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1. Introduction

Let X be an Artin stack (always assumed to have quasi-compact and separated diagonal
over SpecZ; cf. [2, §1.3]). A coarse moduli space for X is a map π : X → X to an
algebraic space such that (i) π is initial among maps from X to algebraic spaces (note
that the category of maps from X to an algebraic space is discrete), and (ii) for every
algebraically closed field k the map [X (k)]→ X(k) is bijective (where [X (k)] denotes the
set of isomorphism classes of objects in the small category X (k)). If X is equipped with
a map to a scheme S then X has a unique compatible map to S, and so it is equivalent to
require the universal property for algebraic spaces over S.

In [5], Keel and Mori used a close study of groupoids to prove that if X is locally of
finite type over a locally noetherian scheme S and its inertia stack IS(X ) = X ×X ×SX X
is finite over X then there exists a coarse moduli space π : X → X with X locally of finite
type over S (and separated over S when X is separated over S). They also proved that
π is a proper universal homeomorphism, that for any flat (locally finite type) base change
X ′ → X in the category of algebraic spaces the map π×X X ′ is a coarse moduli space, and
that OX → π∗(OX ) is an isomorphism. The finiteness hypothesis on IS(X ) is weaker than
finiteness of ∆X /S and is stronger than quasi-finiteness of ∆X /S .

The purpose of this note is to explain how to systematically use stacks instead of
groupoids to give a more transparent version of the Keel–Mori method and to eliminate
noetherian assumptions. Since the formation of coarse spaces does not generally commute
with (non-flat) base change, it does not seem possible to immediately reduce existence prob-
lems to the locally noetherian case. If we wish to avoid separatedness hypotheses on X over
S but want π : X → X to be a universal homeomorphism then it is unreasonable to con-
sider X for which ∆X /S is not quasi-finite (e.g., the non-separated stack Q = A1/Gm that
classifies line bundles equipped with a section has k-points specializing to other k-points
and so it cannot admit a coarse moduli space Q → Q that is a universal homeomorphism).

Theorem 1.1 (Keel–Mori). Let S be a scheme and let X be an Artin stack that is locally of
finite presentation over S and has finite inertia stack IS(X ). There exists a coarse moduli
space π : X → X, and it satisfies the following additional properties:

(1) The structure map X → S is separated if X → S is separated, and it is locally of
finite type if S is locally noetherian.

(2) The map π is proper and quasi-finite.
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Moreover, if X ′ → X is a flat map of algebraic spaces then π′ : X ′ = X ×X X ′ → X ′ is a
coarse moduli space.

Note that the natural map OX → π∗(OX ) on the étale site of X is an isomorphism.
Indeed, for any étale map U → X with U an algebraic space we have that X ×X U → U
is a coarse moduli space, and applying the universal mapping property with respect to
morphisms to A1

Z then gives OX(U) ' (π∗OX )(U). In case S is locally noetherian we get
a converse result: if p : X → Y is a proper quasi-finite map to an algebraic space and
OY ' p∗(OX ) then the induced map p : X → Y is an isomorphism. (Indeed, p is certainly
locally of finite type since X → S is, and so p is proper and quasi-finite because π is a proper
homeomorphism and p is proper. Thus, p is finite by [6, A.2] and thus is an isomorphism
since OY → p∗(OX) is an isomorphism; cf. [8, 2.6(iii)].)

In §2 we review how to reduce the proof of Theorem 1.1 to the case of a special class of
Artin stacks. The case of stacks admitting a finite locally free scheme cover is addressed in
§3, where the aim is to check that certain quotient schemes also satisfy a universal property
with respect to arbitrary algebraic spaces. In §4 we give our stack-theoretic variant on the
Keel–Mori method to prove Theorem 1.1 in the case of a locally noetherian base scheme.
Limit arguments are used in §5 to handle the case of a general base scheme, where the key
point is to control the étale property through a limit process. At the end (Corollary 5.2),
we show that if ∆X /S is quasi-finite then finiteness of the inertia stack is equivalent to
existence of a coarse moduli space whose classifying map is separated. In view of Lemma
4.1, an existence theorem for coarse moduli spaces under weaker diagonal hypotheses than
in Theorem 1.1 will therefore require a different approach than that of Keel and Mori.

2. Preliminary reduction steps

Let X be an Artin stack, and {Xi} an open covering of X by open substacks for which
there exist coarse moduli spaces πi : Xi → Xi whose formation is compatible with flat
base change (e.g., Zariski-localization), with each πi a homeomorphism. Forming images
and preimages under πi defines an inclusion-preserving bijection between the set of open
substacks of Xi and the set of open subspaces of Xi, so we can use Xi ∩Xj to define open
subspaces of Xi and Xj that each serve as a coarse moduli space for Xi∩Xj . This provides
gluing data on the Xi’s to construct a map π : X → X to an algebraic space such that π
recovers the maps πi over the opens Xi that cover X. Such a π is a coarse moduli space
for X , and if X is a stack over a scheme S then X is S-separated when X and all Xi are
S-separated. The following lemma (due to Grothendieck [3, Exp. V, 7.2], and rediscovered
by Keel and Mori [5, Lemma 3.3]) therefore reduces Theorem 1.1 to the case when X has
a quasi-finite, flat, and finitely presented scheme covering.

Lemma 2.1. Let X be an Artin stack locally of finite presentation over a scheme S, and
assume ∆X /S is quasi-finite. There is a covering of X by open substacks admitting a
quasi-finite, flat, and finitely presented scheme covering.

Proof. Working Zariski-locally on S and X , we can assume S is affine and X is quasi-
compact (hence finitely presented over S), so by direct-limit methods [8, 2.2] we reduce to
the noetherian case. The second paragraph of the proof of [8, 2.11] gives a stack-theoretic
treatment of the noetherian case (using [3, Exp. V, 7.2]). �

By Lemma 2.1, for the proof of Theorem 1.1 we may assume S = Spec A is affine and that
there exists a quasi-finite, flat, and finitely presented covering U →X by a quasi-projective
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S-scheme U . Letting R denote the algebraic space U ×X U , the projections R ⇒ U over
S are quasi-finite and flat. The maps U → X and R ⇒ U are separated because U is
S-separated and ∆X /S is separated. Thus, R is a scheme since U is a scheme [6, A.2].

Lemma 2.2. Let X be an Artin stack locally of finite presentation over a scheme S such
that there is a finitely presented, quasi-finite, and flat cover V →X by a separated S-scheme
(so V →X is separated, and hence schematic).

There is a representable étale cover W →X by an S-separated Artin stack and an open
and closed immersion Z ↪→ V ×X W such that Z → W is a finite locally free cover. It can
also be arranged that for every v ∈ V there are k(v)-points w ∈ W and u ∈ Zw such that
some open U ′ ⊆ W around w has preimage U in Z that is quasi-projective over an open
affine in S.

Proof. Let H be the Hilbert stack HilbV/X whose fiber category over X (T ) for an S-scheme
T is the set of closed subschemes of V ×X T that are finite locally free covers of T ; this is an
Artin stack locally of finite presentation over X by descent theory for closed subschemes
and the theory of Hilbert functors for quasi-finite, finitely presented, and separated scheme
maps. The map H →X is schematic and separated (valuative criterion).

The open étale locus W in H for the map H →X is compatible with flat base change
on X , and it surjects onto X . Indeed, for v ∈ V over x ∈ X , by an infinitesimal
deformation argument the map H ×X V → V is etale at the k(v)-rational point u in the
v-fiber classifying the non-empty finite k(v)-scheme V ×X Spec k(v) (and likewise for its
non-empty open and closed subschemes). Thus, the image w ∈Hx(k(v)) of u lies in Wx.

Let i : Z → V ×X W be the universal closed immersion with Z a finite locally free cover
of W . Note that V ×X W is a scheme because it is separated and locally quasi-finite over
V (as W → X is locally quasi-finite and H → X is separated), so Z is an S-separated
scheme. Since Z is a finite cover of W , it follows that W is S-separated. For each v ∈ V ,
i is an isomorphism on fibers over the k(v)-point w of W as above, and so by the fibral
flatness criterion Zw is in the étale locus of i. This fiber contains the k(v)-point u classifying
V ×X Spec k(v). The non-étale locus of i has closed image in W that misses w, so we may
shrink W around all such points w (varying v) to make i étale without losing surjectivity
of W →X . The closed immersion i is now étale and so is an open immersion.

The composite Z → V ×X W → V is a residually trivial étale neighborhood of each
v via the k(v)-point u ∈ Zw. Since the finitely presented map Z → V is quasi-finite and
separated, by Zariski’s Main Theorem [4, IV3, 8.12.6] it is quasi-affine. Thus, for v ∈ V we
can find an open affine Z ′ ⊆ Z containing Zw and lying over an open affine in S. The image
of Z − Z ′ in W is a closed set whose open complement U ′ ⊆ W around w has preimage
U ⊆ Z contained in Z ′, so U → S is quasi-projective over an open affine in S. �

Remark 2.3. A key observation of Keel and Mori is that for X as in Lemma 2.1, IS(X )
is X -finite if and only if for every point x ∈ X there is a representable, quasi-compact,
and étale neighborhood U ′ → X by an Artin stack U ′ such that (i) U ′ is S-separated
and admits a finite locally free scheme cover, and (ii) for all algebraically closed fields k and
objects u′ ∈ U ′(k) over x ∈ X (k) the injective group map AutU ′(k)(u′) → AutX (k)(x) is
surjective. This assertion is designed to suppress any explicit mention of how U ′ mat have
been constructed (e.g., in a Hilbert stack over X ), and since it is Zariski-local on X we
can assume for purposes of its verification (by Lemma 2.2) that there is a representable,
quasi-compact, and étale cover U ′ → X such that U ′ is S-separated and admits a finite
locally free covering by a scheme Z. (If we ignore the condition on automorphism groups,
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then we may Zariski-locally always build U ′ as an S-separated open substack of a Hilbert
stack H = HilbV/X → X . For a geometric point x ∈ X (k) dominated by u′ ∈ H (k)
corresponding to a non-empty closed subscheme Zu′ ↪→ Vx = V ×X ,x Spec k, AutX (x) acts
on Vx and the subgroup preserving Zu′ is AutH (k)(u′); this is AutX (k)(x) if Zu′ = Vx. Since
V → X may have varying fiber-degrees, the desired equality of automorphism groups is
generally not an open condition on H . If IS(X ) is finite then the assertion we are aiming
to show ensures openness in the X -étale locus in H .)

Let IZ,U ′ and IZ,X be the pullbacks of ∆Z/S along the projections from Z ×U ′ Z and
Z×X Z, so IZ,U ′ is open and closed in IZ,X (since ∆U ′/X is an open and closed immersion).
Since Z is an fpqc cover of X , IS(X ) is finite if and only if the structure map IZ,X → Z is
finite. For the same reason, since U ′ is S-separated (so IS(U ′) is U ′-finite) we have that
IZ,U ′ is Z-finite. If z ∈ Z(k) lies over u′ ∈ U ′(k) and x ∈ X (k) then the open and closed
immersion IZ,U ′ ↪→ IZ,X is an equality on z-fibers if and only if AutU ′(k)(u′) = AutX (k)(x),
and this latter condition does not mention the particular z over u′. It follows that if this
equality of automorphism groups holds for all u′ ∈ U ′(k) (over any x ∈ X (k)) then
IZ,X = IZ,U ′ and so IZ,X is Z-finite, whence IS(X ) is finite.

Conversely, if IS(X ) is finite then the preceding argument shows that the locus in Z
over which IZ,U ′ and IZ,X have the same fiber is the preimage of a Zariski-open locus in
U ′ (which in turn has Zariski-open image in X ). Hence, it remains to show that for each
x ∈ X (k) we can make the construction in Lemma 2.2 so that AutU ′(k)(u′) = AutX (k)(x)
for some u′ ∈ U ′(k) over x. In terms of the output of the construction of U ′ from a Hilbert
stack HilbV/X , we take u′ classifying the full fiber Vx.

3. Finite locally free scheme covers

In [3, Exp. V, 4.1], Grothendieck implicitly studied coarse moduli schemes for Artin
stacks with a finite locally free covering by an affine scheme. Related considerations in the
finite type case over a noetherian base scheme are worked out in [5, Prop. 5.1, Lemma 6.5],
but to handle the non-noetherian case we need to review Grothendieck’s results and explain
why his quotient construction in the category of schemes also serves as a quotient in the
category of algebraic spaces.

Let X be an Artin stack and assume that there is a finite locally free covering U → X
by a scheme. Let R = U ×X U and let p1, p2 : R ⇒ U be the projections. Assume that
each orbit p1(p−1

2 (u)) is contained in an affine open in U ; this holds if U is quasi-affine (in
the sense of [4, II, §5.1]) or if X has a map to a scheme S such that every finite subset
in each fiber of U → S is contained in an open affine in U (e.g., U → S quasi-projective
locally on S). Let p : U → X be the topological quotient space modulo the set-theoretic
equivalence relation imposed by R (i.e., u ∼ u′ if p−1

1 (u) meets p−1
2 (u′)), and define OX to

be the equalizer of the maps p∗1, p
∗
2 : p∗(OU ) ⇒ q∗(OR) with q = p ◦ p1 = p ◦ p2. By (the

proof of) [3, Exp. V, 4.1(i)], X is a scheme and U → X is an integral affine surjection such
that over an open affine X0 ⊆ X with preimage U0 = Spec B in U we have X0 = Spec(BR)
with BR = {b ∈ B | p∗1(b) = p∗2(b)} ⊆ B. In particular, BR → B is integral.

Moreover, U → X is a categorical quotient for R ⇒ U in the category of all ringed
spaces (as well as locally ringed spaces) and for any algebraically closed field k we have that
X(k) is the quotient of U(k) modulo the equivalence relation given by the image of R(k)
in U(k)× U(k). The scheme X is quasi-separated (and so it “is” an algebraic space) since
∆X / SpecZ is quasi-compact. The map π : X → X satisfies the universal mapping property
of a coarse moduli space restricted to the category of schemes.
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Theorem 3.1. With notation and hypotheses as above, suppose that X has a structure of
stack over a scheme S. The natural S-map π : X → X to the scheme quotient is a coarse
moduli space and it is separated. Moreover:

(1) The map π is a universal homeomorphism, and π′ : X ×X X ′ → X ′ is a coarse
moduli space for any flat map of algebraic spaces X ′ → X.

(2) If X is locally of finite type over S then π is proper, and if S is locally noetherian
then X is locally of finite type over S.

(3) If X is separated over S then X is S-separated.

Proof. The scheme X is S-separated if and only if ∆X/S(X) is closed in X ×S X, so by
surjectivity of π and factoring X ×S X → X ×S X as a composite of base changes of π
we see that (3) is a consequence of (1). For the rest we can work locally on X and S to
arrange that X and S are affine. In particular, U and R are affine, so U = Spec B and
X = Spec(BR).

Let us check that π is separated and a universal homeomorphism. The separatedness of
π means that the separated and finite type ∆π : X → X ×S X is universally closed, and
this latter property holds because ∆U/S is universally closed and U → X is a finite cover.
Since U → X is an affine integral surjection and U → X surjective, π is a universally
closed surjection. Thus, π is a universal homeomorphism if [X (k)]→ X(k) is bijective for
all algebraically closed fields k. Since [X (k)] is the quotient of U(k) by the equivalence
relation induced by the image of R(k) in U(k)× U(k), bijectivity is immediate.

If X is finite type over S then U and R are as well, so the integral map BR → B is finite
type and therefore finite; i.e., π is proper. In such cases with S noetherian, it follows from
[1, Prop. 7.8] that X = Spec(BR) is of finite type over S. This settles (2).

It remains to prove that π satisfies the universal property to be a coarse moduli space,
and that it continues to do so after arbitrary flat base change X ′ → X with any algebraic
space X ′. It suffices to work with affine U , R, and X as above. We fix a flat map X ′ → X
with an algebraic space X ′, and the mapping property problem for π×X X ′ is to show that
if Y is any algebraic space then the co-commutative diagram

(3.1) Y (X ′)→ Y (X ′ ×X U) ⇒ Y (X ′ ×X R)

is exact. Using an étale chart in schemes X ′
1 ⇒ X ′

0 for the algebraic space X ′, this exactness
problem is easily reduced to the case when X ′ is a scheme. Working Zariski-locally on X ′

allows us to assume X ′ = Spec C with BR → C flat. Thus, the exactness of the functor
C ⊗BR (·) gives C = {β ∈ C ⊗BR B | p∗1(β) = p∗2(β) in C ⊗BR B}, so by (the proof of)
[3, Exp. V, 4.1(i)] the diagram X ′ ×X R ⇒ X ′ ×X U → X ′ is a quotient diagram in the
category of locally ringed spaces. In particular, (3.1) is exact when Y is a scheme.

Since X ′, X ′×X U , and X ′×X R are quasi-compact, for the proof of exactness it suffices
to treat quasi-compact opens in Y . Thus, we can assume that there is an étale equivalence
relation Y1 ⇒ Y0 with affine Y0 such that Y = Y0/Y1; by Zariski’s Main Theorem [4,
IV3, 8.12.6], Y1 is quasi-affine. Let us first prove that Y (X ′)→ Y (X ′×X U) is injective (so
(3.1) is injective on the left in general). Suppose ξ, η ∈ Y (X ′) have the same pullback in
Y (X ′ ×X U). Let X ′′ → X ′ be a quasi-compact étale scheme covering such that ξ|X′′ , η|X′′

lift to ξ0, η0 ∈ Y0(X ′′). We want to prove that (ξ0, η0) ∈ Y0(X ′′)× Y0(X ′′) lies in the subset
Y1(X ′′). By the settled exactness of (3.1) with Y replaced by the schemes Y0 and Y1 (and
X ′ replaced with X ′′), a simple diagram chase reduces the problem to proving that the
ordered pair

(ξ0|X′′×XU , η0|X′′×XU ) ∈ Y0(X ′′ ×X U)× Y0(X ′′ ×X U)
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lies in Y1(X ′′ ×X U). Since the étale presheaf of sets T 7→ Y0(T )/Y1(T ) on the category
of S-schemes is separated, it is equivalent to show that the elements ξ|X′′×XU , η|X′′×XU ∈
Y (X ′′ ×X U) coincide. But this equality follows immediately from the equality of ξ|X′×XU

and η|X′×XU in Y (X ′ ×X U) (recall the initial hypothesis on ξ and η).
With the injectivity at the left of (3.1) now settled in general, we have to prove exactness

in the middle. It is again enough to work in the above affine case (X ′ = Spec C, U = Spec B,
X = Spec(BR), quasi-compact Y , affine Y0, quasi-affine Y1). Choose y ∈ Y (X ′ ×X U)
satisfying p∗1(y) = p∗2(y) in Y (X ′×X R). We want y ∈ Y (X ′). Since algebraic spaces satisfy
the sheaf axiom for the fpqc topology (see [6, A.4], whose proof can be modified to avoid
fpqc-sheafification), the settled injectivity in general reduces us to establishing the desired
result after pullback to Q and Q×X′ Q for some fpqc morphism of schemes Q→ X ′.

Using y and the map p∗1(y) = p∗2(y), we get a finite locally free groupoid in quasi-affine
schemes (over the affine scheme Y0) (X ′ ×X R) ×Y Y0 ⇒ (X ′ ×X U) ×Y Y0. Let Q be the
associated quasi-compact scheme quotient in the category of locally ringed spaces, so Q has
a unique compatible structure of Y0-scheme and by functoriality of such quotients in the
category of schemes we get a commutative diagram

(X ′ ×X U)×Y Y0
//

��

X ′ ×X U

��
Q // X ′

with left side that is an affine integral surjective morphism having finite physical geometric
fibers and top side that is an étale surjection. In particular, Q → X ′ is a quasi-compact
surjective morphism. The pullbacks of y and p∗1(y) = p∗2(y) along Q→ X ′ canonically (and
compatibly) factor through the étale map Y0 → Y ′, so by the settled case of exactness for
(3.1) in the case when the target is a scheme (e.g., Y0 in the role of Y ) we can solve our
problem after pullback to the schemes Q and Q ×X′ Q. Hence, it suffices to prove that
Q → X ′ is an fpqc morphism; i.e., it is flat. We shall prove that induced maps on strict
henselizations of local rings are isomorphisms.

Strict henselization is compatible with finite base change [4, IV4, 18.8.10], so by expressing
an integral extension as a direct limit of finite subextensions and using both the construction
of Q and the compatibility of its formation with flat base change, the strict henselization
of Q at a geometric point q is the quotient of the diagram obtained from

(3.2) (X ′ ×X R)×Y Y0 ⇒ (X ′ ×X U)×Y Y0

by strict henselization along the finite sets of geometric points over q in the category of Y0-
schemes. Let y0 be the geometric point of Y0 induced by Q→ Y0 and the geometric point q
of Q. Since Y0 → Y is an étale cover, and so induces an isomorphism of strict henselizations
at geometric points, in the formation of the strict henselizations in (3.2) over q the effect of
the fiber product against Y0 over Y is eliminated (as we only get the contribution from the
y0-fiber). In other words, we have exactly the “invariant subring” description of the strict
henselization of the local ring at q viewed as a geometric point on the scheme quotient X ′

of X ′ ×X R ⇒ X ′ ×X U . �

4. Proof of Theorem 1.1 in the locally noetherian case

We initially avoid noetherian assumptions. By §2 we may assume S is affine and X
admits a quasi-finite, flat, and finitely presented cover p : U → X by a scheme U that is
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quasi-projective over S, and that there is a representable, étale, and quasi-compact map
of Artin stacks h : U ′ → X such that U ′ is S-separated and admits a finite locally free
covering U → U ′ whose composite with h is identified with p. By Zariski’s Main Theorem
[4, IV3, 8.12.6], the quasi-finite separated U -scheme R = U ×X U is also quasi-projective
over S. Let p1, p2 : R ⇒ U be the canonical projections.

Since IS(X ) is finite, by Remark 2.3 we can assume that AutU ′(k)(u′) = AutX (k)(x) for
all u′ ∈ U ′(k) over x ∈ X (k) for any algebraically closed field k; we postpone the use of
this property until later.

By Theorem 3.1, there is a coarse moduli space U ′ for U ′ such that (i) U ′ is a scheme,
(ii) U ′ → U ′ is a proper map that is a universal homeomorphism, and (iii) any flat base
change on U ′ is a coarse moduli space for the induced base change on U ′. Likewise, if
S is locally noetherian then U ′ is locally of finite type over S, and if X is S-separated
(so U ′ is S-separated) then so is U ′. Since the Artin stack R′ := U ′ ×X U ′ has a finite
locally free covering by the scheme R that is quasi-projective over the affine S, there is also
a coarse moduli space R′ for R′ that is a scheme and enjoys the analogous properties just
listed for U ′. There are evident S-maps p′1, p

′
2 : R′ ⇒ U ′ compatible with p1, p2 : R ⇒ U

and the analogous maps R′ ⇒ U ′. We do not yet know if R′ ×U ′ R′ is a coarse moduli
space for R′ ×U ′ R′ = U ′ ×X U ′ ×X U ′, so it is not evident if the quasi-compact S-map
(p′1, p

′
2) : R′ → U ′ ×S U ′ has image on T -points (for S-schemes T ) that is an equivalence

relation on U ′(T ). The following lemma has no noetherian hypotheses.

Lemma 4.1. Assume that R′ ⇒ U ′ is an étale equivalence relation, so there is an algebraic
space quotient X = U ′/R′. The canonical S-map π : X → X is a coarse moduli space
and π is separated and quasi-compact. If R′ → U ′ ×S U ′ is a closed immersion then X is
separated over S.

Proof. The final part is immediate from the rest since R′ = U ′ ×X U ′ → U ′ ×S U ′ is a
base change of ∆X/S by the étale cover U ′ ×S U ′ → X ×S X. To show that π must be
separated, or equivalently that X →X ×X X is proper, using the fpqc covering U ′ →X
reduces this to properness of R′ = U ′ ×X U ′ → U ′ ×X U ′. But R′ → R′ = U ′ ×X U ′ is
a proper surjection and U ′ → U ′ is separated, so we get the result. By construction, π is
quasi-compact. It remains to treat the coarse moduli space property. The composite map
U → U ′ → U ′/R′ = X is R-invariant, so it induces a unique compatible S-map π : X → X.
Let g : X → Y be a morphism to an algebraic space. For the universal mapping property,
we seek a unique morphism g : X → Y such that g = g ◦ π.

Let p : U →X be the projection, so f = g◦p : U → Y is R-invariant and hence the maps
U ×U ′ U ⇒ U → Y coincide. Thus, f uniquely factors through U → U ′ and so through
the coarse moduli space U ′ for U ′. That is, f = f ◦ π0 for a unique map f : U ′ → Y
and the canonical map π0 : U → U ′ → U ′. The composites f ◦ p′1, f ◦ p′2 : R′ ⇒ Y
coincide because composition with R → R′ → R′ carries these to the pair of equal maps
f ◦ p1, f ◦ p2 : R ⇒ Y . Hence, f uniquely factors through the projection U ′ → U ′/R′ = X,
giving a map g : X → Y . To see that g ◦ π = g as maps from X to Y it suffices to check
equality after composition with p : U →X , and this becomes the equality f ◦ π0 = f .

For uniqueness, if g1, g2 : X ⇒ Y satisfy g1 ◦π = g2 ◦π then composing with p : U →X
gives that (g1 ◦ p′) ◦ π0 = (g2 ◦ p′) ◦ π0 with p′ : U ′ → U ′/R′ = X denoting the quotient
map. Hence, by the universal property of π0 : U → U ′ with respect to U ×U ′ U -invariant
maps from U we have g1 ◦ p′ = g2 ◦ p′. By the quotient property for p′, we get g1 = g2.
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Finally, we have to check that [X (k)] → X(k) is bijective for any algebraically closed
field k. Since k is algebraically closed, [X (k)] is the quotient U(k)/R(k) of the set U(k)
modulo the equivalence relation induced by the image of R(k) in U(k) × U(k). Likewise,
X(k) = U ′(k)/R′(k) since X = U ′/R′. By the construction of the schemes U ′ and R′ as
coarse moduli spaces for U ′ and R′ = U ′ ×X U ′, for P = U ×U ′ U we have

U ′(k) = U(k)/P (k), R′(k) = R(k)/(P (k)×U(k) R(k)×U(k) P (k))

because P×U R×U P = P×X P and R = U×X U . Since the image of P (k) in U(k)×U(k) is
contained in the image of R(k), the natural map U(k)/R(k)→ U ′(k)/R′(k) is bijective. �

The maps R′ = U ′×X U ′ ⇒ U ′ are representable, étale, separated, and quasi-compact.
In particular, for any algebraically closed field k and objects r′ ∈ R′(k) over u′ ∈ U ′(k) the
natural group map AutR′(k)(r′)→ AutU ′(k)(u′) is injective. Now we bring in the hypothesis
that IS(X ) is finite, or more specifically the consequence (recorded already) that this allows
us to arrange that AutU ′(k)(u′) = AutX (k)(x) for all such k and u′ ∈ U ′(k) over x ∈X (k).
This implies the corresponding equality of automorphism groups for r′ over u′ as above,
and so for locally noetherian S the projections R′ ⇒ U ′ are étale due to:

Theorem 4.2. Let Y ′ → Y be a representable S-map between Artin stacks that are locally
of finite type over a locally noetherian scheme S, and assume that this map is étale, sep-
arated, and quasi-compact. Also assume that there is a finite locally free covering U → Y
with U → S quasi-projective locally on S. Let Y → Y be the coarse moduli space.

The stack Y ′ also has a finite locally free covering U ′ → Y ′ with U ′ → S quasi-projective
locally on S, and if Y ′ is its coarse moduli space then the induced map Y ′ → Y is étale at any
geometric point y′ ∈ Y ′(k) over y ∈ Y (k) such that the injective group map AutY ′(k)(y′)→
AutY (k)(y) (well-defined up to conjugation) is surjective.

Proof. By Theorem 3.1(2), U → Y is a finite surjection and Y is locally of finite type over
S. Let U ′ = Y ′ ×Y U , so U ′ → Y ′ is a finite locally free covering by an algebraic space
U ′ that is quasi-finite and separated over the scheme U . In particular, U ′ is a scheme and
U ′ → S is quasi-projective locally over S. Thus, by Theorem 3.1(2) we get a coarse moduli
space Y ′ for Y ′ that is a locally finite type S-scheme and the map U ′ → Y ′ is a finite
surjection. The given S-map Y ′ → Y induces an S-map Y ′ → Y between the locally finite
type coarse moduli schemes, so this latter map is étale in a Zariski-open neighborhood of
y′ ∈ Y ′(k) over y ∈ Y (k) if and only if Osh

Y,y → Osh
Y ′,y′ is an isomorphism.

Choose y′ ∈ Y ′(k) over y ∈ Y (k). By the compatibility of strict henselization and finite
extension of rings, as well as flat base change compatibility of coarse moduli spaces for stacks
admitting suitable finite locally free scheme covers (Theorem 3.1(1)), we may identify Osh

Y,y

as a subring of the product
∏

u 7→y Osh
U,u of the strict henselizations of U at the points in

U(k) over y ∈ Y (k). To be precise, Osh
Y,y is the subring of elements with the same pullbacks

under both finite locally free projections q1, q2 : P = U ×Y U ⇒ U .
If we pick u0 ∈ U(k) over y then, by projection to the u0-factor, Osh

Y,y is identified
with the subring in Osh

U,u0
of elements b ∈ Osh

U,u0
such that q∗1(b) = q∗2(b) in Osh

P,ξ for all
ξ ∈ q−1

1 (u0) ∩ q−1
2 (u0) ⊆ P (k). Likewise, if we define P ′ to be the scheme Y ′ ×Y P

(so q′1, q
′
2 : P ′ ' U ′ ×Y ′ U ′ ⇒ U ′ are finite locally free), then for u′0 ∈ U ′(k) over y′ the

projection to the u′0-factor identifies Osh
Y ′,y′ with the subring of elements b′ ∈ Osh

U ′,u′
0
satisfying

q′1
∗(b′) = q′2

∗(b′) in Osh
P ′,ξ′ for all ξ′ ∈ q′1

−1(u′0) ∩ q′2
−1(u′0) ⊆ P ′(k).
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Consider y′ and y so that AutY ′(k)(y′) → AutY (k)(y) is an isomorphism. Since P ′ =
Y ′ ×Y P and U ′ = Y ′ ×Y U , the equalities [Y ′(k)] = Y ′(k) and [Y (k)] = Y (k) therefore
imply that the surjections P ′(k) � Y ′(k) ×Y (k) P (k) and U ′(k) � Y ′(k) ×Y (k) U(k) are
injective over {y′}×P (k) and {y′}×U(k) respectively. Thus, choosing u0 and u′0 as above
with u′0 also over u0 (this can be done), the map P ′ → P induces a bijection on k-points
from q′1

−1(u′0)∩q′2
−1(u′0) to q−1

1 (u0)∩q−1
2 (u0). But U ′ → U and P ′ → P are étale because of

the hypothesis that Y ′ → Y is étale, so the natural map Osh
U,u0
→ Osh

U ′
0,u′

0
is an isomorphism

and likewise for the strictly henselian local rings at ξ′ and ξ on P ′ and P as above. Hence,
the naturally induced map Osh

Y,y → Osh
Y ′,y′ via Y ′ → Y is an isomorphism. �

We now show that the finite type map ∆ : R′ → U ′×S U ′ is monic for locally noetherian
S. The composite of ∆ with the first projection U ′ ×S U ′ → U ′ has étale fibers, so ∆ has
étale fibers and hence is unramified. Thus, by [4, IV4, 17.2.6], ∆ is monic if and only if it is
injective on k-points for any algebraically closed field k. The problem is to prove that the
map R′(k) → U ′(k) × U ′(k) is injective. By the coarse moduli property, this is identified
with the map [(U ′ ×X U ′)(k)] = [R′(k)] → [U ′(k)] × [U ′(k)] whose injectivity follows
from the condition that U ′(k)→X (k) induces bijections on automorphism groups.

If X is S-separated then ∆ is even a closed immersion. Indeed, since ∆ is a monomor-
phism we just have to show that it is proper, and this goes as follows. Certainly ∆ is finite
type, and to see that it is separated we observe that its diagonal is the bottom side of the
commutative square

R

��

// R×U×SU R

��
R′ // R′ ×U ′×SU ′ R′

whose left side is surjective, top side is a closed immersion (since the base change R→ U×SU
of ∆X /S is separated), and right side is finite (since U → U ′ and R→ R′ are finite). Hence,
the bottom has closed image and thus is a closed immersion. To prove that ∆ is universally
closed, we use the commutative square

R //

��

U ×S U

��
R′

∆
// U ′ ×S U ′

whose left side is surjective and top and right sides are universally closed.

Corollary 4.3. The subfunctor R′ ⊆ U ′ ×S U ′ is an equivalence relation.

Proof. The fiber product U ′×X R′ = R′×U ′ R′ is a scheme that is étale over R′ (via second
projection), and the natural map R′×U ′R′ → R′×U ′R′ of étale R′-schemes is étale. It is also
bijective on geometric points (since the second projection R′ = U ′×X U ′ → U ′ induces a
bijection on automorphism groups at geometric points), whence it is an isomorphism. But
the scheme R′×U ′ R′ is flat over the coarse moduli space R′ for R′, and so by compatibility
with flat base change for this coarse moduli space it follows that R′ ×U ′ R′ is the coarse
moduli space for (R′ ×U ′ R′)×R′ R′ = R′ ×U ′ R′ = U ′ ×X U ′ ×X U ′. Hence, R′ ×U ′ R′

is the coarse moduli space for R′ ×U ′ R′. It follows that we may define a unique map
c′ : R′×U ′ R′ → R′ compatible with p13 : R′×U ′ R′ = U ′×X U ′×X U ′ → U ′×X U ′ = R′.
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Thus, the pre-relation R′ ⊆ U ′ ×S U ′ is transitive. Symmetry follows via the involution
i′ : R′ ' R′ induced by the “flip” automorphism R′ = U ′ ×X U ′ ' U ′ ×X U ′ = R′, and
reflexivity is obtained via the section e′ : U ′ → R′ induced by ∆U ′/X : U ′ → R′. �

Lemma 4.1 provides a coarse moduli space π : X → X = U ′/R′ with separated and
quasi-compact π when S is locally noetherian, and so Theorem 1.1 for such S is settled via:

Lemma 4.4. For locally noetherian S, π : X → X is proper and quasi-finite.

Proof. Since X and X are locally of finite type over S, π is locally of finite type and hence
is quasi-finite. To check properness of π, we recall that by [4, II, 5.6.3] a separated map
of finite type T ′ → T between locally noetherian schemes is proper if the induced map
An

T ′ → An
T is closed for all n ≥ 1. By Chow’s lemma for stacks [7], the same assertion holds

if T ′ is an Artin stack rather than a scheme. Hence, to prove that π is proper it suffices to
prove that it induces a closed map on topological spaces after flat base change by the maps
An

U ′ → X. Since U ×X An
U ′ is separated and quasi-finite over An

U ′ , hence quasi-projective
locally over S, and the formation of the coarse moduli space π : X → X commutes with
flat base change on X by construction, base change from X to such schemes An

U ′ reduces
us to proving that π is closed. The closed sets in X are the images of closed sets Z ⊆ U
with p−1

1 (Z) = p−1
2 (Z) as closed subsets in R (i.e., Z is R-invariant). The image of Z in

U ′ under the affine integral map U → U ′ is a closed subset Z ′ ⊆ U ′. We want Z ′ to have
closed image in X = U ′/R′, so it suffices to prove that Z ′ is R′-invariant.

Pick z′ ∈ Z ′ and r′ ∈ R′ with (say) p′2(r
′) = z′. We need that u′ = p′1(r

′) ∈ U ′ also
lies in Z ′. Pick z ∈ Z over z′. If R → R′ ×p′

2,U ′ U is surjective then we can find r ∈ R

over r′ with p2(r) = z ∈ Z, so in that case p1(r) ∈ U also lies in Z (by R-invariance) and
thus the image u′ ∈ U ′ of p1(r) lies in Z ′ as desired. As for the surjectivity of the map
R → R′ ×p′

2,U ′ U , we work at the level of k-points for an algebraically closed field k to
reduce to verifying surjectivity of the map R → R′ ×U ′ U (using the second projections
p2 : R→ U and R′ → U ′). This map is identified with the map U ×X U → U ′×X U that
is a base change of the surjection U → U ′, so it is surjective. �

5. Proof of Theorem 1.1 over a general base scheme

In the absence of noetherian assumptions our working setup is with S = Spec A for a
commutative ring A, so we may write S = lim←−Sα with Sα = Spec Aα for the directed
system of noetherian subrings Aα in A. By working Zariski-locally on X , it follows from
[8, 2.2] that for some α0 we can find a finite type Artin stack Xα0 over Sα0 that induces
X by the base change S → Sα0 , and if X is S-separated then we can assume Xα0 is Sα0-
separated. Since IS(X ) = S×Sα0

ISα0
(Xα0) is finite over X = S×α0 Xα0 , by increasing α0

we can also assume that ISα0
(Xα0) is Xα0-finite. We can apply Lemma 2.2 Zariski-locally

on Xα0 to arrange that there is a quasi-finite, flat, finite type covering U ′
α0
→ Xα0 by an

Sα0-separated Artin stack admitting a finite flat cover Uα0 → U ′
α0

by a quasi-projective
Sα0-scheme. Define R′

α0
= U ′

α0
×Xα0

U ′
α0

and Rα0 = Uα0 ×Xα0
Uα0 , and for α ≥ α0 (the

only α we shall consider) define Xα, U ′
α, R′

α, Uα, and Rα by the base change Sα → Sα0

(so R′
α = U ′

α ×Xα U ′
α). Similarly define U ′, R′, U , and R over S, so U = lim←−Uα and

R = lim←−Rα (with affine transition maps). We can choose U ′
α0
→ Xα0 so that it induces

bijections on automorphism groups at geometric points, so the analogous property holds at
each α-level and for the associated stacks over S due to the argument in Remark 2.3.
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Let U ′
α and R′

α denote the coarse moduli spaces (even schemes) associated to U ′
α and R′

α

respectively, and likewise with U ′ and R′ for U ′ and R′ by Theorem 3.1. The formation
of these schemes does not generally commute with change in α. By functoriality we get
natural inverse systems {U ′

α} and {R′
α}, and by the construction of these coarse moduli

spaces via “rings of invariants” it follows that the transition maps in these inverse systems
are affine and the inverse limits are respectively naturally identified with U ′ and R′.

By our work in the noetherian case, R′
α ⇒ U ′

α over Sα is an étale equivalence relation for
each α. Let ∆′

α : R′
α → U ′

α ×Sα U ′
α be the monic diagonal. If X is S-separated then the

∆′
α are also proper and hence are closed immersions. A map between directed systems of

rings is an isomorphism (resp. surjective) on direct limits when it is an isomorphism (resp.
surjective) at each level. Thus, passing to the limit on α, the natural map

∆′ = lim←−∆′
α : R′ → U ′ ×S U ′

has diagonal that is an isomorphism (so ∆′ is monic) and if X is S-separated then ∆′ is
a closed immersion. The subfunctor R′ ⊆ U ′ ×S U ′ is an equivalence relation because each
R′

α ⊆ U ′
α ×Sα U ′

α is an equivalence relation.
To show that the maps p′1, p

′
2 : R′ ⇒ U ′ are étale we cannot pass to direct limits because

perhaps the condition of being locally of finite presentation may be lost upon passing to the
limit. Since p′2,α : R′

α → U ′
α is étale, the natural map R′

α → R′
α0
×U ′

α0
U ′

α induced by p′2,α0

and p′2,α is a U ′
α-map between étale U ′

α-schemes, so it is an étale map between Sα-schemes
of finite type. This is an isomorphism if and only if it is bijective on geometric points (by
[4, IV4, 17.9.1]). Such bijectivity follows from:

Lemma 5.1. The Sα-map R′
α → R′

α0
×U ′

α0
U ′

α is a universal homeomorphism.

Proof. Since diagonal maps for schemes are immersions, it is equivalent to prove that this
map induces a homeomorphism after any base change on Sα. Although the formation of
the coarse moduli scheme in Theorem 3.1 may fail to commute with base change, the base
change morphism is always a universal homeomorphism due to the topological description
of the quotient space and the fact that affine integral maps are universally closed. Also, the
formation of such coarse schemes is compatible with flat base change, so R′

α0
×U ′

α0
U ′

α is
the coarse moduli scheme for the quotient stack R′

α0
×U ′

α0
U ′

α = R′
α0
×U ′

α0
U ′

α0
×Sα0

Sα over
Sα. Thus, the natural map R′

α×U ′
α

U ′
α → R′

α0
×U ′

α0
U ′

α is a universal homeomorphism with
respect to base change on Sα. But R′

α×U ′
α
U ′

α → R′
α×U ′

α
U ′

α is a universal homeomorphism
with respect to base change on Sα, so the natural map R′

α0
×U ′

α0
U ′

α → R′
α0
×U ′

α0
U ′

α is a
universal homeomorphism with respect to such base change.

Hence, since the formation of the quotient stacks R′
α and U ′

α commutes with base change
on Sα, our universal homeomorphism problem with respect to base change on Sα is identified
with the problem for the natural map R′

α → R′
α0
×U ′

α0
U ′

α. The formation of this final map
commutes with any base change on Sα. �

This lemma and its analogue for p′1,α and p′1,α0
give the crucial result that the natural

maps R′
α → R′

α0
×U ′

α0
U ′

α and R′
α → U ′

α ×U ′
α0

R′
α0

(respectively induced by the second and
first projections R′

α ⇒ U ′
α) are isomorphisms. By passing to the limit on α, we conclude

that the natural maps R′ → R′
α0
×U ′

α0
U ′ and R′ → U ′×U ′

α0
R′

α0
(respectively induced by the

second and first projections R′ ⇒ U ′) are isomorphisms. Hence, the projection p′i : R′ → U ′

is a base change of p′i,α0
: R′

α0
→ U ′

α0
, so each p′i is étale since each p′i,α0

is étale. Thus, by
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Lemma 4.1 we obtain a quasi-compact separated map π : X → X = U ′/R′ that is a coarse
moduli space, and X is separated over S if X is S-separated.

Since the S-scheme maps U ′ → U ′
α0
×Sα0

S and R′ → R′
α0
×Sα0

S are universal homeomor-
phisms with repsect to base change on S, they are universal homeomorphisms of schemes.
(Here we use that diagonal maps for scheme morphisms are immersions, exactly as in the
proof of Lemma 5.1.) The induced map on algebraic space quotients X → Xα0 ×Sα0

S
is therefore a universal homeomorphism. But X → Xα0 ×Sα0

S is an isomorphism since
U → Uα0×Sα0

S and R→ Rα0×Sα0
S are isomorphisms, so we conclude that π : X → X is

a universal homeomorphism because πα0 : Xα0 → Xα0 is a universal homeomorphism (via
the settled noetherian case). Since X → S is locally of finite type, the map π is locally of
finite type and hence (by separatedness and quasi-compactness) proper.

The formation of π commutes with flat base change of algebraic spaces X ′ → X because
the formation of the coarse moduli spaces R′ and U ′ for R′ and U ′ commutes with flat
base change on R′ and U ′ respectively (Theorem 3.1(1)).

Corollary 5.2. Let X be a locally finitely presented Artin stack over a scheme S, and
assume ∆X /S is quasi-finite. The existence of a coarse moduli space π : X → X with
separated π is equivalent to finiteness of IS(X ).

Proof. By Theorem 1.1, finiteness of IS(X ) provides such a π. Conversely, if such a sepa-
rated π exists then let us show that IS(X ) is finite. We use the criterion in Remark 2.3.
Let X0 ⊆ X be a quasi-compact open substack over an open affine S0 ⊆ S, and X0 ⊆ X
its quasi-compact open image in X, so there is a quasi-compact étale cover X ′

0 → X0 by an
affine scheme. Let X ′

0 = X0 ×X0 X ′
0, so this is separated over X ′

0 and thus over S0. Since
∆X ′

0/S0
is quasi-finite, the stack IS0(X

′
0 ) is therefore finite (over X ′

0 ). Pick x ∈ X0(k) for
an algebraically closed field k, and choose x′ ∈ X ′

0 (k) over x, so x and x′ have the same
automorphism group (in their respective categories). By finiteness of IS0(X

′
0 ), there is a

representable, quasi-compact, separated, and étale neighborhood U ′ of (X ′
0 , x′) such that

U ′ is separated over S0, U ′ has a finite locally free scheme cover, and U ′ → X ′
0 induces

bijections on automorphism groups at geometric points. Since U ′ →X0 is a representable,
quasi-compact, and étale neighborhood of (X0, x), by using the converse direction in Re-
mark 2.3 we deduce the X0-finiteness of IS0(X0) = X0×X IS(X ). Such X0’s cover X , so
IS(X ) is X -finite. �
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