
Workshop on group schemes and p-divisible groups: Homework 4.

1. Let A be an abelian variety over a field k with characteristic p > 0 and dimension g > 0. Use the
fact that A and A∨ are isogenous to prove that the étale part of A[p∞] has height at most dimA, and
that equality holds if and only if Ak has no αp subgroups. In this case, prove that A[p∞]0

k
' µgp∞ .

Such abelian varieties are called ordinary. (It is a hard theorem of Norman and Oort that in moduli
schemes of polarized abelian varieties (with étale level structure) in characteristic p, the locus of
ordinary abelian varieties is a Zariski-dense open set.)

2. Let k be an algebraically closed field of characteristic p > 0. Using Dieudonné theory, construct
a local-local height-2g p-divisible group over k with dimension g such that it is not isogenous to its
dual, and so cannot arise as the p-divisible group of an abelian variety over k. (One cannot do this
unless g ≥ 4.)

3. Prove that over a local noetherian ring R with residue characteristic p > 0, there are no nonzero
maps from an étale p-divisible to a connected one. (Hint: Pass to an algebraically closed residue
field and use the Serre–Tate equivalence.) Give a counterexample if the noetherian condition is
dropped or if we work with finite flat commutative group schemes.

4. We work with abelian varieties over a field k.
(i) Prove that a complex of abelian varieties

0→ A′ → A→ A′′ → 0

is a short exact sequence of k-groups if and only if the induced complex of `-divisible groups

0→ A′[`∞]→ A[`∞]→ A′′[`∞]→ 0

is short exact for all primes `. How can these latter conditions be encoded in terms of Tate or
Dieudonné modules over an algebraic closure of k, and what happens if we work with just a single
prime `?

(ii) Prove that f : A′ → A is a closed immersion if and only if f∨ is faithfully flat and has
connected kernel, and that f has finite kernel if and only if f∨ is faithfully flat.

(iv) Generalize these results to abelian schemes by applying the above results on fibers.

5. Let k′/k be a finite separable extension of fields, and let X ′ be a k′-scheme of finite type.
(i) Define the Weil restriction of scalars functor Rk′/k(X ′) on k-schemes to be T 7→ X ′(k′⊗k T ).

Prove that this functor is representable when X ′ is an affine space over k′.
(ii) Study the behavior of Rk′/k with respect to open immersions, closed immersions, and fiber

products in X ′, and deduce that Rk′/k(X ′) is always represented by a k-scheme of finite type and
that it is a k-group if X ′ is a k′-group.

(iii) If K/k splits k′/k, construct a K-isomorphism K ⊗k Rk′/k(X ′) '
∏
σ:k′→K σ

∗(X ′), where
the product is taken over k-embeddings. Deduce that Rk′/k(X ′) is geometrically connected (resp.
separated, proper, geometrically smooth, projective) over k if X ′ is so over k′.

(iv) If X ′ is a k′-group of finite type, identify Te(Rk′/k(X ′)) with the k-vector space underlying
Te′(X ′). Conclude that if X ′ is an abelian variety of dimension d′, then Rk′/k(X ′) is an abelian
variety of dimension [k′ : k]d′. Describe how Rk′/k behaves on torsion subschemes, Tate modules,
and Dieudonné modules. What if k′/k is finite and inseparable?

The next three exercises lead to a proof of a special case of the Oort–Tate classification of group
schemes of prime order. The general case is worked out in the paper Group schemes of prime order
by Oort and Tate.
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6. Let R be a commutative ring. We shall work below with group schemes over R, including the
so-called split torus Gm and the additive group Ga.

(i) Choose λ ∈ R. Define Aλ := R
[
x, 1

1+λx

]
and Gλ := Spec(Aλ) with the comultiplication

defined by x 7→ x ⊗ 1 + 1 ⊗ x + λx ⊗ x, coinverse defined by x 7→ − x
1+λx and counit defined by

x 7→ 0. Verify that Gλ is a commutative and flat S-group with smooth geometric fibers. Verify
that it coincides with Ga if λ = 0.

(ii) Verify that the map ηλ : Gλ → Gm given by z 7→ 1 + λx defines a homomorphism of group
schemes. Show that it is an isomorphism if and only if λ is a unit. Find the kernel. Is it a finite
group scheme over R? Is it flat over R?

7. Assume that λ is not a zero divisor in R and that p ∈ λpn−1(p−1)R, where p > 0 is a rational
prime.

(i) Show that the map ϕλ,n : Gλ → Gλp
n

given by x 7→ (1+λx)p
n−1

λpn
is a well-defined homomor-

phism of group schemes over R. [The formula means the following: writing p = λp
n−1(p−1)r, each

coefficient of the polynomial (1 + λx)p
n − 1 in x is of the form pλp

n−1
v for some v ∈ R depending

on the coefficient, and then pλp
n−1

v
λpn

means rv.]
(ii) Show that ϕλ,n is surjective for the fppf topology and that the kernel, denoted by Gλ,n, is a

finite locally free commutative R-group of order pn. Deduce that Gλp
n

coincides with the quotient
of Gλ by Gλ,n.

(iii) Verify that ηλpn ◦ ϕλ,n = [pn] ◦ ηλ where [pn] is multiplication by pn on Gm. Deduce
that ηλ(Gλ,n) ⊂ µpn and that, if λ is a unit, Gλ,n ' µpn .

(iv) Let R→ k be a ring map killing λ, with k a field of characteristic p. Show that if λp
n−1(p−1) 6∈

pR then Gλ,n ⊗R k ' αpn , while if λp
n−1(p−1) ∈ pR then Gλ,n ⊗R k ' αpn−1 × Z/pZ.

8. The aim of this exercise is to prove the following. Let R be a discrete valuation ring with
fraction field K of characteristic 0. Let H be a finite flat commutative group scheme over Spec(R)
of order p. Then, there exists a flat extension of discrete valuation rings R ⊂ R′ of degree ≤ p− 1
and there exists λ ∈ R′ such that the base change HR′ of H to Spec(R′) is isomorphic to the group
scheme Gλ,1 defined over R′.

Let H := Spec(B), let I be the augmentation ideal of B. It is a free R–module of rank p − 1.
Fix a basis {x1, . . . , xp−1}. Recall that B∨ := Hom(B,R) is naturally endowed with the structure
of commutative Hopf algebra. The group scheme H∨ := Spec(B∨) represents the fppf sheaf S  
HomS(H,Gm). Define R′ as the normalization of R in the composite of the factor fields of the finite
étale K-algebra B∨ ⊗R K. The identity map H∨ → H∨ defines a map H ×R H∨ → Gm ×R H∨
as group schemes over H∨ (i. e., a homomorphism B∨[z, z−1] → B∨ ⊗R B of B∨–Hopf algebras).
Base changing by B∨ → R′ defines a homomorphism ρ : R′[z, z−1]→ R′⊗RB of R′–Hopf algebras.
Write ρ(z) − 1 :=

∑
i λi ⊗ xi and let λ be a generator of the ideal (λ1, . . . , λp−1) of the discrete

valuation ring R′.
(i) Show that the map γ : HR′ → Gλ given by x → ρ(z)−1

λ is a non–trivial homomorphism of
group schemes. From the fact that ρ factors via µp and from Exercise 7(iii) deduce that γ factors
via Gλ,1.

(ii) Prove that the kernel of γ : HR′ → Gλ,1 is trivial. (Hint: by Nakayama’s lemma and since
kernels commute with base change it suffices to prove that the base change γk′ of γ to the residue
field k′ of R′ has trivial kernel).

(iii) Deduce that γ : HR′ → Gλ,1 is an isomorphism.
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9. The aim of this exercise is two-fold: to give a conceptual proof of the Nagell–Lutz theorem
describing torsion on certain Weierstrass models over Z, and to give a sufficient j-invariant criterion
for certain ordinary elliptic curves in characteristic p > 0 to have no nonzero p-torsion rational over
the base field. It is assumed that you know the definition of a Néron model.

Let R be a discrete valuation ring with fraction field K and residue characteristic p ≥ 0. Let E
be an elliptic curve over K and P ∈ E(K) a nonzero torsion point.

(i) If there exists a Weierstrass model of E over R such that one of the affine coordinates of P
does not lie in R, then prove that the scheme-theoretic closure of 〈P 〉 ⊆ E(K) in the Néron model
of E is a finite flat local R-group. In particular, if p > 0 then P has p-power order. (Hint: to prove
that the quasi-finite flat closure is finite, note that it is separated and express it as an image of
something R-proper, even R-finite.)

(ii) Under the assumptions in (i), if K also has characteristic p > 0 deduce that E has potentially
supersingular reduction over R and that j(E) ∈ K is a pth power. In particular, if j(E) ∈ K is not
a pth power then no such P exists.

(iii) By the Oort–Tate classification, the only example of a non-trivial finite flat local commu-
tative group scheme over the maximal unramified extension of Zp with p-power order and cyclic
constant generic fiber is for p = 2 and the group scheme µ2. Deduce the classical Nagell-Lutz
theorem: non-trivial torsion Q-points on Weierstrass Z-models of the form y2 = f(x) with monic
cubic f ∈ Z[x] (for which nonzero 2-torsion has the form (x0, 0) with x0 ∈ Z) must be Z-points in
the affine plane.


