = 0 occurs.

Combining this with Lemma 6.3 and Theorem 6.4, we can compute (x.Tpt(z)) as a sum of various terms,
with the contribution from s = 0 being treated separately. We get: for inert p,

(6.5) (x.Tm(z)) =


1
2

∑
n≥0 # HomWn(z, x)deg1 + t

2 ·
1
2# HomW/π(z, x)deg1, t even

t+1
2 ·

1
2# HomW/π(z, x)degp, t odd
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and for ramified p,

(6.6) (x.Tm(z)) =


1
2

∑
n≥0 # HomWn(z, x)deg1 + t · 1

2# HomW/π(z, x)deg1, t even

1
2

∑
n≥0 # HomWn

(zσp , x)deg1 + t · 1
2# HomW/π(zσp , x)deg1, t odd

with the
∑
n≥0(. . . ) term corresponding to s = 0 contributions. For odd t in the ramified case, note also

that zσp has closed fiber z(p)
0 .

One aspect of (6.5) and (6.6) which perhaps requires some further explanation is in the case of odd t and
inert p, for which we need to explain why a degree p map z0 → x0 as Γ0(N)-structures is the “same” as an
isomorphism z

(p)
0 ' x0 of Γ0(N)-structures; this latter isomorphism data is what one naturally gets when

applying Lemma 6.3 and Theorem 6.4 with y(s)0 ' z(p)
0 for odd s. The point is that there is a unique order p

subgroup scheme in a supersingular elliptic curve over a field of characteristic p, the quotient by which is the
Frobenius base change. Thus, there is only one possible kernel for a degree p map z0 → x0, so the passage
between degree p maps z0 → x0 and isomorphisms z(p)

0 ' x0 (respecting Γ0(N)-structures) is immediate.
It remains to identify (6.5) and (6.6) with the right side of (5.4) in all four cases (depending on the

parity of t and whether p is inert or ramified in K). For even t and inert p, use multiplication by pt/2 to
lift isomorphisms to pt-isogenies over thicker artinian bases by repeated application of the second part of
Theorem 6.1, and use the first part of Theorem 6.1 to ensure that iteration of this construction gives the
right side of (5.4). A similar argument using multiplication by p(t−1)/2 and the third part of Theorem 6.1
takes care of odd t and inert p; the role of the final part of Theorem 6.1 is to ensure that the sum on the
right side of (5.4) in such cases has vanishing terms for n > (t− 1)/2. The case of even t and ramified p goes
by an argument as in the case of even t and inert p, upon noting that the second part of Theorem 6.1 causes
[p] ◦ f to lift from Wn to Wn+2 since ordK(p) = 2 in the ramified case. The most subtle case of all is odd t
and ramified p, for which Theorem 6.2 (and Theorem 6.1) provides the ability to translate this case of (6.6)
into the form on the right side of (5.4).

7. Application of a construction of Serre

With Theorem 5.1 settled, the next task is to explicate the right side of (5.1) in terms of quaternion
algebras (still maintaining the assumption rA (m) = 0; that is, the ideal class A corresponding to σ under
class field theory contains no integral ideals of norm m). The simplest case is when p is split in K, for then
x and xσ are Serre-Tate canonical lifts of their closed fibers, so

HomWn(xσ, x) = HomW (xσ, x) = HomF (xσ, x)

for all n ≥ 0 (see (5.5)). Thus, the right side of (5.1) vanishes since rA (m) = 0. Thus, for the purpose of
explicitly computing the right side of Theorem 5.1 in terms of quaternion algebras, we lose no generality
in immediately restricting to the case in which p is not split in K, so p - N , O = Zp ⊗Z OK is the ring of
integers of a quadratic extension of Qp, and x has supersingular reduction (as does xσ).

We need the following classical result (which is noted below [GZ, Ch III, Prop 7.1] and for which we give
a non-classical proof).

Lemma 7.1. The ring R = EndW/π(x) is an order in a quaternion division algebra B over Q which is
non-split at exactly p and ∞. More specifically, Zp ⊗Z R is the maximal order in the division algebra

Qp ⊗Q B and for ` 6= p the order Z` ⊗Z R is conjugate to the order
{(

a b
c d

)
∈M2(Z`) | c ≡ 0 mod N

}
in

Q` ⊗Q B 'M2(Q`)

Proof. By the classical theory of supersingular elliptic curves, we know the first part. Thus, the whole point
is to work out the local structure, and for this we use Tate’s isogeny theorem for abelian varieties over finite
fields. Let k0 be a sufficiently large finite field over which there is a model x0 of the Heegner diagram x mod π
for which all “geometric” endomorphisms of the underlying elliptic curve (ignoring the étale level structure)
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are defined, so in particular R = Endk0(x0). By Tate’s isogeny theorem (with the trivial adaptation to keep
track of the level structure), for ` 6= p the natural map

(7.1) Z` ⊗Z R→ EndZ`[Gk0 ](x0[`∞]))

is an isomorphism, where the right side denotes the ring of `-adic Tate module endomorphisms which are
Galois-equivariant and respect the `-part of the level structure. Since the left side has Z`-rank equal to 4
and the right side is an order inside of M2(Z`), we conclude that the Galois group acts through scalars (this
only requires injectivity of the Tate map, and this is completely elementary, so we haven’t yet used the full
force of Tate’s theorem). Thus, we can replace Z`[Gk0 ] with Z` on the right side of (7.1), and this yields the
desired matrix description for all ` 6= p.

Now consider the situation at p. Since there is no level structure involved, the claim is that if E is a
supersingular elliptic curve over a finite field k0 such that all “geometric” endomorphisms of E are defined
over k0, then Zp ⊗Z Endk0(E) is the maximal order in a quaternion division algebra over Qp. The crucial
point is that the action of a Frobenius element φk0 on E is through an integer. Indeed, since Z is a direct
summand of the endomorphism algebra of E it follows that φk0 acts as an integer on E as long as it acts as
an `-adic integer on an `-adic Tate module of E. This integrality property follows from the fact that (7.1)
is an isomorphism, since Q` is the center of Q` ⊗Q B.

It follows that on the height 2 formal group Γ = E[p∞]/k0
of E over an algebraic closure k0, every

endomorphism commutes with the k0-Frobenius and hence is actually defined over k0. By the theory of
formal groups over separably closed fields, the endomorphism ring of Γ is a maximal order in a quaternion
division algebra over Qp. But we have just seen that this endomorphism ring coincides with that of the
p-divisible group of E over k0. Thus, it suffices to prove that the natural map

(7.2) Zp ⊗Z Endk0(E)→ Endk0(E[p∞])

is an isomorphism. Notice that if we replace p with ` 6= p then this is exactly the usual statement of Tate’s
isogeny theorem (up to the identification of the category of `-divisible groups over k0 with a certain category
of Z`[Gk0 ]-modules).

This “` = p” case of Tate’s theorem is proven by essentially the same exact method as Tate’s theorem: the
only change in the proof is that one has to use Dieudonné modules to replace the use of Tate modules. Nearly
every theorem in [Mum] concerning Tate modules also works (usually with the same proof) for Dieudonné
modules, and this enables one to extend various results (such as computing the characteristic polynomial of
Frobenius over a finite field) to the p-part in characteristic p.

�

Using the “closed fiber” functor, we have a natural injection OK = EndW (x) → EndW/π(x) = R which
gives rise to a Q-linear injection K → B. By Skolem-Noether, there exists j ∈ B such that jaj−1 = a for
all a ∈ K, where a 7→ a is the non-trivial automorphism of K over Q. In particular, j2 ∈ K× and any other
such element j′ of B lies in K×j (as K is its own centralizer in B). Thus, B− = Kj is intrinsic to K ↪→ B,
so the decomposition B = K ⊕B− is intrinsic. Observe that B− = Kj can also be intrinsically described as
the set of elements b ∈ B such that ba = ab for all a ∈ K ↪→ B.

If b ∈ B is written as b = b+ + b− according to this decomposition then b− = cj for some c ∈ K. Since
(cj)2 = cσ(c) ∈ Q, when b− 6= 0 it generates a quadratic field over Q in which its conjugate is −b−. Thus,
we can compute the reduced norm N(b) as

N(b) = N(b+)N(1 + (c/b+)j) = N(b+)(1 + (c/b+)j)(1− (c/b+)j) = N(b+) + N(b−)

when b+ 6= 0, and the case b+ = 0 is trivial. In other words, the reduced norm is additive with respect to
the decomposition B = K ⊕B−.

Just as the decomposition B = K ⊕ B− is intrinsic, for our p which is non-split in K (so Gal(K/Q) '
Gal(Kp/Qp)) it follows that tensoring with Qp gives the analogous decomposition for the non-split Qp⊗QB.

If we define Rp
def= Zp ⊗Z R ' EndW/π(x̂) (the isomorphism being Tate’s isomorphism (7.2)), then by

[Gr1, Prop 4.3] we see that the subring of p-divisible group endomorphisms lifting to Wn is given by those
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b = b+ + b− ∈ Rp satisfying DN(b−) ≡ 0 mod pN(v)n, where N(v) denotes the ideal-theoretic norm of the
unique prime of OK over p. Thus,

EndWn
(x̂) = {b ∈ Rp |DN(b−) ≡ 0 mod pN(v)n}.

The Serre-Tate lifting theorem ensures that EndWn
(x) consists of those elements of R = EndW0(x) lifting to

a Wn-endomorphism of the p-divisible group x̂ of x. Thus,

(7.3) EndWn
(x) = {b ∈ R |DN(b−) ≡ 0 mod pN(v)n}.

Describing HomWn
(xσ, x) is more subtle, since it rests on an interesting tensor construction of Serre’s

which unfortunately appears to not be explained adequately in the literature outside of the context of
abelian varieties over a field (which is inadequate for applications such as our present situation where we
have to work over artin local rings). There is a more general discussion of Serre’s construction in [Gi], but
that is also not adequate for our needs. We now develop Serre’s tensor construction in a general setting,
essentially to make functorial sense of an isomorphism xσ ' Hom(a, x) ' a−1 ⊗OK x in a relative situation,
where a represents the ideal class A associated to σ under the Artin isomorphism. From a more algebraic
point of view, the problem is that we do not yet have a recipe over W for constructing xσ in terms of x
(unless σ ∈ Gal(H/K) lies in the decomposition group at v). It is this recipe that we must intrinsically
construct; see Corollary 7.11 for the answer. The basic idea is to construct xσ as an “OK-tensor product”
of x against a suitable fractional ideal of OK .

To motivate things, if S = Spec(C) and Ean ' C/b for a fractional ideal b of OK , then we expect to have
an OK-linear analytic isomorphism

(7.4) (a⊗OK E)an ?' a⊗OK (C/b) ' C/ab.

This sort of construction on the analytic side does describe Galois actions x 7→ xσ on Heegner points when
viewed as C-points of a modular curve (if a is a prime ideal and σ is a geometric Frobenius at this prime),
but if we are to have any hope of working with such Galois twisting on the level of W -points (or anything
other than C-points), we have to find a non-analytic mechanism for constructing C/ab from C/b.

The device for algebraically constructing “a⊗OK E” is due to Serre, and involves representing a functor.
Rather than focus only on OK-module objects in the construction, we prefer to give a construction valid for
more general coefficient rings, since abelian varieties of dimension > 1 (or in positive characteristic) tend to
have non-commutative endomorphism algebras and Drinfeld modules are naturally “module schemes” over
rings such as Fp[t]. To include such a diversity of phenomena, we will construct a scheme M ⊗A M for an
arbitrary associative ring A, a finite projective right A-module M , and an arbitrary left A-module scheme
M over any base scheme S (i.e., M is a commutative S-group scheme endowed with a left A-action).

In the interest of saving space, we will omit most of the proofs of the assertions we make below concerning
Serre’s tensor construction; we hope to provide a more detailed development elsewhere. Many proofs are
mechanical, though one must carry them out in the correct order to avoid complications, and a few arguments
require input from Dieudonné theory. Here is the setup for the basic existence result.

Let S be a scheme and let A be an associative ring with identity. Let M be a finite projective right
A-module with dual left A-module M∨ = HomA(M,A) of right A-linear homomorphisms (with (a.φ)(m) def=
aφ(m) for φ ∈ M∨, a ∈ A, m ∈ M). By using the analogous duality construction for left modules, there is
a natural map M →M∨∨ which is an isomorphism of right A-modules (use projectivity of M).

Theorem 7.2. Let M be a left A-module scheme. The functor T  M ⊗A M(T ) ' HomA(M∨,M(T ))
on S-schemes is represented by a commutative group scheme over S, denoted M ⊗A M or HomA(M∨,M),
and M ⊗A (·) carries closed immersions to closed immersions, surjections to surjections, and commutes with
formation of fiber products.

For each of the following properties P of S-schemes, if M satisfies property P then so does M ⊗A M:
quasi-compact and quasi-separated, locally finitely presented, finitely presented, locally finite type, separated,
proper, finite, locally quasi-finite, quasi-finite and quasi-separated, smooth, étale, flat. In particular, if M is
finite locally free over S then so is M ⊗A M.
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In Theorem 7.7, we’ll see some nice applications of this result in the context of finite flat group schemes
(beware that without an additional constancy condition on the “A-rank” of M , appropriately defined, the
functor M ⊗A (·) may have a slightly funny effect on the order of a finite locally free group scheme).

By considering left A-modules as right Aopp-modules and vice-versa, the property of being a finite projec-
tive module is preserved and everything we say below carries over with trivial modifications upon switching
the words “left” and “right”.

Proof. First we establish representability, and then will consider flatness; the rest is left as an exercise in
functorial criteria, etc. When M is a finite free right A-module, it is clear that an r-fold fiber product of M
does the job. In general, choose a finite presentation of the finite projective left A-module M∨:

(7.5) A⊕r → A⊕s →M∨ → 0.

Applying HomA(·,M(T )) yields a left exact sequence, so by representability of scheme-theoretic kernels we
deduce representability in general.

I am grateful to Serre for suggesting the following argument for the flatness property; this is much simpler
than my original argument. Since M is projective, it is a direct summand of some A⊕n as a right A-module.
Thus, M ⊗A M is a direct factor of the S-flat Mn as an S-scheme. It therefore suffices to check that if X
and Y are S-schemes with Y (S) non-empty and X ×S Y is S-flat, then X is S-flat. We may assume S is
local and X is affine, and can replace Y by an affine open neighborhood of the closed point of the identity
section. We thereby get two commutative ring extensions R → B,C with B ⊗R C flat over R and R → C
having a section, so C = R ⊕ I as A-modules. Thus, B is a direct summand of the R-flat B ⊗R C as an
R-module and hence is R-flat.

�

Now we wish to study fibers and exact sequences. This requires us to first define what it means to say
that a finite projective right A-module M has constant rank r over A. When A is commutative, the meaning
is clear (i.e., the vector bundle M̃ on Spec(A) has constant rank) and can be formulated by saying that
for any ring map φ : A → k to a (commutative) field k, the base change M ⊗A,φ k is r-dimensional as a
k-vector space. Moreover, it suffices to demand this condition for algebraically closed fields k. The correct
notion in the non-commutative case is unclear in general. However, rings acting on (reasonable) schemes
are special. For example, if M is locally finite type over S then A acts on the tangent spaces at geometric
points of M, and hence we get many maps from A to matrix algebras (or more conceptually, central simple
algebras of finite dimension) over residue fields at geometric points on S. This example suggests a definition
which, while surely “wrong” for finite projective modules over general associative rings, works well for the
situations we really care about (i.e., module schemes locally of finite type over a base).

Definition 7.3. We say that a finite projective right A-module M has constant rank r if, for every map
φ : A → C to a finite-dimensional central simple algebra over an algebraically closed field k = Z(C), with
dimk C = d2

C , the finite right C-module M ⊗A,φ C has length dCr. In other words, as a right C-module
M ⊗A,φ C is isomorphic to an r-fold direct sum of copies of C.

Remark 7.4. When A is commutative, this is equivalent to the more familiar notion from commutative
algebra (i.e. a rank r vector bundle on Spec(A)) since a finite projective module over a local ring is free and
C in Definition 7.3 is isomorphic to a direct sum of dC copies of its unique simple module IC . Dropping
the commutativity assumption, since dimk IC = dC in the notation of Definition 7.3, the k-length of a
finite C-module is equal to dC times its C-length. Thus, in Definition 7.3 one could equivalently require
dimkM ⊗A,φC = r dimk(C) where k is the center of C. This latter formula provides a definition that works
without requiring k to be algebraically closed, shows that the quantifiers in Definition 7.3 involve no set
theory or universe issues, and makes it clear that the finite projective dual left A-module M∨ is of constant
rank r (defined in terms of C ⊗φ,A M∨) if and only if M is of constant rank r (in the sense of Definition
7.3). One sees this latter compatibility with the help of the natural isomorphism of left C-modules

C ⊗φ,AM∨ ' (M ⊗A.φ C)∨
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(with the right side a C-dual) defined by c ⊗ ` 7→ (m ⊗ c′ 7→ cφ(`(m))c′). This is particularly useful when
considering (Picard or Cartier) duality for left and right A-module schemes which are abelian schemes or
finite locally free.

In order to apply Serre’s tensor construction to abelian schemes and their torsion subschemes, we need
to record some more properties.

Theorem 7.5. Let M → S be a locally finite type left A-module scheme, and let M be a finite projective
right A-module.

• If the S-fibers of M are connected, then so are the S-fibers of M ⊗A M. In particular, if M is an
abelian scheme over S then so is M ⊗A M.
• If M has fibers over S of dimension d and M has constant rank r over A then M ⊗A M has fibers

of dimension dr.
• Let 0 → M′ → M → M′′ → 0 be a short exact sequence of locally finitely presented S-flat left
A-module schemes. Then applying M ⊗A (·) yields another short exact sequence of such A-module
schemes, and in particular the map M ⊗A M→M ⊗A M′′ is faithfully flat.

We will be particularly interested in the case that A is the ring of integers of a number field and M is a
fractional ideal (corresponding to the case of rank 1), so M ⊗A E is an elliptic curve for E → S an elliptic
curve (with S = Spec(W ), Spec(W/πn+1), etc.).

Before we address the special case of the behavior of Serre’s construction on finite locally free commutative
group schemes, we digress to study an important example which recovers (7.4).

Suppose that M is an abelian variety over C and A is an associative ring acting on M on the left. By
the analytic theory, we functorially have Man ' V/Λ where V = Tan0(Man) is the universal covering and
Λ = H1(Man,Z). In particular, there is a nature left A-action on V commuting with the C-action and with
respect to which the lattice Λ is stable. It then makes sense to form M ⊗A V and M ⊗A Λ, and it follows
by using a right A-linear isomorphism M ⊕ N ' A⊕r for suitable N that M ⊗A V is a finite-dimensional
C-vector space and M ⊗A Λ is a finitely generated closed subgroup which is co-compact and hence a lattice.
Thus, the quotient (M ⊗A V )/(M ⊗AΛ) makes sense as a complex torus, and it is only natural to guess that
this must be (M ⊗A M)an (which we know to be a complex torus, since M ⊗A M is already known to be an
abelian variety). This guess is of course correct, and is crucial for the usefulness of Serre’s construction (see
the proof of Corollary 7.11).

Theorem 7.6. With notation as above, there is an natural A-linear isomorphism of C-analytic Lie groups
(M ⊗A V )/(M ⊗A Λ) ' (M ⊗A M)an which is functorial in both M and M .

We will use this theorem in the case dim M = 1 (i.e., elliptic curves).
If x is a “level N” Heegner diagram over an OK [1/N ]-scheme S (such as W or C), it makes sense to

apply Serre’s tensor construction HomOK (a, ·) to this diagram, provided that this construction carries cyclic
isogenies of degree N to cyclic isogenies of degree N . While such a property is easily checked over C by
means of the preceding theorem, in order to work over a base which is not a subfield of C (such as a non-field
ring like W or an artinian quotient of W ) we need to do some more work.

First we record a general result, the proof of which requires Dieudonné theory.

Theorem 7.7. Let M be a left A-module scheme which is finite locally free over S, so its Cartier dual M∨

is a right A-module scheme. Then M ⊗A M is also finite locally free over S, of rank dr if M has constant
rank d over S and M has constant rank r over A.

Quite generally, in terms of Cartier duality there is a natural isomorphism (M ⊗A M)∨ 'M∨ ⊗AM∨.

Using the above theorems and some additional arguments, one can deduce the following two consequences.

Corollary 7.8. Let S be a henselian local scheme. The functor M⊗A (·) respects formation of the connected-
étale sequence of a finite locally free commutative group scheme over S.

Moreover, if S is an arbitrary scheme with all points of positive characteristic p and M → S is a left
A-module scheme which is an abelian scheme having ordinary (resp. supersingular) fibers, then M⊗AM→ S
has the same property.
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Corollary 7.9. Let f : M → N be an isogeny (i.e., finite locally free map) of constant rank d between left
A-module schemes which are flat and locally finitely presented schemes over S. Then

1M ⊗ f : M ⊗A M→M ⊗A N

is an isogeny, and the natural map M ⊗A ker(f)→ ker(1M ⊗ f) is an isomorphism.
When f has constant degree d and M has constant rank r over A, then 1 ⊗ f has constant degree dr.

Likewise, when f is étale then so is 1M ⊗ f .
The applications to Heegner points require that we keep track of cyclicity of kernels of isogenies. This

amounts to:
Corollary 7.10. Let M be a finite projective right A-module of constant rank 1 and let M be a left A-module
scheme whose underlying group scheme over S is finite étale and “cyclic” of constant order d. Then the
same holds for M ⊗A M.

An important corollary of these considerations is that for a Heegner diagram x of level N over any
OK [1/N ]-scheme S and any fractional ideal a of K, applying HomOK (a, ·) to this diagram yields another
Heegner diagram. Now we can finally prove the main result:
Corollary 7.11. Let x be a Heegner diagram over W arising from a Heegner diagram x over H, and
let σ ∈ Gal(H/K) correspond to the ideal class represented by a fractional ideal a of K. There exists an
isomorphism xσ ' HomOK (a, x) ' a−1 ⊗OK x as Heegner diagrams over W .

Proof. Note that the assertion only depends on the isomorphism classes of the Heegner diagrams, and by
Theorem 2.6 two Heegner diagrams over W are W -isomorphic if and only if they become isomorphic over
some extension field of the fraction field of W . Since Serre’s tensor construction is of formation compatible
with arbitrary base change, by using an embedding W ↪→ C as OH -algebras (which exists by cardinality
considerations on transcendence degrees over H) it suffices to prove the result with W replaced by C. From
the analytic description of Galois action on Heegner points, if x over C is analytically isomorphic to

C/b→ C/bn−1

then xσ over C is analytically isomorphic to the analogous diagram with b replaced by a−1b. Since
HomOK (a,M) ' a−1 ⊗OK M for an A-module scheme M, if we use functoriality then Theorem 7.6 en-
sures that applying HomOK (a, ·) to x over C yields a Heegner diagram which is analytically and hence (by
GAGA) algebraically isomorphic to the diagram of xσ over C, using (a⊗OK C)/(a⊗OK Λ) ' C/aΛ for any
OK-lattice Λ in C (with this isomorphism functorial in Λ ↪→ C).

�

Having explored the properties of Serre’s tensor construction, we’re ready to apply it:
Theorem 7.12. Let a be an ideal in the ideal class A and let σ ∈ Gal(H/K) correspond to this ideal class.
Then there is an isomorphism of groups

(7.6) HomWn(xσ, x) ' EndWn
(x) · a ⊆ B

under which an isogeny φ : xσ → x corresponds to an element b ∈ B with N(b) = deg(φ)N(a) as ideals in Z.
In addition to needing the preceding theory to justify the isomorphism in (7.6), particularly over an artin

local base such as Wn, we will need to work a little more to keep track of degrees. Postponing the proof of
Theorem 7.12 for a short while, note that by using an abstract isomorphism xσ ' HomOK (a, x) over W (and
hence over any W -scheme, such as Wn) as follows from Corollary 7.11, we obtain for any W -scheme S that

(7.7) HomS(xσ, x) ' HomS(HomOK (a, x), x) ' a⊗OK EndS(x)

where OK acts on EndS(x) through “inner composition” and the second isomorphism arises from:
Lemma 7.13. Let A be an associative ring and M a finite projective left A-module. For any left A-module
scheme M over S and any commutative S-group scheme G, view the group HomS(M, G) as a right A-module
via the A-action on M. Then the natural map ξM : HomS(M, G)⊗AM → HomS(HomA(M,M), G) defined
functorially by ξM (φ ⊗ m) : f 7→ φ(f(m)) (on the level of points in S-schemes) is well-defined and an
isomorphism.
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This lemma is a simple exercise in definition-chasing (keep in mind how we defined the A-action on
HomS(M,N)), using functoriality with respect to product decompositions in M and the existence of an
isomorphism M ⊕N ' A⊕r to reduce to the trivial case M = A.

Strictly speaking, this lemma does not include the case of Hom groups between the Heegner diagrams
x and xσ, since these are data of elliptic curves with some additional level structure. Since a is typically
not principal, we need to be a bit careful to extract what we wish from Lemma 7.13. The simple trick to
achieve this is to observe that the OK-module Hom groups of Γ0(N)-structures which we really want to work
with are described as kernels of certain OK-linear maps of Hom modules to which Lemma 7.13 does apply.
By exactness of tensoring against a flat module (commuting with formation of kernels), we get the second
isomorphism in (7.7) as a canonical isomorphism.

Let’s now record an easy mild strengthening of a special case of Lemma 7.13, from which we’ll be able to
compute EndWn(xσ) in terms of EndWn(x).

Lemma 7.14. Let A be an associative ring, M and M ′ two finite projective left A-modules. Let M ′∨ denote
the right module of left-linear maps from M ′ to A. For any two left A-module schemes M and M′ over a
base S, view the group HomS(M,M′) as a right A-module via the A-action on M and as a left A-module
via the action on M′. Then the natural map

ξM ′,M : M ′∨ ⊗A HomS(M,M′)⊗AM → HomS(HomA(M,M),HomA(M ′,M′))

defined functorially by (ξM ′,M (`′ ⊗ φ ⊗m))(f) : m′ 7→ `′(m′)φ(f(m)) (on the level of points in S-schemes)
is well-defined and an isomorphism.

In particular, there is a natural isomorphism M∨ ⊗A EndS(M) ⊗A M ' EndS(HomA(M,M)) given by
`⊗ φ⊗m 7→ (f 7→ `′(·) · φ(f(m))), and this is an isomorphism of associative rings.

As a consequence of this lemma, we get a natural ring isomorphism

(7.8) EndS(xσ) ' a−1 ⊗OK EndS(x)⊗OK a

for any W -scheme S, where the ring structure on the right is the obvious one obtained via the pairing
a−1 × a→ OK . Now we have enough machinery to prove Theorem 7.12.

Proof. (of Theorem 7.12). Specializing the preceding preliminary considerations to the case S = Wn and
identifying EndWn

(x) with a subring of EndW0(x) = R, if we view OK = EndW (x) as embedded in R
via reduction it follows that making OK act on EndWn

(x) through “inner composition” as in Lemma 7.13
corresponds to making it act by right multiplication in R (since multiplication in R is defined as composition
of morphisms and all modern algebraists define composition of morphisms to begin on the right). This
therefore yields an isomorphism of groups HomWn(xσ, x) ' EndWn(x) ⊗OK a where OK ⊆ R acts through
right multiplication on EndWn

(x) ⊆ R. Since a is an invertible OK-module and B is torsion-free, the natural
multiplication map EndWn

(x)⊗OK a→ B is an isomorphism onto EndWn
(x) · a.

It remains to chase degrees of isogenies. Since the degree of an isogeny over Wn can be computed on the
W/π-fiber, it suffices to work over the field W/π and to show the following: given the data consisting of

• a supersingular elliptic curve E over an algebraically closed field k whose positive characteristic p is
a prime which is non-split in K/Q,
• an action of OK on E (i.e., an injection of OK into the quaternion division algebra B = Q ⊗Z

Endk(E)),
• a fractional ideal a of K,

under the isomorphism

(7.9) Endk(E) · a ' Homk(Hom(a, E), E)

defined by ψ · a 7→ (f 7→ ψ(f(a))) we claim that an isogeny φ : Hom(a, E) → E corresponds to an element
b ∈ B with reduced norm deg(φ)N(a). The delicate point here is that a might not be a principal ideal in
OK . The trick by means of which we will “reduce” to the principal ideal situation is to investigate what
happens on the level of `-divisible groups for every prime `, since OK,`

def= Z` ⊗Z OK is semi-local (either a
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discrete valuation ring or a product of two discrete valuation rings) and hence every invertible ideal in this
latter ring is principal.

To make things precise, fix an arbitrary prime ` of Z. The `-part of deg(φ) is exactly the degree of the
isogeny φ` induced by φ on `-divisible groups. To keep matters simple, note that everything depends only on
the isomorphism class of a as an OK-module, or in other words everything is compatible with replacing this
ideal by another representative of the same ideal class. More specifically, if φ 7→ b under (7.9) and φc is the
composite of φ with the isomorphism c−1 : Hom(ca, E) ' Hom(a, E) then deg(φ) = deg(φc) and φc 7→ cb,
with Nb = deg(φ)Na ⇔ N(cb) = deg(φc)N(c · a). Thus, we may assume without loss of generality that a
is an integral ideal and hence elements of this ideal act on E. If we replace k with a sufficiently big finite
subfield k0 down to which E descends and over which all “geometric” morphisms among E and HomOK (a, E)
are defined, we can consider the isomorphism Endk0(E) · a ' Homk0(Hom(a, E), E). We now apply Tate’s
isogeny theorem at any prime ` to both sides. Using the language of `-divisible groups so as to treat all
primes on an equal footing, tensoring both sides with Z` yields an isomorphism

Endk0(E[`∞]) · a` ' Homk0(Hom(a, E)[`∞], E[`∞])

with a` = aOK,` an invertible ideal of OK,` = Z` ⊗Z OK .
By functoriality, it is clear that

Hom(a, E)[`∞] = lim−→(a−1 ⊗OK E[`n]) = lim−→(a−1
` ⊗OK,` E[`n]).

Corollary 7.9 ensures these tensored group schemes really do form an `-divisible group (of height 2). If we
write a−1

` ⊗ E[`∞] to denote this `-divisible group, then we have an isomorphism

(7.10) Endk0(E[`∞]) · a` ' Homk0(a−1
` ⊗ E[`∞], E[`∞])

defined in the obvious manner. If π ∈ OK,` is a generator of the invertible (principal!) ideal a` then every
element b` of the left side of (7.10) can be written in the form b` = ψ` · π for a unique endomorphism ψ`
of E[`∞] and b` corresponds under (7.10) to the composite morphism φ` : a−1

` ⊗ E[`∞] ' E[`∞] → E[`∞],
where the first step is the isomorphism of multiplication by π and the second step is ψ`. Thus, φ` has degree
equal to that of ψ`, which in turn is just the reduced norm of ψ` (in the `-adic quaternion algebra Q`⊗QB).
But since b` = ψ`π, this reduced norm is equal to N(b`)/N(π) = N(b`)/N(a`), thereby giving the `-part
deg(φ`) = N(b`)/N(a`) of the desired “global” equality of Z-ideals Nb = deg(φ)Na.

�

Corollary 7.15. Assume rA (m) = 0 and gcd(m,N) = 1. Choose a representative ideal a for A which is
prime to p.

(1) If p is inert in K and v is a place of H over p, then qv = p2 and

(7.11) (x.Tm(xσ)) =
∑

b∈Ra/±1,Nb=mNa

1
2

(1 + ordp(Nb−)).

(2) If pOK = p2 and v is a place of H over p, then qv = pk where k ∈ {1, 2} is the order of [p] in the
class group of K and

(7.12) (x.Tm(xσ)) =
∑

b∈Ra/±1,Nb=mNa

ordp(DNb−)).

Proof. This result is [GZ, Ch III, Cor 7.4], for which the main inputs in the proof are Theorem 5.1, (7.3),
and Theorem 7.12. We refer the reader to [GZ] for the short argument to put it all together (which requires
that a be prime to p). The only aspect on which we offer some further clarification is to explain conceptually
why b− is always non-zero for the b’s under consideration and why ordp(Nb−) is odd when p - D.

The non-vanishing of b− is simply because an element b ∈ Ra with b− = 0 is an element of which lifts
to HomWn

(xσ, x) for all n ≥ 0, and hence corresponds to an element in HomW (xσ, x) by Serre-Tate and
Grothendieck’s existence theorem. But this latter Hom module vanishes due to the assumption rA (m) = 0.
Thus, since b 6= 0 (as its reduced norm is mNa 6= 0) we have b− 6= 0. Meanwhile, when our non-split p
satisfies p - D, so p is inert K, the choice of j (as in the unramified case of [Gr1]) may be made so that
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j2 ∈ K× is a uniformizer at the place over p. Thus, any b− = cj ∈ Kj satisfies N(b−) = NK/Q(c)N(j2),
where NK/Q(c) has even order at p and N(j2) is a uniformizer at p (as p is inert in K). Hence, ordp(N(b−))
is odd.

�

This completes our consideration of cases with rA (m) = 0.

8. Intersection theory via meromorphic tensors

In order to go beyond the local cases with rA (m) = 0, we need a stronger geometric technique for
computing intersection pairings without using a moving lemma. This section is devoted to developing the
necessary generalities in this direction, so modular curves and Heegner points play no role in this section.
Unfortunately, the letters K, D, F have already been assigned meaning in our earlier analysis, with F being
the fraction field of W . Since W and the discriminant of K/Q will make no appearance in this section, for
this section only we reserve the letter F to denote a global field and D to denote a divisor on a curve. We
fix a proper smooth geometrically connected curve X/F (having nothing to do with X0(N)). Let D,D′ be
degree 0 divisors on X whose common support |D|∩|D′|, if non-empty, consists entirely of F -rational points.
The example of interest to us is X0(N)/H , D = (x) − (0) (resp. D = (x) − (∞)) for some Heegner point
x ∈ X0(N)(H) (note the two cusps are H-rational too), and D′ = Tm((xσ)−(∞)) (resp. D′ = Tm((xσ)−(0)))
for σ ∈ Gal(H/K), with gcd(m,N) = 1. In this case, we see that any overlap of supports between D and D′

certainly consists entirely of non-cuspidal H-rational points, and moreover such non-empty overlap occurs
exactly when rA (m) > 0.

In our general setup, we wish to define a local symbol 〈D,D′〉v for each place v of F with the properties:
• it is bilinear in such pairs {D,D′} (note the hypothesis |D| ∩ |D′| ⊆ X(F ) is preserved under

formation of linear combinations),
• it agrees with the canonical local height pairing of Dv and D′v when |D| ∩ |D′| = ∅,
• the sum

∑
v〈D,D′〉v is equal to the canonical global height pairing.

We recall that in the case of disjoint support, the local height pairing was uniquely characterized by abstract
properties (including functorial behavior with respect to change of the base field) and for non-archimedean
v is explicitly constructed via intersection theory using any regular proper model over the local ring OF,v at
v. For the generalization allowing |D| ∩ |D′| to consist of some F -rational points, the local terms 〈D,D′〉v
will not be canonical, but rather will depend on a certain non-canonical global choice. Happily, the product
formula will ensure that this global choice only affects local terms by amounts whose total sum is 0. This
will retain the connection to the global height pairings (which is what we really care about).

In order to clarify the local nature of the construction, we will carry it out entirely in the context of a
local field, only returning to the global case after the basic local construction has been worked out. Thus,
we now write Fv to denote a local (perhaps archimedean) field with normalized absolute value | · |v. Feel
free to think of this as arising from completing a global field F at a place v, but such a “global” model will
play no role in our local construction. Let OFv denote the valuation ring of v in the non-archimedean case.
We fix Xv/Fv a proper smooth and geometrically connected curve. The following definition is considered in
[Gr2, §5].
Definition 8.1. If x ∈ Xv(Fv) is a point, f ∈ Fv(Xv)× is a non-zero rational function, and tx is a fixed
uniformizer at x, we define

f [x] = ftx [x] def=
f

t
ordx(f)
x

(x) ∈ F×v .

This definition clearly depends on tx only through its non-zero image ωx in the cotangent line Cotx(Xv)
at x, so we may denote it fωx [x] instead. For non-archimedean v the absolute value |f [x]|v only depends on
this non-zero cotangent vector up to O×Fv -multiple. For technical reasons (e.g., the fact that various Hecke
divisors do not have all support consisting of rational points), it is convenient to extend the definition in the
absolute value aspect to the case in which x ∈ Xv is merely a closed point and not necessarily Fv-rational
(this mild generalization does not seem to appear in [Gr2]).
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For any such x, the residue field κ(x) at x is a finite extension of Fv and hence for a cotangent vector ωx
represented by a uniformizer tx at x, the value

f [x] = fωx [x] def= (f/tordx(f)
x )(x) ∈ κ(x)×

makes sense (depending again only on ωx), and when ordx(f) = 0 this is just f(x). Thus, the absolute value
|fωx [x]|v make sense, where we write | · |v to also denote the unique extension of | · |v to an absolute value on
κ(x), and it is just |f(x)|v when ordx(f) = 0. Extending by Z-linearity and multiplicativity, we can define
the symbol

|fω[D]|v =
∏
x∈|D|

|fωx [x]|ordx(D)
v

for any divisor D on Xv for which we have fixed a set ω of non-zero cotangent vectors at each x ∈ |D|∩|div(f)|
(keep in mind that |fω[x]|v does not depend on ω ∈ Cotx(Xv) when x 6∈ |div(f)|, so the choice of cotangent
vector at such x’s really should be made when defining |fω[D]|v but actually doesn’t matter). We will write
|f [D]|v instead of |fω[D]|v when the choice of cotangent vectors is understood from context. We do not claim
to define fω[D], as this would make no sense if the support |D| contains several non-rational points (whose
residue fields are not canonically identified with each other).

We trivially have |(fg)[D]|v = |f [D]|v · |g[D]|v with both sides depending on choices of cotangent vectors
at points of |D| where either f or g has a zero or pole, and we also have |f [D + D′]|v = |f [D]|v · |f [D′]|v
(assuming the same cotangent vector has been chosen relative to D and D′ at any common point in their
support). Now we are ready for the main definition, which we will justify shortly.
Definition 8.2. Let D,D′ be degree 0 divisors on Xv/Fv with |D|∩|D′| = {x1, . . . , xn} ⊆ Xv(Fv). Choose a
set of cotangent vectors ω = {ω1, . . . , ωn} at each such point. For f ∈ Fv(Xv)× such that |D+div(f)|∩|D′| =
∅, define

(8.1) 〈D,D′〉v,ω = 〈D + divXv (f), D′〉v − log |fω[D′]|v,

where the first term on the right side is the canonical local height pairing for disjoint divisors of degree 0.
It is clear that this definition does not depend on the auxiliary choice of f , thanks to properties of the

canonical local height pairing, so when D and D′ have disjoint supports we see via the case f = 1 that this
definition coincides with the canonical local height pairing for disjoint divisors of degree 0. The bilinearity
in D and D′ (relative to consistent choices of cotangent vectors) is clear.

A crucial observation is that if we begin in a global situation X/F with degree 0 divisors D,D′ on X
whose supports overlap precisely in global rational points {x1, . . . , xn} ⊆ X(F ), then by choosing a set of
global cotangent vectors ω at the xj ’s and choosing a global f ∈ F (X)× for which D + div(f) and D′ have
disjoint support, we get∑

v

〈Dv, D
′
v〉v,ω =

∑
v

〈D + div(f), D′〉v −
∑
v

log |fω[D′]|v

= 〈D + div(f), D′〉 −
∑

x′∈|D′|

ordx′(D′)
∑
v

∑
j

log |fωx′ [x
′
j ]|v,j ,

where the inner sum is over all factor fields κ(x′j) of the reduced ring κ(x) ⊗F Fv (on which the unique
multiplicative norm extending | · |v corresponds to an absolute value | · |v,j on κ(x′j)) and x′j runs over all
points on Xv over x′ ∈ X. If tx′ is a uniformizer representing ωx′ then∑

j

log |fωx′ [x
′
j ]|v,j = log |Nκ(x′)/F (fωx′ [x

′])|v,

so by the product formula for Nκ(x′)/F (fωx′ [x]) ∈ F× we get∑
v

〈Dv, D
′
v〉v,ω = 〈D + div(f), D′〉 = 〈D,D′〉,

recovering the canonical global height pairing.
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It is very important for later purposes to observe that the local construction of 〈·, ·〉v,ω is unaffected by
replacing the choices of the ωx’s in the local theory with O×Fv -multiples. Somewhat more generally, if two
degree 0 divisors D,D′ on Xv/Fv satisfy |D| ∩ |D′| = {x1, . . . , xn} ⊆ Xv(Fv), and we define ω′xj = αjωxj ,
then since ordx(f) = −ordx(D) for all x ∈ |D| ∩ |D′| in (8.1) we get

(8.2) 〈D,D′〉v,ω′ = 〈D,D′〉v,ω −
∑
j

ordxj (D)ordxj (D
′) log |αj |v.

This follows immediately from the definitions, using the fact that uniformizers tx and t′x representing ωx and
ω′x = αωx are related by t′x = αtx + (. . . ). Note that (8.2) is exactly in accordance with [GZ, (5.2), p. 250]
(which treates the case of a one-point overlap), since our α is the reciprocal of that in [GZ].

An explication of (8.1) which plays an essential role in calculations at complex places is briefly described in
[GZ, Ch II, §5.1] (in which the normalized absolute value | · |v on C is denoted | · |2 for the usual reasons). Due
to its importance, we want to justify that this alternative description really matches (8.1), and in particular
really works for any local field at all (not just C). The starting point for this alternative description is the
observation that since Xv is Fv-smooth, for any x ∈ Xv(Fv) there is a small open neighborhood of x in Xan

v

which is analytically isomorphic to an open unit disc (so there is a plentiful supply of rational points near
x in the sense of the topology on Fv), and the ordinary local height pairing has nice continuity properties
with respect to slightly modifying a divisor variable.
Theorem 8.3. Let D,D′ be degree 0 divisors on Xv with |D| ∩ |D′| = {x1, . . . , xn} ⊆ Xv(Fv). Choose
yj ∈ Xv(Fv) near (but not equal to) xj in the topological space Xv(Fv). Define Dy to be the degree 0 divisor
obtained from D by replacing all appearances of xj with yj. Then

〈D,D′〉v,ω = lim
y→x

〈Dy, D
′〉v −

∑
j

ordxj (D)ordxj (D
′) log |txj (yj)|v

 ,

where txj is a uniformizer representing ωxj . In particular, this limit actually exists.
It is clear that the term in the limit is independent of the choice of uniformizer lifting each ωxj .

Proof. Subtracting the left side (as defined in (8.1)) from the right side, we get the limit as y → x of

〈
∑
j

ordxj (D)yj −
∑

x∈|div(f)|−x

ordx(f)x,D′〉v −
∑
j

ordxj (D)ordxj (D
′) log |txj (yj)|v

+

 ∑
x′∈|D′|−x

ordx′(D′) log |f(x′)|v +
∑
j

ordxj (D
′) log | f

t
ordxj (f)
xj

(xj)|v

 ,

where the sum of the last two terms is log |fω[D′]|v. Since ordxj (D) = −ordxj (f), after some cancellation
and noting that

f

t
ordxj (f)
xj

(xj) = lim
yj→xj

f(yj)

txj (yj)
ordxj (f)

,

we are left with the limiting value of −〈divXv (f)y, D′〉v + 〈D′y,divXv (f)〉v as y → x. Thus, it suffices to
prove the general claim that if D,D′ are two degree 0 divisors on Xv with overlap at the set of rational
points x, and y is a slight deformation of this set of points, then 〈Dy, D

′〉v − 〈D,D′y〉v → 0 as y → x (with
both terms ordinary canonical local height pairings).

By choosing a rational point P away from these (which we avoid in the limiting process) and expressing D
and D′ as Z-linear combinations of differences Q− [κ(Q) : Fv]P for closed points Q ∈ Xv, we reduce to the
following general situation. Let x1, x2 ∈ Xv be two closed points distinct from P ∈ Xv(Fv), with κj = κ(xj)
the residue field at xj . Define x̃j = xj if xj is not a rational point, and otherwise define x̃j to be a rational
point near xj , with the requirement that x̃j 6= xj for both j’s when x1 = x2. Note in particular that x̃j has
residue field degree over Fv equal to [κj : Fv] in all cases. The main claim is that

〈x̃1 − [κ1 : Fv]P, x2 − [κ2 : Fv]P 〉v − 〈x1 − [κ1 : Fv]P, x̃2 − [κ2 : Fv]P 〉v → 0
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as x̃→ x (the condition x̃j → xj being a tautology if xj is not a rational point).
If neither x1 nor x2 is a rational point, there’s nothing to say. If x1 is a rational point but x2 is not (or

vice-versa), then by bilinearity we reduce to the continuity of the local height pairing when rational points
within a fixed divisor are moved around in Xv(Fv). Thus, we may now assume x1, x2 ∈ Xv(Fv). By treating
separately the cases in which we have x̃j = xj for some j and when this does not hold for either j (and in
the latter case, distinguishing x1 = x2 from the case x1 6= x2), one can use related continuity/bilinearity
arguments.

�

Now we turn to explicating our modified local intersection pairing in the non-archimedean case. Two
natural questions arise for non-archimedean Fv:

(1) Can we carry out the local construction using a pairing on the level of (suitable) divisors not neces-
sarily of degree 0, somewhat generalizing the use of intersection theory for regular proper models in
the case of disjoint effective divisors?

(2) Are there ways to package the O×Fv -multiple class of a non-zero cotangent vector by using higher
(meromorphic) tensors?

Thanks to bilinearity, in order to address the first question, the central issue is to properly define (x.x)v for
x ∈ Xv(Fv) when a non-zero cotangent vector ωx is chosen at x. More specifically, suppose that Xv/OFv

is a
regular proper model for Xv, and let x ∈ Xv(OFv ) be the section arising from x via scheme-theoretic closure.
Since Xv is regular, this section x lies in the relative smooth locus over OFv . We have the natural linear
isomorphism among cotangent spaces Cotx(Xv) ' Fv ⊗OFv Cotx(Xv), so given a non-zero ωx ∈ Cotx(Xv)
there exists an αx ∈ F×v unique up to O×Fv -multiple such that αxωx ∈ Cotx(Xv) is a basis of the rank 1
lattice Cotx(Xv). In particular, we see that ordv(αx) depends only on the data of ωx (not tx) and Xv. We’ll
now see that the choice of Xv doesn’t matter.
Theorem 8.4. Fix a cotangent vector ωx at every x ∈ Xv(Fv), and let ω = {ωx}x∈Xv(Fv) denote the
corresponding indexed collection. Define (x.x)v,ω = ordv(αx) for each x ∈ Xv(Fv) as above. For distinct
closed points x′, x′′ ∈ Xv define (x′.x′′)v,ω = (x′.x′′)v as in (4.1) applied to the regular proper model Xv.
Extending these definitions to define (D.D′)v,ω via Z-bilinearity for divisors D,D′ on Xv with |D| ∩ |D′| ⊆
Xv(Fv), we get

(8.3) 〈D,D′〉v,ω = −(D.D′)v,ω log qv
whenever D and D′ have degree 0 (defining the left side as in (8.1) via the same choices ω) and the “closure”
of either D or D′ in Xv has intersection 0 with every irreducible component of the closed fiber of Xv.
Remark 8.5. Our αx is the reciprocal of the α in [GZ], so the lack of a minus sign in [GZ, (8.1), p. 263] is
consistent with our formula with a minus sign. Beware that ordv(αx) is very dependent on the particular
choice of regular model Xv, so (x.x)v,ω depends on Xv (but we omit such dependence from the notation
so as to avoid tediousness). Such dependence is reasonable to expect in view of the fact that the ability to
compute 〈D,D′〉v,ω in terms of intersection theory on Xv is also heavily dependent on a hypothesis involving
Xv (namely, that the closure of either D or D′ in Xv has intersection 0 with all irreducible components of
the closed fiber of Xv).
Remark 8.6. It is immediate from the definitions that if c ∈ F×v then

(8.4) (x.x)v,cω = (x.x)v,ω − ordv(c).

Proof. By symmetry, we may assume the closure of D in Xv has intersection 0 with all closed fiber irreducible
components. We wish to use the limit formula from Theorem 8.3. For y “near” x as in that theorem, we
first claim that Dy satisfies the same property which we just imposed on D. This will enable us to compute
the term 〈Dy, D

′〉v via intersection theory on Xv, since Dy and D′ are certainly disjoint divisors on Xv.
When taking the closure of Dy in Xv we get essentially the same divisor as the closure of D in Xv except

for possibly the contributions of the sections yj ∈ Xv(Fv) = Xv(OFv ). It suffices to check that if x ∈ Xv(Fv)
is a given point and y ∈ Xv(Fv) is sufficiently close to x in the topological space Xv(Fv), then for any
irreducible component ∆ of the closed fiber of Xv we have (x.∆) = (y.∆), where x and y are the unique
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sections of Xv → Spec(OFv ) extending x and y respectively (which, when viewed as closed subschemes of
Xv, are the scheme-theoretic closures of the respective closed points x, y in the open subscheme Xv ⊆ Xv).
Since Xv is regular with smooth generic fiber, the section x must factor through the relative smooth locus.
Moreover, if x0 is the closed point of x then the preimage B(x0) of x0 under the reduction map

Xv(Fv) = Xv(OFv )→ Xv(OFv/mv)

is an open neighborhood of x. Thus, we consider only y in this neighborhood, so y has closed point x0.
If T is a generator of the ideal sheaf of x in a neighborhood of x0, then ÔXv,x0 ' OFv [[T ]] and y 7→ T (y)

sets up a topological isomorphism between B(x0) and the open unit disc in Fv around the origin. Thus, if
the ideal sheaf of ∆ is generated by the regular element f ∈ OFv [[T ]], then f has non-zero constant term
(as otherwise the Cartier divisor ∆ would contain x and so would not be a closed fiber component) and
(y.∆)v = ord(f(T (y))). We have to show that ord(f(t)) = ord(f(0)) for t ∈ Fv sufficiently near 0. Since
f(0) 6= 0 and f has integral coefficients, it suffices to take |t|v < |f(0)|v. This completes the justification
that we may compute 〈Dy, D

′〉v using intersection theory on Xv when y is sufficiently close to x and the
closure of D in Xv has intersection 0 with all closed fiber irreducible components of Xv.

We conclude from the limit formula in Theorem 8.3 that it suffices to prove

−(x.x)v,ωx log qv = lim
y→x

(−(y.x)v log qv − log |tx(y)|v)

where y ∈ Xv(Fv)− {x}. In other words, we must prove that this limit not only exists, but is equal to

−ordv(αx) log qv = log |αx|v
(and so in particular only depends on ωx and not the specific representative uniformizer tx, which is a priori
clear). Since tx is a regular function in a Zariski neighborhood of x, it can be viewed as an “analytic”
function tan

x on a small disc centered at x with parameter T as in the preceding paragraph (the domain of
this analytic function might not be the entire open unit disc: tx might have a pole near x). If τ = T (y) then
−(y.x)v log qv = −ordv(τ) log qv = log |τ |v and tx(y) = tan

x (τ). We therefore have to compute

lim
τ→0

(log |τ |v − log |tan
x (τ)|v)

where tx = (1/αx)T + . . . in F [[T ]] with T as defined above serving as a parameter on an open unit disc (so
this also gives the expansion of the analytic function tan

x ).
Since tan

x = (1/αx)T · h where h is an analytic function near 0 with h(0) = 1, we conclude that tan
x (τ) =

(1/αx)τh(τ), so log |τ |v−log |tan
x (τ)| = log |αx|v−log |h(τ)|v, and as τ → 0 we have log |h(τ)|v → log |1|v = 0.

Thus, we conclude that limy→x(−(y.x)v log qv − log |tx(y)|v) = log |αx|v, as desired.
�

As the above proof shows, in order to compute (D.D′)v,ω we may make a base change to the completion

of the maximal unramified extension of Fv, and we note that Xv ×OFv Ôsh
Fv

is still regular.
With these preliminary constructions settled, we turn to the question of computing self-intersection num-

bers with the help of an auxiliary tensor. Fix an integer k (we allow k ≤ 0) and fix a non-zero rational section
θ of (Ω1

Xv/Fv
)⊗k with rx

def= ordx(θ) 6= −k. When k = 0 we are requiring the non-zero rational function θ to
have a zero or pole at x, so the situation is always “abstract”. We may write

(8.5) θ = (Cxtrxx + . . . )(dtx)⊗k,

where Cx ∈ F×v and tx is a uniformizer lifting ωx (so Cx only depends on ωx, not tx). If we use ω′x = cωx
with c ∈ F×v , then upon using the representative uniformizer t′x = ctx we obtain the transformation formula

(8.6) C ′x =
Cx
crx+k

.

Note that when θ is given then ωx determines Cx up to O×Fv -scaling and vice-versa, but when k+ rx 6= ±1
then because of (8.6) we certainly cannot expect to find ωx realizing an arbitrary desired Cx ∈ F×v for
a given θ. In general, the best we can do is determine ωx up to O×Fv -multiple in terms of θx by the
requirement that 0 ≤ ordv(Cx) < |rx + k|. When k = 1 and rx = 0 this recovers the normalization used for
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intersection theory via tangent vectors, but in general we cannot expect to make Cx a unit at v. Although
this milder normalization does give us a way to use θ to single out a “preferred” ωx up to O×Fv -multiple (since
ordx(θ) 6= −k), and hence the choice of θ is “all” the input we need to make sense of Cx, it will actually be
convenient to not minimize the choices in this way. Rather, we prefer to think of fixing θ in advance and
still retaining the freedom to pick whatever ωx we like at the point x.

Observe that if αxωx induces a basis of Cotx(Xv), then there is a generator Tx of the height 1 prime ideal
px of the section x in OXv,x0

such that αxtx ≡ Tx in Cotx(Xv). Thus,

(8.7) θ = (
Cx

αrx+k
x

T rxx + . . . )(dTx)⊗k,

so (αrx+k
x /Cx)θ is a basis of the invertible OFv -module (Ω1

Xv/OFv
)⊗k(−rx · x)x0

/px. Consequently, we can
now recast the entire discussion in terms of a fixed choice of θ.

More specifically, let us now fix a choice of non-zero rational section θ of (Ω1
Xv/Fv

)⊗k (in practice this

will arise from a global rational tensor). For v - ∞ and any x ∈ Xv(Fv) with rx
def= ordx(θ) 6= −k, we

choose a uniformizer tx at x (in practice arising from a global uniformizer at a global rational point), and
let Cx ∈ F×v be the leading coefficient of the tx-adic expansion of θ (this coefficient transforms by the
reciprocal multiplier when the non-zero cotangent vector ωx ∈ Cotx(Xv) attached to tx is replaced with an
F×v -multiple). If βx ∈ F×v is chosen so that βxθ is a basis of (Ω1

Xv/OFv
)⊗k(−rx · x)x0

/mx, then βx is unique
up to O×Fv -multiple, βx does not depend on ωx, and via (8.7) we see

(8.8)
ordv(Cxβx)
rx + k

= ordv(αx) = (x.x)v,ωx ∈ Z.

In this way, we can compute (x.x)v,ωx at any x for which rx
def= ordx(θ) 6= −k.

9. Self-intersection formula and application to global height pairings

We wish to apply the theory in §8 to generalize Corollary 7.15 to cases with rA (m) > 0. This amounts to
finding systematic (non-canonical!) local definitions of self-intersection numbers for rational points in such
a way that one still recovers the canonical global height pairing as a sum of local terms. In [GZ] this is
carried out with the help of a tangent vector. Unfortunately, the application of this method in the proof
of [GZ, Ch III, Lemma 8.2] uses the 1-form η4(q)dq/q which doesn’t actually live on X0(N), but only on
a degree 6 covering X ′ → X0(N). At points of ramification for this covering (i.e., elliptic points) one gets
the zero map on tangent spaces, and elsewhere at points away from the branch locus there is no reason
why global H-rational points on X0(N) have to lift to H-rational points on X ′. Without the ability to
work with H-rational points, and hence with H-rational tangent vectors, one encounters complications when
formulating a global formula over H in terms of local tangent vector calculations: there has got to be some
link between all of the local tangent vectors (e.g., they all come from a global one) in order for the sum of
non-canonical local terms to recover canonical global height pairings in the case of degree 0 divisors with
non-disjoint supports. Our alternative approach will also have to confront the issue of what to do at elliptic
points, but the merit of using deformation theory is that we will be able to treat all points in a uniform
manner without needing to use specialized arguments for the elliptic case.

Our method might be called “intersection theory with meromorphic tensors”. The motivation is that
although η4(q)dq/q only lives on a cyclic covering of X0(N), ∆(q)(dq/q)⊗6 makes sense as a meromorphic
tensor on X0(N)/Q. More importantly, ∆ has a functorial interpretation and so makes sense within the
context of deformation theory. For our purposes, the special role of ∆ is that (via the relative Kodaira-
Spencer isomorphism) on universal deformation rings for elliptic curves (without level structure), the leading
coefficient of ∆ as a 6-tensor is always a unit. After we have carried out our approach, we will revisit the
method used in [GZ] and see how it can be understood as a special case of our approach, at least if one
avoids the quadratic fields K = Q(

√
−1) and K = Q(

√
−3). An added bonus of our approach via ∆ and

meromorphic tensors is that we will be able to argue with abstract local deformation theory instead of relying
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on the global geometry of modular curves. This allows us to avoid complications traditionally caused by
small primes and special j-invariants.

The main result of this section is really Theorem 9.6, which gives a rather general formula (9.16) for global
height pairings. The proof of this global formula will require a formula for certain self-intersection numbers.
In the global formula, the local junk terms in Theorem 9.2 essentially all cancel out, and we are left with
something that is computable. In §10 we will take up the problem of computing the non-archimedean terms
(denoted 〈x, Tm(xσ)〉GZ

v in (9.16)) in terms of quaternionic data.
We will have to do some hard work in the special case of coarse moduli schemes, whereas the general

intersection theory discussion in §8 took place on rather general smooth curves over local fields. Let us return
to our earlier standard notation, with X = X0(N)/W , where W is the completion of a maximal unramified
extension of the local ring OH,v at a place v of H over a prime p of Q. Also, F denotes the fraction field of
W and X denotes the generic fiber of X. We do not make any assumptions on the behavior of p in K: it
may be inert, split, or ramified.

Let x ∈ X(W ) be a section disjoint from the cuspidal locus, and assume there exists a Γ0(N)-diagram
over W which represents x. We emphasize that x need not come from a Heegner point, though by Theorem
2.5 our hypotheses are satisfied for sections arising from Heegner points over H, and by Theorem 2.6 such
a W -diagram realizing a specified F -diagram is unique up to canonical W -isomorphism (such uniqueness
having nothing to do with Heegner points). When the F -diagram is not specified (i.e., only the F -point
of the coarse moduli scheme is specified) then we lose the canonicalness of the W -diagram. We write x to
denote a Heegner diagram over W (unique up to non-canonical isomorphism) representing a given section
x ∈ X(W ) for which some such diagram exists. For our present purposes, the connection with Heegner
points is not relevant; the isomorphism class of the diagram over W is all that matters. We first focus on a
purely local assertion concerning diagrams over W (viewed as certain sections of X/W ).

Let x ∈ X(F ) denote the generic fiber rational point corresponding to x. Fix an arbitrary integer k and
a rational section θ of (Ω1

X/F
)⊗k such that rx

def= ordx(θ) 6= −k. Taking k = 0 and θ a non-zero rational
function with divisor having a zero or pole at x is one option, for example. Another option of interest is the
case k = 6 and θ = ∆, but it doesn’t matter what choice we make. In practice the choice we make will have
to arise from the global model over H. For conceptual clarity, we avoid specifying a particular choice of k
or θ at the outset.

Choose a cotangent vector ωx at x on X/F , with tx a uniformizer representing ωx. We let Cx denote the
leading coefficient of the tx-adic expansion of the rational section θ (relative to the basis (dtx)⊗k), so Cx
depends only on ωx. This data allows us to define (x.x)v,ωx in accordance with the recipe of the previous
section (see (8.8))

The group AutF (x) concides with the “geometric” automorphism group of x (by Theorem 2.6), and hence
has order 2ux with ux ∈ {1, 2, 3} (as F has characteristic 0). For example, if x came from a global point over
H, then by Theorem 2.1(1) the value of ux would actually be of global nature (i.e., it would depend only on
the resulting Q-point or C-point) and not at all depend on v. We now introduce an auxiliary quantity which
intuitively measures the fact that we are trying to do intersection theory on a (regular model of a) coarse
moduli scheme rather than on a Deligne-Mumford stack. To get started, we require a preliminary lemma in
deformation theory.

We state the lemma in the specific context we need (i.e., Γ0(N)-structures), but the reader will see that
the method of proof works much more generally. The basic point is to provide a mechanism for passing
between deformation rings of objects in characteristic 0 and objects in characteristic p (in cases for which
the universal deformations are algebraizable, so it actually makes sense to base change a formal deformation
from residue characteristic p over to residue characteristic 0; e.g., there is a map Spec(Qp)→ Spec(Zp) but
there is no map Spf(Qp)→ Spf(Zp)).

Lemma 9.1. Let x be a Γ0(N)-structure over W , with generic fiber x over F . Let R0 be the universal
deformation ring of x0 on the category of complete local noetherian W -algebras with residue field W/π. Let
Ix ⊆ R0 be the ideal of the section corresponding to the W -deformation x. The F ⊗W Ix-adic completion
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of the algebraized universal deformation over F ⊗W R0 is the universal deformation of x on the category of
complete local noetherian F -algebras with residue field F .

Let us explicate the meaning of the lemma in the case N = 1 (which, strictly speaking, is not a case we
have ever been considering. but for which the lemma is true). Let E be an elliptic curve over W with closed
fiber E0 over W/π, and let R be the universal deformation ring of E0. Let E → Spec(R) be an elliptic curve
lifting E0 which algebraizes the universal formal deformation. By abstract deformation theory R is formally
smooth over W of relative dimension 1, and the ideal cutting out the W -section of Spec(R) arising from the
special deformation E/W is a height 1 prime. By choosing a generator T of this we can identify R 'W [[T ]]
such that reduction modulo T recovers E/W . The content of the lemma is that the elliptic curve E/F [[T ]] is
an (algebraized) universal deformation of the generic fiber E/F of our original elliptic curve E over W . In
this way, we have a precise link between universal deformation rings of the generic and closed fibers of E/W .

To see the general meaning of the lemma (with N > 1 allowed), suppose x actually occurs in a universal
algebraic family over an affine finite type W -scheme Spec(R). Let m denote the maximal ideal associated
to x0 and let px denote the prime associated to x. Note that the px-adic completion of R is naturally
isomorphic to R̂m with a slightly weaker topology, since R/px 'W is max-adically complete. For example,
if R̂m ' W [[T ]] with its maximal-adic topology (and T corresponding to the section x), then the px-adic
completion would be isomorphic to W [[T ]] with just the T -adic (rather than (π, T )-adic) topology.

If we let Rη = F ⊗W R, then the above lemma is just the obvious commutative algebra assertion that
the completion of Rη along the section x is naturally isomorphic to the completed tensor product F ⊗̂W R̂m

where F and W are given the discrete topology and R̂m is given its topology as px-adic completion of R. In
even more concrete terms, this is a jazzed-up version of the assertion that if we form the T -adic completion
of F ⊗W (W [[T ]]) then we naturally get F [[T ]] (beware that we’re not actually assuming formal smoothness
over W for the deformation ring R0 in the lemma, though such smoothness does hold in the cases to which
we’ll be applying this lemma later on).

Proof. Although we could give a proof using universal algebraic families, for aesthetic reasons we prefer
to give a proof entirely within the framework of deformation theory, as this clarifies the general nature of
the argument (i.e., the role of elliptic curves and level structures is rather inessential to the argument).
Essentially, the same method will apply “whenever” one is studying a moduli problem which is finite over
one whose deformation rings are formally smooth, whose Isom-schemes are finite unramified, and whose
universal deformations are algebraizable over the base. First, we remove the appearance of Γ0(N)-structures
(which we view as pairs consisting of an elliptic curve and an auxiliary subgroup scheme with Γ0(N)-
structure). Let the complete local noetherian W -algebra R0 denote the universal deformation ring for the
elliptic curve underlying x0, and let Ix denote the ideal corresponding to the W -section given by the elliptic
curve underlying x.

The functor of Γ0(N)-structures on an elliptic curve is finite, so if R′0 denotes the finite R0-algebra
classifying such structures on deformations of the elliptic curve underlying x0, then R′0 is the product of
finitely many local rings (as R0 is local henselian), and the ring R0 is the unique local factor ring of R′0
corresponding to the Γ0(N)-structure x0, or equivalently is the unique local factor ring of R′0 supporting the
W -section arising from x. It follows that the F⊗W Ix-adic completion of F⊗W R0 is a factor ring of the ring
of Γ0(N)-structures on the “universal” elliptic curve over the F⊗W Ix-adic completion of F⊗W R. Moreover,
this completion of F ⊗W R0 also supports the F -section corresponding to x. Since F ⊗W (R/Ix) = F and
F ⊗W (R0/Ix) = F are local, so the indicated completions of F ⊗W R0 and F ⊗W R are also local, it follows
that the F ⊗W Ix-adic completion of F ⊗W R0 (along with the Γ0(N)-structure over it!) is the desired
universal deformation of x provided that the F ⊗W Ix-adic completion of F ⊗W R (along with the elliptic
curve over it!) is the universal deformation of the elliptic curve underlying x. This latter statement is exactly
the original problem for elliptic curves without the interference of level structures.

Throwing away the level structures, we begin with an elliptic curve E0 over W/π and a deformation E of
E0 to W . Let R denote the universal deformation ring of E0 and let J ⊆ R be the ideal of the W -section
corresponding to E. Define Rη = F ⊗W R and Jη = F ⊗W J , so Jη is a maximal ideal in Rη (with residue
field F ). We need to prove that the Jη-adic completion of Rη (along with the elliptic curve over it) is the
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universal deformation of E/F (on the category of complete local noetherian F -algebras with residue field F ).
Let R̃η be the universal deformation ring of E/F , so we have a natural map

(9.1) R̃η → ̂(Rη)Jη
which we want to prove to be an isomorphism.

From the deformation theory of elliptic curves, we know that both source and target in (9.1) are formal
power series rings over F of the same dimension (which happens to be 1, but we ignore this fact to maintain
conceptual understanding of the situation). Thus, it suffices to prove that the map is surjective. More
specifically, it suffices to prove that the map

(9.2) R̃η → Rη/J
2
η = F ⊗W (R/J2)

is surjective. The whole point is to prove surjectivity onto the maximal ideal F⊗W (J/J2), with J/J2 a finite
free W -module. Assuming failure of surjectivity, we can choose an appropriate codimension 1 lattice in J/J2

which eats up the entire image of the maximal ideal of R̃η under (9.2) (after tensoring with F ). Thus, we
can find a W -algebra quotient of R = W ⊕J of the form W [ε] (with (ε) the image of J) so that the resulting
elliptic curve deformation over F [ε] is trivial. In other words, we will have a non-trivial deformation E of
E/W to W [ε] which induces a trivial deformation of E/F over F [ε]. We now show that such a deformation
cannot exist.

Consider the Isom-scheme I = Isom(E , E/W [ε]) over W [ε] which classifies elliptic curve isomorphisms
over variable W [ε]-schemes (not necessarily respecting structures as deformations of E/W !). This is a finite
unramified W [ε]-scheme (by the deformation theory of elliptic curves), and we just have to prove that
I(W [ε])→ I(F [ε]) is surjective, since an isomorphism E ' E/W [ε] over W [ε] which induces an isomorphism
of F [ε]-deformations of E/F is automatically an isomorphism of deformations of E/W (as the “generic fiber”
functor from flat separated W -schemes to F -schemes is faithful). Since W [ε] is a henselian local ring, any
finite unramified W [ε]-scheme can be realized as a closed subscheme of a finite étale W [ε]-scheme. But since
W [ε] is even strictly henselian, it follows that the only finite étale W [ε]-algebras are finite products of copies
of W [ε]. Thus, I is a finite disjoint union of spectra of quotients of W [ε]. But the ideal theory of W [ε] is
sufficiently easy that we see by inspection that the only quotient of W [ε] which admits a W [ε]-algebra map
to F [ε] is W [ε] itself. Thus, I(W [ε])→ I(F [ε]) is surjective (and even bijective).

�

Now we return to our original situation with the universal deformation ring R0 of x0. We have a natural
map ÔX,x = ÔX,x0

→ R0 which computes the subring of invariants in R0 under AutW/π(x0). After inverting
π and passing to completions along the sections defining x, the source ring becomes ÔX,x while the target
ring becomes the universal deformation ring Rη of x, thanks to Lemma 9.1. Moreover, by chasing universal
(algebraized) objects in Lemma 9.1 (and projecting to artinian quotients of Rη), we see that this induced
natural map

(9.3) ÔX,x → Rη

is indeed the canonical isomorphism of ÔX,x onto the subring of AutF (x)-invariants in the universal defor-
mation ring Rη of x. Since the group AutF (x)/{±1} of order ux acts faithfully on the universal deformation
ring Rη ' F [[T ]], so the totally (tamely) ramified extension (9.3) has ramification degree ux, we conclude
that the generator θx of (Ω̂1

ÔX,x/F
)⊗k(−rx) maps to a generator of (Ω̂1

Rη/F
)⊗k(−(rxux + k(ux − 1))), where

the twisting notation “(n)” denotes tensoring with the nth power of the inverse of the maximal ideal; this
amounts to nothing more than the calculation that if T ′ = unit · Tu then

(9.4) T ′
r(dT ′)⊗k = unit′ · T ru+k(u−1)(dT )⊗k

in Ω̂F [[T ]]/F (since u ∈ F×).
If we let J denote the (invertible!) height 1 prime ideal of the W -section x of the formally smooth

deformation ring R0 and let Jη denote the ideal of the F -section x of Rη, then for any integer m we have
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a natural isomorphism of 1-dimensional F -vector spaces

(Ω̂1
Rη/F

)⊗k(m)/Jη ' F ⊗W
(

(Ω̂1
R0/W

)⊗k(m)/J
)
,

where on the right side we are twisting relative to the invertible ideal J . The left side is a 1-dimensional
F -vector space and the “integral” differentials on the right side provide a natural rank 1 lattice in this vector
space. In this way, taking m = −(rxux +k(ux− 1)) enables us to define an integer ordv,x(θ) which measures
the extent to which θx mod Jη fails to arise from a generator of the lattice of “integral” differential tensors.
In more explicit terms, if we compute the formal expansion of the tensor θ relative to a formal parameter
along the section x of the “integral” deformation ring R0 of x0, then we get a leading coefficient in F× which
is well-defined up to unit, and ordv,x(θ) is just the ordv of this coefficient.

With these preliminary considerations settled, we are now in position to state the main local formula:

Theorem 9.2. With notation as defined above, including Cx defined as in (8.5), we have

(9.5) (x.x)v,ωx =
1
2

∑
n≥0

(|AutWn(x)| − |AutW (x)|) +
ordv(Cxukx)− ordv,x(θ)

rx + k

Remark 9.3. Despite possible appearances to the contrary, we will see in §10 that (9.5) with θ = ∆ recovers
[GZ, Ch III, Lemma 8.2] at non-elliptic points.
Remark 9.4. If x arises from a global point over H and we choose a global θ and a global ωx, then Cx,
ux, and rx all have global meaning independent of v (e.g., 2ux is the order of the geometric automorphism
group of x, which can be computed over Q, C, or an algebraic closure of the fraction field of W ). We regard
the first term on the right side of (9.5) as the interesting part, and the rest as “junk”. The only junk term
which is somewhat subtle is ordv,x(θ), since it is defined via formal deformation theory at v and hence is not
obviously ordv of some globally defined quantity when x, ωx, and θx are globally defined at the start. Thus,
we will need to do a little work to explicate the “global” meaning of ordv,x(θ) in such situations. When we
take k = 6 and θ = ∆, then typically rx = 0 and ordv,x(θ) = 0. However, at elliptic points we may have
rx 6= 0 and when v|N we may have ordv,x(θ) 6= 0. The choice θ = ∆ is the one we will use later on in order
to explicate formulas for global height pairings.

For our purposes the extra local “junk” terms will not be problematic because when we form the sum over
all places v of H (in the context of Heegner points), then by the product formula these terms will essentially
add up to zero once the archimedean analogue is adapted to our method of computation and once we have
found a more conceptual interpretation of ordv,x(θ) for a well-chosen θ (namely, θ = ∆). It is crucial for
such an application of the product formula that the denominator rx + k in (9.5) does not depend on v when
x ∈ X(F ) arises from a global point over H and θ, ωx are globally chosen over H.

Now we prove Theorem 9.2.

Proof. Although X need not be regular, as usual it suffices to work with this model for our intersection
theory calculations because x lies in the W -smooth locus on this model (cf. (8.8)). We also observe that
both sides of (9.5) transform the same way under a change of ωx. Indeed, if we use ω′x = cωx for some c ∈ F×v
and if αxωx is a basis of Cotx(Xv), then α′x = αx/c makes α′xω

′
x = αxωx an OFv -basis of the cotangent line

along x, so

(x.x)v,ω′x = ordv(α′x) = −ordv(c) + ordv(αx) = −ordv(c) + (x.x)v,ωx ,

while by (8.6) we have ordv(C ′x)/(rx + k) = −ordv(c) + ordv(Cx)/(rx + k). Since ux and ordv,x(θ) and
the Aut-terms on the right side of (9.5) do not depend on ωx, we conclude that indeed both sides of (9.5)
transform in the same way under change in ωx. Thus, it suffices to prove the result for one choice of ωx. We
will make the choice later in the proof.

Let G = AutW/π(x0)/{±1}, a quotient of the group of automorphisms of x0 as a Γ0(N)-structure. Let
R0 denote the universal deformation ring of x0, so there is a natural injective W -algebra action map

[·] : G→ AutW (R0),
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an abstract isomorphism R0 'W [[T0]], and an isomorphism ÔX,x0
' RG

0 , where T0 cuts out the deformation

x over W . The norm Tx
def= NormG(T0) =

∏
g∈G[g](T0) is a formal parameter of RG

0 ' ÔX,x0
' ÔX,x over

W , so Tx serves as a formal parameter along x on X.
We now give a deformation-theoretic interpretation of

(9.6)
1
2

∑
n≥0

(|AutWn
(x)| − |AutW (x)|).

The method we use applies to a rather more general class of deformation problems with formally smooth
deformation rings of relative dimension 1 (as the following abstract argument makes clear). Since a repre-
sentative in AutW/π(x) of g ∈ G lifts to Wn (as an automorphism of Γ0(N)-structures) if and only if its
negative lifts, it makes to speak of an element of G lifting to Wn. Thus, by including the factor of 1/2
we see that the nth term in (9.6) counts the number of g ∈ G which lift to Wn but don’t lift to W . But
g ∈ G lifts to Wn if and only if T0 and [g](T0) generate the same ideal in the universal deformation ring
R0/π

n+1 of x mod πn+1 over Wn-algebras (with residue field W/π). Since the quotients R0/(πn+1, T0) and
R0/(πn+1, [g](T0)) are abstractly Wn-isomorphic (via [g]) and hence have the same finite length, a surjection
of R0-algebras R0/(πn+1, [g](T0)) � R0/(πn+1, T0) is necessarily an isomorphism. Thus, we conclude that
g lifts to Wn if and only if [g](T0) is a multiple of T0 in R0/π

n+1. By viewing [g](T0) ∈ R0 ' W [[T0]] as a
formal power series in T0, to say that [g](T0) is a multiple of T0 modulo πn+1 amounts to saying that the
constant term [g](T0)(0) (i.e., the image of [g](T0) in R0/(T0) 'W ) is divisible by πn+1.

We conclude that g ∈ G doesn’t lift to W if and only if [g](T0) has non-zero constant term [g](T0)(0),
in which case g lifts to Wn if and only if n + 1 ≤ ordv([g](T0)(0)). It follows that (9.6) is exactly the
sum of the ordv’s of the non-zero constant terms among the [g](T0)’s. Equivalently, when we consider the
formal parameter Tx = NormG(T0) =

∏
g∈G[g](T0) along x as an element in the universal deformation ring

R0 'W [[T0]], the ordv of its least degree non-zero coefficient is exactly equal to (9.6).
Since the G-norm Tx of T0 formally cuts out x ∈ X(W ), it also induces a uniformizer in the complete

local ring at x ∈ X(F ). Thus, when Tx is viewed as an element in W [[T0]] ⊆ F [[T0]] (with the latter ring
naturally identified with the universal deformation ring of x, by Lemma 9.1), it has the form

(9.7) Tx = bxT
ux
0 + . . .

with bx 6= 0 and ux = (1/2)|AutF (x)| the ramification degree of the universal deformation ring F [[T0]] over
ÔX,x. We have seen already that when the G-norm Tx of T0 is expanded as a product of [g](T0)’s, the
product of the non-zero constant terms among the [g](T0)’s (taken with respect to T0-adic expansions) has
ordv equal to (9.6). This product of constant terms is bx up to W×-multiple (arising from the g’s lifting to
W , for which [g](T0) is a unit multiple of T0), so we conclude that (9.6) is exactly ordv(bx).

We will take ωx to be represented by the formal parameter tx = Tx in ÔX,x (an inspection of our definition
of (x.x)v,ωx and the calculation (8.8) makes it clear that we may work with formal uniformizers that don’t
necessarily arise from rational functions in OX,x on the algebraic curve X/F ). In (Ω̂1

ÔX,x/F
)⊗k(−rx · x), by

(9.7) we have

θ = (CxT rxx + . . . )(dTx)⊗k = (Cxbrx+k
x ukxT

rxux+k(ux−1)
0 + . . . )(dT0)⊗k.

Thus, by definition we have

(9.8) ordv,x(θ) = ordv(Cxbrx+k
x ukx) = ordv(Cxukx) + (rx + k)ordv(bx).

Now let’s consider the main identity (9.5). Since θ has its Tx-adic expansion with leading coefficient Cx,
where Tx is a formal parameter along the W -section x on X, we take βx = 1/Cx in (8.8), so (x.x)v,ωx = 0.
Meanwhile, by (9.8) the right side of (9.5) is equal to

ordv(bx) +
ordv(Cxukx)− ordv,x(θ)

rx + k
= 0 = (x.x)v,ωx .

�
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Before we move on to establish formulas for (x.Tm(xσ))v – when properly defined – in cases with rA (m) >
0, it is convenient to introduce some convenient shorthand so as to avoid having to carry out the “junk”
local terms from (9.5). For a Γ0(N)-diagram x over W whose associated section in X(W ) lies in Xsm(W )
(and is not assumed to arise from a Heegner point, though Heegner points do satisfy these hypotheses), we
define

(9.9) (x.x)GZ
v =

1
2

∑
n≥0

(|AutWn
(x)| − |AutW (x)|).

We emphasize that (9.9) is in general not equal to our self-intersection pairing, but we now explain why it
does coincide with the one used in [GZ, Ch III, §8] away from elliptic points and characteristics dividing N .
This requires a definition.
Definition 9.5. For x as above which is non-elliptic (i.e., ux = 1, so ordx(∆) = (6/ux)(ux − 1) = 0) and
factors through the relative smooth locus, let ω denote a 1-form near x lifting a non-zero cotangent vector
denoted ωx at x. Let gω = ω⊗6/∆, a non-zero rational function with no zero or pole at x. Define

(x.x)η
4

= (x.x)ωx +
1
6

ordv(gω(x)).

This is independent of the choice of ω (and ωx).
To see the independence of the choice of ω (and ωx), we note that using ω′ = hω with a rational function

h requires h to not have a zero or pole at x and hence the equalities ω′x = h(x)ωx and gω′ = h6gω force

(x.x)ω
′
x +

1
6

ordv(h(x)6gω(x)) = (x.x)ωx − ordv(h(x)) + ordv(h(x)) +
1
6

ordv(gω(x)).

The reason for the notation (x.x)η
4

is that if η4 actually made sense as a meromorphic 1-form on X0(N) and
were non-vanishing and regular at x then we would recover the old definition of “intersection theory with a
cotangent vector” (based on η4

x). To see this, if we pretend η4 lives on X then we can write ∆ = (η4)6 and
hence formally

1
6

ordv(gω(x)) = ordv(
ω

η4
(x)),

so

(9.10) (x.x)η
4

= (x.x)ωx + ordv((ω/η4)(x))

and since ωx = η4
x · (ω/η4)(x) we could use (8.4) to thereby “recover” the definition of self-intersection at x

using the hypothetical cotangent vector η4
x.

In any case, to actually compute the intrinsic (x.x)η
4

we may work formally at x and so can choose
ω = dT with T a formal parameter along the section x ∈ Xsm(W ). In terms of earlier notation from (8.5)
with θ = ∆ we have gω(x) = 1/Cx. Combining this with the equalities ux = 1 and rx + k = 6, we conclude
from Theorem 9.2 that

(x.x)η
4

= (x.x)ωx − 1
6

ordv(Cx) = (x.x)GZ − 1
6

ordv,x(∆).

But we will prove in Lemma 10.1 that under the above hypotheses, ordv,x(∆)/6 = ordv(n). Thus, as long
as v - N , we have (x.x)η

4
= (x.x)GZ. It is the modified intersection pairing based on Definition 9.5 which

is used in the intersection theory considerations in [GZ, Ch III, §8] (so Theorem 9.2 with v - N really does
recover [GZ, Ch III, Lemma 8.2]), but now that we have seen how to recover the point of view in [GZ] at
non-archimedean places via our perspective if one avoids elliptic points, we won’t make any further reference
to Definition 9.5 because when v|N or v|∞ our local terms seem different from the ones in [GZ] (but of
course the global sums coincide).

We define 〈x, x〉GZ
v

def= −(x.x)GZ
v log(qv). Since ordx(Tm(xσ)) = rA (m), by Theorem 9.2 this definition

then yields

(x.Tm(xσ))v,ωx = (x.Tm(xσ))GZ
v + rA (m)

(
ordv(Cxukx)− ordv,x(θ)

rx + k

)
,
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where we define (.)GZ
v to be essentially the usual intersection pairing except with (9.9) replacing the self-

intersection formula, and
θ = (Cxtrxx + . . . )(dtx)⊗k

with tx a uniformizer representing ωx (and Cx only depends on ωx, not tx). We also define

(9.11) 〈x, Tm(xσ)〉GZ
v = −(x.Tm(xσ))GZ

v log(qv)

using (9.9) and the canonical local height pairing.
Define c = x−∞, d = x− 0. Using Theorem 8.4 and Theorem 9.2, for non-archimedean places v of H

(9.12) 〈c, Tm(dσ)〉v,ωx = 〈x, Tm(xσ)〉GZ
v + rA (m)

log |Cxukx|v − log |θ|x,v
rx + k

,

where |θ|x,v
def= q

−ordv,x(θ)
v denotes the v-adic absolute value of the leading coefficient of θ when expanded

relative to a formal parameter along x in the universal deformation ring at x0. Here we have used that the
closure of Tm(0) is σ1(m).0 and that x and Tm(xσ) are disjoint from the cuspidal locus since CM points are
everywhere potentially good reduction.

We define

(9.13) ax =
∏
v-∞

pordv,x(θ)
v .

By Lemma 10.1, when θ = ∆ and ux = 1 then ax = n6. We conclude that for every non-archimedean place
v of H,

(9.14) 〈c, Tm(dσ)〉v,ωx = 〈x, Tm(xσ)〉GZ
v + rA (m)

log |Cxukxa−1
x |v

rx + k
,

where the factor Cxukx on the right side is an element in H× and ax is a fractional ideal. This puts us in
excellent position to use the product formula to check that the junk terms will (almost) globally sum to 0
(and hence we can ignore them). What we need to do is work out the appropriate archimedean analogue of
the calculation (9.14).

Fix a complex place v of H and let Cv denote Hv (with Cv non-canonically isomorphic to C). Fix a choice
of
√
−1 ∈ Cv to define an orientation on Cv-manifolds, so we may realize the associated upper half-space hv

as the base of a universal Cv-analytic family of elliptic curves with trivialized (oriented) relative homology.
We thereby get a canonical Cv-analytic “uniformization” πv : hv → X0(N)an

/Cv
= X0(N)(Cv) and we may

(and do) choose zv ∈ hv lifting xv ∈ X0(N)(Cv). The pullback tensor π∗v(θan
v ) has order rxux + k(ux − 1)

at zv because of a calculation such as in (9.4) and the fact that hv is the base of a universal family for an
analytic moduli problem which is étale over the Γ0(N)-moduli problem in the Cv-analytic category (so πv
computes the same ramification degrees ux). Let gzv be a local analytic uniformizer at zv on hv which enjoys
the property that the gzv -adic analytic expansion

(9.15) π∗v(θv) = (grxux+k(ux−1)
zv + . . . )(dgzv )⊗k

has a leading coefficient of 1. Such a gzv exists since Cv is algebraically closed. We will use this gzv shortly
(and we do not care if gzv extends meromorphically to all of hv).

By Theorem 8.3, we have

〈c, Tm(dσ)〉v,ωx = lim
y→x

(〈cy, Tm(dσ)〉v − rA (m) log |tx(y)|v),

where y ∈ X0(N)(Cv) − {x} converges to x and cy is the divisor obtained from c by replacing x with y.
Combining this identity with (9.14), we may sum over all places v of H and exploit the product formula for
Cxu

k
x ∈ H× and the identity ∑

v-∞

log |a−1
x |v = log |NH/Q(ax)|
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(with this fractional ideal norm viewed as a positive rational number) to obtain a formula for the global
height pairing: 〈c, Tm(dσ)〉 is equal to∑

v-∞〈x, Tm(xσ)〉GZ
v + rA (m) log |NH/Q(ax)|

rx+k

+
∑
v|∞ limy→x

(
〈cy, Tm(dσ)〉v − rA (m)

rx+k ((rx + k) log |tx(y)|v + log |Cxukx|v)
)
.

In order to put this into a more useful form, we need to examine the term

(rx + k) log |tx(y)|v + log |Cxukx|v

for v|∞. We may write
π∗v(tan

x ) = αv,xhv,xg
ux
zv

for some αv,x ∈ C×v and hv,x analytic near zv with hv,x(zv) = 1. Since θv = (Cxtrxx + . . . )(dt⊗kx ), we get

π∗v(θan
v ) = (Cxαrx+k

v,x ukxg
uxrx+k(ux−1)
zv + . . . )(dgzv )⊗k.

We conclude via (9.15) that Cxukxα
rx+k
v,x = 1. Thus, (rx+k) log |αv,x|v = − log |Cxukx|v. Taking yv in hv near

zv and lying over y ∈ Xv(Cv), we obtain

(rx + k) log |tx(y)|v + log |Cxukx|v = (rx + k)(log |αv,x|v + log |hv,x(yv)|v + ux log |gzv (yv)|v) + log |Cxukx|v
= (rx + k)ux log |gzv (yv)|v + (rx + k) log |hv,x(yv)|v

where hv,x(yv) → 1 as yv → zv in hv. Thus, when forming the limit as y → x in Xv(Cv) we can drop the
hv,x(y) term and hence arrive at the main result:

Theorem 9.6. Let x ∈ X0(N)(H) be a Heegner point, and let ux be half the size of the geometric au-
tomorphism group of x (so ux = (1/2)|O×K |). Choose a non-zero rational section θ of (Ω1

X0(N)/H)⊗k with

rx
def= ordx(θ) 6= −k. Let ax be the fractional ideal of H constructed via deformation theory as in (9.13).

Define c = x−∞, d = x− 0.
The global height pairing 〈c, Tm(dσ)〉 is equal to

(9.16)
∑
v-∞

〈x, Tm(xσ)〉GZ
v +

∑
v|∞

lim
yv→zv

(〈cyv , Tm(dσ)〉v − uxrA (m) log |gzv (yv)|v) +
rA (m) log |NH/Qax|

rx + k
,

where

• the local term 〈x, Tm(xσ)〉GZ
v for v -∞ is defined by (9.9) and (9.11),

• for v|∞, zv ∈ hv projects onto xan
v under the analytic uniformization πv : hv → X0(N)an

/Hv
,

• gzv is an analytic uniformizer at zv with respect to which the local analytic expansion of the mero-
morphic k-tensor π∗v(θan

v ) has leading coefficient equal to 1.
• for v|∞, the limit runs over yv ∈ hv − {zv} converging to zv,

As we have seen above, the local factors of ax are determined by the incarnation of θ in local deformation
theory on good models for x. There is a particularly nice choice to be made in our situation, namely k = 6
and θ = ∆. Since ∆ over C is nowhere vanishing away from the cusps, this choice renders

(9.17) rxux + k(ux − 1) = 0

for all x (cf. (9.15)). In particular, rx + k 6= 0 for all x (so we may indeed use ∆ as the basic tensor in the
preceding considerations). Consequently, since ∆(q)(dq

q )⊗6 = ((2πi)η4(z)dz)⊗6, with this choice it is trivial
to check that at any (fixed) point zv ∈ hv we may take the analytic uniformizer gzv (z′) = (2πi)η4(zv)(z′−zv)
for varying z′ ∈ hv. With this choice, the contribution from v|∞ in (9.16) is an “explicit” limit involving
archimedean local heights and certain analytic functions gzv on the upper half-plane over Hv ' C, and is
exactly the archimedean height contribution which is computed in [GZ, Ch II, (5.3), (5.5)]. Since log p’s for
distinct rational primes p are Q-linearly independent, it follows that Theorem 9.6 in this case must agree
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place-by-place (over Q) with the global formula used in [GZ], where the contribution in (9.16) over a prime
p comes from the first and third pieces of the formula (upon factoring out a − log qv, using Theorem 8.4):

(9.18) 〈c, Tmdσ〉p
def= −

∑
v|p

((x.Tm(xσ))GZ
v −

rA (m)
rx + k

ordv,x(θ)) log qv.

The aim of §10 is to make the v-term on the right side of (9.18) explicit when θ = ∆; see Theorem 10.5. The
appendix uses this to give an explication of (9.18) depending on the splitting behavior of p in K.

The method we have outlined is of fairly general nature for computing global height pairings on coarse
moduli schemes. The real problem in any given situation is to make the archimedean height pairings and
analytic functions gzv explicit enough to carry out computations, and to compute the ideal ax (this latter
data being the non-archimedean aspect which is sensitive to the choice of θ). The trick is to find a single
well-understood θ that will satisfy ordx(θ) 6= −k at all Heegner points. For our purposes, the choice θ = ∆
works best.

10. Quaternionic explications

We are now in position to carry out the computation of the local term

(10.1) (x.Tm(xσ))GZ
v −

rA (m)
rx + k

ordv,x(θ)

from (9.18) for any value of rA (m) but with θ = ∆. The difference (10.1) is the main geometric local
contribution to the non-archimedean contribution (9.18) to the global height pairing formula in Theorem
9.6, with the intersection pairing (x.Tm(xσ))GZ

v computed by means of usual local intersection pairings for
disjoint divisors and the modified self-pairing (x.x)GZ

v given by (9.9). In particular, we see that (x.x)GZ
v = 0

whenever AutW (x) = AutW/π(x0).
Since the set IsomW (x, y) of W -isomorphisms is empty when the corresponding generic geometric points

x, y are distinct (thanks to Theorem 2.6), we conclude trivially that the identity

(10.2) (x.y)GZ
v =

1
2

∑
n≥0

|Isomnew
Wn

(x, y)|

holds for all (possibly equal) pairs of points x, y ∈ X(F ) whose associated W -points come from (necessarily
unique up to isomorphism) Γ0(N)-diagrams over W , where we define a “new” isomorphism as one not lifting
to W . Keep in mind that when x 6= y we are using Theorem 4.1, and in this formula the local intersection
pairing on the left side is computed on the W -scheme X = X0(N)/W (which is often non-regular, but points
arising from Heegner data and Hecke correspondences thereof lie in the relative smooth locus, so there is no
ambiguity concerning these local intersection numbers).

Consequently, the exact same method which we used to prove Theorem 5.1 in the case p - m carries over
to give the (finite) formula

(10.3) (x.Tm(xσ))GZ
v =

1
2

∑
n≥0

|Homnew
Wn

(xσ, x)deg(m)|

whenever v - m, where a “new” homomorphism is one not lifting to W . Once again, x ∈ X(W ) can be any
non-cuspidal section which is represented by a Γ0(N)-diagram over W (and every W -point coming from a
Heegner point over H has been seen to have this property), with x the generic fiber of x over W .

In order to make progress toward computing (10.1) explicitly when θ = ∆, we need to compute ordv,x(∆).
This is provided by:

Lemma 10.1. Let x ∈ X(W ) be disjoint from the cuspidal locus and represented by a Γ0(N)-diagram. When
v - N or v|n, then ordv,x(∆) = 0. When v|n then ordv,x(∆)/(rx + 6) = uxordv(N). In other words, for all
v -∞ ordv,x(∆) = ux(rx + k)ordv(n) = k · ordv(n), so ax = nk = n6.
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Remark 10.2. The method of proof is fairly abstract, so the same method should give a formula for ax in
terms of x : Spec(OH)→M1,1 if θ merely comes from level 1 (over OH). Since we have to choose a specific
θ eventually, it seems simplest to just prove Lemma 10.1 for θ = ∆ and to leave more general considerations
to the reader’s imagination.

Proof. By (9.17), we have (rx + 6)ux = 6, so when v|n we really want to prove ordv,x(∆) = ordv(N6). The
exponent of 6 will arise from the fact that ∆ is a 6-tensor. Let R denote the universal deformation ring of the
elliptic curve E0 underlying x0, equipped with universal (algebraized) elliptic curve E/R, and let R′ denote
the universal deformation ring of the Γ0(N)-structure x0, with ι the corresponding universal structure on the
base change E/R′ (with closed fiber ι0 recovering the level structure x0 enhancing E0). By the general theory,
since the Γ0(N)-moduli problem is finite flat over the moduli stack of (smooth) elliptic curves it follows that
R′ is a finite flat R-algebra: it is simply the factor ring of the finite flat universal Γ0(N)-structure algebra
over R corresponding to the residual structure x0 on E0.

The crucial point is that when v - N or v|n then R → R′ is an isomorphism. Indeed, in the case v - N
the N -torsion on deformations of E0 is étale and hence is invisible from the point of view of deformation
theory. For the same reason, when v|N then the prime-to-p part of the Γ0(N)-structure lifts uniquely to
any deformation of E0. All the action therefore happens in the p-part. If v|n then the residual p-part of
the level structure is multiplicative and more specifically is selected out functorially by the connected-étale
sequence on the pordp(N)-torsion of deformations of E0. Hence, we once again only have to deform E0 and
the level structure uniquely compatibly deforms for free, so again R → R′ is an isomorphism. The case
v|n is more subtle (the entire Γ0(N)-structure is étale, but specifying the p-part on a deformation amounts
to splitting the connected-étale sequence, so this imposes genuine extra data on deformations, leading to a
bigger deformation ring than the one for E0 alone).

Recall that in general ordv,x(θ) is defined as follows: we have an isomorphism R′ ' W [[T ]] with T = 0
corresponding to the W -structure x (recall that R′ is regular and W -flat of dimension 2 by the general theory
as in [KM], and it has a W -section arising from x and hence really does have to have the form W [[T ]]), and
ordv,x(θ) is defined to be ordv of the leading coefficient of the T -adic expansion of the k-tensor θ. It makes
a big difference whether R′ coincides with the universal deformation ring of E0 or if it is genuinely bigger.

We first dispose of the cases v - N and v|n, and then will settle v|n. As long as v - n, we have just seen
that R′ = R. Thus, if we write W [[T ]] for the universal deformation ring of E0 (with T = 0 cutting out the
elliptic curve over W underlying x) then we must show that the 6-tensor ∆ has T -adic expansion with unit
leading coefficient. The crux of the matter is that ∆ is a generator of the line bundle ω⊗12 on the (open)
moduli stack M1,1, and the Kodaira-Spencer map KS1,1 : ω → Ω1

M1,1/Z
is what converts it into a 6-tensor on

this stack. This is the usual recipe that converts even weight modular forms into tensors on modular curves.
The general theory of the Kodaira-Spencer map ensures that KS1,1 is an isomorphism (we are working away
from the cuspidal substack) precisely because the deformation theory of an elliptic curve (with the marked
identity section!) coincides with the deformation theory of its underlying “bare” curve (as we can always
lift the identity section, thanks to smoothness, and can then translate it via the group law to put it in the
correct position). Consequently, the image of ∆ in the invertible R-module (Ω̂1

R/W )⊗6 is a generator and
hence it has unit leading coefficient.

There remains the case v|n. Since v|N , so p is split in K, the elliptic curve underlying x is the Serre-
Tate canonical lift of E0. Moreover, the deformation theory of E0 coincides with that of its p-divisible
group. Thus, we may identify R with W [[T ]] where q = 1 + T is the so-called Serre-Tate parameter. The
deformation theory of the Γ0(N)-structure only matters through its p-part (as the other primary components
deform uniquely). Let pe be the p-part of N (with e > 0). We claim

(10.4) R′ = R[T ′]/((1 + T ′)p
e

− (1 + T )) 'W [[T ′]].

Once this is shown, then T = pe(T ′ + . . . ) + T ′
pe , so ∆ = unit′(dT )⊗6 = unit′(pe)6(dT ′)⊗6. More intrin-

sically, ∆ in the invertible R-module Ω̂1
R′/W is (pe)6 times a generator, whence ordv,x(∆) = ordv((pe)6) =

ordv(N6) = ordp(N6) as desired.
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To establish (10.4) (and thereby complete the proof), recall that the deformation aspect of the level
structure only matters through its p-part. More specifically, we are not just imposing an arbitrary Γ0(pe)-
structure on deformations of E0 but rather one which is étale (here is where the condition v|n is used). Hence,
our task is really one of deforming splittings of the connected-étale sequence on pe-torsion of deformations
of the ordinary E0. Upon choosing a generator of the étale part of E0[pe], we uniquely identify E0[pe] with
Z/pe × µpe compatibly with the scheme-theoretic Weil pairing. For any infinitesimal deformation E′ of E0

we can uniquely write its connected-étale sequence as 0→ µpe → E′[pe]→ Z/pe → 0 in a manner lifting the
corresponding canonical sequence for E0[pe]. Let π denote the projection map from E′[pe] onto its maximal
étale quotient. Thus, the deformation problem is equivalently one of choosing a section of the fiber π−1(1)
on deformations E′ of E0. In the universal situation over W [[T ]] (with q = 1 + T the Serre-Tate canonical
parameter and T = 0 cutting out the Serre-Tate canonical lift which is the elliptic curve underlying x), the
torsion levels are described by rather explicit group schemes considered in [KM, §8.9ff]. This description
rests crucially on the fact that q = 1 + T is the Serre-Tate canonical parameter, and in any case explicates
the scheme π−1(1) by means of the equation Xpe = 1 + T . Thus, if we define T ′ = X − 1 then we obtain
the desired description R′ = R[T ′]/((1 + T ′)p

e − (1 + T )) for the (local) ring R′ as a finite R-algebra.
�

As an application of (10.3), since maps between ordinary elliptic curves always uniquely lift to maps
between Serre-Tate canonical deformations, we see that if p splits in K and p - mN (so (10.3) can be
applied and maps between level N -structures uniquely deform) then the Homnew-terms on the right side of
(10.3) vanish. This yields the following generalization of the vanishing observation which was noted at the
beginning of §7:
Lemma 10.3. If p is split in K, gcd(m,N) = 1, and p - mN , then (x.Tm(xσ))GZ

v = 0 for any place v of H
over p, without restriction on rA (m).

How about the case in which p|N (so p splits in K and p - m, but the N -torsion schemes need not be
étale)? This is answered by:
Theorem 10.4. Assume that v|N and gcd(m,N) = 1. Let x ∈ X(W ) be a Heegner point. Then

(x.Tm(xσ))GZ
v −

rA (m)
rx + k

ordv,x(∆) =
{

0 if v|n
−uxrA (m)ordp(N) if v|n

Proof. There are two cases to consider, depending on the prime factor n of N over p which kills the level
structure on x. If v|n, then the p-part of the level structure on x (and hence also on xσ) is connected and
in fact multiplicative. Since infinitesimal deformations of ordinary elliptic curves possess unique connected
multiplicative subgroups of a specified order and any map between such deformations respects the specifi-
cation of such a subgroup (thanks to the functoriality of the connected-étale sequence), we can conclude by
the same argument as for p - mN split in K that the right side of (10.3) vanishes when v|n. This gives the
v|n case of Theorem 10.4, since ordv,x(∆) = 0 by Lemma 10.1 for such v.

The case v|n, for which the p-part of the Γ0(N)-structure is étale, has the property that the p-part of
the Γ0(N)-structure on x and xσ amounts to giving (non-canonical) splittings of connected-étale sequences
over W so as to single out the p-part of the étale level structures. General elements in HomW/π(xσ, x) have
no non-trivial compatibility condition imposed on the p-part of the level structure because connected-étale
sequences uniquely and canonically split over W/π. However, when such a map is uniquely lifted to a map
of the (Serre-Tate canonical) deformed elliptic curves underlying x and xσ over W it is generally not true
that such a lifted map must respect chosen splittings of the connected-étale sequences over W (and hence
generally does not give a map of Γ0(N)-structures over W ). But our situation is special because the p-part
of the level structure coincides with the piece of the n-divisible group of order equal to the p-part of N . Since
there are no non-zero maps from an étale p-divisible group to a connected one (over a local noetherian base),
we conclude that the argument used for v|n actually still works for v|n. Thus, we get (x.Tm(xσ))GZ

v = 0 even
when v|n, so we must prove ordv,x(∆)/(rx + k) = uxordp(N) = uxordv(N) (the latter equality holding since
p is unramified in H). This is provided by Lemma 10.1.

�
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Now we compute (10.1) when v - N and θ = ∆. By Lemma 10.1, the ordv,x(∆) term vanishes for such v.
Thus, our task comes down to computing (x.Tm(xσ))GZ

v .
Theorem 10.5. Assume v - N , gcd(m,N) = 1, and x ∈ X(W ) is a Heegner point as usual. Let a represent
the ideal class A and be prime to p, and let σ ∈ Gal(H/K) correspond to A . Let v be a place of H over p.

(1) If p is inert in K, then

(x.Tm(xσ))GZ
v =

∑
b∈Ra/±1,Nb=mNa,b− 6=0

1
2

(1 + ordp(N(b−))) +
1
2
uxrA (m)ordp(m).

(2) If p is ramified in K then

(x.Tm(xσ))GZ
v =

∑
b∈Ra/±1,Nb=mNa,b− 6=0

ordp(DN(b−)) + uxrA (m)ordp(m).

(3) If p = p · p is split in K and v lies over p then

(x.Tm(xσ))GZ
v = uxκp

where κp and κp are non-negative integers which are intrinsic to the prime ideals p and p (e.g., they
are defined without reference to x) and satisfy κp + κp = rA (m)ordp(m).

This theorem is [GZ, Ch III, Prop 8.5]. Our proof is longer, but more conceptual.

Proof. The supersingular cases (i.e., p not split in K) will be treated by essentially the exact same method
which we used when rA (m) = 0, but the ordinary case (i.e., p split in K) will require some new work.

It follows from (10.3) that the quaternionic formulas from Corollary 7.15 carry over to the general case
(i.e., rA (m) > 0 is allowed) to compute (x.Tm(xσ))GZ

v when we also assume v - m, provided one augments
the condition on the summation to require b− 6= 0 (as we recall that this is the quaternionic translation of the
condition that a morphism not lift to W ). This gives the first two cases of the theorem when ordp(m) = 0.
Note that Corollary 7.15 only occurs when p - N (as p|N puts us in the split cases). The more interesting
case of Corollary 7.15 is v|m, or equivalently p|m.

Before considering the modifications needed to get the theorem when p|m (so p - N) and rA (m) > 0, we
first note that if p is inert in K (so p2 is the norm of the unique prime pOK over p) then the positivity of
rA (m) forces ordp(m) to be even, with (1/2)ordv(m) = (1/2)ordp(m). Meanwhile, if p is ramified in K then
ordv(m) is even with (1/2)ordv(m) = ordp(m). Thus, the “extra” term on the right side of the inert and
ramified cases of the theorem can be uniformly described by the formula

(10.5) (1/2)urA (m)ordv(m),

where u = u(K) = ux.
Let m = ptr with p - r and t > 0. The first two cases of the theorem require nothing beyond our earlier

work on the analogues when rA (m) = 0. The condition v - N is crucial throughout, since the deformation
theory analysis uses quite critically that N -torsion is étale (and hence deformations of elliptic curves maps
over any Wr are automatically Γ0(N)-compatible when this is true over W0). Also, the condition rA (m) = 0
played essentially no role in our earlier treatment of supersingular cases. The only relevance of this condition
was to ensure that when cases with s = 0 arise then the various W -structures z = y(0) which show up in
Tm(xσ) for z in Tr(xσ) are never equal to x. If we allow rA (m) to perhaps be positive, then the analysis
of the y(s)’s for s > 0 goes through completely unchanged (since the value of rA (m) was never relevant in
that analysis) and the associated closed points y(s)/F on X/F were shown to have residue field F (s) strictly
bigger than F . In particular, such points cannot contribute to an appearance of the F -rational point x in
the divisor Tm(xσ). Thus, for rA (m) > 0 we get almost the exact same formulas for (x.Tm(xσ))GZ

v as in
(6.5) and (6.6) with the two modifications that the case of p inert in K only gives rise to cases with even
t = ordp(m) – as we have seen in the deduction of (10.5) – and the summation terms

1
2
·
∑
n≥0

# HomWn(z, x)deg1
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which arise as formulas for (z.x) must be replaced with their “new” counterparts in accordance with (10.2).
This latter modification causes the

∑
n≥0(. . . ) terms in the “rA (m) = 0” formula for (x.Tm(xσ))GZ

v in (6.5)
and (6.6) to be replaced with “new” counterparts as well.

If we look back at our argument which used Theorem 6.2 and Theorem 6.1 to translate (6.5) and (6.6)
into the language of cardinalities of Hom-groups as in Theorem 5.1, we see that those arguments never used
any hypothesis concerning the value of rA (m). Thus, when converting the terms

(10.6)
t

2
· 1

2
# HomW/π(xσ, x)degr, t ·

1
2

# HomW/π(xσ, x)degr, t ·
1
2

# HomW/π((xσ)σp , x)degr

into various (1/2)# HomWe(x
σ, x)’s for small e, we just have to account for that fact that we now want

to break up such terms into a “new” part and a “non-new” part. As we see from (10.6), there are t/2 =
(1/2)ordp(m) such terms when p is inert in K and there are t = ordp(m) such terms when p is ramified in
K. We thereby pick up a “non-new” contribution of

(t/2) · (1/2)|HomW (xσ, x)degm| = (t/2)urA (m) =
1
2
urA (m)ordp(m)

when p is inert in K and
t · (1/2)|HomW (xσ, x)degm| = urA (m)ordp(m)

when p is ramified in K, with the remaining “new” part of (x.Tm(xσ))GZ
v given by the right side of (10.3).

We compute the right side of (10.3) in our supersingular situation by the exact same quaternionic method as
before, and this yields the summation terms given in the first two parts of the theorem, the extra condition
b− 6= 0 simply reflecting the fact that we’re only counting the number of “new” homomorphisms (i.e., those
not lifting to W ) at each infinitesimal level. This completes the justification of the first two parts of the
theorem.

Now we turn to the third part of the theorem, with p = pp split in OK (and p - N), so the Heegner
data have underlying elliptic curves with ordinary reduction. We have already seen via (10.3) that when
p - mN is split in K then (x.Tm(xσ))GZ

v = 0, exactly in accordance with the asserted formula in the split
case. Thus, from now on we may (and do) assume ordp(m) > 0 (which forces p - N anyway). We cannot use
(10.3) in such cases, so we will give a more explicit analysis of the situation. The goal is to get a formula for
(x.Tm(xσ))GZ

v which agrees with the one we want for p|m split in K.
As a first step toward computing (x.Tm(xσ))GZ

v when p is split in K and v - N (but p|m), we need to
determine which order m subgroup schemes C ⊆ xσ have the property that the quotient xσC by C has
closed fiber isomorphic to the closed fiber of x (with the isomorphism respecting the level structures). That
is, we want to know when C0 is the kernel of an isogeny φ0 : xσ0 → x0 respecting the Γ0(N)-structures.
By the Serre-Tate theorem, we have HomW/π(xσ0, x0) = HomW (xσ, x) since v - N (so compatibility with
Γ0(N)-structures does not impose any additional condition when deforming maps). In particular,

(10.7) (x.x)GZ
v =

1
2

∑
n≥0

(|AutWn(x)| − |AutW (x)|) = 0.

Any map xσ → x is automatically OK-compatible (as can be checked by showing that the OH -module
tangent “lines” of x and xσ have the same (canonical) OK-structure through action of OK on the elliptic
curve, and this is trivial to check since σ ∈ Gal(H/K) acts as the identity on K ⊆ H). It follows that φ0 as
above is OK-compatible, so C0 is an OK-submodule scheme of xσ0.

Let a be an integral ideal in the ideal class A with norm m. Consider the unique degree m isogeny

φ : a−1 ⊗ x = xσ → x

lifting φ0, so φ ∈ a and N(φ) = deg(φ)N(a) = m2 (as one checks using the same arguments with `-divisible
groups that we employed in our earlier degree calculations during the quaternionic considerations). In other
words, in OK we have an equality of ideals φOK = a · b with b an integral ideal of norm m in the ideal class
A −1. Conversely, it is clear that when we are given an integral ideal in A −1 with norm m then we get a
map φ as considered above. Thus, up to composing φ (or φ0) with a unit of OK we see that the set of order
m subgroups C0 ⊆ xσ0 of interest to us is of cardinality equal to rA−1(m) = rA (m). We fix such a b and
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a representative generator φb of ab, and we seek to determine all order m subgroups C ⊆ xσ/F for which
C0 = ker((φb)0), written more loosely as “C ≡ ker((φb)0)” (changing φb by an O×K-multiple doesn’t matter).

To find all order m subgroups C ⊆ xσ
/F

such that C ≡ ker((φb)0), note that on the prime-to-p part
everything is uniquely determined, so we focus our attention on the p-part. Let t = ordp(m) > 0. There is
an evident inclusion b ·(a−1⊗x[pt]) ⊆ ker(φb)p inside of the p-part of ker(φb) and this is an equality for order
reasons. Because of the OK-compatibility of φb and the canonical splitting of the p-divisible groups of x and
xσ into p-divisible and p-divisible parts (where pOK = pp), with the p denoting the prime under v, we have
a decomposition ker(φb)p = (b · (a−1⊗ x[pt]))p× (b · (a−1⊗ x[pt]))p which expresses ker(φb)p as the product
of étale and connected pieces over W (the first factor is étale and the second is connected because p is the
prime under v, and everything is really finite flat because of Raynaud’s scheme-theoretic closure trick which
is particularly well-behaved in the context of multiplicative and étale group schemes without ramification
restrictions). The analogous decomposition of a−1 ⊗ x[pt] = xσ[pt] into a p-part and a p-part reflects the
decomposition arising from the unique splitting of the p-divisible group of xσ into étale and connected pieces.

By the Serre-Tate theorem, we conclude (by considering deformations of endomorphisms of the p-divisible
groups Qp/Zp and its dual Gm[p∞] separately) that the condition that a deformation of (φb)0 to some
W ′/π′

n+1 not lift to W ′ (with W ′ a finite discrete valuation ring extension of W ) is exactly that its kernel
not split as a product of connected and étale pieces in accordance with the splitting of the p-divisible group
of xσ (reduced modulo πn+1). Thus, contributions to the points in the divisor Tm(xσ) (aside from rA (m) ·x)
which “reduce to (φb)0” correspond on the level of geometric points to subgroups C inside of the geometric
generic fiber of the finite flat W -group scheme a−1 ⊗ x[pt] with (b · (a−1 ⊗ x[pt]))p ⊆ C and the cokernel of
this inclusion projecting isomorphically onto (b · (a−1 ⊗ x[pt]))p, yet with this quotient map not being split
compatibly with the natural (Serre-Tate “canonical”) splitting of the connected-étale sequence of a−1⊗x[pt].
The analysis of such C’s (e.g., finding Galois orbits, etc) as F -points takes places entirely in the p-divisible
group of xσ = a−1 ⊗ x, so since this p-divisible group only depends on a through the O-module a ⊗OK O
which is free of rank 1, we can drop the appearance of the functor “a−1 ⊗ (·)” without any harm.

As we run over all rA−1(m) = rA (m) possibilities for b, only the p-part pipt−i of b matters for the analysis
of possible C’s (with a harmlessly removed). This p-part sequence is 0 → x[pi] → C → x[pt−i] → 0. Upon
trivializing the étale part of the p-divisible group of x, we may naturally identify x[pe] with µpe ×Z/pe, with
µpe = x[pe] and Z/pe = x[pe], all this compatible with change in e. Thus, we really have

0→ µpi → C → piZ/ptZ→ 0

inside of µpt ×Z/ptZ. Passing to the quotient by µpi on C and taking the part of x[pt] lying over piZ/ptZ ⊆
Z/ptZ, upon using the canonical isomorphisms µpt/µpi ' µpt−i and piZ/ptZ ' Z/pt−iZ we see that the
specification of C (now collapsed to its étale quotient) amounts to giving a non-trivial splitting over F of the
base change of the connected-étale sequence of µpt−i × Z/pt−i (the trivial splitting contributes to the point
x in Tm(xσ), but (x.x)GZ

v = 0).
The possible C’s are given by subgroups generated by elements (ζ, 1) ∈ (µpt−i × Z/pt−i)(F ). Up to

Gal(F/F )-conjugacy such C’s are classified by the order ps of ζ (as W ' W (Fp) is absolutely unramified,
so it’s cyclotomic theory is “as big” as possible), with 1 ≤ s ≤ t − i (the case s = 0 corresponds to
the point x in the support of Tm(xσ) which we’re not considering). The associated divisor point on X/F

has residue field F (s) def= F (ζps), and it is represented by a Γ0(N)-structure y(s) over the valuation ring

W (s) def= W [ζps ]. Let πs = ζps − 1, a uniformizer of W (s). Note that y(s) mod π2
s is not the Serre-Tate lift of

its closed fiber x0 as a “bare” elliptic curve, since ζps 6≡ 1 mod π2
s (in other words, y(s) is a quasi-canonical

lifting in the Serre-Tate sense, as is alluded to at the very end of [Gr1]). Thus, under the canonical map
W [[T0]] → W (s) from the universal deformation ring of the Γ0(N)-structure x0 (with T0 = 0 corresponding
to x) we have to have that T0 maps to a uniformizer of W (s). Beware that this does not imply in general
that natural map Spec(W (s))→ X over W (sending the closed point to x0) is a closed immersion, let alone
that the corresponding closure of the closed point Spec(F (s)) in X/F is transverse to the closed subscheme
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x = Spec(W ). The problem is that the complete local ring at x0 on X might not be the universal deformation
ring (as a Γ0(N)-structure).

To keep track of what is really happening on the scheme X, recall from (9.7) that the natural map

W [[Tx]] ' ÔX,x0
→W [[T0]]

is Tx 7→ bxT
ux
0 + . . . with ordv(bx) = (x.x)GZ

v = 0. Thus, W [[Tx]] = ÔX,x0
→W (s) arising from y(s) sends Tx

to the uxth power of a uniformizer of W (s). Hence, the closure of y(s) : Spec(F (s)) ↪→ X/F in X is the order
of level ux in W (s) and (x.y(s))v = ux for 1 ≤ s ≤ t−i. We conclude that b contributes ux(t−i) = uxordp(b)
to (x.Tm(xσ))GZ

v . Consequently, we get

(10.8) (x.Tm(xσ))GZ
v = ux ·

∑
b

ordp(b)

when v lies over p|m which is split in K (with p|p the prime of OK under v). The sum in (10.8) is taken
over all integral ideals of norm m in the ideal class of A −1, and will be called κp (it clearly is intrinsic to p
and in general is not divisible by rA (m)). Since ordp(b) + ordp(b) = t for each of the rA (m) different b’s,
we conclude that κp + κp = rA (m)t = rA (m)ordp(m).

�

Appendix A. Elimination of quaternionic sums (by W.R. Mann)

We wish to explicitly compute 〈c, Tm(dσ)〉p as defined in (9.18) with θ = ∆ and x ∈ X(H) a Heegner
point (with CM by the ring of integers of K). Recall that K is the imaginary quadratic field we have fixed
from the outset, D < 0 is its discriminant, and H is the Hilbert class field of K. Also, the level N has prime
factors which are split in K.

Our approach will build upon the results in §10 and use further arguments with quaternion algebras. The
results will be expressed in terms of the arithmetic of K, with the answers separated according to whether p
is split, inert, or ramified in K (and keep in mind that we allow the discriminant of K to be even). Combining
Theorem 8.4, Lemma 10.1, Theorem 10.4 (if p|N), and Theorem 10.5 (if p - N), we obtain the split case
[GZ, Ch III, Prop 9.2]:
Theorem A.1. If p is split in K, then 〈c, Tm(dσ)〉p = −uxrA (m)hKordp(m/N) log(p).

The appearance of hK log p in Theorem A.1 is due to the identity hK log p =
∑
v|p log qv, where qv is the

size of the residue field at the place v of H and p is a choice of either prime over p in K.
Now we may assume p is non-split in K, so in particular p - N . Let p be the unique prime of K over p.

By Theorem 8.4 and Lemma 10.1, we have

〈c, Tm(xσ)〉p = −
∑
v|p

(x.Tm(xσ))GZ
v log qv

where the intersection number for the v-term is given by Theorem 10.5(1) (resp. Theorem 10.5(2)) when p
is inert (resp. ramified) in K. Since

∑
v|p log qv = hK log Np in the non-split case, with qv = p2 in the inert

case since the principal prime p = pOK is totally split in H (Principal Ideal Theorem), Theorem 10.5(1)
implies

(A.1) 〈c, Tmdσ〉p = −urA (m)hKordp(m) log p− log p ·
∑
v|p

∑
b∈Rva/±1

Nb=mNa,b−6=0

(1 + ordp(N(b−)))

in the inert case, with Rv = EndWv/πv (xv). Meanwhile, in the ramified case we get

(A.2) 〈c, Tmdσ〉p = −urA (m)hKordp(m) log p− log p ·
∑
v|p

fv
∑

b∈Rva/±1
Nb=mNa,b−6=0

ordp(DN(b−)),

where qv = pfv and Rv = EndWv/πv (xv).
Our aim is to find an expression for the inner quaternionic sums in (A.1) and (A.2) depending solely

on the arithmetic of K, and we will see that no small effort is required to combine and manipulate these
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quaternionic formulae. These local sums are exactly the local sums which are analyzed in [GZ, Ch III, §9],
and are computed in terms of the arithmetic of K in [GZ, Ch III, Prop 9.7, Prop 9.11]. Since the explanations
there are sometimes a bit terse, in order to clarify what is happening and moreover to show that the results
work for even D, the rest of this appendix is devoted to explaining the analysis of these quaternionic sums
and deriving the formulas obtained by Gross-Zagier. The additional burden of treating even discriminants
will be a slight nuisance, but will not require any essentially new ideas.

Before getting into the details, let us briefly outline the argument. The sums of interest from Theorem
10.5 involve sums which extend over certain elements inside a quaternionic order isomorphic to the order
EndW/π(x). The first task is to find a convenient model for the quaternion algebra in question (this algebra
is the unique one over Q ramified at precisely p and ∞, as we saw in Lemma 7.1), paying careful attention
to the specification of an embedding of K into this model. We will then have to find a model for the order
of interest within this algebra, but it turns out that Lemma 7.1 fails to identify this order up to OK-algebra
isomorphism. Specifically, when one takes into account the embedding of OK into the order, there are finitely
many non-isomorphic orders which satisfy the conditions of Lemma 7.1. We will see that as Gal(H/K) acts
on the places over p, it also serves to simply transitively permute the isomorphism classes of these orders (as
OK-algebras). This is precisely what enables us to obtain a formula depending only on the arithmetic of K
when we sum over all places v of H over the unique prime p of K over p in (A.1) and (A.2).

Though we retain the notation K with the same meaning as throughout this paper, in this appendix we
will use F to denote an arbitrary field of characteristic 0 (though only characteristic 2 requires extra care).
This will pose no risk of conflict with the use of F to denote the fraction field of W in the main paper, since
that fraction field will never show up in this appendix.

To get started, we review some terminology in the theory of quaternion algebras. Recall that a quaternion
algebra B over a field F is a 4-dimensional central simple F -algebra. If E is an extension of F , then
BE

def= E ⊗F B is a quaternion algebra over E. An important example of a quaternion algebra is the matrix
algebra M2(F ). Another family of examples is provided by the following, which we will use (keep in mind
we assume F has characteristic 0):
Example A.2. Pick e, f ∈ F×. There is a unique quaternion algebra B with basis 1, i, j, ij satisfying the
requirements that i2 = e, j2 = f , and ij = −ji (so (ij)2 = −ef). This algebra is denoted

(
e,f
F

)
.

It is a basic fact that a quaternion algebra B over F is either a division algebra or is a matrix algebra over
F , and in the latter case the isomorphism B 'M2(F ) is unique up to inner automorphism. This latter case
is called split, and the division algebra case is called non-split. It is a subtle algebraic problem to determine
whether or not the construction in Example A.2 is split (for a given pair e, f ∈ F×). An extension field E of F
is called a splitting field of B if BE is split. In general there exists a finite Galois extension E of F which splits
B. Since the trace and determinant on M2(E) are invariant under conjugation by M2(E)× = GL2(E), if we
choose a Galois splitting field E/F for B we can transport the trace and determinant to define Trι : BE → E
and Nι : BE → E via an isomorphism ι : BE 'M2(E). The GL2(E)-conjugacy ambiguity in the choice of ι
does not affect these constructions. If we extend scalars on ι through σ ∈ Gal(E/F ) on source and target,
we get a new isomorphism ισ. Thus, Trισ = Trι and Nισ = Nι, yet also Trισ is the extension of scalars on Trι
by σ, and similarly for the comparison of Nισ and Nι. It follows that Trι and Nι are Gal(E/F )-equivariant
and independent of ι, so these descend to define the canonical reduced trace and reduced norm

Tr : B → F, N : B → F.

These are F -linear and multiplicative respectively, with Tr(bb′) = Tr(b′b) for any b, b′ ∈ B. For b ∈ B, we

define b = b − Tr(b). Extending scalars to a splitting field, b 7→ b becomes
(
α β
γ δ

)
7→
(
δ −β
−γ α

)
. Using

this, one checks that bb = bb = N(b) and b 7→ b is an anti-automorphism of B.
Note in particular (by Cayley-Hamilton over a splitting field) that b ∈ B is a root of X2−Tr(b)X + N(b),

so the reduced trace and norm restrict to the usual trace and norm on any quadratic subfield of B over F .
Moreover, for b ∈ B outside of F , this is the unique quadratic polynomial over F satisfied by b. It follows that



GROSS-ZAGIER REVISITED 51

F [b] is 2-dimensional for any b ∈ B −F , and in Example A.2 we have x+ yi+ zj + wij = x− yi− zj −wij
for x, y, z, w ∈ F .

Class field theory leads to an abstract classification:
Lemma A.3. If F is a local field other than C, there is a unique quaternion division algebra over F up to
isomorphism. Any quadratic extension of F can be embedded into B. If F is a number field, a quaternion
algebra B over F is split at all but finitely many places, with the set of non-split places of even size. Any
even set of places arises as the set of non-split places of a unique quaternion algebra over F . In particular,
if B is split at all places of F then B is split.

Although Lemma A.3 is useful for theoretical purposes, we need to build some concrete quaternion alge-
bras. For example, we will need to describe the unique quaternion division algebra over Qp in terms of the
construction in Example A.2.
Definition A.4. When F is a local field the Hilbert symbol (·, ·) : F× × F× → µ2(F ) is defined by the
requirement that (e, f) = 1 when the quaternion algebra

(
e,f
F

)
is split, and (e, f) = −1 when this algebra is

a division algebra.
In the case of a number field F , if we write (·, ·)v to denote the associated local Hilbert symbol for Fv

at a place v, then the evenness in Lemma A.3 corresponds to the product formula:
∏
v(e, f)v = 1 for any

e, f ∈ F×, the product taken over all places v of F . As one special case, if (e, f)v = 1 for all but possibly
one place v0, then (e, f)v0 = 1. We will be interested in the case F = Q, and the first problem we will have
to solve is that of building quaternion algebras over Q with a specified even set of non-split places, using
the language in Example A.2. Often there will be a particularly problematic place, but if we can check that
a quaternion algebra has the desired splitting/non-splitting away from one place, then the behavior at the
missing place is forced by the product formula.

Returning to the original problem of interest, recall that our prime p is either inert or ramified in K, and
we want to construct a model for the quaternion division algebra B in Lemma 7.1: this is the unique such
algebra over Q which is non-split at precisely p and ∞. Since the sums in Theorem 10.5 involve elements
of (an order in) B which are identified with respect to right multiplication by a nonzero ideal a of OK , a
model for B needs to encode an embedding of K. We want to make such a model in the simplest manner
possible. It makes sense to try to build a model

(
e,f
Q

)
with e = i2 = D since we want to keep track of how

K = Q(
√
D) sits in B. Thus, we want to find an f ∈ Q× for which the algebra

(
D,f
Q

)
is a division algebra

non-split at exactly p and ∞. That is, we want (D, f)v = −1 exactly when v = p,∞. To find a suitable f ,
we need to understand how to compute local Hilbert symbols over places of Q. This is done via:
Lemma A.5. Let F be a local field. The Hilbert symbol (·, ·) : F××F× → µ2(F ) factors through F×/(F×)2×
F×/(F×)2, yielding a nondegenerate symmetric bilinear form. If e ∈ F× is not a square, then (e, f) = 1 if
and only if f ∈ NF (

√
e)/F (F (

√
e)×).

Before we return to the problem of finding a model for B, for later convenience we recall how Lemma A.5
helps us to compute the local symbols for quaternion algebras over Q.
Example A.6. We wish to compute (a, b)v for a, b ∈ Q× and v a place of Q. If v =∞ then Qv = R, so by
Lemma A.5 we see that (a, b)∞ = −1 exactly when a and b are both negative. If v = ` is an odd prime,
the situation is only slightly more difficult. The classes in Q×` /(Q

×
` )2 are represented by {1, ε, `, ε`} where

ε ∈ Z×` is not a quadratic residue mod ` and hence is not a square in Z×` . Since Q`(
√
ε) is the quadratic

unramified extension of Q`, it has norm group generated by Z×` and `2. Thus, (ε, ε)` = 1 and (ε, `)` = −1.
Also, since −` is a norm from Q`(

√
`), we have (`,−`)` = 1. Thus, (`, `)` = (`,−1)`. By Lemma A.5, this

is 1 if and only if −1 is a square mod `, so (`, `)` = (−1)(`−1)/2. This generates the other possible pairings
by bilinearity (e.g., (u, v)` = 1 for u, v ∈ Z×` ).

For v = 2, there are more cases because Q×2 /(Q
×
2 )2 has order 8 with generators −1, 2, 3. Rather than

delve into tedious examniantion of cases, we use the product formula to compute these symbols. Consider
the quaternion algebras over Q isomorphic to

(
a,b
Q

)
for some a, b chosen from {−1, 2, 3}, and recall that an

even number of places will be non-split. Since these choices of a and b are units for all finite primes ` > 3,
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our observations above show that (a, b)` = 1 for all such `. All that is left are the places 2, 3,∞, and each
algebra must be non-split at either none or two of these three places. For the sake of completeness, we note
that an examination of the local symbols at 3 and ∞ yields: (−1,−1)2 = (−1, 3)2 = (2, 3)2 = (3, 3)2 = −1,
(−1, 2)2 = (2, 2)2 = 1.

Now recall that we wish to find f ∈ Q× so that
(
D,f
Q

)
is non-split at exactly p and ∞. There will be

infinitely many f that work, but we want the simplest possible choice. We must require f < 0 to force
non-splitting at ∞. We will have to treat separately the cases when p is inert in K and when p is ramified
in K. First consider the inert case. It is necessary that ordp(f) be odd. To see this, first note that the
completion Kp = Qp ⊗Q K is an unramified quadratic extension inside of Bp, so its norm group in Q×p
consists of elements of even order. Thus, if ordp(f) is even then −f = NKp/Qp

(c) for some c ∈ K×p , so via
the decomposition B = K ⊕Kj with j2 = f (cf. the discussion following Lemma 7.1) we’d get

N(c+ j) = N(c) + N(j) = NKp/Qp
(c) + f = 0,

a contradiction since Bp is non-split and c + j 6= 0. One might hope that
(
D,−p

Q

)
works, as it is clearly

nonsplit at p and ∞, but in general this algebra can be nonsplit at some primes dividing D (and possibly
2). For example, if `|D is an odd prime then

(A.3) (D,−p)` = (`,−p)`(D/`,−p)` = (`,−p)` =
(
−p
`

)
,

and this is generally not equal to 1.
Thus, the simplest possible choice for f in the inert case is f = −pq for some auxiliary prime q - Dp.

For odd primes ` - Dq, we already know (D,−pq)` = 1 by Example A.6, since D and −pq are units modulo
`. Thus, we’re left to handle a finite number of primes, at which we will get congruence conditions on
q (for which there will be infinitely many solutions, by Dirichlet’s theorem). For odd `|D, computing as
in (A.3) gives the condition

(−pq
`

)
= 1, which is a congruence condition (with (` − 1)/2 solutions) for q

modulo each such `. It remains to consider the places 2, p, and q (possibly p = 2 or q = 2). If p = 2
then D and q are odd, so the requirement (D,−pq)p = −1 can be satisfied by a mod 8 condition on q.

This makes
(
D,−pq

Q

)
nonsplit at p and ∞, and split at all odd primes except for possibly q, and splitting

is then forced at q by the product formula. Now suppose p is odd. In this case, since p is inert in K,
(D,−pq)p = (D,−q)p(D, p)p = (D, p)p =

(
D
p

)
= −1, so

(
D,−pq

Q

)
is nonsplit at p and ∞. By the product

formula, it remains to verify splitting at either 2 or q. This renders the case q = 2 trivial, so we may assume
q is odd. With pq now odd, we will force splitting at 2 instead, by means of the congruence −pq ≡ 1 mod 8,
which forces −pq ∈ Q×2 to be a square (so (D,−pq)2 = 1). This settles the construction of our quaternion
algebra model in the inert case. Observe that q is automatically split in K. Indeed, for odd q we have
1 = (D,−pq)q = (D,−p)q(D, q)q = (D, q)q =

(
D
q

)
, while for q = 2 we have (D,−2p)2 = 1, so D ≡ 1 mod 8

(recall that odd fundamental discriminants are ≡ 1 mod 4), so 2 splits in K.
Remark A.7. In all inert cases, q satisfies the condition that for all primes `|D, −pq ∈ Z×` is a square.
Also, requiring −pq ≡ 1 mod D is consistent with the requirements on q in inert cases. In ramified cases,
the congruence −q ≡ 1 mod D/p (which involves no condition at p, unless p = 2) may always be imposed
without inconsistency.

We can similarly treat the case when p is ramified in K; i.e., p|D. The simplest choice of f we might try
is f = −q for some prime q - D. If p is odd, then as in (A.3) we get (D,−q)p =

(
−q
p

)
, so requiring this to

be −1 is a congruence condition on q mod p. If p = 2, we similarly find that (D,−q)2 = −1 follows from a
congruence condition on q mod 8. For example, if 8 - D then q ≡ 1 mod 4 is necessary and sufficient, while
if 8|D then q ≡ 3 mod 8 is sufficient. For odd ` - Dq, just as above it is clear that (D,−q)` = 1. For odd
`|D, we have (D,−q)` =

(−q
`

)
, and we want this to be 1, imposing a congruence on q mod `. We’re now left

with the places 2 and q, which means that we are done if p = 2 (as we’ve considered it already) or if q = 2
(product formula). Otherwise q is odd and all congruence conditions have been at odd primes, so we can
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also require q ≡ −1 mod 8 to force (D,−q)2 = 1. The product formula now ensures (D,−q)q = 1, so in fact
q again splits in K, just as in the inert case. Even if q = 2 (so D is odd and p|D is odd), from (D,−2p)2 = 1
we get D ≡ 1 mod 8, so q = 2 is split in K. It is important later that our choice of q is automatically split
in K (for p of either inert or ramified type in K).

Having found a model for the quaternion algebra B over Q, we need to get a handle on certain orders R
in B, as this is what intervenes in Theorem 10.5. We will begin our discussion of this problem by reviewing
some basic properties of orders in quaternion algebras which will be used quite a lot in what follows. Let
F be the fraction field of a Dedekind domain A of characteristic 0; we are primarily interested in the case
when A is the ring of integers of a local field or number field. Let B be a quaternion algebra over F .
Definition A.8. A lattice in B is a finite A-submodule L which spans B over F (so L is locally free of rank
4 over A). An order in B is an A-subalgebra R which is also a lattice. We say that R is a maximal order if
it is not strictly contained in any larger order, and we say that R is an Eichler order if it is the intersection
of two maximal orders.

Note that if R is an order and r ∈ R, then A[r] is a finite A-module, so r is integral over A. Since A[r] is
locally free of rank 2 when r 6∈ R ∩ F = A, the minimal polynomial X2 − Tr(r)X + N(r) of r over F must
have A coefficients when r 6∈ A. Since Tr and N are A-valued on A, we see that Tr and N are A-valued on
any order R in B.
Lemma A.9. Suppose A is a complete discrete valuation ring, with maximal ideal m and uniformizer π.
Let B be a quaternion algebra over F .

(1) If B is nonsplit, then it contains a unique maximal order and this contains all other orders.
(2) If B is split, then all maximal orders in B are conjugate under B× and every order lies in one. In

M2(F ) a maximal order is M2(A), and any Eichler order is conjugate to
(
A A
πn A

)
for a unique n ≥ 0.

Any two Eichler orders which are abstractly isomorphic as rings are conjugate in B.
Remark A.10. The order

(
A A

mn A

)
in (2) is the intersection of the maximal orders M2(A) and γnM2(A)γ−1

n =(
A m−n

mn A

)
(with γn =

(
0 1
πn 0

)
). This example is called a standard Eichler order.

Proof. For the first part, it suffices to show that the set R of elements of B integral over R is an order.
That is, we must show R is finite as an A-module and is a subring of B. Note that R is stable under the
involution b 7→ b. The key to the subring property is that if b ∈ B has N(b) ∈ A, then Tr(b) ∈ A. Indeed,
F [b] is a field on which the reduced norm and trace agree with the usual norm and trace (relative to F ),
and by completeness of A we know that the valuation ring of F [b] is characterized by having integral norm.
Thus, to show that R is stable under multiplication we just need that if x, y ∈ R then N(xy) ∈ A. But
N(xy) = N(x)N(y). Meanwhile, for addition (an issue because non-commutativity does not make it evident
that a sum of intergal elements is integral), we note that if x, y ∈ R then

N(x+ y) = (x+ y)(x+ y) = N(x) + N(y) + Tr(xy).

But this final reduced trace term lies in A because xy ∈ R. Hence, R is a subring of B. In particular, R is
an A-submodule since A ⊆ R.

To show that R is A-finite, we may pick a model for B as in Example A.2, and may assume i2 = e, j2 =
f ∈ A. Thus, i, j ∈ R, so ij ∈ R. For any x ∈ R, we have x, xi, xj, xij ∈ R. Taking reduced traces of all
four of these elements and writing x = c+ c1i+ c2j + c3ij for c, c1, c2, c3 ∈ F , we get

x ∈ 1
2
A+

1
2e
Ai+

1
2f
Aj +

1
2ef

Aij.

Thus, R lies inside of a finite A-module and hence is A-finite.
Now we turn to the split case, so we may assume B = M2(F ). To keep the picture clear, we suppose

B = EndF (V ) for a 2-dimensional F -vector space V on which we do not impose a basis. If R is any order
in B, then for a lattice L in V clearly RL is another finite A-submodule spanning V over F , so N = RL is
an R-stable lattice. Hence, R ⊆ EndA(N). Since any two lattices are conjugate to each other, the assertions
concerning maximal orders come down to the claim that if EndA(N0) ⊆ EndA(N1) for two lattices N0, N1

in V , then this inclusion is an equality. We may scale N1 so N1 ⊆ N0 and N1 is not contained in mN0, so
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N0/N1 ' A/mn for some n ≥ 0. We can then pick bases so that N0 = Ae ⊕ Ae′ and N1 = Ae ⊕ Amne′. If
n > 0, then it is obvious that EndA(N0) does not lie in EndA(N1) inside of EndF (V ) = B.

Now consider Eichler orders. It suffices to focus attention on those Eichler orders R which are not maximal
orders in B = F ⊗A R. Using a suitable conjugation by B×, given any two non-maximal Eichler orders we
may suppose they have the form R ∩R1 and R ∩R2 for maximal orders R,R1, R2 which we may assume to
be distinct. Arguing as above, R = EndA(N) for some lattice N in V and Rj = EndA(Nj) for a sublattice
Nj ⊆ N with N/Nj ' A/mnj for some nj > 0. Relative to a basis {ej , e′j} of N for which {ej , πnje′j} is a

basis of Nj , we get an identification of R∩Rj with Rj
def=
(

A A
mnj A

)
inside of R 'M2(A) (isomorphism using

the basis {ej , e′j}), yielding the desired description of Eichler orders. In fact, nj is intrinsic to Rj because
on the quaternion algebra B = F ⊗A Rj we can apply the involution b 7→ b to form Rj , and by inspection
R/(Rj ∩Rj) ' A/mnj as an A-module.

Thus, when comparing two abstractly isomorphic Eichler orders R ∩ Rj as considered above, necessarily
n1 = n2 = n. But we can then use the two bases on N adapted to the Nj ’s to define an element in
R× = AutA(N) which carries N1 into N2 and hence conjugates R ∩R1 over to R ∩R2.

�

Remark A.11. One important consequence of the preceding proof is that in the split case, for each non-
maximal Eichler order R in B, there is a unique pair of maximal orders S and S′ with S ∩ S′ = R. Indeed,

by conjugation we may consider the case B = M2(F ) and R =
(
A A
mn A

)
a standard Eichler order as in

Remark A.10. Thus, a maximal order S = EndA(N) contains R if and only if R(N) ⊆ N . Since we can scale
to get N ⊆ A2 with A2/N a cyclic module (necessarily A/mn), it is easy to check (using A-module generators
of the explicit standard Eichler order R) that N must be the span of e1 and πje2 for some 0 ≤ j ≤ n. Only
the extreme options j = 0, n provide a pair whose intersection is the standard R.

In order to build a model of the global order in Lemma 7.1, there is one further aspect of the local theory
of orders in quaternion algebras which we need to address: discriminants. The trace form (x, y) 7→ Tr(xy)
is a symmetric bilinear form on B, and its restriction to an order R is a symmetric A-valued bilinear form
on R. Thus, we can define the discriminant disc(R) of R to be the discriminant of this bilinear form (i.e.,
the ideal generated by the determinant of its values on pairs from an A-basis of R; note that R is A-free
since we are in the local case). Since Tr is invariant under B×-conjugation, conjugate orders in B have the
same discriminant ideal. Also, since the trace form is non-degenerate (as can be checked in the split case
upon extending scalars), disc(R) 6= 0. Formation of the discriminant ideal commutes with faithfully flat base
change A→ A′ to another (complete) discrete valuation ring. If R′ ⊆ R is a suborder with the finite-length
A-module R/R′ of length n, then disc(R′) = m2ndisc(R). Since every order lies inside of a maximal order
(all of which are conjugate), we see that discriminants of orders in B are off by a square factor from the
common discriminant of the maximal orders in B.
Example A.12. If B = M2(F ) and R is the Eichler order

(
A A

mn A

)
, then disc(R) = m2n. In particular, in the

split case disc(R) = A if and only if R is a maximal order, and all orders have square discriminant.
In general, B has an unramified splitting field F ′/F , so if R is a maximal order in B and A′ is the

valuation ring of F ′ then R′ = A′⊗AR is an order in the split F ′⊗F B. It follows that disc(R)A′ = disc(R′)
is a square, hence disc(R) is a square since A → A′ is unramified. This motivates us to define the reduced
discriminant Disc(R) of an order R in B to be the ideal of A whose square is disc(R).
Example A.13. If R′ ⊆ R is an inclusion of orders in B and R/R′ has A-length n, then Disc(R′) = mnDisc(R).
For example, if Rn is the Eichler order

(
A A

mn A

)
from Remark A.10, then Disc(Rn) = mn. This clarifies the

uniqueness of n in Lemma A.9(2).
We can also compute Disc(R) which R is maximal and B is non-split. Since there is only one such B

over F up to isomorphism, and all R’s are conjugate in B, it suffices to compute in a single example (over
F ). Let F ′ be the unramified quadratic extension of F , with valuation ring A′. Since π is not a norm from
F ′, by Lemma A.5 it follows that B def= F ′ ⊕ F ′j with j2 = π is a non-split quaternion algebra over F . One
can then check that R = A′ ⊕ A′j is the set of A-integral elements, so this is the maximal order. Writing
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down the matrix for the Tr pairing, we get disc(R) = disc(A′/A)2(j2)2 = m2, so Disc(R) = m. Thus, in the
non-split case an order R is maximal if and only if Disc(R) = m.

The non-triviality of reduced discriminants of maximal orders in the non-split case is a reason that non-
split quaternion algebras in the local case are referred to as “ramified”.

Now we are in position to globalize to the case of orders in quaternion algebras over the fraction field F
of a Dedekind domain A (the case of a number field, especially F = Q, is the one of most importance for
us). Fix a quaternion algebra B over F and an order R in B (of which there are clearly many, for example
by intersecting B with an order in a split extension BE). We can define disc(R) as in the local case to
be the (nonzero) discriminant ideal of the symmetric bilinear nondegenerate Tr pairing. Since R is merely
locally free as an A-module, and probably not free, this discriminant ideal is constructed by localizing on
A, just as in the definition of the discriminant of a symmetric bilinear form on any locally free module of
finite rank over a commutative ring. Note that disc(R) =

∏
v(disc(Rv) ∩A), with disc(Rv) = Av for all but

finitely many v. By passing to the local case, we see that disc(R) is a square, so we may define the reduced
discriminant ideal Disc(R) in A. This ideal is the unit ideal at all but finitely many places, so the preceding
discriminant calculations show that Rv is a maximal order and Bv is split for all but finitely many maximal
ideals v of A. In contrast with the local case, in the global case it is no longer true that maximal orders have
to be conjugate.

We can uniquely construct orders by specifying local data. This will be an essential ingredient in our
construction of models for global orders, so let us briefly summarize how this goes. As with lattices in
any finite-dimensional F -vector space, if R and R′ are two orders in a quaternion algebra B over F , then
Rv = R′v inside of Bv = Fv ⊗F B for all but finitely many maximal ideals v of A. Conversely, if we pick an
order Sv in Bv for all v with Sv = Rv for all but finitely many v, then there exists a unique order S in B
with Av ⊗A S = Sv inside of Bv for all v. This is an easy application of weak approximation for Dedekind
domains. In particular, an order R in B is maximal if and only if Rv is maximal in Bv for all v, and likewise
R is an Eichler order (i.e,, an intersection of two maximal orders) if and only if Rv is an Eichler order for all
v.

Note that when R is maximal, Disc(R) is the product of the maximal ideals of A at precisely those places
where B is non-split. If R is merely an Eichler order, then Disc(R) is the product of the maximal ideals at
the non-split places of B (the ramified primes of B, for which Bv has only one maximal order) and powers
of maximal ideals at the split places where R is a non-maximal Eichler order.
Example A.14. The order R in Lemma 7.1 is an Eichler order with reduced discriminant Np. Indeed, the
lemma assures us that R is maximal at the non-split place p, and the local description at all ` 6= p (where
B is split) is exactly a standard Eichler order in M2(Z`) whose index is the `-part of N .

With Example A.14 in hand, specialize to the case A = Z. We seek a potential model for the order
R = EndW/π(x) inside of B which arises in Theorem 10.5. Inside of our concrete model

(
D,?
Q

)
for B

(in the inert and ramified cases separately), we want to find an Eichler order containing OK and having
reduced discriminant Np. We will find such an order, but we will not know it to be (OK-)isomorphic, let
alone conjugate, to EndW/π(x). This problem will be overcome by the fact that in (A.1) and (A.2) we are
summing over all places of H over p. We carry out the construction in two separate cases: p inert in K and
p ramified in K.

When p is inert in K, recall that we found an isomorphism B '
(
D,−pq

Q

)
where q - pD is a prime satisfying

certain congruence conditions at the primes `|D and possibly at 8 as well. Clearly R′ = OK ⊕ OKj is an
order, and we can compute its reduced discriminant to be Dpq. Thus, R′ is maximal at p and at all primes
not dividing Dq. Since a maximal order of B has reduced discriminant p (because B is non-split at precisely
p and∞), it follows that R′ has index Dq inside of any maximal order containing R′. In particular, an order
containing R′ with index Dq must be a maximal order of B.

To examine how one might find a maximal order in B containing R′, we first will find local models for
maximal orders at all primes `|Dq (exactly the places where R′ is not maximal), and then we will globalize as
in the discussion preceding Example A.14. First let ` be a prime dividing D (so ` ramifies in K), and consider
the split algebra B` = M2(Q`). By Remark A.7, −pq is a unit square in Z`, so −pq is a unit norm from
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the ramified quadratic extension OK,`. Pick X` ∈ OK,` with N(X`) = −pq = j2. The element X` − j ∈ B`
has nonzero reduced trace but vanishing reduced norm, so it is a zero divisor in B` which generates a left
B`-module of dimension 2 over Q`. This module must have X` − j and ω(X` − j) as a Z`-basis, where
OK = Z[ω] (so OK,` = Z`[ω]). We may take ω = (1 + i)/2 when D is odd and ω = i/2 when D is even,
where i2 = D. The natural map from B` to EndQ`

(B`(X` − j)) 'M2(Q`) gives a concrete splitting, where
we use the basis X` − j, ω(X` − j). Under this isomorphism, R′` = OK,` ⊕ OK,`j clearly maps into M2(Z`)
(just compute action of Z`-generators of R′` on the Q`-basis {X` − j, ω(X` − j)} of B`(X` − j)).

Since (X` + j)(X` − j) = 0, we compute (using the identities jX` = X`j and N(X`) = j2):

(X` + j)ω(X` − j) = (X` + j)
i

2
(X` − j) =

i

2
(X` − j)2 =

i

2
(2X`)(X` − j) = (2X`)(

i

2
(X` − j)).

For odd D it follows that i
D (X` + j) lies in M2(Z`) and has additive order D` in B`/R

′
` (where D` is the

`-part of D). Thus, the maximal order R` = M2(Z`) is generated by i
D (X` + j) and R′` (since R′` has index

(Dq)` = D` in a maximal order). Similarly, if 2|D then i
D (X` + j) and 1

2 (X` + j) act as elements of M2(Z`)
and additively generate a subgroup of order D` in B`/R′`. Thus, these two elements along with R′` generate
R` when D is even, so the maximal order R` is always spanned over Z` by 1, ω, (i/D)(X`+j), and e·(X`+j),
where e = 1 or e = 1/2, according as whether 2 - D or 2|D.

A more uniform and succinct way to describe the maximal order R` ⊆ B` at `|D is:

(A.4) {α+ βj |α, β ∈ d−1
` , α−X`β ∈ OK,`},

where d−1
` is the inverse different of OK,`. To see that the lattice (A.4) is R`, one first checks directly that

it contains the Z`-generators 1, ω, (i/D)(X` + j), e · (X` + j) of R`, so the problem is to show the reverse
containment (direct verification that (A.4) is an order seems quite painful). For any pair (α, β) satisfying the
criteria in (A.4), we have α+βj = (α−X`β) +β(X` + j) ∈ OK,` + d−1

` (X` + j), so we just need d−1
` (X` + j)

to lie in R`. Since R` contains OK,` and is an order, it suffices to pick a generator γ of the fractional ideal
d−1
` and to show γ(X` + j) lies in R`. For odd D or ` 6= 2, we can take γ = i/D. For even D and ` = 2, we

use the fact that i/D and 1/2 generate d−1
2 as a Z2-module in such cases (ultimately because d2 is generated

by i =
√
D and D/2 over Z2), by treating separately the cases D ≡ 4 mod 8 and 8|D.

The importance of the description (A.4) is that it provides a description which only depends on X` mod d`.
To make this point clearer, first observe (for `|D, being careful if ` = 2) that changing an element of OK,`
modulo d` does not change its norm (to Z`) modulo D`. Thus, even though we chose X` above to satisfy
N(X`) = −pq so as to carry out the preceding calculations, if we replace X` with some X ′` ∈ OK,` which is
the same mod d`, then N(X ′`) ≡ −pq mod D` and using X ′` instead of X` in (A.4) yields the same lattice (i.e.,
the maximal order R` ⊆ B` we constructed at `). In fact, the only thing which matters about X` ∈ OK,` is
that it satisfies N(X`) ≡ −pq mod D`, since we claim that any such X` is congruent mod d` to an element
of OK,` with norm equal to −pq. Indeed, since −pq is a unit norm at `, we really just have to show that
if u ∈ O×K,` satisfies N(u) ≡ 1 mod D` then u ≡ u′ mod d` with N(u′) = 1. The case of odd ` (resp. ` = 2
and D2 = 8) is easy since 1 + `Z` (resp. 1 + 8Z2) consists of squares, and the case ` = 2 and D2 = 4 (so
D ≡ 4 mod 8) requires checking additionally that some (and thus every) element congruent to 5 mod 8 is a
norm, and we see that N(1 + i) = 1−D ≡ 5 mod 8. From now on, for each `|D, rather than require X` to
have exact norm −pq, we merely require it to represent an element in OK,`/d` whose norm in Z`/D` is −pq.

With the construction of explicit maximal orders at all `|D settled, we now turn to the easier task of
finding a maximal order at q. This is easier because q = qq splits in K. It is simplest to check directly that
if α ∈ OK and β ∈ q−1, then the resulting elements α + βj form an order R(q) in B which is maximal at
q. This set is stable under multiplication because if β, β′ ∈ q−1 then (βj)(β′j) = ββ

′
j2 = ββ

′ · (−pq) ∈ OK
since (q) = qq. The reduced discriminant of R(q) is a q-unit, so we get maximality of this order at the split
place q of B.

A global order that satisfies all of the above local conditions and contains R′ = OK ⊕ OKj will have
reduced discriminant p, as it would now be maximal at all primes dividing Dq. If we pick X ∈ OK such that
N(X) ≡ −pq mod D, then X is congruent modulo d` to a legitimate choice of X` for each `|D. If we let d
denote the different for K over Q, and Od the semilocal subring of K consisting of elements which are integral
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at the places dividing d, then the lattice S′ = S′X = {α + βj ∈ B |α ∈ d−1, β ∈ d−1q−1, α − Xβ ∈ Od}
contains R′ and satisfies the above local conditions at each finite place to make it a maximal order of B (for
` - Dpq, S′ has `-unit reduced discriminant). We are looking for an Eichler order containing OK and having
reduced discriminant Np. Recall that the primes of N are split in K, so we can fix a factorization N = nn
as a product of relatively prime conjugate ideals (in fact, n is chosen in the main text to correspond to the
kernel of an isogeny at a chosen Heegner point, but the choice won’t matter here). In this case, nS′n−1 is
an order which must also be maximal, as its localization at any place is conjugate to that of S′ at the same
place (since localizations of n are principal). Since n is relatively prime to D, this conjugation has no impact
at the ramified places, so nS′n−1 and S′ have the same congruence conditions at places dividing D. In fact,

nS′n−1 = {α+ βj |α ∈ d−1, β ∈ d−1q−1nn−1, α−Xβ ∈ Od}.

The factor of n−1 is due to the relation jx = xj for all x ∈ K.
The intersection S = S′ ∩ nS′n−1 is an Eichler order containing OK . Since n and n are relatively prime,

S is explicitly described as

(A.5) S = SX = {α+ βj |α ∈ d−1, β ∈ d−1q−1n, α−Xβ ∈ Od}.
The quotient OK-module S′/S is OK/n, so S has index N in S′. Thus, S has reduced discriminant Np as
desired. If we had also required −pq ≡ 1 mod D, then we could have taken X = 1 (see Remark A.7). This
seems to implicitly be the choice made in [GZ]; certainly one does not get an order in (A.5) using X = 1
unless −pq ≡ 1 mod D.

When pOK = p2 is ramified in K and we take
(
D,−q

Q

)
as the explicit model for B as discussed earlier,

we can similarly compute the reduced discriminant of the order R′ = OK + OKj to be Dq. If p is odd, we
need only find X ∈ OK such that N(X) ≡ −q mod D/p; in exactly the same way as above, we find that the
following is an Eichler order (containing OK) with reduced discriminant Np:

(A.6) S = SX = {α+ βj | , α ∈ pd−1, β ∈ pd−1q−1n, α−Xβ ∈ Od}.
Note that pd−1 has no factor at p (since p 6= 2), and thus there is no local congruence condition at p, as α
and β are already integral at p. Of course, no alteration from R′ is required above p, as ordp(Dq) = 1, so R′

is maximal at the non-split place p of B.
If p = 2 is ramified in K, the situation is somewhat different, but the explicit description of the order is the

same as (A.6), where we again pick X ∈ OK/dp−1 with N(X) ≡ −q mod D/p. It is only necessary to explain
the local conditions above 2, where R′ fails to be maximal (since 4|Dq). Recall that the unique maximal
order of a non-split quaternion algebra over a local field consists of precisely the elements of integral norm.
If α and β are non-integral at 2, the condition that N(α) + qN(β) = N(α+ βj) be 2-integral is equivalent to
N(α/β) ≡ −q mod N(β)−1. Such a congruence cannot happen modD2, since then q would be a local norm
and hence we could find a nonzero α + βj ∈ B with vanishing reduced norm, contrary to the fact that B2

is a division algebra. There is no obstruction modD2/2, and indeed one can easily check that there is a
unique X2 ∈ OK,2/p−1d satisfying N(X2) ≡ −q mod D2/2. Thus we conclude that α −X2β ∈ OK,2 (recall
that the valuation ring of a local field is characterized by the property of having integral norm in a local
subfield), and α, β ∈ pd−1. Likewise, (A.6) holds. Note that in the ramified case (for p = 2 and for p 6= 2),
Remark A.7 allows us to take X = 1 (as in [GZ]) by also requiring −q ≡ 1 mod D/p (this does not impose
a congruence at p, unless p = 2).

What we have done so far is find an Eichler order containing OK and having the correct reduced dis-
criminant. This has not yet been shown to have a connection to the specific order R = EndW/π(x) in
Theorem 10.5. Fortunately, the data of the embedding of OK ensures some connection between such Eichler
orders. The following theorem and its corollary are due to Eichler, and we include a proof for the reader’s
convenience. Corollary A.16 will be applied with F = Q and E = K.
Theorem A.15. Let F be a nonarchimedean local field with valuation ring A, maximal ideal m, and uni-
formizer π. Let B be a split quaternion algebra over F with a fixed embedding of the quadratic field E
over F . Let S and S′ be Eichler orders in B with the same isomorphism class (i.e., DiscS = DiscS′). If
E ∩ S = E ∩ S′ = OE, then there exists a nonzero x ∈ OE such that xSx−1 = S′.
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Proof. We will first prove the stament when S and S′ are maximal orders, which we can assume are distinct.
By Lemma A.9, we can assume B = EndF (V ) = M2(F ) for a vector space V = F 2 over F , with S =
EndA(N) = M2(A) for a lattice N = A2 in V and S′ = EndA(N ′) for some other lattice N ′ in V which
is not a scalar multiple of N . By scaling N ′ and changing the basis of N if necessary, we can assume
N = Ae1 ⊕Ae2 and N ′ = Ae1 ⊕mne2 for some n > 0, so

S′ = EndA(Ae1 ⊕mne2) =
(
A m−n

mn A

)
= γnM2(A)γ−1

n = γnSγ
−1
n ,

where γn =
(

0 1
πn 0

)
. Note that the elements of B× = GL2(F ) which conjugate S into S′ are exactly the

elements of the coset γnS× = γnGL2(A). Since S ∩ S′ =
(
A A

mn A

)
is the standard Eichler order of reduced

discriminant mn and OE ⊆ S ∩ S′ by hypothesis, we can find a, b, c ∈ A so that an A-basis of OE is given
by the identity 1 and the element ρ =

(
a b
πnc 0

)
. Since ρ/π ∈ E is not in OE , yet S ∩ E = S′ ∩ E = OE , it

follows that ρ/π is not contained in either of S or S′. Hence, by inspection of the matrix for ρ we see that
either a or bc must be a unit in A. If bc ∈ A× then ρ ∈ γnGL2(A), while if not then a is a unit and hence
we can instead replace ρ with ρ + πn =

(
a+πn b
πnc πn

)
which does lie in γnGL2(A). That is, we may assume

ρ ∈ OE conjugates S into S′. This settles the case when S and S′ are maximal.
Now consider the case in which the isomorphic S and S′ are non-maximal, say with reduced discriminant

mn for some n > 0. By conjugation, we may assume S =
(
A A

mn A

)
is the standard Eichler order of reduced

discriminant mn in M2(A). Thus, S = S1 ∩S2 where the Sj ’s are the maximal orders considered above (i.e.,
S1 = M2(A) and S2 = EndA(Ae1 ⊕mne2)). We may write S′ = S′1 ∩ S′2 where the S′j ’s are maximal orders
in B. The special case of maximal orders ensures that there exists a nonzero x ∈ OE with xS1x

−1 = S′1. If
S and x−1S′x are conjugate by a nonzero element of OE (as in the statement of the theorem), then we’ll be
done. Thus, we may assume S′1 = M2(A) = S1.

Since the two Eichler orders S and S′ are presented as intersections of a common maximal order S1 with
other maximal orders S2 and S′2, from the proof of Lemma A.9 there exists y ∈ S×1 = GL2(A) such that
ySy−1 = S′. The given condition OE ⊆ S′ = ySy−1 says exactly that y−1ρy ∈ S2 =

(
A m−n

mn A

)
, where {1, ρ}

is an A-basis of OE , say with ρ chosen as above. Since y−1ρy ∈ S1 = M2(A), the condition for membership
in S2 is just the condition that the lower left corner entry of y−1ρy lie in mn. Explicitly, if y =

(
a′ b′

c′ d′

)
,

then this condition is equivalent to saying c′(aa′ + bc′) ∈ mn. Conversely, any y =
(
a′ b′

c′ d′

)
∈ GL2(A) = S×1

satisfying this latter property automatically satisfies OE ⊆ ySy−1, with the Eichler order ySy−1 given by
intersecting S1 = M2(A) with another maximal order.

Suppose c′ is not a unit in A. If c′ ∈ mn (automatic if n = 1), then y ∈ Γ0(mn) def= S2∩S×1 = S2∩GL2(A)
conjugates S2 into itself, so S = S′ and we are done. If, on the other hand, n > 1 and c′ ∈ m − mn, then
since c′(aa′ + bc′) ∈ mn we get aa′ + bc′ ∈ m, or in other words aa′ ∈ m. But y ∈ GL2(A) and c′ ∈ m, so
a′ 6∈ m and hence a ∈ m. This combination of conditions implies ρ/π ∈ E has integral trace and norm as a
matrix, so ρ/π ∈ E is integral over A and therefore lies in OE . This is a contradiction, so we can assume
c′ ∈ A×, so aa′ + bc′ ∈ mn.

We must have a 6∈ m, as otherwise a, b ∈ m, a contradiction (since ρ/π 6∈ S1 = M2(A)). There is a
more useful way to express these conditions: for t = ( 0 1

a b ) ∈ GL2(A), the condition on y is precisely that
ty ∈ Γ0(mn). We are now in position to find a nonzero x ∈ OE such that xSx−1 = S′. Let Z be the group
generated by the central element π ∈ S1 = M2(A) ⊆ B. Note that conjugation by γn is an involution of
both S and S× = Γ0(mn), since it interchanges S1 = M2(A) and S2 = γnM2(A)γ−1

n (with S = S1 ∩ S2).
The group G generated by Γ0(mn), γn, and Z is exactly the subgroup of elements of B× = GL2(F ) which
conjugate S into itself. To prove this, first note that if b ∈ B× conjugates S into itself, then conjugation
by b either preserves or swaps the unique pair of maximal orders S1 and S2 whose intersection is the non-
maximal Eichler order S (see Remark A.11). Multiplying against γn if necessary permits us to assume
that conjugation by b preserves both Sj ’s. But for a maximal order R in B, the elements of B× which
conjugate R into R are the elements of F×R× = πZR× (since R = EndA(N) forces bRb−1 = EndA(b(N)),
and EndA(b(N)) = EndA(N) if and only if b(N) = cN for some c ∈ F×). Thus,

b ∈ πZ(S×1 ∩ (πZ · S×2 )) = πZ(S×1 ∩ S
×
2 ) = πZS× = Z · Γ0(mn).
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Here, the first equality uses that the reduced norm of a unit in an order is a unit in A.
It suffices to find a nonzero x ∈ OE such that y−1x ∈ G, since then x = y(y−1x) conjugates S into S′.

Since y−1 ∈ Γ0(mn)t, we need to find x ∈ OE such that tx ∈ G. This is something we can accomplish by
observation: letting x = (−a+ πr) + ρ for an r > 0 to be determined, we compute

tx =
(

0 1
a b

)(
πr b
cπn −a+ πr

)
=
(

cπn −a+ πr

aπr + bcπn bπr

)
.

If bc ∈ m then r = n makes tx ∈ Γ0(mn), while if bc 6∈ m then r = n+ 1 does the same.
�

Corollary A.16. Let F be a number field, and B a quaternion algebra over F equipped with a fixed embedding
of a quadratic extension E. If S and S′ are Eichler orders of B with the same reduced discriminant such
that S ∩ E = S′ ∩ E = OE, then there exists a nonzero ideal I of OE such that ISI−1 = S′.

Proof. A priori Sv = S′v for all but finitely many v. For all such v define xv = 1. At the remaining places,
use Theorem A.15 to construct xv ∈ OEv so that xvSx−1

v = S′. Let I be the ideal with ordv(I) = ordv(xv)
for all non-archimedean places v. The equality ISI−1 = S′ can be checked place by place.

�

In the situation given in Corollary A.16, if we have S′ = ISI−1 with I a principal ideal, then picking a
generator gives an explicit isomorphism from S to S′ which is OE-linear. Since E is its own centralizer in B
and all automorphisms of B are inner (Skolem-Noether), we conclude that the set of OE-linear isomorphism
classes of Eichler orders in B with a fixed reduced discriminant and containing OE admits a simply transitive
action by the class group of OE . In our situation of interest (with F = Q and E = K), upon fixing a place
v of H over p we have already established (in (7.8)) for Rv = EndW/π(x) that if σ ∈ Gal(H/K) ' ClK
corresponds to the ideal class of some nonzero integral ideal a, then there is an abstract isomorphism
a−1Rva ' EndW/π(xσ) as OK-algebras, where W = Wv is the completion of a maximal unramified extension
over v. Thus, if B denotes the unique (up to isomorphism) quaternion algebra over Q which is ramified at
exactly p and ∞ and we fix an embedding of K into B, then we have a bijection between two sets: the set
of isomorphism classes of Eichler orders in B containing OK and having reduced discriminant Np, and the
set of Heeger points {xσ} in X0(N)(H), via EndW/π(xσ)↔ σ.

Since p is non-split in K, we have a transitive free action of Gal(H/K) on the v’s of H over p. An important
consequence is that rather than fixing σ and considering the isomorphism classes a−1Rva ' EndWv/π(xσ)
as the place v varies over p, we can fix one place v0 and study a−1Rv0a as the ideal class A of a varies.
Both processes exhaust (without repetition) the set of OK-algebra isomorphism classes of Eichler orders in
B with reduced discriminant Np and containing OK . Thus, we can fix the Eichler order S = SX from (A.5)
and then for (A.1) we may contemplate a sum over the orders Rb = b−1Sb as b runs over integral ideals
representing the ideal classes of K. It is this latter point of view (which avoids the language of supersingular
elliptic curves) which will dominate all that follows.

We are now ready to prove [GZ, Ch III, Prop 9.7, 9.11], allowing D to be even. We need to introduce
some notation. We write [a] to denote the ideal class of a fractional ideal a of K, and for any ideal class
B we define RB(m) =

∑
c rBc(m) where c runs over the squares in the ideal class group of K. Note that

RBB′ = RB−1B′ for any two ideal classes B and B′. For example, if a prime ` of Q is split in K (such as
our prime q chosen above), say ` = ll, then [l] and [l] are inverse to each other in ClK . Taking ` = q, we
conclude that RA [qn] is independent of the choice of prime q of K over q, and is likewise independent of the
choice of factorization N = nn. In particular, the formula in Theorem A.17 below does not depend on the
choice of q (but only through the entire identity do we see that the right side is independent of the choice of
q as above):
Theorem A.17. Suppose p is inert in K and q is chosen over q. For n ≥ 1, define δ(n) = 2e(n) where e(n)
is the number of prime factors of gcd(D,n). Then

〈c, Tmdσ〉p = −urA (m)hKordp(m) log p− log p · u2 ·
∑

0<n<m|D|/N
p|n

ordp(pn)rA (m|D| − nN)δ(n)RA [qn](n/p).
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We specify a choice of q in the statement of the theorem because of the appearance of q as the final term
on the product on the right side, but keep in mind that the choice does not affect the value of that term.

Proof. By (A.1) and the preceding discussion, we have to prove the identity

(A.7)
∑

b

∑
b∈R(b)a/±1

N(b)=mNa,b−6=0

(1 + ordp(N(b−))) = u2 ·
∑

0<n<m|D|/N
p|n

ordp(pn)rA (m|D| − nN)δ(n)RA [qn](n/p),

where b runs over representative of ideal classes B of K and R(b) def= bSb−1 ranges over the OK-algebra
isomorphism classes of Eichler orders in B which contain OK and have reduced discriminant Np. Here,
S = SX is chosen as in (A.5), with N(X) ≡ −pq mod D. We need to analyze sums over all such R(b)’s,
with the sum for each R = R(b) ranging over Ra/ ± 1, where a is a prime-to-p representative of the ideal
class A corresponding to our fixed σ ∈ Gal(H/K). Multiplying a by a principal ideal which is prime to p
has no impact on the left side of (A.7), so we may select our choice to satisfy the additional property that
gcd(a, D) = 1. This will be convenient later.

Taking b fixed above (so we write R rather than R(b)), using (A.5) and the fact that j acts on K through
the involution in Gal(K/Q) yields

(A.8) Ra = {α+ βj |α ∈ d−1a, β ∈ d−1q−1nbb
−1

a, α−Xabβ ∈ Od},

where Xab ∈ OK/d is an element we need to define in terms of X ∈ OK/d from (A.5); recall that only
X ∈ OK/d (rather than X ∈ OK) matters for the construction of the model S in (A.5). Note that the
separate conditions on α and β in (A.8) define a lattice and hence are properties which can be checked
locally (where all fractional ideals of OK such as a and b become principal).

To define Xab, we define an element XI more generally for any nonzero integral ideal I of OK . Picking
an element y ∈ OK for which yOd = Id (i.e., (y) has the same factors as I at places dividing d), note that
yy−1 is a unit at d since the primes of d are ramified over Q. Moreover, the residue fields at such primes
coincide with the prime field, so changing y by a d-unit has no impact on yy−1 mod d ∈ (OK/d)×. Thus, the
quantity yy−1X mod d only depends on Id and X mod d. Hence, if we define XI ∈ OK to be any solution
to the congruence XI ≡ yy−1X mod d, then XI is well-defined modulo d and N(XI) ≡ −pq mod D since
N(X) ≡ −pq mod D and N(yy−1) = yy−1yy−1 = 1. Thus, R = R(b) = bSXb−1 is equal to SXb and we see
why Xab intervenes in the description (A.8).

The X 7→ XI construction provides an “action” of the multiplicative monoid of nonzero integral ideals on
the set of solutions in OK/d to the congruence N(X) ≡ −pq mod D. We need to get a handle on the set of
such solutions since we are working with an Eichler order S from (A.5) which depends on the specification
of such a solution. For each `|D, we claim that the congruence N(X) ≡ −pq mod D` in OK,`/d` has exactly
two (necessarily unit) solutions, or equivalently (since the congruence does have solutions, due to how we
chose q) that N : (OK,`/d`)× → (Z`/D`)× has kernel of order 2. For odd ` this map is just squaring on F×` .
If ` = 2 and D2 = 8 then OK,` = Z2[

√
±2d] with d ∈ Z×2 mattering mod 8, and one verifies the claim by

direct calculation in all four cases. If ` = 2 and D2 = 4 then OK,` = Z2[
√
−1] or Z2[

√
3], and again a direct

calculation does the job.
We conclude that if d has t prime factors then there are 2t congruence classes X ∈ OK/d that satisfy the

norm congruence condition N(X) ≡ −pq mod D. At each place, X 7→ XI either fixes the two local solutions
or swaps them, so we deduce XI2 ≡ X mod d for any I. On the other hand, the action of a prime factor m
of d is non-trivial on the local congruence condition at m and is trivial at the other factors. Indeed, if the
residue characteristic ` at m is odd then we may take y very congruent to i =

√
D at m and very congruent

to 1 at the other factors of d (so yy−1 ≡ −1 mod ` but yy−1 is congruent to 1 along the other primary factors
of D). Meanwhile, if ` is 2 and D2 = 8 then we can argue similarly using i/2. Finally, if ` = 2 and D2 = 4
(so d2 = (2)) then we can pick y highly congruent to 1 + i/2 over 2, so yy−1 ≡ i/2 6≡ 1 mod d2.

At this point it is helpful to interject a few comments about the class group of quadratic imaginary fields.
It is well-known, and easily checked directly, that 2-torsion subgroup of the class group is generated by the
ideal classes above the ramified primes. For odd primes `|D and ` = 2 if 8|D, these are of the form (`,

√
D),
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while for D2 = 4 we have (2, 1+
√
D/4) above 2. The order of the group generated by these elements is 2t−1

if t distinct primes divide D, since the only non-square ideal over the ramified places that becomes trivial in
the ideal class group is (

√
D) = (i) (unless D2 = 4, which requires a separate argument). In this way, we see

that the above construction really defines a transitive free action of (Z/2)t on the set of possible X’s, and
this (Z/2)t may be naturally identified with an extension of ClK [2] by Z/2. Our formula (A.8) is slightly
more general than [GZ, Ch III, (9.3)] in that it allows D to be even, in which case the action X 7→ XI affects
the local congruence above 2 in a slightly more complicated manner when D2 = 4 (if we avoid even D and
take X = 1, then Xab collapses to a product of local signs, as in [GZ]).

Continuing with the method of Gross-Zagier, note that an element b = α + βj ∈ Ra has reduced norm
which is the sum of the reduced norms of b+ = α and b− = βj, so in the presence of the conditions on
the sum on the left side of (A.7) we get mN(a) = N(b) = N(α) + pqN(β), where pqN(β) = N(b−) 6= 0, so
necessarily β 6= 0. If we introduce the ideals

(A.9) c = (α)da−1, c′ = (β)dqn−1b−1ba−1 6= 0,

then

N(c) + (Np)N(c′) = N(α)
|D|

N(a)
+ N(β) ·Np |D|q

N(a)N
= (N(α) + pqN(β))

|D|
N(a)

= m|D|.

In particular, since gcd(m,N) = gcd(N,D) = 1 and N > 1, so Np - m|D|, we must have N(c) 6= 0, so c 6= 0
(so α 6= 0).

To summarize, the conditions on α and β say that c and c′ are nonzero integral ideals with N(c)+NpN(c′) =
m|D|. Since d = (

√
D) is a principal ideal, we see that c is in the ideal class A −1 while c′ is in the ideal

class A B−2[qn−1], where B is the ideal class of b (the same b which is implicit in our model R = R(b)).
Thus, for each α+ βj ∈ Ra we have constructed a pair of nonzero integral ideals c and c′ of OK which lie in
specified ideal classes and satisfy a single norm relation. The key is to prove that this construction exhausts
all such pairs of integral ideals, and to determine how badly this construction fails to be injective. Recall
that on the left side of (A.7), we are varying B over all ideal classes of K, each of which we include once.
However, there is a complication caused by the fact that the class of c′ only depends on B2, not B, so a
pair of integral ideals (c, c′) may arise from elements α+ βj in several Eichler orders in B which contain OK
and have reduced discriminant Np, but are not conjugate as OK-algebras.

To work out how much repetition we encounter, suppose that we start with a pair of nonzero integral
ideals c ∈ A −1 and c′ ∈ A B−2[qn−1] with N(c)+NpN(c′) = m|D|. Define n = pN(c′), so N(c) = m|D|−nN .
We can reverse the original definitions (A.9) to define nonzero principal ideals

(A.10) cad−1, c′d−1q−1nbb
−1

a.

Since u = |O×K |/2, there are 4u2 = (2u)2 choices of respective generators α and β of these principal ideals. Be-
cause of the integrality c and c′, all local conditions in (A.8) necessary to make α+βj ∈ Ra are automatically
satisfied except for possibly the congruence conditions α−Xabβ ∈ OK,` at the primes `|D.

For `|D, all we have to work with is

N(α+ βj) = N(α) + pqN(β) =
N(c) +Np ·N(c′)

|D|
·N(a) = mN(a),

so N(α) ≡ −pqN(β) (mod OK,`). In particular, since −pq is a local unit, α and β are either both `-integral
or else neither is `-integral and they have the same pole order (so α/β is an `-unit). We claim that there is
a squarefree integral ideal I|d (possibly more than one) such that α ≡ XabIβ (mod Od). This follows from:

Lemma A.18. For each prime `|D, we have α−X ′`β ∈ OK,` for at least one of the two units X ′` ∈ OK,`/d`
with norm −pq ∈ Z`/D`. Both such units work if and only if `|N(c′).

Proof. We treat separately the case of odd ` and ` = 2. First assume ` 6= 2, and we want to prove that
at least one choice works. This is clear when α and β are `-integral (both choices work). When neither is
`-integral, α/beta ∈ O×K,` has norm congruent to −pq mod D`, so there is a unique X ′ ∈ OK/d` with norm

−pq mod D` such that α/β ≡ X ′ (mod OK,`). But look at the expression (β) = c′d−1q−1nbb
−1

a. Since d is
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squarefree at `, gcd(D, aqN) = 1, and any ramified prime factor in b is cancelled against its inverse appearing
in b

−1
, we see that β is `-integral if and only if c′ is divisible by the prime over `, and that otherwise β

(hence α) has a simple pole at that prime.
When α and β have simple poles over `, α ≡ X ′`β (mod OK,`) is equivalent to α/β ≡ X ′` mod d`. Thus,

in general for odd `|D we see that α ≡ X ′`β (mod OK,`) for at least one of the two possible values of X ′`,
with both occurring if and only if α and β are `-integral, which in turn is equivalent to `|N(c′).

Now we turn to the more subtle case ` = 2|D. For this case it will be convenient to recall from Remark
A.7 that −pq ≡ 1 mod 8 when D is even in the inert case. Once again, either α and β are both `-integral or
neither is, and when both are integral then clearly 2|N(c′). To keep track of the pole order and the condition
of whether 2 - N(c′) in non-integral cases, we separately treat the cases D2 = 4 and D2 = 8. First assume
D2 = 4, so D = −4d with positive squarefree d ≡ 1 mod 4. Representatives for (d−1

2 /OK,2)−{0} are 1/2, i/4,
and 1/2 + i/4 (recall i =

√
D). The norms of these classes are well-defined in D−1

2 Z2/Z2 = 4−1Z/Z, and are
represented by 1/4, −D/16 ≡ 1/4, and (1 + d)/4 ≡ 1/2. Since N(X ′2) ≡ −pq mod D2 and −pq ≡ 1 mod 8,
the two solutions X ′2 ∈ OK,2/d2 are 1 and i/2 (since d ≡ 1 mod 4). Since β has at worst a double pole in
K2, so N(β) has at worst a double pole in Q2, the congruence N(α) ≡ −pqN(β) (mod Z2) is equivalent to
N(α) ≡ N(β) (mod Z2).

Thus, α, β ∈ d−1
2 /OK,2 are either both in the class of 1/2 + i/4 or are each in one of the two classes

{1/2, i/4}. Running through both options and recall that X ′2 ∈ {1, i/2}, we see that α ≡ X ′2β (mod OK,2)
can be solved in the non-integral case, with both X ′2 options working if and only if we are in the case where
α and β are in the class of 1/2 + i/4. This is also the only case in which (β)d2 lies in the maximal ideal of
OK,2 (i.e., β has a simple pole, rather than a double pole), or equivalently 2|N(c′).

The case D2 = 8 (i.e., D = −8d with odd squarefree d > 0) goes similarly, but there are more cases to
consider. Now d−1

2 /OK,2 ' Z/4×Z/2 as an abelian group, with generators i/8 (of order 4) and 1/2. Norms
on here are well-defined in D−1

2 Z2/Z2 = 8−1Z/Z. The two solutions in OK,2/d2 to N(X ′2) ≡ −pq mod D2 =
1 mod 8 are X ′2 = ±1, so for non-zero classes α, β ∈ d−1

2 /OK,2 we want N(α) ≡ N(β) (mod Z2) if and only
if α = ±β (mod OK,2), and that both such signs work precisely when β is 2-torsion (i.e., does not have a
triple pole, which is to say exactly that (β)d2 lies in the maximal ideal, or in other words 2|N(c′)). This is
straightforward by inspection of the norm of each non-zero class in d−1

2 /OK,2.
�

We conclude that when given c and c′ of the desired type and constructing pairs α and β from these,
necessarily α ≡ XabIβ (mod Od) for some integral squarefree ideal I|d (which is visibly 2-torsion in the class
group). This corresponds to using bI instead of b (representing a multiple of B by a 2-torsion ideal class),
so any such choice of α and β satisfies conditions so that α + βj ∈ R′a with R′ = IRI−1 = R(bI) for some
squarefree integral ideal I|d. Note that II

−1
= (1), so replacing b with bI in the definition of c′ in terms of

(β) (or (β) in terms of c′) has no impact.
Now we are ready to carry out the calculation of the left side of (A.7). Although the outer sum runs

over OK-algebra isomorphism class of Eichler orders R of reduced discriminant Np (containing OK) inside
of B, rather than considering contributions from suitable elements b = α + βj which lie in R(b)a for each
of a list of class group representatives b, it is more convenient to consider a coset ρ in ClK/ClK [2] ' Cl2K ,
and determine only the subsummation within (A.7) coming from those ideal classes B in the chosen coset.
These classes are precisely those whose square B2 is some specified square class C ∈ Cl2K , and if we choose a
“base point” representative b for one such B, then {bI} provides a 2-to-1 set of representatives of elements
in the coset ρ as I runs over squarefree divisors of the principal ideal d. Recall that ClK [2] is presented as
the free F2-vector space on the prime factors of d, subject to one relation: when D2 6= 4 we require that the
sum of these elements is zero, and when D2 = 4 (so D = −4d with positive d ≡ 1 mod 4) we require the
vanishing of the sum over the factors in odd residue characteristic when d > 1 (and the class group is trivial
for d = 1). Though we are interested in the subsummation of (A.7) running over the ideal classes lying in
the 2-torsion coset ρ (or having square C ), we shall consider instead the analogous sum Σ′C carried out over
all concrete orders R(bI) as I runs through squarefree factors of d. This collection of orders indexed by I’s
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collapses 2-to-1 when considering OK-algebra isomorphism classes, so at the end we will need to divide by 2
(it would be inconvenient to explicitly avoid the double overcount caused by isomorphism class repetition).

Fix data consisting of nonzero integral ideals c and c′ with c ∈ A −1 and c′ ∈ A C−1[qn−1] with N(c) +
NpN(c′) = m|D|. The ideals in (A.10) are unaffected by replacing b with bI for squarefree divisors I of d.
Thus, for Σ′C viewed as a sum of sums labelled by orders R(bI), it makes sense to focus on the contribution
of elements b = α + βj ∈ R(bI)a/ ± 1 for which α and β are respective generators of the ideals in (A.10).
Our collection of 2t Eichler orders R(bI), which is 2-to-1 on the level of OK-algebra isomorphism classes, is
naturally indexed by the 2t elements X ∈ OK/d satisfying N(X) ≡ −pq mod D:

{α+ βj |α ∈ d−1, β ∈ d−1q−1nbb
−1
, α−Xβ ∈ Od}.

Define n = pN(c′). Each choice of generators α and β for the principal ideals in (A.10) contributes to
Σ′C , but may contribute multiple times, via membership of b = α + βj in perhaps more than one of the 2t

orders with which we are working. The issue comes down to the fact that for each `|D, the local congruence

α
?≡ X ′`β mod OK,` might be satisfied for both solutions X ′` ∈ OK/d` to N(X ′`) ≡ −pq mod D`. By Lemma

A.18, we see that the `|D for which both congruences hold are exactly those for which `|N(c′) = n/p, or
equivalently `| gcd(n,D). If e(n) denotes the number of prime factors of gcd(n,D), then we see that such
terms α+ βj contribute 1 + ordp(N(b−)) = ordp(pN(βj)) exactly 2e(n) = δ(n) times.

Thus, for c ∈ A −1 and c′ ∈ A C−1[qn−1] we have 4u2 choices of pairs (α, β) generating the principal
ideals in (A.10), and each such pair gives rise to an element b = α + βj which lies in R′a for δ(n) of the
orders R′ which arise in Σ′C . Since we are really summing over R′a/± 1, where ±b are the same, we have to
divide by 2. Thus, the amount contributed to Σ′C by the δ(n) appearances of b is (1 + ordp(N(βj)))/2. We
have N(βj) = N(β) · (−pq), and the p-part of N(β) agrees with that of n/p = N(c′), due to (A.9) and the
fact that p does not divide N(a) · qND. Thus, for each pair (c, c′) we get a total contribution to Σ′C given
by (4u2)δ(n) · ordp(pn)/2. Remembering now to divide by an additional factor of 2 from the initial double
overcount on isomorphism classes of models (upon fixing C ), the pair (c, c′) contributes u2δ(n)ordp(pn), where
n = pN(c′) is an integer divisible by p, and Nn < m|D|. This only depends on (c, c′) through the value of n.
Since c has norm m|D| − nN , the total number of such pairs (c, c′) is rA (m|D| − nN)rA C−1[qn−1](n/p). For
the first factor we have used that rA−1 = rA since conjugation of an ideal inverts the ideal class but fixes
the norm.

As we vary the square class C , A C−1[qn−1] varies over all products of A [qn] against a square ideal
class. The number of integral ideals of norm n/p which lie in such classes is precisely what is counted by
RA [qn](n/p). This completes the proof.

�

Remark A.19. Another way to interpret the double overcounting is that we should identify contributions
from α+βj and α−βj, since α−βj = i(α+βj)i−1 and it is precisely conjugation by the generator i =

√
D

of d which serves to identify repetitions within an OK-algebra isomorphism class in the collection of orders
used in the preceding proof (relative to a chosen coset ρ ∈ ClK/ClK [2]).

In the ramified case, the final formula in [GZ, Ch III, §9] is valid without parity restriction on D, but some
care is required to handle even D. The essential deviations from the proof of Theorem A.17 are detailed
below.
Theorem A.20. Suppose p = p2 is ramified in K. Pick a prime q over q as above, and define δ(n) = 2e(n)

where e(n) is the number of prime factors of gcd(n,D). Then

〈c, Tmdσ〉p = −rA (m)hKuordp(m) log p− log p · u2 ·
∑

0<n<m|D|/N
p|n

ordp(n)rA (m|D| − nN)δ(n)RA [qpn](n/p).

Proof. The first essential difference from the inert case is that the places v|p are generally no longer in a
bijective correspondence with the elements of ClK . Indeed, if [p] has order 2 in ClK then fv = 2 for all v|p.
In this case, there are only h/2 isomorphism classes of Eichler orders in B with reduced discriminant Np
containing OK : if we fix S = SX as in (A.6), then pSp−1 = S. This is a minor change, as summing over the
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places v will instead correspond to summing over the orders R(b) as defined previously, where b ranges over
a representative set of ideals for ClK/[p].

As in the inert case, we will perform the sum over ideal classes by summing on the outside over cosets
in Cl2K and on the inside over those ideal classes in the coset modulo [p] – these can be represented by the
squarefree divisors I of d that are relatively prime to p, but not necessarily in a 2-to-1 fashion as before.
Losing the order 2 action at p has cut the cardinality of this representative set in half, but if [p] is trivial, the
cardinality of the ClK [2] coset is the same as in the inert case. Thus we can conclude that the representation
is 2-to-1 exactly when fv = 2 for all v|p, and otherwise 1-to-1.

Respecting these changes, the method of summation is the same, but there is a change (relative to what
we saw in the inert case) when counting the number of representative models for a given coset of ClK [2]/[p]
that will contain a choice of α+ βj corresponding to ideals (c, c′). Previously this count was δ(n), but now
we always have p|n, and the resulting local factor of 2 that p contributes to δ(n) is superfluous, as there is
not a corresponding order 2 action at p on the representatives.

Along with the observation that ordp(DN(b−)) = ordp(n), the formula in the theorem is assembled in the
same manner as in the inert case.

�
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