Workshop on group schemes and p-divisible groups: Homework 4.

1. Let A be an abelian variety over a field k with characteristic $p > 0$ and dimension $g > 0$. Use the fact that A and A' are isogenous to prove that the étale part of $A[p^\infty]$ has height at most $\dim A$, and that equality holds if and only if $A[\ell]$ has no α_p subgroups. In this case, prove that $A[p^\infty](\overline{k}) \cong \mu_{p^{\infty}}^g$. Such abelian varieties are called ordinary. (It is a hard theorem of Norman and Oort that in moduli schemes of polarized abelian varieties (with étale level structure) in characteristic p, the locus of ordinary abelian varieties is a Zariski-dense open set.)

2. Let k be an algebraically closed field of characteristic $p > 0$. Using Dieudonné theory, construct a local-local height-$2g$ p-divisible group over k with dimension g such that it is not isogenous to its dual, and so cannot arise as the p-divisible group of an abelian variety over k. (One cannot do this unless $g \geq 4$.)

3. Prove that over a local noetherian ring R with residue characteristic $p > 0$, there are no nonzero maps from an étale p-divisible to a connected one. (Hint: Pass to an algebraically closed residue field and use the Serre–Tate equivalence.) Give a counterexample if the noetherian condition is dropped or if we work with finite flat commutative group schemes.

4. We work with abelian varieties over a field k.
 (i) Prove that a complex of abelian varieties
 \[0 \to A' \to A \to A'' \to 0 \]
 is a short exact sequence of k-groups if and only if the induced complex of ℓ-divisible groups
 \[0 \to A'[\ell^\infty] \to A[\ell^\infty] \to A''[\ell^\infty] \to 0 \]
 is short exact for all primes ℓ. How can these latter conditions be encoded in terms of Tate or Dieudonné modules over an algebraic closure of k, and what happens if we work with just a single prime ℓ?
 (ii) Prove that $f : A' \to A$ is a closed immersion if and only if f^\vee is faithfully flat and has connected kernel, and that f has finite kernel if and only if f^\vee is faithfully flat.
 (iv) Generalize these results to abelian schemes by applying the above results on fibers.

5. Let k'/k be a finite separable extension of fields, and let X' be a k'-scheme of finite type.
 (i) Define the Weil restriction of scalars functor $R_{k'/k}(X')$ on k-schemes to be $T \mapsto X'(k' \otimes_k T)$. Prove that this functor is representable when X' is an affine space over k'.
 (ii) Study the behavior of $R_{k'/k}$ with respect to open immersions, closed immersions, and fiber products in X', and deduce that $R_{k'/k}(X')$ is always represented by a k-scheme of finite type and that it is a k-group if X' is a k'-group.
 (iii) If K/k splits k'/k, construct a K-isomorphism $K \otimes_k R_{k'/k}(X') \cong \prod_{\sigma' : K' \to K} \sigma'(X')$, where the product is taken over k-embeddings. Deduce that $R_{k'/k}(X')$ is geometrically connected (resp. separated, proper, geometrically smooth, projective) over k' if X' is so over k'.
 (iv) If X' is a k'-group of finite type, identify $T_e(R_{k'/k}(X'))$ with the k-vector space underlying $T_e(X')$. Conclude that if X' is an abelian variety of dimension d', then $R_{k'/k}(X')$ is an abelian variety of dimension $[k' : k]d'$. Describe how $R_{k'/k}$ behaves on torsion subschemes, Tate modules, and Dieudonné modules. What if k'/k is finite and inseparable?

The next three exercises lead to a proof of a special case of the Oort–Tate classification of group schemes of prime order. The general case is worked out in the paper *Group schemes of prime order* by Oort and Tate.
6. Let R be a commutative ring. We shall work below with group schemes over R, including the so-called split torus G_m and the additive group G_a.

(i) Choose $\lambda \in R$. Define $A^\lambda := R\left[x, \frac{1}{1 + \lambda x}\right]$ and $G^\lambda := \text{Spec}(A^\lambda)$ with the comultiplication defined by $x \mapsto x \otimes 1 + 1 \otimes x + \lambda x \otimes x$, coinverse defined by $x \mapsto 1 - \frac{x}{1 + \lambda x}$ and counit defined by $x \mapsto 0$. Verify that G^λ is a commutative and flat S-group with smooth geometric fibers. Verify that it coincides with G_a if $\lambda = 0$.

(ii) Verify that the map $\eta_\lambda : G^\lambda \to G_m$ given by $z \mapsto 1 + \lambda x$ defines a homomorphism of group schemes. Show that it is an isomorphism if and only if λ is a unit. Find the kernel. Is it a finite group scheme over R? Is it flat over R?

7. Assume that λ is not a zero divisor in R and that $p \in \lambda^{p^{n-1}(p-1)}R$, where $p > 0$ is a rational prime.

(i) Show that the map $\varphi_{\lambda, n} : G^\lambda \to G^\lambda[p^n]$ given by $x \mapsto \frac{(1 + \lambda x)^{p^n} - 1}{p^n}$ is a well-defined homomorphism of group schemes over R. [The formula means the following: writing $p = \lambda^{p^{n-1}(p-1)}r$, each coefficient of the polynomial $(1 + \lambda x)^{p^n} - 1$ in x is of the form $p\lambda^{p^n}v$ for some $v \in R$ depending on the coefficient, and then $\frac{p\lambda^{p^n}v}{p^n}$ means vR.]

(ii) Show that $\varphi_{\lambda, n}$ is surjective for the fpqc topology and that the kernel, denoted by $G_{\lambda, n}$, is a finite locally free commutative R-group of order p^n. Deduce that $G^\lambda[p^n]$ coincides with the quotient of G^λ by $G_{\lambda, n}$.

(iii) Verify that $\eta_{\lambda p^n} \circ \varphi_{\lambda, n} = [p^n] \circ \eta_\lambda$ where $[p^n]$ is multiplication by p^n on G_m. Deduce that $\eta_\lambda(G_{\lambda, n}) \subset \mu_{p^n}$ and that, if λ is a unit, $G_{\lambda, n} \simeq \mu_{p^n}$.

(iv) Let $R \to k$ be a ring map killing λ, with k a field of characteristic p. Show that if $\lambda^{p^{n-1}(p-1)} \not\in pR$ then $G_{\lambda, n} \otimes_R k \simeq \alpha_{p^n}$, while if $\lambda^{p^{n-1}(p-1)} \in pR$ then $G_{\lambda, n} \otimes_R k \simeq \alpha_{p^{n-1}} \times \mathbb{Z}/p\mathbb{Z}$.

8. The aim of this exercise is to prove the following. Let R be a discrete valuation ring with fraction field K of characteristic 0. Let H be a finite flat commutative group scheme over $\text{Spec}(R)$ of order p. Then, there exists a flat extension of discrete valuation rings $R \subset R'$ of degree $\leq p-1$ and there exists $\lambda \in R'$ such that the base change $H_{R'}$ of H to $\text{Spec}(R')$ is isomorphic to the group scheme $G_{\lambda, 1}$ defined over R'.

Let $H := \text{Spec}(B)$, let I be the augmentation ideal of B. It is a free R-module of rank $p-1$. Fix a basis $\{x_1, \ldots, x_{p-1}\}$. Recall that $B^\times := \text{Hom}(B, R)$ is naturally endowed with the structure of commutative Hopf algebra. The group scheme $H^\times := \text{Spec}(B^\times)$ represents the fpqc sheaf $S \rightsquigarrow \text{Hom}_S(H, G_m)$. Define R' as the normalization of R in the composite of the factor fields of the finite étale K-algebra $B^\times \otimes_R K$. The identity map $H^\times \to H^\times$ defines a map $H \times_R H^\times \to G_m \times_R H^\times$ as group schemes over H^\times (i.e., a homomorphism $B^\times[z, z^{-1}] \to B^\times \otimes_R B$ of B^\times-Hopf algebras). Base changing by $B^\times \to R'$ defines a homomorphism $\rho : R'[z, z^{-1}] \to R' \otimes_R B$ of R'-Hopf algebras. Write $\rho(z) - 1 := \sum_1^p \lambda_i \otimes x_i$ and let λ be a generator of the ideal $(\lambda_1, \ldots, \lambda_{p-1})$ of the discrete valuation ring R'.

(i) Show that the map $\gamma : H_{R'} \to G^\lambda$ given by $x \mapsto \frac{\rho(z) - 1}{\lambda}$ is a non-trivial homomorphism of group schemes. From the fact that ρ factors via μ_p and from Exercise 7(iii) deduce that γ factors via $G_{\lambda, 1}$.

(ii) Prove that the kernel of $\gamma : H_{R'} \to G_{\lambda, 1}$ is trivial. (Hint: by Nakayama’s lemma and since kernels commute with base change it suffices to prove that the base change $\gamma_{R'}$ of γ to the residue field k' of R' has trivial kernel).

(iii) Deducce that $\gamma : H_{R'} \to G_{\lambda, 1}$ is an isomorphism.
9. The aim of this exercise is two-fold: to give a conceptual proof of the Nagell–Lutz theorem describing torsion on certain Weierstrass models over \mathbb{Z}, and to give a sufficient j-invariant criterion for certain ordinary elliptic curves in characteristic $p > 0$ to have no nonzero p-torsion rational over the base field. It is assumed that you know the definition of a Néron model.

Let R be a discrete valuation ring with fraction field K and residue characteristic $p \geq 0$. Let E be an elliptic curve over K and $P \in E(K)$ a nonzero torsion point.

(i) If there exists a Weierstrass model of E over R such that one of the affine coordinates of P does not lie in R, then prove that the scheme-theoretic closure of $\langle P \rangle \subseteq E(K)$ in the Néron model of E is a finite flat local R-group. In particular, if $p > 0$ then P has p-power order. (Hint: to prove that the quasi-finite flat closure is finite, note that it is separated and express it as an image of something R-proper, even R-finite.)

(ii) Under the assumptions in (i), if K also has characteristic $p > 0$ deduce that E has potentially supersingular reduction over R and that $j(E) \in K$ is a pth power. In particular, if $j(E) \in K$ is not a pth power then no such P exists.

(iii) By the Oort–Tate classification, the only example of a non-trivial finite flat local commutative group scheme over the maximal unramified extension of \mathbb{Z}_p with p-power order and cyclic constant generic fiber is for $p = 2$ and the group scheme μ_2. Deduce the classical Nagell-Lutz theorem: non-trivial torsion \mathbb{Q}-points on Weierstrass \mathbb{Z}-models of the form $y^2 = f(x)$ with monic cubic $f \in \mathbb{Z}[x]$ (for which nonzero 2-torsion has the form $(x_0, 0)$ with $x_0 \in \mathbb{Z}$) must be \mathbb{Z}-points in the affine plane.