WORKSHOP ON GROUP SCHEMES AND *p*-DIVISIBLE GROUPS: HOMEWORK 4.

1. Let A be an abelian variety over a field k with characteristic p > 0 and dimension g > 0. Use the fact that A and A^{\vee} are isogenous to prove that the étale part of $A[p^{\infty}]$ has height at most dim A, and that equality holds if and only if $A_{\overline{k}}$ has no α_p subgroups. In this case, prove that $A[p^{\infty}]_{\overline{k}}^0 \simeq \mu_{p^{\infty}}^g$. Such abelian varieties are called *ordinary*. (It is a hard theorem of Norman and Oort that in moduli schemes of polarized abelian varieties (with étale level structure) in characteristic p, the locus of ordinary abelian varieties is a Zariski-dense open set.)

2. Let k be an algebraically closed field of characteristic p > 0. Using Dieudonné theory, construct a local-local height-2g p-divisible group over k with dimension g such that it is not isogenous to its dual, and so cannot arise as the p-divisible group of an abelian variety over k. (One cannot do this unless $g \ge 4$.)

3. Prove that over a local noetherian ring R with residue characteristic p > 0, there are no nonzero maps from an étale p-divisible to a connected one. (Hint: Pass to an algebraically closed residue field and use the Serre–Tate equivalence.) Give a counterexample if the noetherian condition is dropped or if we work with finite flat commutative group schemes.

4. We work with abelian varieties over a field k.

(i) Prove that a complex of abelian varieties

$$0 \to A' \to A \to A'' \to 0$$

is a short exact sequence of k-groups if and only if the induced complex of ℓ -divisible groups

$$0 \to A'[\ell^\infty] \to A[\ell^\infty] \to A''[\ell^\infty] \to 0$$

is short exact for all primes ℓ . How can these latter conditions be encoded in terms of Tate or Dieudonné modules over an algebraic closure of k, and what happens if we work with just a single prime ℓ ?

(ii) Prove that $f : A' \to A$ is a closed immersion if and only if f^{\vee} is faithfully flat and has connected kernel, and that f has finite kernel if and only if f^{\vee} is faithfully flat.

(iv) Generalize these results to abelian schemes by applying the above results on fibers.

5. Let k'/k be a finite separable extension of fields, and let X' be a k'-scheme of finite type.

(i) Define the Weil restriction of scalars functor $R_{k'/k}(X')$ on k-schemes to be $T \mapsto X'(k' \otimes_k T)$. Prove that this functor is representable when X' is an affine space over k'.

(*ii*) Study the behavior of $R_{k'/k}$ with respect to open immersions, closed immersions, and fiber products in X', and deduce that $R_{k'/k}(X')$ is always represented by a k-scheme of finite type and that it is a k-group if X' is a k'-group.

(*iii*) If K/k splits k'/k, construct a K-isomorphism $K \otimes_k R_{k'/k}(X') \simeq \prod_{\sigma:k'\to K} \sigma^*(X')$, where the product is taken over k-embeddings. Deduce that $R_{k'/k}(X')$ is geometrically connected (resp. separated, proper, geometrically smooth, projective) over k if X' is so over k'.

(*iv*) If X' is a k'-group of finite type, identify $T_e(R_{k'/k}(X'))$ with the k-vector space underlying $T_{e'}(X')$. Conclude that if X' is an abelian variety of dimension d', then $R_{k'/k}(X')$ is an abelian variety of dimension [k':k]d'. Describe how $R_{k'/k}$ behaves on torsion subschemes, Tate modules, and Dieudonné modules. What if k'/k is finite and inseparable?

The next three exercises lead to a proof of a special case of the Oort–Tate classification of group schemes of prime order. The general case is worked out in the paper *Group schemes of prime order* by Oort and Tate.

6. Let R be a commutative ring. We shall work below with group schemes over R, including the so-called split torus \mathbf{G}_m and the additive group \mathbf{G}_a .

(i) Choose $\lambda \in R$. Define $A^{\lambda} := R\left[x, \frac{1}{1+\lambda x}\right]$ and $\mathbf{G}^{\lambda} := \operatorname{Spec}(A^{\lambda})$ with the comultiplication defined by $x \mapsto x \otimes 1 + 1 \otimes x + \lambda x \otimes x$, coinverse defined by $x \mapsto -\frac{x}{1+\lambda x}$ and counit defined by $x \mapsto 0$. Verify that \mathbf{G}^{λ} is a commutative and flat S-group with smooth geometric fibers. Verify that it coincides with \mathbf{G}_a if $\lambda = 0$.

(*ii*) Verify that the map $\eta_{\lambda} : \mathbf{G}^{\lambda} \to \mathbf{G}_{m}$ given by $z \mapsto 1 + \lambda x$ defines a homomorphism of group schemes. Show that it is an isomorphism if and only if λ is a unit. Find the kernel. Is it a finite group scheme over R? Is it flat over R?

7. Assume that λ is not a zero divisor in R and that $p \in \lambda^{p^{n-1}(p-1)}R$, where p > 0 is a rational prime.

(i) Show that the map $\varphi_{\lambda,n} \colon \mathbf{G}^{\lambda} \to \mathbf{G}^{\lambda^{p^n}}$ given by $x \mapsto \frac{(1+\lambda x)^{p^n}-1}{\lambda^{p^n}}$ is a well-defined homomorphism of group schemes over R. [The formula means the following: writing $p = \lambda^{p^{n-1}(p-1)}r$, each coefficient of the polynomial $(1 + \lambda x)^{p^n} - 1$ in x is of the form $p\lambda^{p^{n-1}}v$ for some $v \in R$ depending on the coefficient, and then $\frac{p\lambda^{p^{n-1}}v}{\lambda^{p^n}}$ means rv.] (*ii*) Show that $\varphi_{\lambda,n}$ is surjective for the *fppf* topology and that the kernel, denoted by $G_{\lambda,n}$, is a

(*ii*) Show that $\varphi_{\lambda,n}$ is surjective for the *fppf* topology and that the kernel, denoted by $G_{\lambda,n}$, is a finite locally free commutative *R*-group of order p^n . Deduce that $\mathbf{G}^{\lambda p^n}$ coincides with the quotient of \mathbf{G}^{λ} by $G_{\lambda,n}$.

(*iii*) Verify that $\eta_{\lambda p^n} \circ \varphi_{\lambda,n} = [p^n] \circ \eta_{\lambda}$ where $[p^n]$ is multiplication by p^n on \mathbf{G}_m . Deduce that $\eta_{\lambda}(G_{\lambda,n}) \subset \mu_{p^n}$ and that, if λ is a unit, $G_{\lambda,n} \simeq \mu_{p^n}$.

(*iv*) Let $R \to k$ be a ring map killing λ , with k a field of characteristic p. Show that if $\lambda^{p^{n-1}(p-1)} \notin pR$ then $G_{\lambda,n} \otimes_R k \simeq \alpha_{p^n}$, while if $\lambda^{p^{n-1}(p-1)} \in pR$ then $G_{\lambda,n} \otimes_R k \simeq \alpha_{p^{n-1}} \times \mathbf{Z}/p\mathbf{Z}$.

8. The aim of this exercise is to prove the following. Let R be a discrete valuation ring with fraction field K of characteristic 0. Let H be a finite flat commutative group scheme over $\operatorname{Spec}(R)$ of order p. Then, there exists a flat extension of discrete valuation rings $R \subset R'$ of degree $\leq p - 1$ and there exists $\lambda \in R'$ such that the base change $H_{R'}$ of H to $\operatorname{Spec}(R')$ is isomorphic to the group scheme $G_{\lambda,1}$ defined over R'.

Let $H := \operatorname{Spec}(B)$, let I be the augmentation ideal of B. It is a free R-module of rank p-1. Fix a basis $\{x_1, \ldots, x_{p-1}\}$. Recall that $B^{\vee} := \operatorname{Hom}(B, R)$ is naturally endowed with the structure of commutative Hopf algebra. The group scheme $H^{\vee} := \operatorname{Spec}(B^{\vee})$ represents the *fppf* sheaf $S \rightsquigarrow$ $\operatorname{Hom}_S(H, \mathbf{G}_m)$. Define R' as the normalization of R in the composite of the factor fields of the finite étale K-algebra $B^{\vee} \otimes_R K$. The identity map $H^{\vee} \to H^{\vee}$ defines a map $H \times_R H^{\vee} \to \mathbf{G}_m \times_R H^{\vee}$ as group schemes over H^{\vee} (i. e., a homomorphism $B^{\vee}[z, z^{-1}] \to B^{\vee} \otimes_R B$ of B^{\vee} -Hopf algebras). Base changing by $B^{\vee} \to R'$ defines a homomorphism $\rho: R'[z, z^{-1}] \to R' \otimes_R B$ of R'-Hopf algebras. Write $\rho(z) - 1 := \sum_i \lambda_i \otimes x_i$ and let λ be a generator of the ideal $(\lambda_1, \ldots, \lambda_{p-1})$ of the discrete valuation ring R'.

(i) Show that the map $\gamma: H_{R'} \to \mathbf{G}^{\lambda}$ given by $x \to \frac{\rho(z)-1}{\lambda}$ is a non-trivial homomorphism of group schemes. From the fact that ρ factors via μ_p and from Exercise 7(*iii*) deduce that γ factors via $G_{\lambda,1}$.

(*ii*) Prove that the kernel of $\gamma: H_{R'} \to G_{\lambda,1}$ is trivial. (*Hint*: by Nakayama's lemma and since kernels commute with base change it suffices to prove that the base change $\gamma_{k'}$ of γ to the residue field k' of R' has trivial kernel).

(*iii*) Deduce that $\gamma: H_{R'} \to G_{\lambda,1}$ is an isomorphism.

9. The aim of this exercise is two-fold: to give a conceptual proof of the Nagell–Lutz theorem describing torsion on certain Weierstrass models over \mathbf{Z} , and to give a sufficient *j*-invariant criterion for certain ordinary elliptic curves in characteristic p > 0 to have no nonzero *p*-torsion rational over the base field. It is assumed that you know the definition of a Néron model.

Let R be a discrete valuation ring with fraction field K and residue characteristic $p \ge 0$. Let E be an elliptic curve over K and $P \in E(K)$ a nonzero torsion point.

(i) If there exists a Weierstrass model of E over R such that one of the affine coordinates of P does not lie in R, then prove that the scheme-theoretic closure of $\langle P \rangle \subseteq E(K)$ in the Néron model of E is a finite flat local R-group. In particular, if p > 0 then P has p-power order. (Hint: to prove that the quasi-finite flat closure is finite, note that it is separated and express it as an image of something R-proper, even R-finite.)

(*ii*) Under the assumptions in (*i*), if K also has characteristic p > 0 deduce that E has potentially supersingular reduction over R and that $j(E) \in K$ is a pth power. In particular, if $j(E) \in K$ is not a pth power then no such P exists.

(*iii*) By the Oort–Tate classification, the only example of a non-trivial finite flat local commutative group scheme over the maximal unramified extension of \mathbf{Z}_p with *p*-power order and cyclic constant generic fiber is for p = 2 and the group scheme μ_2 . Deduce the classical Nagell-Lutz theorem: non-trivial torsion **Q**-points on Weierstrass **Z**-models of the form $y^2 = f(x)$ with monic cubic $f \in \mathbf{Z}[x]$ (for which nonzero 2-torsion has the form $(x_0, 0)$ with $x_0 \in \mathbf{Z}$) must be **Z**-points in the affine plane.