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1. Introduction

In Artin’s work on algebraic spaces and algebraic stacks [A2], [A3], a crucial ingredient is the use of his
approximation theorem to prove the algebraizability of formal deformations under quite general conditions.
The algebraizability result is given in [A2, Thm 1.6], and we recall the statement now (using standard
terminology to be recalled later).
Theorem 1.1. (Artin) Let S be a scheme locally of finite type over a field or excellent Dedekind domain,
and F a contravariant functor, locally of finite presentation, from the category of S-schemes to the category
of sets. Let κ be an OS-field of finite type, and ξ0 ∈ F (κ) an element. Assume that there exists a complete
local noetherian OS-algebra (A,m) with residue field κ and an element ξ ∈ F (A) lifting ξ0 ∈ F (κ) such that
ξ is an effective versal deformation of ξ0.

Then there exists a finite type S-scheme X, a closed point x ∈ X with residue field κ, an element ξ ∈ F (X)
lifting ξ0 ∈ F (κ) = F (k(x)), and an OS-isomorphism σ : ÔX,x ' A such that F (σ)(ξ) and ξ coincide in
F (A/mn+1) for all n ≥ 0. The isomorphism σ is unique if ξ is an effective universal deformation of ξ0.
Remark 1.2. For a scheme S, an OS-field of finite type is a field κ equipped with a finite type map Spec(κ)→
S. When S is locally noetherian, this is equivalent to saying that κ is a finite extension of the residue field
k(s) at a locally closed point s ∈ S (see Lemma 2.1).

Whereas the techniques in [A3] are extremely conceptual and easy to digest, these methods ultimately
depend upon Theorem 1.1, whose proof in [A2] (together with its clarification in [A3, Appendix]) is quite
intricate and hard to “grasp”. Moreover, there are two ways in which the proof of this result uses the
hypothesis (harmless in practice) that S is locally of finite type over a field or excellent Dedekind domain.
First, this condition is needed in Artin’s original form of his approximation theorem [A1]. Second, and
perhaps more seriously (in view of Popescu’s subsequent proof of the Artin approximation theorem for
arbitrary excellent rings), the detailed analysis in the proof of Theorem 1.1 uses very special properties of
fields and Dedekind domains (such as the structure theorem for modules over a discrete valuation ring).

The restriction to base schemes locally of finite type over a field or excellent Dedekind domain in Artin’s
form of his approximation theorem is also the source of the restriction to finite extensions κ of residue fields
at locally closed points of S (see Remark 1.2), rather than at general points of S, when algebraizing formal
deformations as in Theorem 1.1. Since arbitrary localization preserves the property of excellence but tends
to destroy the property of a map being (locally) of finite type, if one can work in the more general context
of excellent base schemes then one can also hope to get algebraization results over arbitrary points of S.

In this note, we present a proof of Theorem 1.1 with S permitted to be an arbitrary excellent scheme and
κ permitted to be a finite extension of k(s) for an arbitrary point s ∈ S (but of course the point x ∈ X as in
Theorem 1.1 can only be taken to be closed if and only if κ is of finite type over OS). In fact, we shall prove
a “groupoid” generalization analogous to [A3, Cor 3.2]; see Theorem 1.5. As a consequence, the entirety of
[A3] is valid as written for an arbitrary excellent base scheme S. The central technical ingredient we need is
the following remarkable result of Popescu:
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Theorem 1.3. (Popescu) Let A be a noetherian ring and B a noetherian A-algebra. Then the map A→ B
is a regular morphism if and only if B is a direct limit of smooth A-algebras.
Remark 1.4. Recall that a morphism f : X → Y of locally noetherian schemes is said to be regular if it
is flat, all (locally noetherian!) fiber schemes Xy are regular, and such regularity is preserved under finite
extension of the residue field (i.e., Xy ×κ(y) k is regular for any finite extension field k/κ(y) for any y ∈ Y ).

For commutative rings one makes the same definition using the corresponding affine schemes.
The most important example of Theorem 1.3 for our purposes is the case where A → B is the natural

map from an excellent local ring to its completion (in which case regularity of the map is part of the
definition of excellence). Popescu’s proof is presented in [P1], [P2], [P3], and we refer the reader to [Sw]
for a self-contained and clearly written technical exposition of the proof of Theorem 1.3 which takes into
account various subsequent simplifications, and to [Sp] for a proof of a slightly stronger result than Popescu’s
(but proceeding along related lines). Note that although [Sw] only claims to get a filtered colimit rather
than an ordinary direct limit, one can get ordinary direct limits in the main conclusion by using an easy
modification of the proof of “(ii)⇒ (iii)” in [L, Thm 1.2] (replacing the use of finite free modules with the
use of smooth algebras); we leave the details as an exercise for the reader and we refer to [Bou, Ch X, §1.6]
for the general context for such arguments. We prefer to use this stronger form of Popescu’s theorem since
it is psychologically simpler to understand and the condition of a functor being locally of finite presentation
is typically expressed in terms of behavior with respect to direct limits (rather than more general limits); cf.
[EGA, IV3, 8.14.2]

Since the henselization of an excellent local ring A is excellent [EGA, IV4, 18.7.3], it follows immediately
from Popescu’s theorem applied to A → Â that the Artin approximation theorem is valid for any excellent
local ring A, not just those essentially of finite type over a field or excellent Dedekind domain. Quite
amusingly, the use of Popescu’s theorem in the proof of Theorem 1.1 over an excellent base has the effect of
removing the Artin approximation theorem from the proof! However the approximation theorem is necessary
when considering properties of algebraizations such as “uniqueness” (as we shall see in the proof of Theorem
5.3).

The proof of Theorem 1.3 is intricate and technical, so one could perhaps rightly say that the input we
require is more complicated than Artin’s proof of Theorem 1.1. However, the statement of Theorem 1.3 is
something which is very easy to internalize (e.g., the proof of the “if” direction is elementary), so we think
it is of some interest that one can use this result to give a methodologically simpler proof of Theorem 1.1
which moreover is valid over any excellent base.

In order to give the statement of our main result, we introduce some notation. Let S be a scheme and
F be a category cofibered in groupoids over the category of S-schemes. In practice, this roughly means
that F (T ) (for a variable S-scheme T ) is a category of geometric structures over T which behave well with
respect to base change. For example, F could be a contravariant set-valued functor (viewed as a category
with only identity map morphisms), or F (T ) could be the category of stable T -curves of a fixed genus or
abelian T -schemes of a fixed relative dimension endowed with a polarization of a fixed degree.

For each S-scheme T we assume that the category F (T ) has a set of isomorphism class representatives, so
it makes sense to define the contravariant set-valued functor F with F (T ) denoting the set of isomorphism
classes of objects in F (T ). The reader who does not like to work with categories (co)fibered in groupoids
can think about the special case in which F is just a contravariant set-valued functor (so F (T ) = F (T ) is a
small category in which the only morphisms are identity morphisms).

If κ is an OS-field (i.e., a field equipped with a morphism Spec(κ)→ S), we say that κ is residually finite
(over S) if [κ : k(s)] < ∞, where s is the image of Spec(κ) → S. Note that s ∈ S can be arbitrary. Here is
the main result of this paper:
Theorem 1.5. With the notation introduced above, assume that S is excellent. Also assume that F is locally
of finite presentation (see (2.1)), satisfies the Schlessinger-Rim criteria (see Definition 2.5), and the natural
map of sets

(1.1) F (B)→ lim←−F (B/mn+1
B )

has dense image for all complete local noetherian OS-algebras (B,mB) with B/mB residually finite over S.
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For any residually finite OS-field κ and any object ξ0 in F (κ), any formal versal deformation of ξ0 is
algebraizable (i.e., there exists an (X,x) as in Theorem 1.1 for our F , though with x a closed point if and
only if s ∈ S is a locally closed point).

Remark 1.6. If F is instead only cofibered in groupoids over the full subcategory of locally noetherian S-
schemes, the proof of Theorem 1.5 goes through without change. If we only assume the denseness of the
image of (1.1) when B/mB is a finite type OS-field, then the conclusion of the theorem requires the extra
condition that κ be a finite type OS-field. For most F which arise in interesting moduli problems, the map
(1.1) is even bijective.
Remark 1.7. The referee called our attention to the existence of work [PR] by Popescu and Roczen from
1988 in which they assert a result which is essentially Theorem 1.5 for set-valued F (though the restriction to
such F is not essential for their method). Their strategy is strikingly similar to ours, but their proof appears
to be incomplete, roughly corresponding to the fact that they have no result analogous to our Theorem 3.2.
More specifically, whereas we need to make approximations in a smooth algebra occuring in a direct limit
process, the proof of [PR, Thm 1.2] only makes an approximation in the direct limit object itself and then
argues that a certain map g : A→ D∧ of complete local noetherian rings is an isomorphism because it is so
modulo squares of the maximal ideal. This only works if one knows the source and target rings for g have
the same Hilbert series (i.e., nth order artinian quotients having the same length for all n). But there seems
to be no reason to expect such an equality of Hilbert series to automatically hold in the generality suggested
by the proof of [PR, Thm 1.2], and we have to argue with a refinement of the Artin-Rees lemma in order to
ensure such equality.

We illustrate the gap in the proof of [PR, Thm 1.2] with a simple example (using the notation from that
proof). Let B = k be a field, A = k[x], and A = k[[x]] its x-adic completion. Let F be the functor represented
by A on the category of k-algebras. We let ξ0 ∈ F (k) correspond to x 7→ 0 and let ξ ∈ F (k[[x]]) correspond
to the natural map A → A which is an algebraization of the universal deformation of ξ0. We will now see
that attempting to algebraize (A, ξ0) following the method of proof of [PR, Thm 1.2] need not work. Since
A is already a formal power series ring over k, the first step is to apply Theorem 1.3 to express A as a
direct limit of smooth k-algebras and to bring down ξ through some stage of the direct limit. In general one
cannot expect the smooth algebras in Theorem 1.3 to be subalgebras of the direct limit, so in our example
we consider the smooth k-algebra C = k[x, t] equipped with the k-map f : C → A defined by x 7→ x and
t 7→ 0. Note that t ∈ C maps to a generator of the kernel (0) of the (trivial) presentation of A as a quotient
of k[[x]].

The obvious map A → C (defined by x 7→ x) is an element η ∈ F (C) for which ξ = F (f)(η). We
approximate the map f by the map fn : C → k[x] defined by x 7→ x and t 7→ xn, and consider the artin local
ring Dn = k[x]/fn(t) = k[x]/xn. The point ηn ∈ F (Dn) induced by F (fn)(η) is just the natural quotient
map k[x] → k[x]/xn. The map A → D̂ = D induced by specializing the algebraized universal deformation
ξ ∈ F (A) to the deformation ηn ∈ F (D) is the natural surjection, and this is not an isomorphism no matter
how large we make n (to make fn closely approximate f). This shows that the argument in [PR] (which
would use the above procedure, even with n = 2) is incomplete, regardless of how accurately one tries
approximate f by an “algebraic” map. From the point of view of our proof of Theorem 1.5, the problem in
this example is that although the base change of the C-linear presentation diagram

C
t−xn // C // C/(t− xn) // 0

by C → A does recover a presentation

A
0 // A

id // A // 0

of A = k[[x]], the “matrix entry” t − xn in the presentation is not at all small relative to the (x, t)-adic
topology on C.

Since Theorem 1.5 renders the entirety of [A3] valid over any excellent base scheme S at all, as an
immediate consequence it follows that Artin’s proof of the necessary and sufficient criterion for an S-stack to
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be a locally finite type algebraic S-stack, given for S locally of finite type over a field or excellent Dedekind
domain in [LM, Cor 10.11], is valid for any excellent base scheme S at all.

In another direction, one can ask about étale-local uniqueness of algebraizations of a given formal versal
deformation. This has an affirmative answer under a mild “full faithfulness” hypothesis on F (exactly
analogous to [A2, 1.7]), so one frequently has a well-defined notion of “henselized algebraization”. If one
assumes in addition that F is formally Deligne-Mumford (see Definition 5.5), it then makes sense to ask
whether AutF (κ)(ξ0) acts naturally on the henselized algebraization of a minimal formal versal deformation.
See Theorem 5.3 and Theorem 5.7 for precise affirmative statements along these lines. Assuming in addition
that AutF (κ)(ξ0) is finite, one can even construct algebraizations to which the action of this group descends
(without needing to henselize); this is formulated more precisely in Theorem 5.8.

Notation

If B is a ring and r is a non-negative integer, we denote by B⊕r a finite free B-module of rank r (with
specified basis). If ϕ : M → N is a B-linear map of B-modules, we denote by im(ϕ) the image module of ϕ.

If C is a category and X is an object in C , we will sometimes denote this fact by writing X ∈ C . This
should not cause any confusion.

If S is a scheme and F is a category cofibered in groupoids over the category of S-schemes, for an affine
scheme U over S we may sometimes write F (A) rather than F (U), where A = OU (U). Also, we will write F
to denote the contravariant set-valued functor defined by letting F (T ) denote the set of isomorphism classes
of objects in the groupoid F (T ).

2. General nonsense on deformations

We are concerned with the problem of approximating formal deformations by structures defined over
“algebraic” rings (relative to a base). Such problems are of local nature (over the base) and hence only
involve structures defined over affine base schemes, so there is no serious loss of generality in immediately
focusing on functors of rings rather than functors of schemes. However, it is conceptually a bit clearer (and
more geometric in spirit) to work “globally” at the start and briefly postpone the passage to the case of an
affine base. In this section, we collect basic generalities along these lines for ease of reference later. The
expert reader can skip ahead to §3.

Let S be a locally noetherian scheme. Following Artin, we define the category of OS-algebras to be the
category of rings A equipped with a morphism Spec(A) → S, and we say that an OS-algebra A is of finite
type if the morphism Spec(A)→ S is of finite type. For example, we have the basic and well-known:
Lemma 2.1. Let κ be an OS-algebra which is a field, and let s ∈ S be the image of Spec(κ) → S. Then κ
is of finite type as an OS-algebra if and only if [κ : k(s)] is finite and s is a locally closed point in S (i.e.,
for sufficiently small open U in S around s, the point s is closed in U).

The example of the generic point of the spectrum of a discrete valuation ring shows that we cannot replace
“locally closed” by “closed” in this lemma.

Since the property of being excellent (unlike the property of being of finite type) behaves well with respect
to arbitrary localization, for our purposes it is convenient to work with a more general notion than finite
type OS-field (though such extra generality will be harmless, since all arguments we give ultimately work
with a single κ that is fixed throughout the discussion).
Definition 2.2. We shall say that an OS-field κ is residually finite (over S) if the image point s of Spec(κ)→
S is such that the degree [κ : k(s)] is finite.

This notion certainly includes all OS-fields of finite type, but it allows s ∈ S to be arbitrary.

Definition 2.3. For an OS-field κ lying over s ∈ S, we define Ĉ S(κ) to be the category of complete local
noetherian OS-algebras A equipped with an isomorphism A/mA ' κ over OS . We define C S(κ) to be the
full subcategory of artinian objects.

For the convenience of the reader, we now review some deformation-theoretic terminology. Let F be a
category cofibered in groupoids over the category of S-schemes. If π : B′ � B is a surjection of OS-algebras
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and ξ is an object in the groupoid F (B), then we define a deformation of ξ to B′ to be a pair (ξ′, ι) where ξ′

is an object in F (B′) and ι is an isomorphism from F (π)(ξ′) to ξ in F (B). The deformation groupoid Fξ(B′)
is a subcategory of F (B′) defined in an evident manner (i.e., one keeps track of and demands compatibility
with the ι’s too). We will often suppress the mention of ι in the notation if no confusion is likely, but it is
sometimes important to explicitly keep track of such extra data. The corresponding set-valued functor of
isomorphism classes will be denoted F ξ0 rather than the more accurate Fξ0 (we will have no need to consider
the deformation theory of F , except of course when F is set-valued, so there is no risk of confusion with the
notation F ξ0).

If κ is an OS-field and ξ0 is an object in F (κ), we define the formal deformation groupoid F̂ξ0 on Ĉ S(κ)
by declaring F̂ξ0(C) to be the category of projective systems (ξn, ιn) with each (ξn, ιn) ∈ Fξ0(C/mn+1

C ).
For a pair (A, a) with A ∈ C S(κ) and a ∈ Fξ0(A), as well as a pair (C, (ξn)) with C in Ĉ S(κ) and (ξn) in

F̂ξ0(C), we define

HomF̂ξ0
(ξ, a) def= lim−→HomFξ0

(ξn, a),

where HomFξ0
(ξn, a) denotes the set of pairs (h, ψ) where

h : C/mn+1
C → A

is a map in C S(κ) and ψ : F (h)(ξn)→ a is an isomorphism in Fξ0(A).

Definition 2.4. We say that ξ = (ξn) ∈ F̂ξ0(C) is a formal versal deformation of ξ0 if, for any surjection
π : A′ � A in C S(κ) and any morphism

h : a′ → a

from a′ ∈ Fξ0(A′) to a ∈ Fξ0(A) over π, the natural map of sets

h ◦ (·) : HomF̂ξ0
(ξ, a′)→ HomF̂ξ0

(ξ, a)

is surjective.
Our aim is to study the deformation theory of an object ξ0 ∈ F (κ), where κ is a residually finite OS-field

and F is a “reasonable” category cofibered in groupoids over S. We make two hypotheses on F which are
nearly always satisfied in practice:

• F is locally of finite presentation over S. That is, for any directed system {Ai} of OS-algebras with
direct limit A, the natural transformation of categories

(2.1) lim−→F (Ai)→ F (A)

is fully faithful and essentially surjective. This means that every object in F (A) is isomorphic to
the image of an object in some F (Ai), and for any two objects xi, yi in F (Ai) with corresponding
induced objects xi′ , yi′ in F (Ai′) (for all i′ ≥ i) and x, y in F (A), the natural map of sets

lim−→HomF (Ai′ )
(xi′ , yi′)→ HomF (A)(x, y)

is a bijection.
• For any complete local noetherian OS-algebra (B,mB) with B/mB residually finite over S, and any
ξ0 ∈ F (B/mB), the natural map of sets

(2.2) F ξ0(B)→ lim←−F ξ0(B/mn+1
B )

has dense image.
The first of these two conditions is satisfied by nearly all F ’s which arise “in nature” [EGA, IV3, §8ff]. The

second condition is a very weak approximation hypothesis which, in practice, is nearly always an immediate
consequence of Grothendieck’s Existence Theorem for formal schemes [EGA, III1, §5] and typically holds
without restriction on the residue field of B. Often (2.2) is even bijective. Note that these two hypotheses
on F are preserved if we restrict F to the category of S′-schemes for an S-scheme S′ → S which induces
finite residue field extensions at all points (e.g., S′ is locally quasi-finite over S or, what is of more interest,
S′ = Spec(OS,s) for some s ∈ S). The denseness condition in (2.2) is only to be used as a device to ensure
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the effectivity of formal versal deformations. As usual in deformation theory, for ξ0 ∈ F (κ) we will be
particularly interested in the groupoids Fξ0(A) for A in C S(κ).
Definition 2.5. Let κ be a residually finite OS-field and ξ0 an object in F (κ). We say that F satisfies the
Schlessinger-Rim criteria at ξ0 if:

• Fξ0 over C S(κ) is semi-homogeneous in the sense of [SGA7, Exp VI, 1.16], which implies that the
set F ξ0(κ[ε]) admits a natural structure of κ-vector space;
• dimκ F ξ0(κ[ε]) <∞.

We say that F satisfies the Schlessinger-Rim criteria if these two properties hold for any residually finite
OS-field κ and any object ξ0 in F (κ).

The Schlessinger-Rim criteria on F at ξ0 are essentially just a groupoid version of the classical Schlessinger
criteria, also allowing for the possibility that [κ : k(s)] > 1. In [SGA7, Exp VI, 1.11, 1.20], Rim adapts the
techniques in [Sch] to prove that the Schlessinger-Rim criteria for F at ξ0 are sufficient for the existence and
(non-canonical) uniqueness of a minimal versal formal deformation ξ ∈ F̂ξ0(C) of ξ0. When κ = k(s), or
more generally κ is separable over k(s), minimality of (C, ξ) is exactly the condition that the natural map
of sets

ξ : HomĈS(κ)(C, κ[ε])→ F ξ0(κ[ε])

be bijective. When κ is allowed to be inseparable over k(s), minimality involves a technical condition on
k(s)-derivations of κ; we refer to [SGA7, Exp VI, 1.19(2)] for the precise definition in general (Rim’s Λ and
K ′ are our ÔS,s and κ respectively, the derivation D in Rim’s definition of minimality must be required
to be Λ-linear, and the map γ in [SGA7, Exp VI, 1.18(2)] is K ′-linear). For our purposes, the only role
of Definition 2.5 will be to allow us to apply results of Rim from [SGA7, Exp VI], so it isn’t necessary to
provide the precise general definitions of semi-homogeneity or minimality here.
Remark 2.6. When κ is allowed to be inseparable over k(s), the existence of the ring S with properties as
asserted in the proof of [SGA7, Exp VI, 1.20] appears to require further justification than is given there.
One can use a theorem of Grothendieck’s on formal smoothness [EGA, 0IV, 19.7.2] to reduce to the case
Λ = K, and then induction on the inseparable degree via a slightly involved argument with exact sequences
of modules of differentials takes care of the rest.
Definition 2.7. For C in Ĉ S(κ) we say that an object ξ in Fξ0(C) is an effective versal deformation of ξ0
if the object ξ̂ induced by ξ in F̂ξ0(C) is a formal versal deformation. If moreover ξ̂ is minimal, we say that
ξ is a minimal effective versal deformation.

It is unreasonable to expect the existence of effective versal deformations unless one assumes that the
maps (2.2) have dense image. In order to relate effective and formal versal deformations, we recall a standard
lemma.
Lemma 2.8. Let κ be a residually finite OS-field, and ξ0 an object in F (κ). Assume there exists a C in
Ĉ S(κ) and a (ξn) ∈ F̂ξ0(C) which is a formal versal deformation of ξ0. If (2.2) has dense image, then there
exists an effective versal deformation in Fξ0(C) which induces (ξn).

Proof. See the discussion in [A2] following [A2, (1.4)]. Briefly, one first uses the denseness of the image of
(2.2) to find some ξ in Fξ0(C) whose image in Fξ0(C/m2

C) is isomorphic to ξ1. Versality then gives rise to a
map ϕ : C → C which induces the identity on C/m2

C and for which F̂ξ0(ϕ)((ξn)) is isomorphic to the object
ξ̂ in F̂ξ0(C) induced by ξ. Any such map ϕ must be surjective, and then even an automorphism, from which
the lemma follows by using the object Fξ0(ϕ−1)(ξ) in Fξ0(C).

�

By Lemma 2.8, we may begin the task of algebraizing a given formal versal deformation of ξ0 ∈ F (κ) by
at least assuming it to be effective. Alternatively, as in Theorem 1.1, we can simply suppose we are magically
given such an effective versal deformation and abandon the hypothesis that (2.2) have dense image.

To be precise, we fix a residually finite OS-field κ and an object ξ0 in F (κ), and we fix a pair (C, ξC)
where C ∈ Ĉ S(κ) and ξC ∈ Fξ0(C) is an effective versal deformation of ξ0. We want to algebraize (C, ξC),
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which means we seek a finite type OS-algebra B equipped with residue field κ at some point p ∈ Spec(B) and
an object ξB ∈ F (B) such that there is an OS-isomorphism B̂p ' C respecting residue field identifications
with κ and carrying ξB to an object in F (C) isomorphic to ξC .

Note that it suffices to work with B’s which are local and essentially finite type over OS , since ξB can
then always be “smeared out” over a finite type OS-algebra (as F is locally of finite presentation). In such a
local ring situation we will speak of “local algebraizations” to avoid abuse of terminology (as algebraizations
are supposed to be of finite type over S); the distinction is minor since F is locally of finite presentation.
We will carry out a construction of a local algebraization (B, ξB) under the hypothesis that S is excellent.

Since these approximation problems only depend on a neighborhood of s in S, and even just depend
on situations over the excellent affine scheme Spec(OS,s) in which s is a closed point, there is no loss of
generality in now passing to fibered categories over a category of rings and assuming that s is a closed point
in an affine S (cf. Lemma 2.1). We shall adopt this point of view from now on.

3. Some algebra

We need a couple of elementary lemmas which center on the Artin-Rees lemma. The main point is to
control the constant which arises in the Artin-Rees lemma when one approximates a given linear map by
other linear maps.

Let A be a noetherian ring and m an ideal in A. In subsequent applications A will be a complete local
ring and m will be its maximal ideal, but we do not need such conditions here. By the Artin-Rees lemma, if

X : A⊕r1 → A⊕r2

is a map of finite free A-modules, then there exists a non-negative integer c such that

(3.1) X(A⊕r1) ∩mnA⊕r2 ⊆ X(mn−cA⊕r1)

for all n ≥ c. We summarize this situation by saying “c works for (X,m) in the Artin-Rees lemma”. Note
that we can always increase such a c without affecting that it “works”. Of course, we could avoid mentioning
explicit bases of finite free modules (and could even work with finite locally free modules), but it simplifies
the exposition to use matrix and vector notation and this is harmless for the subsequent applications.
Lemma 3.1. Let A be a noetherian ring and m an ideal in A. Let

(3.2) A⊕r0
Y−→ A⊕r1

X−→ A⊕r2

be an exact complex of finite free A-modules. Let c work for both (Y,m) and (X,m) in the Artin-Rees lemma.
Consider a pair of matrices Y ′ and X ′ such that

(3.3) A⊕r0
Y ′−→ A⊕r1

X′−→ A⊕r2

is a complex and such that
Y ≡ Y ′ mod mc+1, X ≡ X ′ mod mc+1.

Then we have the following conclusions:
(1) The same constant c works for (X ′,m) in the Artin-Rees lemma.
(2) The complex (3.3) is exact; i.e., ker(X ′) = im(Y ′).

Later on we will be interested in such diagrams with r2 = 1, in which case (3.2) will arise from a
presentation of a quotient algebra of A. The focus of interest will then be on showing that we can “deform”
X to X ′ without changing the constant which works in the Artin-Rees lemma. Keeping track of an Artin-
Rees constant for Y is what enables one to get such precise control for X ′. The second part of the lemma
will never be used in what follows.

Proof. By localizing, we may assume that A is local. The case m = A is trivial, so we may assume that m
lies inside of the maximal ideal of A. In particular, all finite A-modules are m-adically separated.

We begin by proving the first part of the lemma. Fix n ≥ c and an integer ` ≥ 0. Choose a vector
~a ∈ m`A⊕r1 such that

X ′(~a) ∈ mnA⊕r2 .
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We will show by descending induction on ` that X ′(~a) = X ′(~α) for some ~α ∈ mn−cA⊕r1 , thereby obtaining
that c works for (X ′,m) in the Artin-Rees lemma.

If ` ≥ n− c there is nothing to show, so we may assume ` < n− c. We will find an element Y ′(~b) which
differs from ~a by an element of m`+1A⊕r1 . Once this is done, we can replace ~a with ~a − Y ′(~b) without
affecting X ′(~a) but increasing ` by 1 in the process, so the first part of the lemma would follow.

Note that
X(~a) = X ′(~a) + (X −X ′)(~a) ∈ (mn + mc+1+`)A⊕r2 = mc+1+`A⊕r2

since ` < n− c. Since c works in the Artin-Rees lemma for (X,m), by using n = c+ 1 + ` in (3.1) we get

~a ∈ m`+1A⊕r1 + ker(X) = m`+1A⊕r1 + im(Y )

since ker(X) = im(Y ) by the exactness of (3.2). In other words,

~a = Y (~b) + ~a1

for some ~b ∈ A⊕r0 and some ~a1 ∈ m`+1A⊕r1 . Writing this as

Y (~b) = ~a− ~a1 ∈ m`A⊕r1

and recalling that c works in the Artin-Rees lemma for (Y,m), we can choose ~b so that

~b ∈ mmax{0,`−c}A⊕r0 .

In particular, since Y ≡ Y ′ mod mc+1 we conclude that

(Y − Y ′)(~b) ∈ m`+1A⊕r1

by treating separately the cases ` > c and ` ≤ c.
Thus,

~a = Y (~b) + ~a1 = Y ′(~b) + (Y − Y ′)(~b) + ~a1

with the last two addends in m`+1A⊕r1 . If we replace ~a with ~a−Y ′(~b), then the image X ′(~a) is unaffected but
` goes up by 1. This completes the proof of the first part of the lemma, but since the method of proof only
involves subtracting off well-chosen elements in the image of Y ′ at every step, we get the slightly stronger
conclusion:

(3.4) X ′
−1(mnA⊕r2) ⊆ im(Y ′) + mn−cA⊕r1

This holds for all n ≥ c.
Now we use the m-adic separatedness of finite A-modules. Forming intersections of (3.4) over all n ≥ c,

we get

ker(X ′) = X ′
−1(0) = X ′

−1

⋂
n≥c

mnA⊕r2

 ⊆ ⋂
n≥c

(im(Y ′) + mn−cA⊕r1) = im(Y ′) ⊆ ker(X ′),

the final inclusion because (3.3) is a complex. This gives the assertion that the complex formed by Y ′ and
X ′ is exact.

�

With A and m as above, we define the graded noetherian ring

Grm(A) =
⊕
n≥0

mn/mn+1

and for any A-module M we define the graded Grm(A)-module

Grm(M) =
⊕
n≥0

mnM/mn+1M.

The control on the constant in the Artin-Rees lemma from Lemma 3.1 is used to prove:
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Theorem 3.2. Let X,X ′, Y, Y ′ be as in Lemma 3.1. There is a unique isomorphism of graded Grm(A)-
modules

(3.5) Grm(coker(X)) ' Grm(coker(X ′))

as quotients of Grm(A⊕r2). When r2 = 1, so the images of X and X ′ are ideals in A, then the isomorphism
(3.5) is one of graded Grm(A)-algebras.

In later applications we will be in cases with r2 = 1. The importance of Theorem 3.2 will then be that
“slightly” modifying the relations in an A-algebra quotient of A will not affect the associated graded algebra
of its maximal-adic completion as an algebra over the residue field. This uniform control at all levels of the
maximal-adic filtration is the means by which we will be able to conclude that certain “algebraic” structures
recover given formal structures upon passage to completions (see the use of (4.13) to prove that (4.15) is an
isomorphism).

Although the main theorem in [Eis] gives a result quite similar in appearance to Theorem 3.2, the torsion
condition on homology in that theorem seems to render [Eis] inapplicable in our present situation. More
specifically, one might try to apply [Eis] to our situation modulo mt for t = 1, 2, . . . , but then the order of
approximation arising from [Eis] would a priori depend on t. It may be possible via Lemma 3.1(1) (which
does not seem to follow from [Eis]) to use [Eis] to prove Theorem 3.2, but this would require unwinding the
role of the Artin-Rees lemma in a lot of spectral sequences and so at best seems likely to be more technical
and longer than the arguments we give (if such an alternative argument can be found).

Proof. For any n ≥ 0 we have

Grm(coker(X)) =
⊕
n≥0

mnA⊕r2/(mn+1A⊕r2 + mnA⊕r2 ∩ im(X)),

and likewise for X ′ replacing X. Thus, what we need to show is

(3.6) mn+1A⊕r2 + mnA⊕r2 ∩ im(X) = mn+1A⊕r2 + mnA⊕r2 ∩ im(X ′)

for all n ≥ 0. If n ≤ c (with c as in Lemma 3.1) then the hypothesis X ≡ X ′ mod mc+1 yields (3.6). Thus,
we can (and do) now focus our attention on cases with n > c.

Since c works in the Artin-Rees lemma for (X,m), we see that

mnA⊕r2 ∩ im(X) ⊆ X(mn−cA⊕r1).

But c also works in the Artin-Rees lemma for (Y,m), and hence for (X ′,m) too (by the first part of Lemma
3.1), so

mnA⊕r2 ∩ im(X ′) ⊆ X ′(mn−cA⊕r1).
When ~a ∈ mn−cA⊕r1 we have

(X −X ′)(~a) ∈ mc+1mn−cA⊕r2 = mn+1A⊕r2 ,

(the addition/subtraction of which is therefore harmless for detecting membership in either side of (3.6))
and hence for such ~a we trivially have

X(~a) ∈ mnA⊕r2 ⇔ X ′(~a) ∈ mnA⊕r2 .

Putting these observations together, we get (3.6) for n > c.
�

4. Approximation for groupoids

We are now ready to give the proof of Theorem 1.5. Before starting the proof, we should remark that the
proof of [A3, Cor 3.2] asserts that the special case of Theorem 1.5 for S as in Theorem 1.1 and finite type
OS-fields κ follows purely formally from the statement of the “set-valued” analogue Theorem 1.1 applied
to the set-valued functor F . This seems not quite accurate: we need to keep track of isomorphisms when
algebraizing a given formal deformation, and hence passing to F in the algebraization process appears to
cause too much loss of information. Partly for this reason, we need to work throughout with stacks fibered
in groupoids rather than with set-valued functors in order to prove Theorem 1.5.
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As we explained at the end of §2, there is no loss of generality in restricting to a category fibered in
groupoids over a category of rings rather than a category cofibered in groupoids over a category of schemes.
More specifically, we let R be an excellent ring and F a category fibered in groupoids over the the category
of R-algebras. We assume that F is locally of finite presentation. We pick a complete local noetherian
R-algebra C with residue field κ = κ(C) of finite degree over the residue field k = R/m at a maximal ideal
m of R, and we assume that we are given ξC ∈ F (C) which is an effective versal deformation of

ξ0
def= ξC mod mC ∈ F (κ).

Our aim is to “local-algebraize” the pair (C, ξC) in the sense discussed at the end of §2.
Since the residue field κ of C is finite over the residue field k = R/m at a maximal ideal of R, we can find

an R-algebra map
ϕ : R[t1, . . . , ts]→ C

such that m′
def= ϕ−1(mC) is a maximal ideal of R[t1, . . . , ts] and the natural local map

(4.1) A
def= R[t1, . . . , ts]∧m′ → C

is surjective. Define
B = R[t1, . . . , ts]m′ ,

so A is the maximal-adic completion of B. We choose a free resolution of the A-module C

(4.2) A⊕r0
Y−→ A⊕r1

X−→ A −→ C

where the last map sends 1 7→ 1. We are going to use Popescu’s Theorem 1.3 to approximate this “completed”
situation using essentially finite type B-algebras (which are of course also essentially finite type R-algebras).
The isomorphism in Theorem 3.2 will provide adequate control on maximal-adic filtrations to ensure that
our essentially finite type analogue of (4.2) does in fact recover (C, ξC) upon completion.

Since R is excellent, so B is an excellent local ring, the map B → B̂ = A is a regular morphism. Thus,
by Theorem 1.3 we can write

(4.3) A ' lim−→Bλ

for a directed system {Bλ} of essentially smooth local B-algebras (i.e., each Bλ is a local ring at a point on
a smooth B-scheme, with all transition maps local as well). Note that all ring homomorphisms

B → Bλ → Bλ′ → A→ C

are not only local but even induce isomorphisms on residue fields (since B → C induces an isomorphism on
residue fields, as A = B̂ and (4.1) is surjective).

Applying standard direct limit arguments to (4.2) with the help of (4.3), for a sufficiently large λ0 we can
find matrices Yλ0 and Xλ0 over Bλ0 inducing a complex of Bλ0-linear maps

(4.4) B⊕r0λ0

Yλ0−→ B⊕r1λ0

Xλ0−→ Bλ0

which recovers the first two maps in (4.2) upon applying the extension of scalars Bλ0 → A. For λ ≥ λ0 we
define

(4.5) B⊕r0λ

Yλ−→ B⊕r1λ

Xλ−→ Bλ

to be the extension of scalars of (4.4) by Bλ0 → Bλ, so the first two maps in the diagram (4.2) constitute
the direct limit of the diagrams (4.5) over λ ≥ λ0. In what follows, we implicitly suppose all subscripts λ
satisfy λ ≥ λ0.

The cokernels

(4.6) Cλ = coker(Xλ)
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form a directed system of Bλ-algebras over the directed system {Bλ}, compatible with base changes by
Bλ → Bλ′ for λ′ ≥ λ. Moreover, since the right-hand map in (4.2) sends 1 7→ 1, we have a natural map of
lim−→Bλ = B-algebras

lim−→Cλ → C

which is visibly an isomorphism. Since F is locally of finite presentation, we can therefore find a large λ1

and an object
ξλ1 ∈ F (Cλ1)

admitting a map ξλ1 → ξC over Cλ1 → C.
Recalling that A = B̂, we have the following commutative diagram of local maps of local rings:

(4.7) A // C

B

==||||||||
// Bλ1

j

OO

// Cλ1

OO

R

aaBBBBBBBB

OO <<yyyyyyyy

where the two right horizontal maps are surjections (cf. (4.1) and (4.6)) and the right-most vertical map
underlies a map ξλ1 → ξ. In particular, we have a commutative diagram of completions

(4.8) A = B̂ //

1A

66B̂λ1

ĵ // A

Moreover, since A → C is surjective and B̂ → A is an isomorphism, it follows that the maximal ideal of B
generates that of C, so the commutativity of (4.7) shows that the maximal ideal of Cλ1 generates that of C.
We will use the notation n for the “common” maximal ideal of Cλ1 and C.

Lemma 4.1. There exist y1, . . . , yr ∈ B̂λ1 such that there is an isomorphism

B̂λ1 ' A[[y1, . . . , yr]]

compatible with (4.8). In particular, this isomorphism respects the R-algebra structures on both sides.

Proof. This follows from the fact that A = B̂ and the local map B → Bλ1 is essentially smooth with trivial
residue field extension (cf. proof of [EGA, IV4, 17.5.3]).

�

Now fix a large integer N ≥ 2 (to be determined later using the Artin-Rees lemma for (4.2)) and consider
x1, . . . , xr ∈ Bλ1 such that

(4.9) xi ≡ yi mod mN
B̂λ1

for all i. We write
Bλ1 = Bλ1/(x1, . . . , xr)

and we define Bλ1-linear maps Xλ1 , Y λ1 accordingly by using (4.5) for λ = λ1. By Lemma 4.1 and (4.9),
since N ≥ 2 we see that the natural map

(4.10) ψ : A = B̂ → B
∧
λ1
' B̂λ1/(x1, . . . , xr) ' A[[y1, . . . , yr]]/(x1, . . . , xr)

induced by passage to the completion on B → Bλ1 is an isomorphism.
Since ψ is an isomorphism, it follows that the map B → Bλ1 is essentially étale [EGA, IV4, 17.6.3]. In

addition, we see with the help of Lemma 4.1 and (4.9) that ψ has the following crucial property: for all
b ∈ B̂λ1 ' A[[y1, . . . , yr]],

ĵ(b)− ψ−1(b) ∈ mN
A ,
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where b = b mod (x1, . . . , xr) ∈ B
∧
λ1

.
Consequently, the matrices

X ′
def= ψ−1(X

∧
λ1

), Y ′
def= ψ−1(Y

∧
λ1

)

yield an A-linear complex

(4.11) A⊕r0
Y ′−→ A⊕r1

X′−→ A −→ C ′

(with 1 7→ 1 on the right) which is congruent to (4.2) modulo mN
A .

Let us write

Cλ1

def= Cλ1/(x1, . . . , xr) = coker(Xλ1 : B
⊕r1
λ1
→ Bλ1).

Beware that Cλ1 is “uncompleted”, so it has no A-algebra structure. As we noted before Lemma 4.1, Cλ1

and C have the “same” maximal ideal n. This notation “n” will also be used for the maximal ideal of the
quotient Cλ1 of Cλ1 . Using the B̂ = A-algebra isomorphism

(4.12) C
∧
λ1
' C ′ def= coker(X ′)

defined via the isomorphism ψ, by Theorem 3.2 we obtain a graded R/m-algebra isomorphism

(4.13) GrnCλ1 ' GrnC

if we take N in (4.9) to be large enough (depending only on the Artin-Rees lemma for the matrices X and
Y in (4.2) to make (4.11) sufficiently congruent to (4.2)). In particular, for every non-negative integer i, the
ith graded pieces of the graded R/m-algebras in (4.13) have the same (finite) dimension over R/m.

Let ξλ1
∈ F (Cλ1) be the object obtained from ξλ1 ∈ F (Cλ1) via the quotient map Cλ1 → Cλ1 . Passing to

the quotient of the isomorphism (4.10) by the Nth powers of the maximal ideals and using (4.12), we have
an identification as Cλ1-algebras between

C/nN = coker(X) mod mN
A ' coker(X ′) mod mN

A

and
Cλ1/n

N = coker(Xλ1) mod mN
Bλ1

.

That is, we get an R-algebra isomorphism C/nN ' Cλ1/n
N which makes the diagram

(4.14) Cλ1

!!CCCCCCCC
// C // C/nN

'
��

Cλ1
// Cλ1/n

N

commute. In particular, the pushfoward ξ
∧
λ1
∈ F (C

∧
λ1

) of ξλ1
∈ F (Cλ1) is a deformation of ξ0 ∈ F (κ).

The hypothesis that (C, ξC) is an effective versal deformation of ξ0 implies that there is a local map of
local R-algebras (respecting the residue field κ)

(4.15) σ : C → C
∧
λ1

which lifts the right-hand column of (4.14) and is such that F (σ)(ξC) and ξ
∧
λ1

are isomorphic in F̂ξ0(C
∧
λ1

).
Since N ≥ 2 and σ is an isomorphism modulo Nth powers of the maximal ideals, it follows that σ is at least
surjective. But recall from our above analysis of (4.13) and addivity of length that the quotients C/nM and
Cλ1/n

M have the same finite R-length for each M ≥ 1. Hence, any R-linear surjection between these must
be an isomorphism. It follows that the R-algebra surjection σ must be an isomorphism. The pair (Cλ1 , ξλ1

)
is the desired local algebraization of the initial pair (C, ξC). This completes the proof of Theorem 1.5 (note
that one can only get x ∈ X in Theorem 1.5 to be a closed point precisely when κ is of finite type over OS).
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5. Some properties of algebraizations

There are two additional questions one can ask concerning Theorem 1.5:
• Is the algebraization of a given formal versal deformation étale-locally unique?
• If so, does the group AutF (κ)(ξ0) canonically act on the “henselization” of an algebraization in the

minimal versal case?
We will make these questions precise in a moment. It scarcely makes sense to think about either of these
questions unless the natural transformation

(5.1) F (B)→ F̂ (B̂) def= lim←−F (B/mn+1
B )

is faithful for every local noetherian OS-algebra (B,mB) with residually finite B/mB , and is fully faithful
when B is also complete; the right side of (5.1) denotes the evident groupoid of projective systems. In
practice, the faithfulness for noetherian local B and the full faithfulness for complete noetherian local B
follow from fpqc descent theory (see [EGA, IV2, §2.5–2.6] and [BLR, §6.1]) for Spec(B̂) → Spec(B) and
Grothendieck’s formal GAGA theorems [EGA, III1, §5] over B̂. Note that such full faithfulness in the
complete case ensures that if (B1, ξ1) and (B2, ξ2) are effective minimal versal deformations of ξ0, then there
exists an isomorphism B1 ' B2 in Ĉ S(κ) and a compatible isomorphism ξ1 ' ξ2. This is immediate from
the (non-canonical) uniqueness of minimal formal versal deformations. Thus, it is meaningful to ask about
“uniqueness” for algebraizations of minimal formal versal deformations, or more generally of a fixed formal
versal deformation.
Definition 5.1. We say that F is formally faithful if (5.1) if faithful for local noetherian OS-algebras B
with residually finite residue field B/mB and is fully faithful for such complete B.
Definition 5.2. If (C1, ξC1

) and (C2, ξC2
) are two local algebraizations of an effective versal deformation

(C, ξC) of ξ0, we say that they are strictly étale-locally isomorphic if they become isomorphic upon pullback
to some common local-étale extension of the Cj ’s with trivial residue field extension on κ.

Since F is locally of finite presentation, it is easy to see that Definition 5.2 is equivalent to the analogous
property for (non-local) algebraizations in terms of ordinary (residually trivial) étale neighborhoods of the
base point. In more canonical terms, Definition 5.2 demands the existence of an OS-algebra isomorphism

(5.2) C
h

1 ' C
h

2

of henselizations which lifts the identity on the residue field κ and lies under an isomorphism between ξC1

and ξC2
as deformations of ξ0. Here is the affirmative result concerning the existence of such an isomorphism

(this is essentially just [A2, 1.7] adapted to our setting):
Theorem 5.3. Under the hypotheses of Theorem 1.5, assume also that F is formally faithful. Choose a
residually finite OS-field κ and an object ξ0 in F (κ). If (ξC1

, C1) and (ξC2
, C2) are two algebraizations of

an effective versal deformation (C, ξC) of ξ0, then an isomorphism as in (5.2) exists.
Remark 5.4. This theorem permits us to speak of a “henselized algebraization” of a fixed formal versal
deformation, though such data is only unique up to non-canonical isomorphism in general.

Proof. Since F is formally faithful, so (5.1) is fully faithful for complete B, the algebraization property
implies that the isomorphisms C ' C

∧
j carry ξC over to an object in Fξ0(C

∧
j ) which is isomorphic to the

pushfoward ξ∧
Cj

of ξCj in Fξ0(C
∧
j ) (and not just its pushfoward in F̂ξ0(C

∧
j )).

Artin’s use of “ξC 7→ ξ∧
Cj

” to construct the desired isomorphism (5.2) in the proof of [A2, 1.7] carries over
essentially verbatim to the present setting of an arbitrary excellent base. Although [A2] only works with
set-valued functors rather than fibered categories, the argument in [A2, pp. 32–33] adapts easily to the case
of our locally finitely presented fibered category F . The only step requiring a slight modification is where
Artin appeals to the Artin approximation theorem: we need to use Popescu’s Theorem 1.3 to provide the
required generalization of Artin approximation to our present setting of an arbitrary excellent base scheme
(rather than one locally of finite type over a field or excellent Dedekind domain).
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�

We now turn to the other question raised above: can we make automorphisms of ξ0 naturally act on the
“henselized algebraization” of a formal versal deformation, at least when the corresponding formal versal
deformation is minimal and the deformation functor Fξ0 is “set-valued” (even when F is not)?

For example, let S = Spec(Zsh
(2)) be a strict henselization of Spec(Z(2)) with residue field κ = F2 at the

closed point, let E be a supersingular elliptic curve over κ, and let the elliptic curve E → Spec(B) be a local
algebraization of a universal deformation of E/κ. The data (Bh,E/Bh) is uniquely unique (as infinitesimal
deformations of elliptic curves admit no non-trivial automorphisms, or in more fancy terms the moduli stack
of elliptic curves is Deligne-Mumford). Does the action of the order 24 group Γ = Aut(E/κ) extend to an
action of Γ on the pair (Bh,E/Bh)? The main issue here is to determine when “twisting” a versal deformation
by an automorphism at the residue field level does not destroy the versality property.

In order that one get satisfactory answers, we need to assume (in addition to the above running hypotheses,
including formal faithfulness of F ) that on the full subcategory C S(κ) of artin local objects in Ĉ S(κ), the
automorphism functors of objects classified by F are formally unramified. That is, for an object A in C S(κ)
and an object ξ in F (A) which induces ξ0 in F (κ), we suppose that the natural map of groups

(5.3) AutF (A)(ξ)→ AutF (κ)(ξ0)

is injective. This injectivity arises in the context of Deligne-Mumford stacks, so we make the following
definition.
Definition 5.5. We say that F is formally Deligne-Mumford at ξ0 when the map (5.3) is injective for every
artinian deformation ξ of ξ0 over C S(κ).

Note that the injectivity of (5.3) is just a condition for artin local A in Ĉ S(κ), and the conjunction of
(5.1) being faithful and (5.3) being injective makes the Fξ0 into a “set-valued” functor on the category local
noetherian OS-algebras with residue field κ.
Remark 5.6. In Definition 5.5, we do not require AutF (κ)(ξ0) to be finite.

Suppose now that F is formally Deligne-Mumford at ξ0, so Fξ0 is “set-valued”. Let (B, ξ) be a local
algebraization of a formal versal deformation (C, (ξn)) of ξ0. If we pass to the structure (Bh, ξh) over
the henselization of B, then the étale-local uniqueness of algebraizations (as in Theorem 5.3) and the fact
that Fξ0 is “set-valued” ensure that the henselized data (Bh, ξh) is unique up to unique isomorphism as a
deformation of ξ0. We will therefore refer to the pair (Bh, ξh) as the henselized algebraization of the formal
versal deformation (C, (ξn)) of ξ0. It is reasonable to now ask the following question:

• Does there exist an action of the abstract group

Γξ0
def= AutF (κ)(ξ0)

on the pair (Bh, ξh) lifting the action of Γξ0 on ξ0 (so in particular, Γξ0 acts on the OS-algebra Bh

in a manner which lifts the identity on its residue field κ)?
The fact that (5.1) is faithful and (5.3) is injective ensures the uniqueness of such an action if it exists. The
answer to the existence part of the above general lifting question is affirmative in the minimal case:
Theorem 5.7. Let S be an excellent scheme and let F , κ, and ξ0 be as in Theorem 1.5. Assume that F is
formally faithful and also that F is formally Deligne-Mumford at ξ0. Let (B, ξ) be a henselized algebraization
of a minimal formal versal deformation of ξ0. Then there is a unique action of the group Γξ0 = AutF (κ)(ξ0)
on (B, ξ) lifting its action on ξ0.

As an example, if ξ0 is a polarized abelian variety or stable marked curve over a field, then its finite
automorphism group canonically acts on any henselized algebraization of a universal formal deformation.
Of course, this action is generally non-trivial on the henselian local base ring underlying such a henselized
algebraization.

Proof. Due to the uniqueness (up to unique isomorphism) of henselized algebraizations of formal versal
deformations of ξ0, we claim that the problem is really one of making an action on minimal formal versal
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deformations. Namely, if ι : ξ mod mB ' ξ0 is the implicit identification of ξ as a deformation of ξ0 and σ is
an F (κ)-automorphism of ξ0, then we will use minimality to show that any map

(5.4) ϕ̂σ : B̂ → B̂

in Ĉ S(κ) carrying the minimal formal versal deformation (B̂, ξ̂, ι) to the formal deformation (B̂, ξ̂, σ ◦ ι) is
an isomorphism of rings.

Grant for a moment that the ϕ̂σ’s are isomorphisms. The isomorphism ϕ̂σ is uniquely determined, as
our hypotheses on F force the triple (B̂, ξ̂, ι) to have no non-trivial automorphisms. If we didn’t have the
isomorphism condition on the ϕ̂σ’s, then we would have no link with automorphisms and hence would not
be able to establish uniqueness of the ϕ̂σ’s (which is required to prove purely formally that ϕ̂σ and ϕ̂σ−1 are
inverses to each other). Via the isomorphism ϕ̂σ we can view (B, ξ, σ ◦ ι) as a henselized algebraization of
the formal versal deformation (B̂, ξ̂, ι) corresponding to (B, ξ, ι). This could not be done without the crutch
of having available an inverse to ϕ̂σ.

By Theorem 5.3, we then conclude that there is an OS-algebra isomorphism ϕσ from (B, ξ, ι) to (B, ξ, σ◦ι)
which lifts the identity on κ and σ on ξ0 ∈ F (κ). The formal Deligne-Mumford property of F at ξ0 implies
that such an isomorphism ϕσ is unique, and the formal faithfulness of F ensures that ϕσ induces ϕ̂σ. The
isomorphisms ϕσ clearly provide the asserted unique action of Γξ0 .

A natural idea for proving that ϕ̂σ is an isomorphism is to show that ϕ̂σ−1 is an inverse. However, since
we do not know a priori that (B̂, ξ̂, σ ◦ ι) is a minimal formal versal deformation (at least not before knowing
that ϕ̂σ is an isomorphism), it appears difficult to show directly that the composites ϕ̂σ ◦ ϕ̂σ−1 and ϕ̂σ−1 ◦ ϕ̂σ
are the identity on B̂. For this reason, it seems necessary to analyze the situation more carefully.

We have reduced ourselves to a general (and no doubt well-known) fact from deformation theory “with
residue field extension”. Here is the general setup. Let Λ be a complete local noetherian ring with residue field
k (such as ÔS,s above), κ a finite extension field of k, and Ĉ Λ(κ) the category of complete local noetherian
Λ-algebras with residue field κ. Let F be a category fibered in groupoids over the full subcategory C Λ(κ) of
artinian objects. Let ξ0 be an object in F (κ) and suppose that F satisfies the Schlessinger-Rim criteria at
ξ0 as in Definition 2.5, so a minimal formal versal deformation (C, (ξn)) of ξ0 exists. Let (ξ′n) in F̂ (C) be an
object such that

• there is an abstract isomorphism ι1 : ξ1 ' ξ′1 in F (C/m2
C); we do not assume this to be a map in

Fξ0(C/m2
C) (think of the case σ 6= 1 above).

• we are given some map

(5.5) ϕ̂ : C → C

in Ĉ Λ(κ) carrying (ξn) over to (ξ′n) but not necessarily respecting ι1.

For example, ϕ̂ might be a map such that F̂ (ϕ̂) respects some given structures of formal deformation of ξ0,
while F (ι1) might not respect this same deformation structure. This is exactly the situation arising above
with ι and σ◦ι, with (5.4) arising in the role of (5.5), so it suffices to show that (5.5) must be an isomorphism.

It suffices to check merely surjectivity of the local Λ-algebra map ϕ̂, and for this we immediately reduce to
the case Λ = k because the characterizing properties of minimal formal versal deformations make it evident
that formation of such deformations respects replacing Λ by a non-zero quotient (such as k). We just have
to check surjectivity of ϕ̂ as an endomorphism of C = C/m2

C . We can view (C, ξ1) as a “minimal” formal
versal deformation of ξ0 in the category C k,2(κ) of finite local k-algebras with residue field κ and square zero
maximal ideal. Thus, it is enough to consider the following claim.

Let B be an object in C k,2(κ) and ξ an object in F (B). If there exists a surjection

(5.6) π : C → B

in C k,2(κ) carrying ξ1 over to some ξ, then we claim that any morphism

(5.7) π′ : C → B



16 BRIAN CONRAD AND A.J. DE JONG

in C k,2(κ) carrying ξ1 over to ξ must be a surjection. This is applied above by taking B = C, ξ = ξ′1, and
π the identity endomorphism of C (and using the axiomatized isomorphism between ξ1 and ξ′1 in F (C) to
make the identity map on C “carry” ξ1 over to ξ′1).

By using a κ-basis of the finite-dimensional κ-vector space mB , we reduce the verification of the surjectivity
of π′ to the case where the artin local ring B has length 2. Thus, the only way that π′ can fail to be surjective
is if π′ kills mC , in which case via π′ the k-algebra B acquires a compatible structure of κ-algebra (respecting
residue field identifications with κ), so B ' κ[ε] in C k,2(κ) and π′ is exactly the composite of the canonical
k-algebra maps

C � κ ↪→ κ[ε].

Thus, ξ in the category F (κ[ε]) is isomorphic to F (π′)(ξ1), which in turn is isomorphic to the trivial defor-
mation of the F (κ)-object

ξ1 mod mC ' ξ0.
We conclude that the surjection (5.6) in C k,2(κ) sends the object ξ1 in Fξ0(C) to the trivial point in the

tangent space tFξ0 = F ξ0(κ[ε]). Note that the k-algebra surjection (5.6) to B = κ[ε] is exactly determined
by a non-zero κ-linear map

(5.8) Ω1
C/k

/mC → κ · ε,

so we just have to show that such a non-zero map cannot induce a map (5.6) which sends ξ1 to the trivial
deformation in tFξ0 . This is essentially the content of the minimality hypothesis on (ξn), but in order to
check this in the presence of possible inseparability in the field extension κ/k it seems necessary to recall a
couple of facts from the construction of minimal formal versal deformations in [SGA7, VI, 1.20] rather than
to just argue purely in terms of (uni)versal properties.

Since minimal formal versal deformations are unique up to non-canonical isomorphism when they exist,
and (C, (ξn)) only matters for our purposes up to non-canonical isomorphism, it is legitimate for us to
replace this abstract pair with any specific construction of such a minimal deformation. Using the canonical
isomorphism

Ω̂1
C/Λ/mC ' Ω1

C/k
/mC ,

the construction of (C, (ξn)) in the proof of [SGA7, VI, 1.20] (which rests on the Schlessinger-Rim criteria at
ξ0 as in Definition 2.5) provides the existence of a certain finite-dimensional κ-vector space H (whose dual
is a subspace of tFξ0 complementary to an “explicit” κ-subspace defined using Ω1

κ/k) and also the existence
of a surjection

(5.9) C � κ[H]

in C k,2(κ) taking ξ1 to some θ1 with the following two properties satisfied:
• the induced κ-linear map

(5.10) Ω1
C/k

/mC → Ω1
κ[H]/k/H

is an isomorphism;
• for any morphism κ[H]→ κ[ε] in C k,2(κ) which is non-zero on H (and not necessarily κ-linear), the

induced map of κ-vector spaces

(5.11) F ξ0(κ[H])→ F ξ0(κ[ε]) = tFξ0

does not send the isomorphism class of θ1 to the zero element (i.e., the isomorphism class of the
trivial deformation of ξ0).

Due to the isomorphism in (5.10) and the characterization of the surjective π in (5.6) in terms of a non-
zero map (5.8), we conclude that π must factor through the surjection (5.9) inducing (5.10), so π induces a
surjective map

(5.12) κ[H]� κ[ε]
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in C k,2(κ) such that the corresponding κ-vector space map

F ξ0(κ[H])→ F ξ0(κ[ε]) = tFξ0

kills θ1. Thus, by the general property described for (5.11), the surjective map (5.12) must kill H and
hence (5.12) induces a k-algebra (but not necessarily κ-linear) surjection κ → κ[ε]. A comparison of finite
(non-zero) k-vector space dimensions of κ and κ[ε] implies that no such surjection can exist. That is, (5.7)
had to be surjective after all.

�

We conclude by addressing the natural question of whether we can bring a Γ-action on a henselization
down to the level of a Γ-action on a residually trivial étale neighborhood. More specifically, we prove the
following:
Theorem 5.8. With notation and hypotheses as in Theorem 5.7, let (X,x; ξ) be an algebraization of a
minimal formal versal deformation of ξ0. Assume also that the group Γξ0 is finite. Then after passing to a
residually trivial étale neighborhood of x ∈ X, there exists an action of Γξ0 on the algebraization which lifts
the action on ξ0.

Proof. We may assume S = Spec(R) is affine and X = Spec(B) is affine of finite type over S, with x = p ∈
Spec(B) a prime ideal, so (by Theorem 5.7) the base change of our algebraization to the henselized local
ring Bh

p admits a Γξ0-action lifting that on ξ0. We wish to “smear out” this action from the henselization
down to some residually trivial étale neighborhood of x ∈ X.

Let y1, . . . , yn ∈ B be R-algebra generators. For each 1 ≤ i ≤ n, consider the conjugates γ(yi) ∈ Bh
p for

γ ∈ Γξ0 . Define si,j to be the jth symmetric polynomial in the γ(yi)’s. The sij ’s are finitely many elements
in Bh

p , and let A be the R-subalgebra of Bh
p generated by the sij ’s. Clearly A is Γξ0-invariant. If we replace

B with a sufficiently large étale neighborhood of p contained in Bh
p which contains the finitely many sij ’s,

we lose the property of the old yi’s generating B, but we get ourselves to a situation where B is quasi-finite
over an R-subalgebra A which is invariant under Γξ0 . Renaming as p the evident prime ideal of our modified
B (coming from the maximal ideal of our unchanged henselized algebraization ring), let q be the contraction
of this prime to A.

There is a naturally induced map Ah
q → Bh

p which we claim is finite. Since Spec(B) is quasi-finite over
Spec(A), it follows that B ⊗A Ah

q is quasi-finite over the henselian local Ah
q. By the structure theorem for

quasi-finite separated schemes over a henselian local base [EGA, IV4, 18.5.11], it follows that there is a
unique local connected component of Spec(B ⊗A Ah

q) which is finite over Spec(Ah
q) and contains the unique

prime over p. This local component is visibly residually trivial and ind-local-étale over Spec(Bp), yet it is
also henselian (being finite over Spec(Ah

q)). Hence, this component is uniquely (over Spec(B)) isomorphic
to Spec(Bh

p ) as a scheme over Spec(Ah
q) (so indeed Bh

p is Ah
q-finite).

With Bh
p now seen to be finite over a Γξ0-invariant R-subalgebra Ah

q, we use standard direct limit ar-
guments (working over residually trivial étale neighborhoods of q ∈ Spec(A)) to make a base change by
such a sufficiently large neighborhood to get to the case in which B is finite over a Γξ0-invariant finite type
R-subalgebra A and

Bh
p ' B ⊗A Ah

q.

Since F is locally of finite presentation, we can now run through standard direct limit arguments one more
time to bring the Γξ0-action on the henselized algebraization Bh

p down to an action over B ⊗A A′ for a
sufficiently large residually finite étale neighborhood Spec(A′) of q ∈ Spec(A). This gives what we wanted.

�
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