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1 Introduction

Let p > 0 denote a prime integer and let k be a perfect field of characteristic p. Put OK :=
W (k) and let K be its fraction field. Denote by K a fixed algebraic closure of K and set
GK := Gal(K/K). We write Bcris for the crystalline period ring defined by J.-M. Fontaine
in [Fo]. Recall that Bcris is a topological ring, endowed with a continuous action of GK , an
exhaustive decreasing filtration Fil•Bcris and a Frobenius operator ϕ.

Following the paper [AI2], these notes aim at presenting a new proof of the so called crys-
talline conjecture formulated by J.-M. Fontaine in [Fo]. Let X be a smooth proper scheme,
geometrically irreducible, of relative dimension d over OK :

Conjecture 1.1 ([Fo]). For every i ≥ 0 there is a canonical and functorial isomorphism com-
muting with all the additional structures (namely, filtrations, GK–actions and Frobenii)

Hi(Xet
K

,Qp)⊗Qp Bcris
∼= Hi

cris(Xk/OK)⊗OK
Bcris.

It follows from a classical theorem for crystalline cohomology, see [BO], that Hi
cris(Xk/OK) ∼=

Hi
dR(X/OK). The latter denotes the hypercohomology of the de Rham complex 0 −→ OX −→

Ω1
X/OK

−→ Ω2
X/OK

−→ · · ·Ωd
X/OK

−→ 0. The first interpretation provides a Frobenius op-
erator, the second one provides a filtration, the Hodge filtration. For every n ∈ N we put
FilnHi

dR(X/OK) = Hi
dR(X/OK) if n ≤ 0, to be 0 if n ≥ d + 1 and to be the image of the

hypercohomology of the complex 0 −→ Ωn
X/OK

−→ Ω2
X/OK

−→ · · ·Ωd
X/OK

−→ 0 if 0 ≤ n ≤ d.
Then, in the statement of the conjecture

1) Frobenius on the left is defined by the identity operator on Hi(Xet
K

,Qp) and by Frobenius
on Bcris. Frobenius on the right hand side is defined by Frobenius on Hi

cris(Xk/OK) and by
Frobenius on Bcris;

2) the filtration on the left hand side is defined by Hi(Xet
K

,Qp) ⊗Qp FilnBcris, while on

the right hand side it is given by the composite filtration Filn
(
Hi

dR(X/OK) ⊗OK
Bcris

)
:=∑

a+b=n FilaHi
dR(X/OK)⊗OK

FilbBcris;
3) the Galois action on the left hand side is induced by the action of GK on Hi(Xet

K
,Qp)

and on Bcris. The Galois action on the right hand side is given by letting GK act trivially on
Hi

cris(Xk/OK) and through its natural action on Bcris.

The conjecture is now a theorem, proven by G. Faltings in [F2]. In fact it holds without
assuming that K is unramified and with non-constant coefficients. But these assumptions will
simplify our considerations. There are various approaches to the proof of the conjecture. One
(and the first) is based on ideas of Fontaine and Messing in [FM] using the syntomic cohomology
on X; a full proof (for constant coefficients) using these methods was given by T. Tsuji in [T].
There is also an approach (for constant coefficients) based on a comparison isomorphism in K-
theory which is due to W. Niziol [N]. We will follow the approach by Faltings, not in its original
version but using a certain topology described in [F3]. Our approach, which works also for non
constant coefficients, is based on the papers [AI2] and [AB]. The strategy consists in defining a
new cohomology theory associated to X and proving that it computes both the left hand side
(via the theory of almost étale extensions) and the right hand side of conjecture 1.1. The new
inputs, compared to Faltings’s original approach, are:

i) we systematically study the underlying sheaf theory of Faltings’ topology. Faltings uses
Galois cohomology of affines and then patches his computations to global results using hyper-
coverings;
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ii) we introduce certain acyclic resolutions of sheaves of periods on Faltings’ topology. This
allows to avoid the use of Poincaré duality. In Faltings’ original approach one needed to prove
Poincaré duality in Faltings’ theory and to show that it is compatible both with poicaré duality
on crystalline or de Rham cohomology and with Poincaré duality on étale cohomology. We
explain how to avoid this.

In order to simplify the proof, we also assume that there exists a morphism F : X → X
lifting Frobenius on OK and the Frobenius morphism on the special fiber Xk. This is a strong
hypothesis. For example, if X is an abelian scheme over OK with ordinary reduction, it amounts
to require that X is the canonical lift of Xk. In fact, in [AI2] the existence of such a lift of
Frobenius is assumed only Zariski locally on X (and this is harmless). On the other hand,
this stronger assumption allows us to work with Hi

dR(X/OK) instead of Hi
cris(Xk/OK) with the

Frobenius operator induced by F . We can then avoid the use of crystalline cohomology (and its
technicalities) completely.

2 The crystalline conjecture with coefficients

We present the statement of the comparison isomorphism conjecture in the case of non constant
coefficients. As before X → Spec(OK) is a proper and smooth scheme, geometrically irreducible.
We make no assumption on OK but we assume that X is obtained by base change from a scheme
defined over W (k) where k is the residue field of OK (this is needed in [AI2] not in Faltings’
original approach). We consider two categories:

The category Qp − Sh(Xet
K) of Qp-adic étale sheaves. By a p–adic étale sheaf L on Xet

K we
mean an inverse system L := {Ln} ∈ Sh(Xet

K)N such that Ln is a locally constant and locally free
of finite rank sheaf of Z/pnZ–modules for the étale topology of XK and Ln = Ln+1/p

nLn+1 for
every n ∈ N. Given two such objects M = {Mn}n and L := {Ln}n a morphism of p-adic étale
sheaves f : M→ L is a collection of morphisms fn : Mn → Ln of sheaves such that fn ≡ fn+1

modulo pn for every n ∈ N. The category Qp − Sh(Xet
K) has the p-adic étale sheaves as objects

and one defines the morphisms by tensoring the Zp-module of morphisms as p-adic étale sheaves
with Qp.

The category Fil−F−Isoc(XK/K) of filtered F -isocrystals on XK . Let F−Isoc
(
Xk/W (k)

)
be

the category of isocrystals E on Xk/W (k), endowed with a non-degenerate Frobenius ϕ : ϕ∗(E) −→
E . By isocrystal we mean a crystal of OXk/W (k)-modules up to isogeny. See also [B3], especially
Thm. 2.4.2, for a different point of view in the context of the rigid analytic spaces. To any
such object one can associate a coherent OXK

-module EXK
with integrable, quasi-nilpotent con-

nection ∇ : EXK
−→ EXK

⊗OXK
Ω1

XK/K . The category Fil − F − Isoc(XK/K) consists of an

F -isocrystal E on Xk/W (k) and an exhaustive descending filtration Fil•EXK
on EXK

by OXK
-

submodules satisfying Griffith’s transversality with respect to the connection ∇ on EXK
i. e.,

such that ∇FilnEXK
⊂ Filn−1EXK

⊗OXK
Ω1

XK/K . Then,

Conjecture 2.1. Assume that there exist a Qp-adic étale sheaf L and a filtered-F -isocrystal E
which are associated. Then, for every i ≥ 0 there is a canonical and functorial isomorphism
commuting with all the additional structures (namely, filtrations, GK–actions and Frobenii)

Hi(Xet
K

,L)⊗Qp Bcris
∼= Hi

cris(Xk/W (k), E)⊗W (k) Bcris.

Here, the filtration on Hi
cris(Xk/W (k), E)⊗W (k) Bcris is obtained via Hi

cris(Xk/W (k), E)⊗W (k)

Bcris
∼= Hi

dR

(
XK , EXK

) ⊗K Bcris using the Hodge filtration on Hi
dR

(
XK , EXK

)
. The clarification
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of what “being associated” means is part of the conjecture. As an example, let f : E → X be a
relative elliptic curve or an abelian scheme. Then, one can consider the Qp-adic étale sheaf (Ln)n

where Ln := EK [pn] is the groups scheme of pn-torsion points of EK . On the other hand, one can
consider the filtered F -isocrystal E defined by R1fcris,∗Ocris

Ek/W (k) (the first derived functor in the

crystalline sense of the crystal Ocris
Ek/W (k) with respect to fk). The module with connection EXK

on XK is the first de Rham cohomology of EK relative to XK with the Gauss-Manin connection.
The filtration has only one step and Fil1EXK

⊂ EXK
is f∗(Ω1

EK/XK
. Then, in this case L and E

are associated and the conjecture holds. See [AI2].

3 The complex case. The strategy in the p-adic setting

Assume that X is a complex analytic projective variety. Let OX denote the sheaf of holomorphic
functions on X. In this consider on the one hand a locally constant sheaf L of C-vector spaces
and a locally free coherent sheaf E of OX-modules endowed with an integrable connection ∇.
Then, L and (E ,∇) are associated if L = E∇=0. If this is the case the de Rham complex provides
a resolution for L:

0 −→ L −→ E −→ E⊗OX
Ω1

X/C −→ · · · .

This provides a canonical comparison isomorphism Hi(X,L) ∼= Hi
dR(X, E). Here, we strongly

use the analytic topology to prove that the displayed long sequence is exact and this approach
certainly will not work for schemes (or even for rigid analytic p-adic spaces). As a refinement

of this argument, more algebraic in flavor, we consider the universal covering space v : X̃ → X.
Let x ∈ X be a point and let π1(X, x) be the fundamental group. Then, v−1(L) becomes

a constant sheaf on X̃ and defines (and is defined) by a representation of π1(X, x). Write
v∗(E) := v−1(E)⊗v−1(OX)O eX . It is a O eX-module endowed with an integrable connection. Then,
L and E are associated if we have an isomorphism v−1(L) ⊗C O eX ∼= v−1(E) ⊗v−1(OX) O eX of
O eX-modules, compatibly with π1(X, x)-action and connections. We can consider the complex

0 −→ v−1(L) −→ v∗(E) −→ v∗(E)⊗O eX Ω1eX/C −→ · · · .

It is π1(X, x)-equivariant and exact. There is an obvious relation between the two complexes.
The former is locally given by the π1(X, x)-invariants sections of v∗ of the latter. This allows to

recover the comparison isomorphism over X from the comparison isomorphism Hi(X̃, v−1(L)) ∼=
Hi

dR(X̃, v∗(E)) of π1(X, x)-modules. Indeed, we have compatible spectral sequences

Hi
(
π1(X, x), Hj(X̃, v−1(L))

)
=⇒ Hi+j(X,L)

and
Hi

(
π1(X, x), Hj

dR(X̃, v−1(E))
)

=⇒ Hi+j
dR (X, E)

inducing the isomorphism Hi(X,L) ∼= Hi
dR(X, E).

We will use the complex case as a guide for the proof in the p-adic case:

Step 1: Construct the analogue of the universal covering space v : X̃ → X.

Step 2: Define the notion of “being associated” on X̃ and construct the analogue of the
exact sequence 0 −→ v−1(L) −→ v∗(E) −→ v∗(E) ⊗O eX Ω1eX/C −→ · · · . Here, we need to find a

replacement for the sheaf of holomorphic functions O eX introducing Fontaine’s sheaves of periods.

Step 3: Deduce the comparison isomorphism for associated objects.
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4 The p-adic case; Faltings’s topology

We let X → Spec(OK) be as before. Of course we do not expect to construct a universal covering
space. Following Faltings we will construct the sheaves on such space. After all we are interested
not in the space itself but in comparing sheaves on it. We give the following:

Definition 4.1. Let EXK
be the category defined as follows

i) the objects consist of pairs
(
U, f : W −→ UK

)
such that U is an open subscheme of X

and f is a finite étale morphism with UK equal to the base change of U to K. We will usually
denote by (U,W ) this object to shorten notations;

ii) a morphism (U ′,W ′) −→ (U,W ) in EXK
consists of a pair (α, β), where U ′ −→ U is the

inclusion X and β : W ′ −→ W is a morphism commuting with α⊗OK
IdM .

Let us remark that the pair (X,XK) is a final object in EXM
. Moreover, fibre products exist

setting (U1,W1)×(U,W ) (U2,W2) :=
(
U1 ∩ U2,W1 ×W W2

)
.

We say that a family {(Ui, Wi) −→ (U,W )}i∈I is a covering family if {Ui −→ U}i∈I is a
covering of X and {Wi −→ W}i∈I is a covering of W i. e., every K-valued point of W is in the
image of a K-valued point of one of the Wi’s.

One verifies that the covering families satisfy the axioms of a pre-topology [SGAIV, Def II
1.3]:

(PT0)&(PT1) Given a morphism (U ′,W ′) → (U,W ) and a covering family {(Ui,Wi) −→
(U,W )}i∈I the base change {(Ui,Wi)×(U,W ) (U ′,W ′)}i∈I is a covering family of (U ′,W ′);

(PT2) Given a covering family {(Ui,Wi) −→ (U,W )}i∈I and for every i ∈ I a covering
family a covering family {(Uij,Wij) −→ (Ui, Wi)}j∈Ji

the composite family {(Uij,Wij) −→
(U,W )}i∈I,j∈Ji

is a covering family;

(PT3) the identity (U,W ) → (U,W ) is a covering family.

We let X be the category EXK
with the given pretopology. It should be thought of as the

open subsets of the universal cover of X. It turns out that properties (PT0)–(PT3) suffice to
define a category of sheaves of abelian groups Sh(X) on X. A presheaf of abelian groups is
a controvariant functor F : E0

XK
→ AbGr. It is a sheaf if, for every object (U,W ) and every

covering family {(Ui,Wi) −→ (U,W )}i∈I the sequence

0 −→ F (U,W ) −→
∏
i∈I

F (Ui,Wi) −→
∏
i,j∈I

F
(
(Ui,Wi)×(U,W ) (Uj,Wj)

)

is exact. Given a presheaf F one can use the covering families to define the associated sheaf.

Remark 4.2. There are variants of the definition above which will be used in the sequel. Let
X̂ be the formal scheme defined by completing X along the special fiber Xk.

(α) One can consider pairs (U ,W) where U ⊂ X̂ is Zariski open and W → UK is finite étale
(meaning that there is a finite extension L such that W is defined by a finite and étale morphism
over UL as rigid analytic spaces).

(β) One can consider pairs
(
U,W

)
where U → X is étale and W → UK is finite étale.

(γ) One can consider pairs
(U ,W)

where U → X̂ is p-adically formally étale and W → UK

is finite étale.

In case (α) one defined the pretopology X̂ as in the algebrai setting. In cases (β) and (γ)
Faltings defined in [F3, p. 214]] the pre-topology as before: a family {(Ui,Wi) −→ (U,W )}i∈I
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is a covering family if {Ui −→ U}i∈I is a covering of X (or X̂) and {Wi −→ W}i∈I is a covering
of W . As pointed out by A. Abbes this gives the wrong pre-topology for which the period
sheaves behave badly. The right definition, which produces a pre-topology which is coarser than
Faltings’, is that one takes the pre-topology generated by coverings of the following form: (a)

{Ui −→ U}i∈I is a covering of X (or X̂) and Wi = W ×U Ui; (b) Ui = U and {Wi −→ W}i∈I is
a covering of W . We refer to [AI2] for details.

We next define a morphism
v∗ : Sh(X) −→ Sh(X)

analogous to the push–forward functor associated to the morphism v : X̃ −→ X in the complex
case. Let v−1 : XZar → X, where XZar is the Zariski topology on X, be the functor associating to
an open U ⊂ X the pair (U,UK). This induces a functor v∗ from the category of presheaves on
X to the category of presheaves on XZar sending a presheaf F to v∗(F )(U) := F

(
v−1(U)

)
. One

verifies that v sends covering families to covering families and sends intersection of two open
subsets to the fibre products in X. In particular, v∗ sends sheaves on X to sheaves on X. By
construction it is left exact. One can verify that v∗ admits a left adjoint v∗ which is exact so
that v∗ sends injective objects to injective objects and we can derive the functor v∗. The rest of
this section is devoted to the explicit computation of the functors Riv∗.

Localization functors: Fix an algebraic closure Ω of the fraction field of XK . Consider
a Zariski open subset U ⊂ X and let GU := π1(UK , Ω) be the fundamental group of UK with

base point defined by Ω. Let U fet
K

be the category of finite and étale morphisms W → UK . It
is endowed with a pretopology: for every object W the coverings are morphisms {Wi → W}
such that the images of the Wi’s cover the whole of W . By Grothendieck’s formulation of Galois

theory, the category sheaves of abelian groups on U fet
K

is equivalent to the category GU −AbGr

of Z-modules with discrete action of GU . We have a fully faithful morphism ρ−1
U : U fet

K
−→ X

sending W 7→ (U,W ). It sends covering families to covering families so that it induces a
morphism

ρU,∗ : Sh(X) −→ Sh
(
U fet

K

) ≡ GU − AbGr

which is left exact, admits an exact left adjoint ρ∗U so that it can be derived. Given a sheaf
F we define ρU,∗(F ) to be the localization of F at U . This construction remains valid also for
the variants of the topology given in 4.2. One needs to take care of the choice of a base point,
though. We refer to [AI2] for details.

Example 4.3. Assume that U = Spec(RU) is affine. Let RU ⊂ Ω be the union of all RU⊗OK
OK-

subalgebras S of Ω such that S is normal and RU ⊗OK
K ⊂ S

[
p−1

]
is finite and étale. Given a

sheaf F on X write F (RU) for the direct limit limS F
(
U, Spec

(
S[p−1]

))
. It is naturally endowed

with a continuous action of GU and we have ρU,∗(F ) = F
(
RU

)
(as GU -modules).

In particular, given a sheaf of abelian groups F on X we get a spectral sequence a map

Hn
(
GU , ρU,∗(F )

) → Rnv∗
(
F

)
(U).

Define Hn
Gal,X(F ) to be the sheaf on X associated to the presheaf U 7→ Hn

(
U o

K,fet, ρU,∗(F )
)
.

Theorem 4.4. The morphism Hn
Gal,X(F ) → Rnv∗

(
F

)
is an isomorphism of sheaves on X.
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To prove this it suffices to show that the given morphism induces an isomorphism at level of
“stalks”. We define a geometric point of X to be a pair (x, y) where (a) x is a geometric point

of X;(b) y is a geometric point of OX,x ⊗OK
K.

Write G(x,y) to be π1

(
Spec

(OX,x ⊗OK
K

)
, y

)
. Let J(x,y) be set of pairs

(
U, (W, y′)

)
where U

is an open neighborhood of x and W → UK is a finite and étale morphism with a point y′ over
y. One verifies that it is a directed set. Given sheaf F on X define the stalk F(x,y) as the direct
limit lim F (U,W ) taken over all pairs

(
U, (W, y′)

) ∈ J(x,y). If F is a sheaf of abelian groups, then
F(x,y) is a discrete module with continuous action of G(x,y). Since Hn

Gal,X(F )x
∼= Hi

(
G(x,y), F(x,y)

)
to prove the theorem it suffices to verify that

Lemma 4.5. (1) A sequence of sheaves of abelian groups is exact if and only if for every
geometric point (x, y) the induced sequence of stalks is exact.

(2) For every geometric point (x, y) and every sheaf F of abelian groups on X we have
Ri
∗(F )x

∼= Hi
(
G(x,y), F(x,y)

)
.

As a consequence of this theorem we can prove the relation between Faltings cohomology
and étale cohomology. Consider the forgetful functor u−1 : X → Xet

K
sending (U,W ) 7→ W . It

induces a morphism u∗ : Sh(Xet
K

) −→ Sh(X). Then, Faltings proves in [F1] that if L is a locally

constant étale sheaf on XK we have Hn
Gal,X

(
u∗(L)

) → Rn(v∗ ◦ u∗)
(
L

)
. This and 4.4 imply that

the natural morphism Rnv∗
(
u∗

(
F

)) −→ Rn(v∗ ◦ u∗)
(
F

)
is an isomorphism. This implies

Proposition 4.6. We have Hi
(
Xet

K
,L

) ∼= Hi
(
X, u∗(L)

)
.

5 Sheaves of periods

In this section we will introduce the sheaf theoretic analogue of the ring OK , CK and Bcris of
p-adic Hodge theory. We start with the analogue of OK . First of all notice that given a sheaf M
on X we get a sheaf on X, which we denote again by M, via the formula M(U,W ) := M(U).
In particular, we can view OX and Ωi

X/OK
as sheaves on X.

Definition 5.1. We define the presheaf on X, denoted OX by

OX(U,W ) := the normalization of Γ(U,OU) in Γ(W,OW ).

By construction there is a natural injective ring homomorphism OX ⊗OK
OK −→ OX. We

have

Proposition 5.2. The presheaf OX is a sheaf. Moreover, if U = Spec(RU) is an open affine
subset of X then OX(RU) = RU .

Before sketching the proof of the proposition we remark that this remains true also for the
variants 4.2. For variant (α) we denote by ObX the associated sheaf. If one uses the original
definition of Faltings the proposition is wrong in cases (β) and (γ). We refer to [AI2] for a
counterexample.

Proof. The second statement is clear. For the first, we may assume that W is irreducible and we
may consider only the α’s such that Wα 6= ∅. Let {(Uα,Wα) −→ (U,W )}α be a covering family.
We set Uαβ := Uα ×U Uβ and Wαβ := Wα ×W Wβ. We have the following commutative diagram

0 −→ OX(U,W )
f−→ ∏

αOX(Uα,Wα)
g−→ ∏

(α),(β)OXM
(Uαβ,Wαβ)

↓ ↓ ↓
0 −→ Γ(W,OW ) −→ ∏

α Γ(Wα,OWα) −→ ∏
α,β Γ(Wαβ,Oαβij)
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Note that for every α the map {Wα −→ W ×U Uα}i is surjective because W ×U Uα is irreducible
and Wα 6= ∅. Since the {Uα −→ U}α is a covering of X it follows that {Wα −→ W}α is a
covering in Xet

K . In particular, the bottom row of the above diagram is exact. Moreover the
vertical maps are all inclusions therefore f is injective, i.e. OX is a separated presheaf. Let

x ∈ Ker(g). Then x ∈ Γ(W,OW ) ∩
∏
α

OXM
(Uα,Wα). We are left to prove that x is integral

over Γ(U,OU). Without loss of generality we may assume that Uα = Spec(Aα) is affine for every
α. Let us denote by xα the image of x in Γ

(
W ×U Uα,OW×UUα

)
. Because Wα −→ W ×U Uα

is surjective, the image xα of xα in Γ(Wα,OWα) is in fact in OX(Uα, Wα), hence integral over
Aα, it follows that xα is integral over Aα. Let Pα(X) ∈ Aα[X] be the (monic) characteristic
polynomial of xα over Aα. Then Pα(X)|Uαβ

= Pβ(X)|Uαβ
for all α, β, therefore there is a monic

polynomial P (X) ∈ Γ(U,OU) such that P (X)|Uα = Pα(X). As P (x)|Uα = Pα(xα) = 0 for every
α it follows that P (x) = 0, i.e. that x is integral over Γ(U,OU).

We come next to the sheaf theoretic analogue of CK . This coincides with ÔK [p−1]; here ÔK

is the p-adic completion of OK and it is a topological ring and we can view ÔK [p−1] as the limit

of the inductive system (ÔK) with transition maps given by multiplication by p. It is crucial
that our definition captures the topology. For example, we would like that the localization of

our continuous sheaf at an affine RU gives the GU -module R̂U endowed not with the discrete
topology but with the p-adic topology. To take this into account we use the category of inverse
systems.

Categories of inverse systems. We review some of the results of [J]. Let A be an abelian
category. Denote by AN the category of inverse systems indexed by the set of natural numbers.
Objects are inverse systems {An}n := . . . → An+1 → An . . . A2 → A1, where the Ai’s are objects
of A and the arrows denote morphisms in A. The morphisms in AN are commutative diagrams

. . . → An+1 → An . . . A2 → A1

↓ ↓ ↓ ↓
. . . → Bn+1 → Bn . . . B2 → B1,

where the vertical arrows are morphisms in A. Then, AN is an abelian category with kernels
and cokernels taken componentwise and if A has enough injectives, then AN also has enough
injectives.

Let h : A → B be a left exact functor of abelian categories. It induces a left exact functor
hN : AN → BN which, by abuse of notation and if no confusion is possible, we denote again
by h. If A has enough injectives, then also AN does. One can derive the functor hN and

Ri
(
hN

)
=

(
Rih

)N
.

If inverse limits over N exist in B, define the left exact functor lim
←

h : AN → B as the composite

of hN and the inverse limit functor lim
←

: BN → B. Assume that A and B have enough injectives.

For every A = {An}n ∈ AN one then has a spectral sequence

lim
←

(p)Rqh(An) =⇒ Rp+q
(
lim
←

h(A)
)
,

where lim
←

(p) is the p–th derived functor of lim
←

in B. If in B infinite products exist and are exact

functors, then lim
←

(p) = 0 for p ≥ 2 and the above spectral sequence reduces to the simpler exact
sequence

0 −→ lim
←

(1)Ri−1h(An) −→ Ri
(
lim
←

h)(A) → lim
←

Rih(An) −→ 0.
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Generalities on inductive systems. Let A be an abelian category. We denote by Ind
(A)

,
called the category of inductive systems of objects of A, the following category. The objects are(
Ai, γi

)
i∈Z with Ai object of A and γi : Ai → Ai+1 morphism in A for every i ∈ Z. Given an

integer N ∈ Z a morphism f : A :=
(
Ai, γi

)
i∈Z −→ B :=

(
Bj, δj

)
j∈Z of degree N is a system

of morphisms fi : Ai → Bi+N for i ∈ Z such that δi+N ◦ fi = fi+1 ◦ γi. Since A is an additive
category, the set of morphisms of degree N form an abelian group with the zero map, the
sum of two functions and the inverse of a function defined componentwise. Given a morphism
f = (fi)i∈Z : A −→ B of degree N we get a morphism of degree N+1 given by

(
δi+N ◦fi

)
i∈Z. This

defines a group homomorphism from the morphisms HomN
(
A,B

)
of degree N to the morphisms

HomN+1
(
A,B

)
of degree N +1. We define the group of morphisms f :

(
Ai, γi

)
i∈Z −→

(
Bj, δj

)
j∈Z

in Ind
(A)

to be the inductive limit limN∈ZHomN
(
A,B

)
with respect to the transition maps just

defined.
One verifies that the category Ind

(A)
is an abelian category. Let B be an abelian category

in which direct limits of inductive systems indexed by Z exist. Consider the induced functor

lim
→

: Ind
(B) −→ B.

Suppose we are given δ-functors T n : B → A with n ∈ N. Define

lim
→

T n : Ind
(A) −→ B

as the composite of the functor Ind
(A) → Ind

(B)
, given by (Ai)inZ 7→

(
T n(Ai)

)
i∈Z, and of the

functor lim
→

. Then, if lim
→

is left exact in B, the functors lim
→

T n, for varying n ∈ N, define a

δ-functor as well.

Given F = (Fn) ∈ Sh(X)N define H0(X, F ) := lim
∞←n

H0(X, Fn). Define Hi(X, F ) as the i-th

derived functor of this. If G = (Gm)m∈N ∈ Ind
(
Sh(X)N

)
with Gm ∈ Sh(X)N define Hi(X, G) =

lim
m→∞

Hi(X, Gm).

This bit of abstract non-sense allows us to define inductive limits of topological sheaves
Ind

(
Sh(X)N

)
on X where Fontaine’s sheaves of periods naturally live. For example, the analogue

of ÔK is the inverse system ÔX := (OX/pnOX

)
n

where the transition maps are the natural

reduction maps. Similarly, the analogue of CK is the inductive limit ÔX

[
p−1

]
:= (ÔX)n where

the transition maps are given by multiplication by p. We next consider the analogue of Bcris.
Since we’d like to use the technology above we will first show how to construct Bcris as a direct
limit of an inverse system of rings. We will then generalize this construction to sheaves.

Review of a construction of Bcris. Put Wn := Wn(OK/pOK) the Witt vectors of length n
with values in OK/pOK and write ϕ for Frobenius on Wn. We have a ring homomorphism

θn : Wn :−→ OK/pnOK given by (s0, . . . , sn−1) 7→
∑n−1

i=0 pis̃pn−i

i where s̃i ∈ OK/pnOK is a lift

of si for every i. Choose a compatible sequence of roots (p1/pn−1
)n≥1 inOK i. e., (p1/pn

)p = p1/pn−1
.

Denote by p̃n :=
[
p1/pn] ∈ Wn the Teichmüller lift of p1/pn ∈ OK/pOK . Write ξn := p̃n−p ∈ Wn;

it is a generator of Ker(θn). Let un+1 : Wn+1 −→ Wn be the composite of the natural projection
composed with Frobenius ϕ. Then, θn ◦ un+1 ≡ un modulo pn and un+1(ξn+1) = ξn. Put

Acris as the inverse limit of the rings Wn

[
ξm
n

m!

]
m∈N

with respect to the transition morphisms
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defined by the un’s. One can prove that Acris/p
nAcris

∼= Wn

[
ξm
n

m!

]
m∈N

. This admits a filtration

where FilrAcris/p
nAcris

∼= Wn

[
ξm
n

m!

]
m≥r

. Furthermore, Acris is endowed with (1) an action of GK ,

via its action on OK , which is continuous for the p-adic topology; (2) a filtration defined by
FilrAcris := lim FilrAcris/p

nAcris; (3) a Frobenius ϕ defined by Frobenius on the Wn’s.
Let {ζn}n∈N be a compatible system of primitive pn–th roots of unity so that ζp

n+1 = ζn.
It defines an element [ζn+1] ∈ Wn. Note that un+1

(
[ζn+2]

)
= [ζn+1] and [ζn+1] − 1 ∈ Ker(θn).

Let ε = lim[ζn+1] ∈ A+
cris be the induced element and write

t := log
(
ε
)

=
∞∑

n=1

(
ε− 1

)n
/n.

Is an element of Fil1Acris and Bcris = Acris [t−1]. It inherits a GK-action, a filtration and a
Frobenius from those defined on Acris. Note that t[p] := tp/p! ∈ Acris so that p!t[p] = tp and p
is invertible in Bcris. More precisely, for every m ∈ N write Acris(m) = Acris · t−m. Since GK

acts on t via the cyclotomic character i. e., for g ∈ GK we have g(t) = χ(g)t, then Acris(m) is
GK-stable and as a Galois module it is a Tate twist of Acris. Put FilrAcris(m) := Filr+mAcris ·t−m.
Eventually, since ϕ(t) = pt then Frobenius on Bcris sends Acris(m) −→ Acris(pm). We note that
Bcris = lim Acris(m) compatibly with GK-action, a filtration and a Frobenius.

The sheaf B∇cris. We switch to Faltings’ site. Consider the sheaves Wn := Wn

(OX/pOX

)
. We

have a Frobenius ϕ on Wn and on Wn,X . As in the classical case we have a homomorphism of
sheaves θn : Wn −→ OX/pnOX. We further have sheaf homomorphisms un+1 : Wn+1 −→ Wn,
defined be the composite of the natural projection composed with Frobenius. Fix an object
(U,W ) of X. Write S = OX(U,W ).

Lemma 5.3. The element ξn generates the kernel of θn : Wn(S/pS) −→ S/pnS.

Proof. Let us first remark that θn(ξn) = (p1/pn
)pn − p = 0, therefore ξn ∈ Ker(θn). one needs to

show that if x ∈ Ker(θn) then x ∈ ξnWn(S/pS). One proceeds by induction on n. For n = 1,
then θ1 is Frobenius on S/pS whose kernel is generated by p1/p since S is normal. For the
inductive step we refer to [AI2]

In particular, we conclude that the kernel of the map of sheaves θn is generated by ξn.
One defines A∇cris as the inverse system Acris/p

nAcris for varying n ∈ N where A∇cris/pnA∇cris is
the sheaf Wn ⊗Wn

(
Acris/p

nAcris

)
. The transition morphisms are defined by un. Then, A∇cris

is endowed with a Frobenius morphism, a filtration defined by Filr (Acris/p
nAcris) := Wn ⊗Wn

Filr
(
Acris/p

nAcris

)
and a GK-action. One defines similarly the inverse system A∇cris(m) as the

inverse system A∇cris(m)/pnA∇cris(m) := Wn ⊗Wn

(
Acris(m)/pnAcris(m)

)
for m ∈ N with induced

filtration and GK-action and we let B∇cris ∈ Ind
(
Sh(X)N

)
be the induced inductive system of

inverse systems of sheaves.

The sheaf Bcris. Consider Wn,X := Wn(OX/pOX)⊗OK
OX . Using our assumption that X ad-

mits a global lift of Frobenius, we get a Frobenius onWn,X . Extending θn and un+1 toOX-linearly
morphisms we get compatible morphisms θn,X : Wn,X −→ OX/pnOX and un+1,X : Wn+1,X −→
Wn,X . We analyze the kernel of θn,X . Let (U,W ) ∈ X with U = Spec(RU) affine and put S :=
OX(U,W ). Assume that U admits an étale morphism to Spec

(OK [T±1
1 , . . . , T±1

d ]
)
. in this case

we say that U is small. Assume furthermore that S contains pn+1-th roots T
1/pn+1

i for all 1 ≤ i ≤ d

of the variable Ti. Denote by T̃i,n := [T
1/pn+1

i ] ∈ Wn

(
S/pS

)
and Xi,n :== 1 ⊗ Ti − T̃i,n ⊗ 1 ∈
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Wn

(
S/pS

) ⊗OK
RU . Since the kernel of the ring homomorphism RU/pnRU ⊗ RU/pnRU →

RU/pnRU defined by x⊗y → xy is the ideal I = (T1 ⊗ 1 − 1 ⊗ T1, . . . , Td ⊗ 1 − 1 ⊗ Td), we
conclude that the kernel of the map θn,S : Wn

(
S/pS

) ⊗OK
RU → S/pnS is the ideal gener-

ated by (ξn, X1,n, . . . , Xd,n). The derivation d : RU −→ Ω1
RU/OK

∼= ⊕d
i=1RUdTi extends to a

Wn

(
S/pS

)⊗Wn

Acris

pnAcris
–linear connection ∇S:

Wn

(
S/pS

)⊗OK
RU

[
ξm
n

m!
,
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
−→ Wn

(
S/pS

)⊗OK
RU

[
ξm
n

m!
,
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
⊗RU

Ω1
RU/OK

sending
X

m1
1,n

m1!
· · · X

md
d,n

md!
7→ ∑d

i=1

X
m1
1,n

m1!
· · · X

mi−1
1,n

(mi−1)!
· · · X

md
d,n

md!
· dTi. One can prove that in fact

Wn

(
S/pS

)⊗OK
RU

[
ξm
n

m!
,
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
∼= Wn

(
S/pS

)⊗Wn

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
.

It follows from this that de Rham complex

0 −→ Wn

(
S/pS

)⊗Wn

Acris

pnAcris

−→ Wn

(
S/pS

)⊗OK
RU

[
ξm
n

m!
,
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
⊗RU

Ω•
RU/OK

−→ 0

is exact. Note that Wn

(
S/pS

)⊗Wn

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
admits a filtration where Filr

is generated by the elements ξ
m0
n

m0!

X
m1
1,n

m1!
· · · X

md
d,n

md!
with m0 +m1 + · · ·md ≥ r. Such filtration satisfies

Griffith’s tranversality with respect to the connection ∇S. We also notice that the action of the

Galois group GU on S extends to a an action on Wn

(
S/pS

)⊗OK
RU

[
ξm
n

m!
,

Xm
1,n

m!
, . . . ,

Xm
d,n

m!

]
. Indeed,

let ci : GU −→ Zp be defined by σ
(
T

1/pn+1

i

)
= ζ

ci(σ)
n+1 T

1/pn+1

i . Then,

σ
(
Xm

i /m!
)

:=
m∑

s=0

Xm−s
i

(m− s)!

(1− [ζn+1]
ci(σ))s

s!

(
T̃ s

i,n ⊗ 1
)
.

Such action preserves the filtration and commutes with the connection ∇S. Since the pairs
(U,W ) with the properties above define a basis for the given pre-topology on X, one can
sheafify this construction to get a sheaf Acris/p

nAcris of OX ⊗ Acris/p
nAcris-modules, endowed

with an integrable connection ∇, a decreasing filtration Fil•Acris/p
nAcris which satisfies Griffiths’

transversality, a Frobenius ϕ. Moreover, {Acris/p
nAcris}n define an inverse system Acris ∈ Sh(X)N

of OX⊗̂Acris-modules, endowed with a connection ∇ : Acris −→ Acris ⊗OX
Ω1

X/OK
, filtration

Fil•Acris :=
{
Fil•

(
Acris/p

nAcris

)}
n

and a Frobenius ϕ. Moreover,

Proposition 5.4. Consider the complex

Acris
∇1−→ Acris ⊗OX

Ω1
X/OK

∇2−→ Acris ⊗OX
Ω2

X/O −→ · · · ∇d−→ Acris ⊗OX
Ωd

X/OK
−→ 0

i. it is exact;

ii. the natural inclusion A∇cris ⊂ Acris identifies Ker(∇1) with A∇cris;

iii. (Griffith’s transversality) we have ∇ (
Filr

(
Acris

)) ⊂ Filr−1 (Acris)⊗OX
Ω1

X/OK
for every r;

iv. for every r ∈ N the sequence 0 −→ FilrA∇cris −→ FilrAcris
∇1−→ Filr−1Acris ⊗OX

Ω1
X/OK

∇2−→
Filr−2Acris ⊗OX

Ω2
X/OK

∇3−→ · · · , with the convention that FilsAcris,M = Acris for s < 0, is
exact;
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v. the connection ∇ : Acris,M −→ Acris,M ⊗OX
Ω1

X/OK
is quasi–nilpotent;

vi. Frobenius ϕ on Acris is horizontal with respect to ∇ i. e., ∇ ◦ ϕ =
(
ϕ⊗dF

) ◦ ∇.

Example 5.5. We consider the case that n = 1. Take the ring S/pS⊗OK
RU

[
ξm
1

m!
,

Xm
1,1

m!
, . . . ,

Xm
d,1

m!

]
.

We claim that it is isomorphic to

S/pS[δ0, δ1, . . . Xi,0, Xi,1, . . . ]1≤i≤d/(δ
p
m, Xp

i,m)1≤i≤d,m≥0

where δm = γm+1ξ1 and Xi,j = γj+1(Xi) and γ : z 7→ zp

p
. In particular, it is a free S/pS-module.

This allows to compute the localization of Acris.

One can also define Acris(m)“ = ”Acris ·t−m for every m ∈ N with its filtration and connection.
Taking inductive limits of the Acris(m) as in the definition of B∇cris one constructs the object
Bcris ∈ Ind

(
Sh(X)N

)
, with a filtration, connection and Frobenius so that the analogue of 5.4

holds. One can also prove that an analogue of the fundamental exact sequence holds:

Lemma 5.6. We have the following exact sequence in Ind
(
Sh(X̂)N

)

0 −→ Qp −→ Fil0
(
B∇cris

) ϕ−1−→ B∇cris −→ 0.

Proof. We prove the weaker statement that the sequence of inverse systems in Sh(X̂)N

0 −→ Zp −→ A∇cris
ϕ−1−→ A∇cris −→ 0.

One reduces to prove that

0 −→ Z/pZ −→ A∇cris/pA∇cris
ϕ−1−→ A∇cris/pA∇cris −→ 0

is exact and from this that

0 −→ Z/pZ −→ ObX/pObX ϕ−1−→ ObX/pObX −→ 0.

This can be proven on stalks and, hence, it suffices to show that for U ⊂ X̂ affine the map

0 −→ Z/pZ −→ RU/pRU
ϕ−1−→ RU/pRU −→ 0

is exact. By Artin-Schreier theory, the kernel of ϕ − 1 is H0
(
Spec(RU/pRU),Z/pZ

)
which is

Z/pZ since RU/pRU is connected (here we use that RU is p-adically complete and separated
so that its finite normal extensions are connected if and only if they are connected modulo p).
The cokernel of ϕ − 1 coincides with H1

(
Spec(RU/pRU),Z/pZ

)
which is alos zero since every

Z/pZ-torsor over RU/pRU can be lifted to RU and, thus, is trivial by definition of RU (here again
we use that RU is p-adically complete and separated so that every finite extension is henselian
with respect to the ideal p).
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6 The computation of Riv∗Bcris

Consider the functor v∗ : Ind
(
Sh(X)N

) −→ Sh(X) given by
{(

Fn,m

)
n

}
m
7→ {

v∗
(
Fn,m

)
n

}
m

.
Then,

Theorem 6.1. We have Riv∗Bcris = 0 for i ≥ 1 and it is equal to OX⊗̂OK
Bcris if i = 0.

Similarly, Riv∗FilrBcris = 0 for i ≥ 1 and it is equal to OX⊗̂OK
FilrBcris if i = 0.

Here, OX⊗̂OK
Bcris stands for the inductive limit OX⊗̂OK

Acris[t
−1] where OX⊗̂OK

Acris stands
for the inverse system of sheaves OX⊗OK

(Acris/p
nAcris). Similarly for OX⊗̂OK

FilrBcris. In this
section we will only sketch the proof that Riv∗Bcris = 0 for i ≥ 1. For the other statements we
refer to [AI2] also considering the variants in 4.2.

Recall that an open affine subset U = Spec(RU) of X is called small if it admits an étale mor-

phism to Spec
(OK [T±1

1 , . . . , T±1
d ]

)
. In this case we write RU,∞ := ∪nRU⊗OK

OK

[
T

1/pn

1 , . . . , T
1/pn

d

]
.

We will freely use the following result proven in [F1, Thm. I.2.4(ii)] as a consequence of his the-
ory of almost étale extensions. Given normal extensions RU,∞ ⊂ S ⊂ T (contained in Ω) such
that S[p−1] ⊂ T [p−1] is finite, étale and Galois with group GT/S we have that Hi

(
GT/S, T

)
is

annihilated by any element of the maximal ideal of OK for every i ≥ 1. As an application we
prove the following:

Lemma 6.2. The presheaf OX/pOX is separated i. e., if (U ′,W ′) → (U ,W) is a covering, the
natural map OX(U ,W)/pOX(U ,W) −→ OX(U ′,W ′)/pnOX(U ′,W ′) is injective. In particular, if
U = Spec(RU) is a small affine open subscheme of X, the map

RU/pRU = OX(RU)/pOX(RU) −→ (OX/pOX

)
(RU)

is injective. Furthermore, its cokernel is annihilated by the maximal ideal of OK.

Proof. We first prove the first statement. We may assume that U and U ′ are affine. We may
write OX(U,W ) = ∪iSi (resp. OX(U ′,W ′) = ∪jS

′
j) as the union of normal and finite RU–algebras

(resp. RU ′–algebras) of Ω, étale after inverting p such that for every i there exists ji so that Si

is contained in S ′ji
and the map Spec(S ′ji

) → Spec(Si) is surjective on prime ideals containing p.
Let x ∈ Si ∩ pnS ′ji

. Let P ⊂ Si be a prime ideal over p and let P ′ ⊂ S ′ji
be a height one prime

ideal over it. Then, x ∈ Si,P ∩ pnS ′ji,P′ . Hence, x ∈ pnSi,P . Thus, x lies in the intersection of all
height one prime ideals of Si so that x ∈ Si. We conclude that the map Si/p

nSi → S ′ji
/pnS ′ji

is
injective. The claimed injectivity follows.

We now pass to the second statement. It follows from the first statement that the value of
the sheaf OX/pOX at (U,W ) is given by the direct limit, over all coverings (U ′,W ′) of (U,W )
with U ′ affine, of the elements b in OX(U ′,W ′)/pOX(U ′,W ′) such that the image of b in the
ring OX(U ′′,W ′′)/pOX(U ′′,W ′′) is 0 where (U ′′,W ′′) is the fiber product of (U ′,W ′) with itself
over (U,W ). Hence, (OX/pOX

)(
RU

)
= lim

S,T
KerS,T,n

where the notation is as follows. The direct limit is taken over all normal RU,∞–subalgebras S
of RU , finite and étale after inverting p over RU,∞[1/p], all affine covers U ′ → U and all normal
extensions RU ′,∞⊗RU

S → T , finite, étale and Galois after inverting p. Eventually, we put
U ′′ := Spec(RU ′′) to be the fiber product of U ′ with itself over U i. e., RU ′′ := RU ′ ⊗RU

RU ′ . We
let

KerS,T,n := Ker
(
T/pT ⇒ T̃S/pT̃S

)
,
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where T̃S is the normalization of the base change to RU ′′ of T ⊗(RU′,∞⊗RU,∞S) T .

Study of KerS,T,n. For every S and T as above, write GS,T for the Galois group of T⊗OK
K

over S⊗RU,∞RU ′,∞⊗OK
K. Then, T̃S is simply the product

∏
g∈GS,T

T⊗RU′RU ′′ where we view RU ′′

as RU ′–algebra choosing the left action. Hence, we have

KerS,T,n = Ker


T/pT ⇒

∏
g∈GS,T

T⊗RU′RU ′′

pT⊗RU′RU ′′


 ,

where the two maps in the display are a 7→ (a, · · · , a) and a 7→ (
g(a)

)
g∈GS,T

.

Study of Coker(S/pS −→ KerS,T,n). For the rest of this proof we make the following nota-
tions: if B is a normal RU,∞-algebra we denote by B′ := B ⊗RU,∞ RU ′,∞ = B ⊗RU

RU ′ , also
B′′ := B ⊗RU′,∞ RU ′′,∞ = B ⊗RU′ RU ′′ . Note that B′ and B′′ are normal. We then get a
commutative diagram

0 → S/pS −→ S ′/pS ′ ⇒ S ′′/pS ′′y yα
yβ

0 → KerS,T,n −→ T/pT ⇒ T̃S/pT̃S =
∏

g∈GS,T

(
T ′′/pT ′′).

The top row is exact and the bottom row is exact by construction. Since S ′ ⊂ T and S ′′ ⊂
T ′′ are finite extensions of normal rings, the maps α and β are injective. Define Z as Z :=
Coker

(
S ′/pS ′ → (T/pT )GS,T

) ⊂ Coker(α) and Y as Coker(S/pS −→ KerS,T,n). Since KerS,T,n is
GS,T -invariant, the image of Y in Coker(α) is contained in Z. Since α and β are injective, the
map Y → Z is injective. Consider the exact sequence

0 −→ S ′/pS ′ = TGS,T /pTGS,T −→ (
T/pT

)GS,T −→ H1
(
GS,T , T

)
.

Then, Y ⊂ Z ⊂ H1
(
GS,T , T

)
. Since RU ′,∞ → T is almost étale, the group H1

(
GS,T , T

)
is

annihilated by any element of the maximal ideal of OK thanks to Faltings’ results recalled
above. This implies the last claim.

From this one can deduce the following:

Corollary 6.3. Let U = Spec(RU) be a small open affine subset of X. For every n ∈ N we have
an injective map

Wn

(
RU/pRU

)⊗Wn

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
−→ (

Acris/p
nAcris

)
(RU)

with cokernel annihilated by the elements [ζm]− 1 ∈ Wn for every m ∈ N.

We refer to [AI2] for details. Since we now know how to “almost” compute the localizations
of Acris/p

nAcris we can proceed to the computation of Riv∗ (Acris/p
nAcris) using 4.4. Our main

theorem, stating that Riv∗(Bcris) = 0 for i ≥ 1 will then amount to prove, see [AB], that

Hi

(
GU ,Wn

(
RU/pRU

)⊗Wn

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

])

is annihilated by a fixed power of t, independent of n and U , for every i ≥ 1. These computations,
and similar ones for the H0 and for the cohomology of the filtration, are the content of [AB].
We simply sketch some of the ideas involved.
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Consider the extension RU⊗OK
K ⊂ RU,∞[p−1]. It is Galois with group ΓU isomorphic to Zd

p.
Due to Faltings’ almost étale theory, it suffices to prove that

Hi

(
ΓU ,Wn

(
RU,∞/pRU,∞

)⊗Wn

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

])

is annihilated by a fixed power of t for every i ≥ 1. Note that there exists a unique homomorphism
of OK-algebras RU −→ Wn

(
RU,∞/pRU,∞

)
sending Ti 7→ T̃i,n. Such map is not GU -equivariant!

Write R̃U,n for its image. One can prove that

Wn

(
RU,∞/pRU,∞

)⊗Wn

(
Acris/p

nAcris

) ∼= R̃U,n ⊗Wn(k)

(
Acris/p

nAcris

) [
T̃

1/pm

1,n , . . . , T̃
1/pm

d,n

]
m∈N

.

Set An = R̃U,n⊗Wn(k)

(
Acris/p

nAcris

)
and let Bn be the An-submodule generated by the elements

T̃
1/pm

i,n for some m ≥ 1. Then,

An

[
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
∼= RU/pnRU ⊗Wn(k)

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]

so that, in particular, it is stable under the action of ΓU and similarly Bn

[
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
is

stable under the action of ΓU . The problem is reduced to prove:

Lemma 6.4. (1) The group Hi
(
ΓU , Bn

[
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

])
is annihilated by a fixed power of t for

every i ≥ 1.

(2) The group Hi
(
ΓU , RU/pnRU ⊗Wn(k)

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

])
is annihilated by a

fixed power of t for every i ≥ 1.

Proof. We limit ourself to the case that d = 1. A Koszul complex argument reduces the general
case to this case and we refer to [AB] for details. We remark that in this case ΓU is the free
Zp-module generated by the element γ which acts on T 1/pn

via multiplication by ζn. Then, H1

is simply the cokernel of the operator γ− 1. We write T for T1, T̃ for T̃1,n and X for X1,n. Since

γ(X1) = T − εT̃=(1− ε)T + εX

and hence

(γ − 1)
(
X [m]

)
=

(
(1− ε)T + εX

)[m] −X [m]

= (εm − 1)X [m] +
m∑

j=1

(1− ε)[j]T j[ε]m−jX [m−j]

= (1− ε)
(
µmX [m] + Tεm−1X [m−1] +

m∑
j=2

βjT
jεm−jX [m−j]

)

where y[m] := ym/m!, µm = − εm−1
[ε]−1

and βj = εj−1
ε−1

which is an element in Fil1Acris for j ≥ 2.

(1) Take b =
N∑

m=0

bmX [m] with bm ∈ Bn for every m. Suppose N > 0. Since the cokernel of

γ−1 on Xn is annihilated by ε1/p−1 , there exists aN ∈ X such that (γ−1)(aN) =
(
1− [ε]

1
p
)
bN .

Then,
(γ − 1)

(
aNX [N ]

)
= γ(aN)(γ − 1)

(
X [N ]

)
+ (γ − 1)(aN)X [N ]
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and hence

(
1− ε

1
p
)
b− (γ − 1)

(
aNX [N ]

)
= −γ(aN)(γ − 1)

(
X [N ]

)
+

(
1− ε

1
p
) N−1∑

m=0

bmX [m]

∈ (
1− ε

1
p
) N−1∑

m=0

BnX [m].

Proceeding by descending induction on N we conclude that
(
1− ε

1
p
)
Xn

[
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
is con-

tained in the image of 1− γ. this proves (1).

(2) The matrix of γ−1 on the module
∑N

i=0 RU/pnRU ⊗Wn(k)

(
Acris/p

nAcris

)
X [i] with respect

to 1, X, . . . , X [N ] is (1− ε)Gn,N with

G(N)
n =




0 Ti T 2β2 T 3β3 · · · · · · TN−1βN−1 TNβN

0 µ1 Tε T 2β2ε
. . . . . . TN−2βN−2ε TN−1βN−1ε

...
. . . µ2 Tε2 . . . TN−2βN−2ε

2

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . T 2β2ε
N−3 T 3β3ε

N−3

...
. . . µN−2 TεN−2 T 2β2ε

N−2

...
. . . µN−1 TεN−1

0 · · · · · · · · · · · · · · · 0 µN




Let G̃n,N be the matrix obtained erasing the first column and the last row. Then, G̃n,N =

Ũn,N + Ñn,N with

Ũn,N =




T 0 · · · · · · · · · 0

µ1 Tε
. . .

...

0 µ2 Tε2 . . .
...

...
. . . . . . . . . . . .

...
...

. . . µN−2 TεN−2 0
0 · · · · · · 0 µN−1 TεN−1




is invertible and Ñn,N has nilpotent coefficients and, hence, it is nilpotent. Hence, also Ũ−1
n,NÑn,N

is nilpotent and G̃n,N = Ũn,N

(
IN + Ũ−1

n,NÑn,N

)
is invertible. This implies that the cokernel of

γ − 1 on RU/pnRU ⊗Wn(k)

(
Acris/p

nAcris

) [
Xm

1,n

m!
, . . . ,

Xm
d,n

m!

]
is annihilated by ε− 1.

7 The proof of the comparison isomorphism

Definition 7.1. We say that a Qp-adic étale sheaf L = (Ln) and a filtered-F -isocrystal E on XK

are associated if we have an isomorphism E⊗OX
Bcris

∼= L⊗ZpBcris in Indbig(Sh(X)N
)

(compatibly
with all extra structures i.e., Frobenius, Filtrations, connections and Acris-module structures).

It follows from [Bri] that E∨ = Hom
(E , (OX , d)

)
and L∨ =

(
Hom

(
Ln,Z/pnZ

))
n

are associ-
ated since E and L are.
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Due to 5.4 we have an exact sequence

0 −→ L⊗ZpB∇cris −→ E⊗OX
Bcris ⊗OX

Ω•
X/O −→ 0.

In particular,
Hi

(
X,L⊗ZpB∇cris

) ∼= Hi
(
X, E⊗OX

Bcris ⊗OX
Ω•

X/O
)
.

The isomorphism is compatible with filtration, GK-action and Frobenius. Due to 6.1 the latter
coincides with Hi

(
X, E⊗OX

Ω•
X/OK

⊗̂OK
Bcris

)
i. e., Hi

dR

(
X, E)⊗OK

Bcris. The isomorphism is com-
patible with Frobenius and GK-action and it can be proven to be compatible with filtrations as
well (we refer to [AI2] for the non-trivial proof of this fact).

The same isomorphisms hold if we work with X̂ instead of X. In particular, Hi
(
X,L⊗ZpB∇cris

) ∼=
Hi

(
X̂,L⊗ZpB∇cris

)
. Put Vi := Hi

(
X,L) ∼= H1(Xet

K
,L) and Di := Hi

(
X, Hi

(
X, E ⊗OX

Ω•
X/OK

)
. One

can prove that Vi
∼= Hi

(
X̂,L); this is a GAGA type theorem and passes via the variants (β) and

(γ) of 4.2; see [AI1]. It then follows from 5.6 that we have long exact sequences

· · · −→ Vi
αi−→ Fil0

(
Di ⊗K Bcris

) 1−ϕ−→ Di ⊗K Bcris
εi−→ Vi+1

↓ βi ↓ γi ‖ ↓ βi+1

· · · −→ (
Di ⊗K Bcris

)ϕ=1 ωi−→ Di ⊗K Bcris
1−ϕ−→ Di ⊗K Bcris −→ (

Di+1 ⊗K Bcris

)ϕ=1

We recall a criterion from [CF] for a filtered-F -module D over K to be admissibile i e., to
be associated to a crystalline representation of GK . Let

δ(D) : (D ⊗K Bcris)
ϕ=1 −→ D ⊗K Bcris

Fil0
(
D ⊗K Bcris

)

be the natural map. Put Vcris(D) := Ker(δD)

Proposition 7.2 ([CF]). The filtered ϕ-module D over K is admissible if and only if (a)
Vcris(D) is a finite dimensional Qp-vector space and (b) δ(D) is surjective.

Moreover, if D is admissible then V := Vcris(D) is a crystalline representation of GM and
Dcris(V ) ∼= D.

We apply this to the above exact sequence. Consider the part of the above diagram in degrees
0 and 2d.

· · · ε2d−1−→ V2d
α2d−→ Fil0(D2d ⊗M0 Bcris)

1−ϕ−→ D2d ⊗M0 Bcris −→ 0
↓ β2d ↓ γ2d ||

· · · −→ (
D2d ⊗M0 Bcris

)ϕ=1 ω2d−→ D2d ⊗M0 Bcris
1−ϕ−→ D2d ⊗M0 Bcris −→ 0

Note that δ(D2d) is the composite of

(
D2d ⊗M0 Bcris

)ϕ=1 ω2d−→ D2d ⊗M0 Bcris −→ Coker(γ2d)

and also that Ker(δ(D2d)) = Ker
(
(1−ϕ) : Fil0(D2d⊗M0 Bcris) −→ D2d⊗M0 Bcris

)
. It follows that

α2d induces a surjective Qp-linear map V2d −→ Ker(δ(D2d)) and that δ(D2d) is surjective. We
deduce from 7.2 that D2d is admissible and that we have a Qp-linear, surjective homomorphism
V2d −→ Vcris(D2d) which is GK-equivariant.

Let D∗
i be Hi

(
X, Hi

(
X, E∨⊗OX

Ω•
X/OK

)
and V ∗

i be Hi
(
X,L) ∼= H1(Xet

K
,L∨). Then, D∗

0
∼= D2d

as filtered F -modules (up to shifting the filtration and twisting Frobenius accordingly to Poincaré
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duality for filtered F -modules). In particular, D∗
0 is admissible . Similarly V ∗

0 is the dual of V0

(up to Tate twist according to Poincaré duality in étale cohomology). We also have the exact
sequence

0 −→ V ∗
0

α∗0−→ Fil0(D∗
0 ⊗M0 Bcris)

1−ϕ−→ D∗
0 ⊗M0 Bcris

ε∗0−→ · · ·
↓ β∗0 ↓ γ∗0 ||

0 −→ (
D∗

0 ⊗M0 Bcris

)ϕ=1 ω∗0−→ D∗
0 ⊗M0 Bcris

1−ϕ−→ D∗
0 ⊗M0 Bcris −→ · · ·

It follows that V ∗
0
∼= Ker(δ(D∗

0)) = Vcris(D
∗
0). Hence, dimQp(V2d) = dimQp(V

∗
0 ) = dimK(D∗

0) =
dimK(D2d) = dimQp(Vcris(D2d)) and therefore V2d

∼= Vcris(D2d). This proves our statement for
i = 0 and i = 2d.

Let us remark at the same time that as α2d is injective, ε2d−1 = 0. An easy diagram chase
shows that ε∗0 = 0 and therefore we can continue with i = 1 along exactly the same lines as for
i = 0. By induction the Theorem follows.
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