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1 Introduction

Let p > 0 denote a prime integer and let k£ be a perfect field of characteristic p. Put Ok =
W (k) and let K be its fraction field. Denote by K a fixed algebraic closure of K and set
Gk = Gal(K/K). We write B for the crystalline period ring defined by J.-M. Fontaine
in [Fo]. Recall that B is a topological ring, endowed with a continuous action of Gk, an
exhaustive decreasing filtration Fil® B and a Frobenius operator ¢.

Following the paper [AI2], these notes aim at presenting a new proof of the so called crys-
talline conjecture formulated by J.-M. Fontaine in [Fo]. Let X be a smooth proper scheme,
geometrically irreducible, of relative dimension d over Ok:

Conjecture 1.1 ([Fo]). For every i > 0 there is a canonical and functorial isomorphism com-
muting with all the additional structures (namely, filtrations, Gx—actions and Frobenii)

Hi(X%t’ @p) ®Qp Bcris = Hf:ris(Xk/OK) ®(9K BCFiS'

cris(Xk’/OK> =
Hir(X/Ofk). The latter denotes the hypercohomology of the de Rham complex 0 — Ox —
Qﬁ(/OK — Q?)(/OK — ‘“ng/oK —— 0. The first interpretation provides a Frobenius op-
erator, the second one provides a filtration, the Hodge filtration. For every n € N we put
Fil"Hx (X/Ok) = H{x(X/Ok) if n < 0, to be 0 if n > d + 1 and to be the image of the
hypercohomology of the complex 0 — Q}/OK — Q%(/OK — ---Qg(/ok — 0if0<n<d
Then, in the statement of the conjecture

1) Frobenius on the left is defined by the identity operator on H'(X%, Q,) and by Frobenius

on Beis. Frobenius on the right hand side is defined by Frobenius on H’ (X} /Ok) and by
Frobenius on Byis;

2) the filtration on the left hand side is defined by H'(X%,Q,) ®q, Fil"Beis, while on
the right hand side it is given by the composite filtration Fil" (HQR(X /OK) ®0, Bcris) =
Yo b FIPHIR (X/Ok) @0, Fil° Beris;

3) the Galois action on the left hand side is induced by the action of Gk on H'(X, Q)
and on B.. The Galois action on the right hand side is given by letting G act trivially on
H ..(X%/Ok) and through its natural action on Bys.

cris

It follows from a classical theorem for crystalline cohomology, see [BO], that H

The conjecture is now a theorem, proven by G. Faltings in [F2]. In fact it holds without
assuming that K is unramified and with non-constant coefficients. But these assumptions will
simplify our considerations. There are various approaches to the proof of the conjecture. One
(and the first) is based on ideas of Fontaine and Messing in [FM] using the syntomic cohomology
on X; a full proof (for constant coefficients) using these methods was given by T. Tsuji in [T].
There is also an approach (for constant coefficients) based on a comparison isomorphism in K-
theory which is due to W. Niziol [N]. We will follow the approach by Faltings, not in its original
version but using a certain topology described in [F3]. Our approach, which works also for non
constant coefficients, is based on the papers [AI2] and [AB]. The strategy consists in defining a
new cohomology theory associated to X and proving that it computes both the left hand side
(via the theory of almost étale extensions) and the right hand side of conjecture 1.1. The new
inputs, compared to Faltings’s original approach, are:

i) we systematically study the underlying sheaf theory of Faltings’ topology. Faltings uses
Galois cohomology of affines and then patches his computations to global results using hyper-
coverings;



ii) we introduce certain acyclic resolutions of sheaves of periods on Faltings’ topology. This
allows to avoid the use of Poincaré duality. In Faltings’ original approach one needed to prove
Poincaré duality in Faltings’ theory and to show that it is compatible both with poicaré duality
on crystalline or de Rham cohomology and with Poincaré duality on étale cohomology. We
explain how to avoid this.

In order to simplify the proof, we also assume that there exists a morphism F: X — X
lifting Frobenius on Ok and the Frobenius morphism on the special fiber Xj. This is a strong
hypothesis. For example, if X is an abelian scheme over O with ordinary reduction, it amounts
to require that X is the canonical lift of Xj. In fact, in [AI2] the existence of such a lift of
Frobenius is assumed only Zariski locally on X (and this is harmless). On the other hand,
this stronger assumption allows us to work with Hi (X/Of) instead of H. . (Xt/Ok) with the
Frobenius operator induced by F. We can then avoid the use of crystalline cohomology (and its
technicalities) completely.

2 The crystalline conjecture with coefficients

We present the statement of the comparison isomorphism conjecture in the case of non constant
coefficients. As before X — Spec(Qg) is a proper and smooth scheme, geometrically irreducible.
We make no assumption on Ok but we assume that X is obtained by base change from a scheme
defined over W (k) where k is the residue field of Ok (this is needed in [AI2] not in Faltings’
original approach). We consider two categories:

The category Q, — Sh(X§) of Q,-adic étale sheaves. By a p-adic étale sheaf L on X5 we
mean an inverse system L := {LL,,} € Sh(X$)" such that L, is a locally constant and locally free
of finite rank sheaf of Z/p"Z-modules for the étale topology of Xy and L,, = L,+1/p"L, 4+ for
every n € N. Given two such objects M = {M,},, and L := {LL, },, a morphism of p-adic étale
sheaves f: M — L is a collection of morphisms f,,: M, — L, of sheaves such that f, = f,1
modulo p" for every n € N. The category Q, — Sh(X§) has the p-adic étale sheaves as objects
and one defines the morphisms by tensoring the Z,-module of morphisms as p-adic étale sheaves
with Q,.

The category Fil— F—Isoc( Xk / K) of filtered F-isocrystals on X . Let F—Isoc(X,/W (k)) be
the category of isocrystals € on X /W (k), endowed with a non-degenerate Frobenius ¢: ¢*(€£) —
£. By isocrystal we mean a crystal of Ox, jw)-modules up to isogeny. See also [B3], especially
Thm. 2.4.2, for a different point of view in the context of the rigid analytic spaces. To any
such object one can associate a coherent Ox,-module £x, with integrable, quasi-nilpotent con-
nection V: &y, — Exp Qoy, Q;K/K. The category Fil — F' — Isoc(X/K) consists of an
F-isocrystal € on X /W (k) and an exhaustive descending filtration Fil*€x, on Ex, by Ox,-
submodules satisfying Griffith’s transversality with respect to the connection V on €x, i. e,
such that VFil"Ex, C Fil"™'Ex, ®o,, U, /i Then,

Conjecture 2.1. Assume that there exist a Q,-adic étale sheaf I and a filtered-F-isocrystal £
which are associated. Then, for every i > 0 there is a canonical and functorial isomorphism
commuting with all the additional structures (namely, filtrations, Gk —actions and Frobenii)

Hi(X%ta L) ®Qp Bcris = HZ (Xk/W(k’), g) ®W(k) Bcris~

cris

Here, the filtration on H.; (Xy, /W (k), €) @w (k) Bexis is obtained via H. . (Xi/W (k), E) @wx)

cris cris

B = HéR (XK,SXK) QK Beris using the Hodge filtration on HQR (XK,EXK). The clarification
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of what “being associated” means is part of the conjecture. As an example, let f: F — X be a
relative elliptic curve or an abelian scheme. Then, one can consider the Q,-adic étale sheaf (L,,),,
where L,, := Ek[p"] is the groups scheme of p™-torsion points of Ex. On the other hand, one can
consider the filtered F-isocrystal £ defined by R! feis g}is/w(k) (the first derived functor in the
crystalline sense of the crystal OCEY;S/W(,C) with respect to fx). The module with connection Ex,.
on X is the first de Rham cohomology of E relative to X with the Gauss-Manin connection.
The filtration has only one step and Fil'Ex, C Ex, is [ (Q, /xj- Lhen, in this case L and €

are associated and the conjecture holds. See [AI2].

3 The complex case. The strategy in the p-adic setting

Assume that X is a complex analytic projective variety. Let Ox denote the sheaf of holomorphic
functions on X. In this consider on the one hand a locally constant sheaf I of C-vector spaces
and a locally free coherent sheaf £ of Ox-modules endowed with an integrable connection V.
Then, L and (€, V) are associated if L = EV=C. If this is the case the de Rham complex provides
a resolution for LL:

O—>L—>5—>€®0XQ§</C—>---

This provides a canonical comparison isomorphism H*(X,L) = Hz(X,&). Here, we strongly
use the analytic topology to prove that the displayed long sequence is exact and this approach
certainly will not work for schemes (or even for rigid analytic p-adic spaces). As a refinement
of this argument, more algebraic in flavor, we consider the universal covering space v: X — X.
Let z € X be a point and let m(X,z) be the fundamental group. Then, v~!(L) becomes
a constant sheaf on X and defines (and is defined) by a representation of m(X,x). Write
v*(€) == vHE) ®p-1(0y) Ox- It is a Og-module endowed with an integrable connection. Then,
L and & are associated if we have an isomorphism v~ '(L) ®c Og = v 1(€) ®y-1(0y) O of
Os-modules, compatibly with (X, z)-action and connections. We can consider the complex
0 — v L) — v () — v(€) Bo, Vo — -+ -

It is m (X, z)-equivariant and exact. There is an obvious relation between the two complexes.
The former is locally given by the 71 (X, x)-invariants sections of v, of the latter. This allows to

recover the comparison isomorphism over X from the comparison isomorphism Hl()z ;o (L))
Hig (X, 0v*(€)) of m (X, z)-modules. Indeed, we have compatible spectral sequences

HY (1 (X, 2), B (X, v (L)) = H™(X, L)
and ' o .

H' (71 (X, z), Hip (X, v7(€))) = HF (X, €)
inducing the isomorphism H(X, L) = H{z (X, £).

We will use the complex case as a guide for the proof in the p-adic case:
Step 1: Construct the analogue of the universal covering space v: X — X.

Step 2: Define the notion of “being associated” on X and construct the analogue of the

exact sequence 0 — v~ (L) — v*(£) — v*(€) ®o, Q}(/(C — ---. Here, we need to find a
replacement for the sheaf of holomorphic functions O ¢ introducing Fontaine’s sheaves of periods.

Step 3: Deduce the comparison isomorphism for associated objects.
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4 The p-adic case; Faltings’s topology

We let X — Spec(Ok) be as before. Of course we do not expect to construct a universal covering
space. Following Faltings we will construct the sheaves on such space. After all we are interested
not in the space itself but in comparing sheaves on it. We give the following:

Definition 4.1. Let Ex_ be the category defined as follows

i) the objects consist of pairs (U, W — U?) such that U is an open subscheme of X
and f is a finite étale morphism with Uz equal to the base change of U to K. We will usually
denote by (U, W) this object to shorten notations;

ii) a morphism (U’, W') — (U, W) in Ex_ consists of a pair («, 3), where U’ — U is the
inclusion X and §: W' — W is a morphism commuting with a ®e,. Ids,.

Let us remark that the pair (X, X3) is a final object in Ex,,. Moreover, fibre products exist
setting (Ul, W1> X(U,W) (UQ, WQ) = (U1 N UQ, W1 Xw Wg)

We say that a family {(U;, W;) — (U, W)}icr is a covering family if {U; — Ulicr is a
covering of X and {W; — W s is a covering of W i. e., every K-valued point of W is in the
image of a K-valued point of one of the W;’s.

One verifies that the covering families satisfy the axioms of a pre-topology [SGAIV, Def II
1.3]:

(PT0)&(PT1) Given a morphism (U, W') — (U, W) and a covering family {(U;, W;) —
(U, W)}ier the base change {(U;, W;) xww) (U', W) }icr is a covering family of (U, W');

(PT2) Given a covering family {(U;, W;) — (U,W)}ier and for every ¢ € I a covering
family a covering family {(U;, Wi;) — (Ui, W;)}jes, the composite family {(U;;, W;;) —
(U, W)}ier jes; is a covering family;

(PT3) the identity (U, W) — (U, W) is a covering family.

We let X be the category Ex_ with the given pretopology. It should be thought of as the
open subsets of the universal cover of X. It turns out that properties (PT0)-(PT3) suffice to
define a category of sheaves of abelian groups Sh(X) on X. A presheaf of abelian groups is
a controvariant functor F': Eg(f — ADbGr. It is a sheaf if, for every object (U, W) and every
covering family {(U;, W;) — (U, W) };er the sequence

0— FUW)— [[FW,W,) — [ F (U, W:) xww) (U;, Wy))
el i,J€1

is exact. Given a presheaf F' one can use the covering families to define the associated sheaf.

Remark 4.2. There are variants of the definition above which will be used in the sequel. Let
X be the formal scheme defined by completing X along the special fiber Xj.

(a) One can consider pairs (U, W) where U C X is Zariski open and W — Uy is finite étale
(meaning that there is a finite extension L such that W is defined by a finite and étale morphism
over Uy, as rigid analytic spaces).

() One can consider pairs (U, W) where U — X is étale and W — Ug is finite étale.
(7) One can consider pairs (Z/l , W) where U — X is p-adically formally étale and W — U
is finite étale.

In case («) one defined the pretopology X as in the algebrai setting. In cases () and ()
Faltings defined in [F3, p. 214]] the pre-topology as before: a family {(U;,W;) — (U, W)}ier
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is a covering family if {U; — Ule; is a covering of X (or X) and {W; — W}, is a covering
of W. As pointed out by A. Abbes this gives the wrong pre-topology for which the period
sheaves behave badly. The right definition, which produces a pre-topology which is coarser than
Faltings’, is that one takes the pre-topology generated by coverings of the following form: (a)
{U; — U}ier is a covering of X (or )A() and W; =W xy U;; (b) U; =U and {W; — W}ies is
a covering of W. We refer to [AI2] for details.

We next define a morphism

v, Sh(X) — Sh(X)

analogous to the push—forward functor associated to the morphism v: X — X in the complex
case. Let v=1: X% — X, where X% is the Zariski topology on X, be the functor associating to
an open U C X the pair (U, Ug). This induces a functor v, from the category of presheaves on
X to the category of presheaves on X** sending a presheaf F to v, (F)(U) := F(v=*(U)). One
verifies that v sends covering families to covering families and sends intersection of two open
subsets to the fibre products in X. In particular, v, sends sheaves on X to sheaves on X. By
construction it is left exact. One can verify that v, admits a left adjoint v* which is exact so
that v, sends injective objects to injective objects and we can derive the functor v,. The rest of
this section is devoted to the explicit computation of the functors Riv,.

Localization functors: Fix an algebraic closure 2 of the fraction field of X3. Consider
a Zariski open subset U C X and let Gy := m(Ug, 2) be the fundamental group of Uz with

base point defined by €2. Let U%t be the category of finite and étale morphisms W — Ug. It
is endowed with a pretopology: for every object W the coverings are morphisms {W; — W}
such that the images of the W;’s cover the whole of W. By Grothendieck’s formulation of Galois

theory, the category sheaves of abelian groups on U%et is equivalent to the category Gy — AbGr
of Z-modules with discrete action of Gy;. We have a fully faithful morphism palz U%t — X
sending W +— (U, W). It sends covering families to covering families so that it induces a
morphism

pu.: Sh(X) — Sh(ULeY) = G — AbGr
which is left exact, admits an exact left adjoint pj; so that it can be derived. Given a sheaf

F we define py.(F') to be the localization of F' at U. This construction remains valid also for

the variants of the topology given in 4.2. One needs to take care of the choice of a base point,
though. We refer to [AI2] for details.

Example 4.3. Assume that U = Spec(Ry) is affine. Let_ﬁu C Q be the union of all Ry ®o,, Of-
subalgebras S of 1 such that S is normal and Ry @0, K C S[p‘l} is finite and étale. Given a
sheaf F' on X write F(Ry) for the direct limit limg F (U, Spec(S[pfl])). It is naturally endowed

with a continuous action of Gy and we have py.(F) = F(Ry) (as Gy-modules).

In particular, given a sheaf of abelian groups F' on X we get a spectral sequence a map
H" (GU, PU,*(F)) — an* (F) (U)
Define Hg,,, x(F) to be the sheaf on X associated to the presheaf U H”(U% fet pu(F)).

Theorem 4.4. The morphism Hg, x(F) — R"v. (F) is an isomorphism of sheaves on X.



To prove this it suffices to show that the given morphism induces an isomorphism at level of
“stalks”. We define a geometric point of X to be a pair (x,y) where (a) x is a geometric point
of X;(b) y is a geometric point of Ox, ®o, K.

Write G5, to be m (Spec(OX,z ROk F),y) Let Jiz ) be set of pairs (U, (W, y’)) where U
is an open neighborhood of  and W — Uy is a finite and étale morphism with a point 3’ over
y. One verifies that it is a directed set. Given sheaf F' on X define the stalk F{, ,) as the direct
limit lim F'(U, W) taken over all pairs (U, (W, y')) € J(uy)- If Fis a sheaf of abelian groups, then
Fla) is a discrete module with continuous action of G(a,). Since Hg, x(F). = H* (G Fay)
to prove the theorem it suffices to verify that

Lemma 4.5. (1) A sequence of sheaves of abelian groups is exact if and only if for every
geometric point (x,y) the induced sequence of stalks is exact.
(2) For every geometric point (x,y) and every sheaf F of abelian groups on X we have

Ri(F)s = H Gy, Floy)-

As a consequence of this theorem we can prove the relation between Faltings cohomology
and étale cohomology. Consider the forgetful functor u=!: X — X%t sending (U, W) — W. It
induces a morphism u,: Sh(X%) — Sh(X). Then, Faltings proves in [F1] that if L is a locally
constant étale sheaf on Xz we have H¢, x (u.(I)) — R™(v, 0 u,)(L). This and 4.4 imply that
the natural morphism R"v, (u* (F )) — R™(v, o uy) (F ) is an isomorphism. This implies

Proposition 4.6. We have H (X%, L) = H' (X, u.(L)).

5 Sheaves of periods

In this section we will introduce the sheaf theoretic analogue of the ring O, Cx and B of
p-adic Hodge theory. We start with the analogue of Of. First of all notice that given a sheaf M
on X we get a sheaf on X, which we denote again by M, via the formula M (U, W) := M(U).

In particular, we can view Oy and Q' 05 B8 sheaves on X.
Definition 5.1. We define the presheaf on X, denoted Oy by
Ox(U, W) := the normalization of I'(U, Oy) in I'(W, Ow).

By construction there is a natural injective ring homomorphism Ox ®o, O — Ox. We
have

Proposition 5.2. The presheaf Ox is a sheaf. Moreover, if U = Spec(Ry) is an open affine
subset of X then Ox(Ry) = Ry.

Before sketching the proof of the proposition we remark that this remains true also for the
variants 4.2. For variant () we denote by O3 the associated sheaf. If one uses the original
definition of Faltings the proposition is wrong in cases () and (). We refer to [AI2] for a
counterexample.

Proof. The second statement is clear. For the first, we may assume that W is irreducible and we
may consider only the a’s such that W, # 0. Let {(U,, W) — (U, W)}, be a covering family.
We set Uy := Uy Xy Ug and W, := W, Xy Ws. We have the following commutative diagram

/
0 — O0x(UW) — Haox(Ua,WQ) — H(a),(ﬁ)oxM(UaﬁvWaﬁ)
|

! !
0 — I'W,0w) — I[L.I'Wa,Ow,) —  Il.sT(Wag, Oagpij)
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Note that for every a the map {W, — W xy U, }; is surjective because W x U, is irreducible
and W, # (). Since the {U, — U}, is a covering of X it follows that {W, — W}, is a
covering in X¢. In particular, the bottom row of the above diagram is exact. Moreover the
vertical maps are all inclusions therefore f is injective, i.e. Oz is a separated presheaf. Let

z € Ker(g). Then z € T(W,0w) N HOXM(UO” W,). We are left to prove that x is integral

over I'(U, Oy). Without loss of generality we may assume that U, = Spec(A,) is affine for every
a. Let us denote by x, the image of = in F(W X Ua,OWXUUQ). Because W, — W xy U,
is surjective, the image z, of x, in I'(W,, Ow,) is in fact in Ox(U,, W,), hence integral over
A, it follows that x, is integral over A,. Let P,(X) € A,[X] be the (monic) characteristic
polynomial of z, over A,. Then P,(X)|y,, = Ps(X)|v,, for all a, 3, therefore there is a monic
polynomial P(X) € I'(U, Oy) such that P(X)|y, = Pa(X). As P(2)|y, = Pa(zs) = 0 for every
a it follows that P(z) = 0, i.e. that z is integral over I'(U, Oy ). O

We come next to the sheaf theoretic analogue of Cg. This coincides with @f[pfl]; here 6?
is the p-adic completion of O and it is a topological ring and we can view (/’)\?[p_l] as the limit
of the inductive system ((7)\?) with transition maps given by multiplication by p. It is crucial
that our definition captures the topology. For example, we Xvould like that the localization of

our continuous sheaf at an affine Ry gives the Gy-module Ry endowed not with the discrete
topology but with the p-adic topology. To take this into account we use the category of inverse
systems.

Categories of inverse systems. We review some of the results of [J]. Let A be an abelian
category. Denote by AN the category of inverse systems indexed by the set of natural numbers.
Objects are inverse systems {A,}, :=... = A1 — A, ... Ay — Ay, where the A;’s are objects
of A and the arrows denote morphisms in \A. The morphisms in AY are commutative diagrams

— An+1 — An e A2 — Al
! l ! l
— BnJrl — Bn e BQ — Bl,

where the vertical arrows are morphisms in A. Then, AY is an abelian category with kernels
and cokernels taken componentwise and if 4 has enough injectives, then AN also has enough
injectives.

Let h: A — B be a left exact functor of abelian categories. It induces a left exact functor
hN: AN — BN which, by abuse of notation and if no confusion is possible, we denote again
by h. If A has enough injectives, then also AN does. One can derive the functor AN and
Ri(hY) = (Rih)"

If inverse limits over N exist in B, define the left exact functor liin h: AN — B as the composite

of AN and the inverse limit functor lim: BY — B. Assume that A4 and B have enough injectives.

«—

For every A = {A,}, € A" one then has a spectral sequence

HmPRIn(A,) = RP™(lim h(A)),

—

where 1im® is the p—th derived functor of lim in B. If in B infinite products exist and are exact

functors, then im® = 0 for p > 2 and the above spectral sequence reduces to the simpler exact
sequence -

0 — ImWR™A(A,) — R (limh)(A) — imR°A(A,) — 0.

— — —
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Generalities on inductive systems. Let A be an abelian category. We denote by Ind(.A),
called the category of inductive systems of objects of A, the following category. The objects are
(Ai’%)iez with A; object of A and 7;: A; — A;1 morphism in A for every ¢ € Z. Given an
integer N € Z a morphism f: A := (Ai’%)z‘ez — B = (B 5) iez
of morphisms f;: A; — B,y for i € Z such that d;,y o f; = f;11 0. Since A is an additive
category, the set of morphisms of degree N form an abelian group with the zero map, the
sum of two functions and the inverse of a function defined componentwise. Given a morphism
f=(fi)iez: A — B ofdegree N we get a morphism of degree N+1 given by (5i+Nofi)ieZ‘ This

of degree N is a system

defines a group homomorphism from the morphisms Hom® (A, ﬁ) of degree N to the morphisms
Hom™*! (A, ﬁ) of degree N+ 1. We define the group of morphisms f: (AZ», %)ie (B 0; )]GZ
in Ind (.A) to be the inductive limit lim ez Hom®™ (A, E) with respect to the transition maps just
defined.

One verifies that the category Ind (A) is an abelian category. Let B be an abelian category
in which direct limits of inductive systems indexed by Z exist. Consider the induced functor

lim: Ind(B) — B.
Suppose we are given o-functors 7": B — A with n € N. Define

lim7™: Ind (A) — B

as the composite of the functor Ind(A) — Ind(B), given by (A;)inz — (T"(4;))._,, and of the

i€z’
functor 11m Then, if hm is left exact in B, the functors hmT” for varying n € N, define a

0- functor as well.

Given F = (F,) € Sh(X)N define H*(X, F) := lim H°(X, F,). Define H (X, F) as the i-th

o0—n

derived functor of this. If G = (Gyn)men € Ind (Sh(X)Y) with G,,, € Sh(X)"N define H (X, G) =
lim HY (X, G,).

This bit of abstract non-sense allows us to define inductive limits of topological sheaves
Ind (Sh(%) ) on X where Fontaine’s sheaves of periods naturally live. For example, the analogue

of (9* is the inverse system (935 = (Ogg/p"(’)gg)n where the transition maps are the natural
reduction maps. Similarly, the analogue of Cg is the inductive limit (535 [p‘l] = ((535)” where
the transition maps are given by multiplication by p. We next consider the analogue of Bs.
Since we’d like to use the technology above we will first show how to construct Be;s as a direct
limit of an inverse system of rings. We will then generalize this construction to sheaves.

Review of a construction of Beis. Put W, := W, (Ox/pOx) the Witt vectors of length n
with values in Ox/pOfx and write ¢ for Frobenius on W,,. We have a ring homomorphism
On: W, i— Ox/p"Ox given by (so,... ,8,1) = Sy P'8  where §; € Ox/p"Ox is a lift
of s; for every i. Choose a compatible sequence of roots (pl/pn_l)nzl in Oxi.e., (p/P")P = ptrn Tt
Denote by p,, := [pl/pn] € W, the Teichmiiller lift of p!/?" € Ox/pOx. Write &, := D —p € Wi;
it is a generator of Ker(6,,). Let u,41: W,11 — W, be the composite of the natural projection
composed with Frobenius ¢. Then, 6, o u,.1 = wu, modulo p" and u,;1(§01) = &,. Put

Aais as the inverse limit of the rings W, [%} with respect to the transition morphisms
"ImeN



defined by the u,’s. One can prove that Aes/p"Aeis = Wi, [%] . This admits a filtration

meN

where Fil" Aeis /" Aeris = W [%} . Furthermore, A is endowed with (1) an action of Gk,

m2>r
via its action on O, which is continuous for the p-adic topology; (2) a filtration defined by
Fil" Agris := im Fil" Agyis /p" Aeris; (3) a Frobenius ¢ defined by Frobenius on the W,,’s.
Let {(y}nen be a compatible system of primitive p"~th roots of unity so that ¢} ; = (,.
It defines an element [(,+1] € W,. Note that w41 ([Gire]) = [Gor1] and [Goa] — 1 € Ker(6,,).
Let € = lim[(,41] € AL, be the induced element and write

cris

oo

=log(e) = Z(s —1)"/n.

n=1

Is an element of Fil' Auis and Beis = Aens [t7!]. It inherits a Gg-action, a filtration and a
Frobenius from those defined on A... Note that ¢t := * /P! € Aeis 0O that pltlPl = ¢ and p
is invertible in Be;s. More precisely, for every m € N write Agis(m) = Agis - t7™. Since G
acts on t via the cyclotomic character i. e., for g € Gx we have g(t) = x(g)t, then Aqis(m) is
G k-stable and as a Galois module it is a Tate twist of Aeis. Put Fil" Acys(m) = Fil" ™ Agyg - 7™,
Eventually, since ¢(t) = pt then Frobenius on By sends Agis(m) — Aeis(pm). We note that
Beis = lim Ags(m) compatibly with Gk-action, a filtration and a Frobenius.

The sheaf BY,,. We switch to Faltings’ site. Consider the sheaves W,, := W, ((933/ pOx). We
have a Frobenius ¢ on W,, and on W,, x. As in the classical case we have a homomorphism of
sheaves 0,,: W,, — Ozx/p"Ox. We further have sheaf homomorphisms w,1: W, 3 — W,
defined be the composite of the natural projection composed with Frobenius. Fix an object

(U, W) of X. Write S = Ox(U, W).
Lemma 5.3. The element &, generates the kernel of 0,,: W,,(S/pS) — S/p"S.

Proof. Let us first remark that 6,,(&,) = (p"/?")P" — p = 0, therefore &, € Ker(f,). one needs to
show that if x € Ker(6,) then x € &,W,(S/pS). One proceeds by induction on n. For n = 1,
then 6, is Frobenius on S/pS whose kernel is generated by p'/? since S is normal. For the
inductive step we refer to [AI2] O

In particular, we conclude that the kernel of the map of sheaves 6, is generated by §n
One defines AY,, as the inverse system A ;s/p"Aqis for varying n € N where AY, /p"AY.. i

Cris Cris

the sheaf W,, @y, (Ams /p" Ams). The transition morphisms are defined by w,. Then, Acvm
is endowed with a Frobenius morphism, a filtration defined by Fil" (Agis/p"Acis) == W, Qw,
Fil" (Ams /p" Ams) and a Gg-action. One defines similarly the inverse system AY. (m) as the
inverse system AY, (m)/p"AY(m) == W, @w, (Acis(m)/p"Acis(m)) for m € N with induced

filtration and Gg-action and we let BY,, € Ind (Sh(f{) ) be the induced inductive system of
inverse systems of sheaves.

The sheaf Beis. Consider W, x := W,,(Ox/pOx) @0, Ox. Using our assumption that X ad-
mits a global lift of Frobenius, we get a Frobenius on W,, x. Extending 6,, and w,,11 to Ox-linearly
morphisms we get compatible morphisms 6,, x: W,, x — Ox/p"Ox and upi1 x: Wiy x —
W,,.x. We analyze the kernel of 6, x. Let (U, W) € X with U = Spec(Ry) affine and put S :=
Ox(U,W). Assume that U admits an étale morphism to Spec (OK [T ... ,le]). in this case

we say that U is small. Assume furthermore that S contains p™*!-th roots Tl-l/ e foralll <i<d
of the variable 7;. Denote by T;, := [T-l/an] € Wn(S/pS) and X;, == 10T, -T,,®1 €

)
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W, (S /pS) ®o, Ry. Since the kernel of the ring homomorphism Ry /p"Ry ® Ry/p"Ry —
Ry /p"Ry defined by x®y — zy is the ideal I = (11 ®@ 1 -1 Ty,... , T, @1 —1® Ty), we
conclude that the kernel of the map 6, s: W, (S/pS) ®o, Ry — S/p"S is the ideal gener-
ated by (&, X1m,.-.,Xa4n). The derivation d: Ry — Q}%wa ~ @¢ | RydT; extends to a

(S / pS) Ow, sra=--linear connection Vg:

p”A
Wi (5/0S) 0 R |, 20 Sk (58 mo [, ZE
sending fﬂ% e )f,j‘j? = ZL )2?% T (Xn»jmi; e ii’? - dT;. One can prove that in fact
W, (S/pS) Gor Ro [5’”' Ao m”?] = 11, (S/pS) @, (Ao 7" Aers) [);}: );ﬂ |

It follows from this that de Rham complex

gm m m

Acris X N
O 7 Wn (S/pS) ®W’ﬂ pnAcris 7 (S/pS) ®OK RU [%7 m‘ R 77(71,'

:| ®RU Q;%U/OK — 0

m

is exact. Note that W, (S / pS) ®Wn (AcriS / p”Acris) [& el X:l‘!”] admits a filtration where Fil”

m!

xm mq

X . : .
is generated by the elements & o) W;? e nj; with mg+mq +---mg > r. Such filtration satisfies

Griffith’s tranversality with respect to the connection Vg. We also notice that the action of the
X, :|
Indeed,

Xln
1y ! o

Galois group Gy on S extends to a an action on W, (S/pS) Ro, Ru [
let ¢;: Gy — 7, be defined by o (7" ) = ¢ T Then,

n

e - 3 AT A

—3) s!
s=0

Such action preserves the filtration and commutes with the connection Vg. Since the pairs
(U, W) with the properties above define a basis for the given pre-topology on X, one can
sheafify this construction to get a sheaf Agus/p™Acris of Ox @ Acris/D" Aeris-modules, endowed
with an integrable connection V, a decreasing filtration Fil®A s /p™Acis which satisfies Griffiths’
transversality, a Frobenius ¢. Moreover, {Acis/p"Aeis },, define an inverse system A € Sh(X)N
of (’)X@)Acris—modules, endowed with a connection V: Agis — Agis @0y Qﬁc/ow filtration

Fil* A = {F il® (Acris / p"Acris) }n and a Frobenius ¢. Moreover,

Proposition 5.4. Consider the complex

v 1 AV 2 va d
Acris — Acris ®OX QX/OK B— Acris ®OX QX/O — Acris ®OX QX/(’)K — 0
1. 1t 1S exact;

ii. the natural inclusion AY

C Agis identifies Ker(VY) with AY.

cris cris 7

ii. (Griffith’s transversality) we have V (Filr (Ams)) c Fil" ! (Auis) ®oy Qﬁ(/oK for every r;

1 2

w. for every r € N the sequence 0 — Fil"AY. — Fil" A v, Fil" ' A Roy Qﬁ(/OK v,
3

Fil" 2 A i Roy Q?X/OK v, -+, with the convention that Fil’Acis v = Acnis for s < 0, s

exact;

11



v. the connection V: Agis i — Acism @0y Q§< 0K 18 quasi—nilpotent;
vi. Frobenius ¢ on Ags 1 horizontal with respect to V i. e., Vo = (go@dF) oV.

Example 5.5. We consider the case thatn = 1. Take the ring S/pS®o, Ry [éin M Xda

m!? m! """ ml

We claim that it is isomorphic to

S/p5[50, 617 s X’i,07 Xi,la s ]lgigd/(éfm ngm)lgigd,mzo

z

where 6, = "¢ and X ; = 7N X;) and y: 2 — ;P. In particular, it is a free S/pS-module.
This allows to compute the localization of Agys.

One can also define A 5(m)“ =7 Ayis-t™ for every m € N with its filtration and connection.
Taking inductive limits of the Agi(m) as in the definition of BY.. one constructs the object

B.is € Ind (Sh(%)N), with a filtration, connection and Frobenius so that the analogue of 5.4
holds. One can also prove that an analogue of the fundamental exact sequence holds:

Lemma 5.6. We have the following exact sequence in Ind (Sh(%)N>

0 — Q, — Fil’(BY,

cris

)QBV — 0.

cris

o~

Proof. We prove the weaker statement that the sequence of inverse systems in Sh(X)N

0— Zp — Acvris L Acvris — 0.
One reduces to prove that
0— Z/pZ - Acvris/pAcvris SO__1> Acvris/pAcvris —0

is exact and from this that
0 — Z/pZ — O3/pOx = O%/pOz — 0.

This can be proven on stalks and, hence, it suffices to show that for U C X affine the map
0 — Z/pZ — Ry /pRu = Ry /pRu — 0

is exact. By Artin-Schreier theory, the kernel of ¢ — 1 is H° (Spec(ﬁu /pRy), 7./ pZ) which is
Z./pZ since Ry /pRy is connected (here we use that Ry is p-adically complete and separated
so that its finite normal extensions are connected if and only if they are connected modulo p).
The cokernel of ¢ — 1 coincides with H'(Spec(Ry/pRy), Z/pZ) which is alos zero since every
7Z./pZ-torsor over Ry /pRy can be lifted to Ry, and, thus, is trivial by definition of Ry, (here again
we use that Ry is p-adically complete and separated so that every finite extension is henselian
with respect to the ideal p). O

12



6 The computation of Riv, B

Consider the functor v,: Ind (Sh(X)Y) — Sh(X) given by {(an)n}m — {u, (an)n}
Then,

m.

Theorem 6.1. We have Riv,Beyis = 0 for i > 1 and it is equal to (’)X<§>@KBcris if i = 0.
Similarly, R0, Fil"Beys = 0 for i > 1 and it is equal to OX@QOKFHTBMS if 1 =0.

Here, O X@gK B.,is stands for the inductive limit O X®OKAcris [t71] where O X@gk Acyis stands
for the inverse system of sheaves Ox®o, (Acris/P" Aeris). Similarly for 0X®@KFiercriS. In this
section we will only sketch the proof that Riv, B = 0 for i > 1. For the other statements we
refer to [AI2] also considering the variants in 4.2.

Recall that an open affine subset U = Spec(Ry) of X is called small if it admits an étale mor-
phism to Spec((’)K[Tlﬂ, e ,Tdﬂ]). In this case we write Ry o 1= U, Ry®o, Ox [Tll/pn, e ,le/pn] )
We will freely use the following result proven in [F1, Thm. 1.2.4(ii)] as a consequence of his the-
ory of almost étale extensions. Given normal extensions Ry, C S C T (contained in ) such
that S[p~'] C T[p~!] is finite, étale and Galois with group Gr/s we have that H'(Gr/g,T) is
annihilated by any element of the maximal ideal of O for every ¢ > 1. As an application we
prove the following:

Lemma 6.2. The presheaf Ox/pOx is separated i. e., if (U, W') — (U, W) is a covering, the
natural map Ox(U, W) /pOx(U, W) — Ox(U' W) /p"Ox(U', W') is injective. In particular, if
U = Spec(Ry) is a small affine open subscheme of X, the map

FM/PRM = O%(Eu)/pox(}_%u) I (an/]?ox) (Eu)
is injective. Furthermore, its cokernel is annihilated by the mazimal ideal of Of.

Proof. We first prove the first statement. We may assume that U and U’ are affine. We may
write Ox(U, W) = U;S; (resp. Ox(U', W') = U;S%) as the union of normal and finite [—algebras
(resp. Ryp—algebras) of Q, étale after inverting p such that for every i there exists j; so that S;
is contained in 57, and the map Spec(S},) — Spec(S;) is surjective on prime ideals containing p.
Let x € S; Np"S),. Let P C S; be a prime ideal over p and let P’ C .S be a height one prime
ideal over it. Then, z € S;» N p”Sj{“p,. Hence, z € p"S; p. Thus, z lies in the intersection of all
height one prime ideals of S; so that = € S;. We conclude that the map S;/p"S; — S}, /p"S] is
injective. The claimed injectivity follows.

We now pass to the second statement. It follows from the first statement that the value of
the sheaf Ox/pOx at (U, W) is given by the direct limit, over all coverings (U’, W’) of (U, W)
with U’ affine, of the elements b in Ox(U',W')/pOx(U’,W') such that the image of b in the
ring Ox(U",W") /pOx(U",W") is 0 where (U",W") is the fiber product of (U’, W’) with itself
over (U, W). Hence,

(0x/pOx)(Ry) = lén:rl Kers 1

where the notation is as follows. The direct limit is taken over all normal Ry .—subalgebras S
of Ry, finite and étale after inverting p over Ry oo[1/p], all affine covers U’ — U and all normal
extensions Ry «®pg,S — T, finite, étale and Galois after inverting p. Eventually, we put
U" := Spec(Ry~) to be the fiber product of U’ with itself over U i. e., Ry» := Ry @g,, Ryr. We
let

Kerg 1, := Ker (T/pT = Ts/st) ,

13



where TVS is the normalization of the base change to Ry~ of T'®r,, o fp o S) T.

Study of Kersry. For every S and T' as above, write G gr for the Galois group of T®e, K
over S®r,, . Ry o®0, K. Then, Ty is simply the product Hg
as Ry—algebra choosing the left action. Hence, we have

G T®pg,, Ry where we view Ry

T®g,, Run
Kergr, =Ker | T/pT = H —
9€Gs,T pT®RU’ Fy
where the two maps in the display are a — (a,--- ,a) and a — (g(a))geGST.

Study of Coker(S/pS — Kersr,). For the rest of this proof we make the following nota-
tions: if B is a normal Ry -algebra we denote by B’ := B @Ry Rureo = B @, Ry, also
B" .= B ®R,, .. Bure = B ®r,, Ryr. Note that B" and B” are normal. We then get a
commutative diagram

0 — S/pS — S/psS = S" |pS”

l la s

0 — Kersyn — T/pT = Ts/pTs = [[yeqq, (T"/0T").

The top row is exact and the bottom row is exact by construction. Since S" C T and S” C
T" are finite extensions of normal rings, the maps « and (8 are injective. Define Z as Z :=
Coker (S’ /pS" — (T'/pT)%s7) C Coker(r) and Y as Coker(S/pS — Kergr,,). Since Kergr,, is
Ggr-invariant, the image of Y in Coker(«) is contained in Z. Since o and [ are injective, the
map Y — Z is injective. Consider the exact sequence

0 — §'/pS' = T [pTGst — (T/pT) " — H' (G, T).

Then, Y ¢ Z c H! (GS,T,T). Since Ry o — T is almost étale, the group H! (G&T,T) is
annihilated by any element of the maximal ideal of O thanks to Faltings’ results recalled
above. This implies the last claim. l

From this one can deduce the following:

Corollary 6.3. Let U = Spec(Ry) be a small open affine subset of X. For every n € N we have
an injective map

m m
Xl,n Xd,n

c

Wn (EU/Z?EU) ®Wn (Acris/pnAcris) |: :| — (Acris/pnAcris) (EZ/I)

m! 7 ml

with cokernel annihilated by the elements [(,] — 1 € W, for every m € N.

We refer to [AI2] for details. Since we now know how to “almost” compute the localizations
of Auis/p"Auis we can proceed to the computation of R'v, (Acs/p"Aeis) using 4.4. Our main
theorem, stating that R'v,(Beis) = 0 for 4 > 1 will then amount to prove, see [AB], that

)

m! 77 ml

Hi (GUa Wn (EU/Z?EU) Qw, (Acris/pnAcris) |:

is annihilated by a fixed power of ¢, independent of n and U, for every ¢ > 1. These computations,
and similar ones for the H® and for the cohomology of the filtration, are the content of [AB].
We simply sketch some of the ideas involved.
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Consider the extension Ry®o, K C Ry[p~!]. It is Galois with group I'y isomorphic to Zg.
Due to Faltings’ almost étale theory, it suffices to prove that

H FU; Wn (RU,oo/pRU,oo) ®Wn (Acris/p Acris) m! T )
is annihilated by a fixed power of ¢ for every ¢ > 1. Note that there exists a unique homomorphism
of Og-algebras Ry — W, (RU7oo / pRU,OO) sending 7; — T;,. Such map is not Gy-equivariant!
Write Ry, for its image. One can prove that

Wn (RU,oo/pRU,oo) ®Wn (Acris/pnAcris) RUn ®Wn (Acrls/p ACI"IS) |:j:117{—bpm7 e T;@pm}

meN

Set A, = }Nvan QW (k) (Acris / p”AcriS) and let B,, be the A,-submodule generated by the elements
fl/prn

in for some m > 1. Then,

X7, X X7 X,
An |i }n? cee 7‘n:| = RU/anU ®Wn(k) (Acris/pnAcris) |: 7'TL’ ey T}
m! m! m! m!
. . .. . .. m X .
so that, in particular, it is stable under the action of I'y and similarly B, [%, e n‘i,"] is

stable under the action of I';. The problem is reduced to prove:

Lemma 6.4. (1) The group H' (FU, B, [%, cee 72:”}) is annihilated by a fixed power of t for
every i > 1.
(2) The group H' (FU, Ry /p" Ry ®w, (k) (Acris/p”AcriS) [%, . ,Xir’:"D is annihilated by a

fixed power of t for every i > 1.

Proof. We limit ourself to the case that d = 1. A Koszul complex argument reduces the general
case to this case and we refer to [AB] for details. We remark that in this case I'yy is the free
Z,-module generated by the element v which acts on TYP" via multlphcatlon by ¢,. Then, H

is simply the cokernel of the operator v — 1. We write T for 77, T for T1 » and X for X ,,. Since

V(X)) =T —eT-(1—&)T +¢eX

and hence
(v = D)(XI") = (1 = )T +ex)™ = xlm
= (™ +Zl—g g7 X Im=i]
7=1
—(1—¢) (umx[m} +Tem Xt 3 ﬁijgm*jX[mfﬂ)
j=2
where y[m] = ym/mlv Hm = _‘TZ]L_—_ll and ﬁj =< 11 cris fOIj Z 2.

N
(1) Take b = > b,, X with b, € B, for every m. Suppose N > 0. Since the cokernel of

m=0
v—1on X, is annihilated by £'/? — 1, there exists ay € X such that (y—1)(ay) = (1— [5]%)19]\;.
Then,

(v = D) (anX™) = y(an)(y = 1) (X)) + (v = 1) (an) X
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and hence

(1= )b — (y = 1) (axXW) = —(an)(y — DX 4 (1 - b) I bxim

N-1
e (1-cr) Y B.xM
m=0
Proceeding by descending induction on N we conclude that (1 — 5%)Xn [Xﬁ", ce Xﬂ%{”] is con-

tained in the image of 1 — . this proves (1).

(2) The matrix of ¥ — 1 on the module fo\io Ry /p" Ry @w,, k) (Acris / p”Acris)X [ with respect
tol,X,..., XMis (1- £)Gyp.n with

0 T, T%6y T3B; -+ - TNy, TV B
0 w Te T?Bye - . TN2By e TN By_ie
o e Ter e TN72Bn_ge?
G = | - :
T2B,eN-3  T33,eN-3
UN—2 TgN_Z T2526N_2
: : [iN—1 TNt

Let CNJn,N be the matrix obtained erasing the first column and the last row. Then, én,N =
Un,N + Nn,N with

T 0 - ... 0
pr Te :

= - 0 12%) Te 2

: pn_o TeN2 0
o --- .- 0 N1 TeN-1

is invertible and Nn ~ has nilpotent coefficients and, hence, it is nilpotent. Hence, also [7; }Vﬁn N
is nilpotent and G, v = U, n (IN + U; leNmN) is invertible. This implies that the cokernel of

m m
Xl,n Xd,n

v —1on Ry/p" Ry @w, k) (Acris/p”Acris) [W? T } is annihilated by ¢ — 1. O

7 The proof of the comparison isomorphism

Definition 7.1. We say that a Q,-adic étale sheaf L = (L,,) and a filtered- F-isocrystal £ on Xg
are associated if we have an isomorphism EQ o Beais = L&z, Beyis in Indbig(Sh(X)N ) (compatibly
with all extra structures i.e., Frobenius, Filtrations, connections and A.s-module structures).

It follows from [Bri] that £ = Hom(&, (Ox,d)) and LY = (Hom(Ln,Z/p”Z))n are associ-
ated since £ and L are.
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Due to 5.4 we have an exact sequence
0 — L®Z,,Bcvris — g®(’)chris ®(9X QB(/(’) — O

In particular, ' '
H' (X, L&z,BY,) = H' (X, £Q0,Bais @0y Vx/0)-

The isomorphism is compatible with filtration, G'x-action and Frobenius. Due to 6.1 the latter
coincides with H? (X, ERoy QB(/OK@OKBcris) i.e., HQR (X, E)R®0 Beris- The isomorphism is com-
patible with Frobenius and Gg-action and it can be proven to be compatible with filtrations as
well (we refer to [AI2] for the non-trivial proof of this fact).

The same isomorphisms hold if we work with X instead of X. In particular, H? (%, IL,®ZPIB%§15) i
H' (X, L®z,BY;). Put V; = H (X, L) = H'(X,L) and D, := H (X, H (X, £ ®0, Q/0,.). One
can prove that V; = H’ (%, L); this is a GAGA type theorem and passes via the variants () and
() of 4.2; see [AIl]. Tt then follows from 5.6 that we have long exact sequences

i Vi —% Fil’ (Di XK Bcris) . D; @k Bais —— Vit
1 Bi L | L Bita

:1 wj 1— :1
i — (Dz ®K Bcris)sD B— Dz ®K Bcris —L‘% Dz ®K Bcris B— (Di—i—l ®K Bcris)tp

We recall a criterion from [CF] for a filtered-F-module D over K to be admissibile i e., to
be associated to a crystalline representation of Gx. Let
D K Bcris
—
Fil’(D @ Beris)

§(D): (D ®p Beyis)?~"

be the natural map. Put V(D) := Ker(dp)

Proposition 7.2 ([CF]). The filtered p-module D over K is admissible if and only if (a)
Vais(D) is a finite dimensional Q,-vector space and (b) 6(D) is surjective.

Moreover, if D is admissible then V := V(D) is a crystalline representation of Gy and

Deuis(V) = D.

We apply this to the above exact sequence. Consider the part of the above diagram in degrees
0 and 2d.

te €2d_—; ‘/Qd &) FilO(D2d ®MO Bcris) 1;% D2d ®M0 Bcris — 0
1 Bad 1 Y2d I
= w 1—
T <D2d ®M0 Bcris)cp ' - D2d ®M0 Bcris —L’% D2d ®M0 Bcris — 0

Note that 0(Daq) is the composite of
(D2d ®MO Bcris>¢:1 ﬂ) D2d ®MO Bcris — Coker(%d)

and also that Ker(6(Daq)) = Ker((1—¢): Fil®( Doy @1y Beris) — Dag @y Beris) - 1t follows that
ayq induces a surjective Q,-linear map Vo — Ker(6(Dy4)) and that d(Doy) is surjective. We
deduce from 7.2 that Dy, is admissible and that we have a QQ,-linear, surjective homomorphism
Vad — Viris(D2gq) which is G g-equivariant.

Let D} be H (X, H (X, EY ®oy QB{/(’)K) and V;* be H! (%,]L) = Hl(X%t, LY). Then, D§ = Doy
as filtered F-modules (up to shifting the filtration and twisting Frobenius accordingly to Poincaré
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duality for filtered F-modules). In particular, D is admissible . Similarly V" is the dual of 1}
(up to Tate twist according to Poincaré duality in étale cohomology). We also have the exact
sequence

0 — VE)* & FllO(DS ®M0 Bcris) 1;@) DS ®M0 Bcris 6—0> ot
LB L |
0 — (D5®uy Bers)” —5 Dy @y Bais > Df Oty Baris — -

It follows that Vi" = Ker(6(Dj)) = Vais(Dg). Hence, dimg, (Vaq) = dimg, (V) = dimg(Df) =
dimg (Daq) = dimg, (Veris(D2q)) and therefore Vog =2 Viyig(Dag). This proves our statement for
1 =0 and i = 2d.

Let us remark at the same time that as asg is injective, €551 = 0. An easy diagram chase
shows that €5 = 0 and therefore we can continue with ¢ = 1 along exactly the same lines as for
¢ = 0. By induction the Theorem follows.
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