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1. Introduction

1.1. Motivation. This paper is largely concerned with constructing quotients by étale equivalence relations.
We are inspired by questions in classical rigid geometry, but to give satisfactory answers in that category
we have to first solve quotient problems within the framework of Berkovich’s k-analytic spaces. One source
of motivation is the relationship between algebraic spaces and analytic spaces over C, as follows. If X
is a reduced and irreducible proper complex-analytic space then the meromorphic functions on X form a
field M (X) and this field is finitely generated over C with transcendence degree at most dimX [CAS,
8.1.3, 9.1.2, 10.6.7]. A proper complex-analytic space X is called Moishezon if trdegC(M (Xi)) = dimXi

for all irreducible components Xi of X (endowed with the reduced structure). Examples of such spaces are
analytifications of proper C-schemes, but Moishezon found more examples, and Artin found “all” examples
by analytifying proper algebraic spaces over C. To be precise, the analytification X an of an algebraic space
X locally of finite type over C [Kn, Ch. I, 5.17ff] is the unique solution to an étale quotient problem that
admits a solution if and only if X is locally separated over C (in the sense that ∆X /C is an immersion).
The functor X  X an from the category of proper algebraic spaces over C to the category of Moishezon
spaces is fully faithful, and it is a beautiful theorem of Artin [A2, Thm. 7.3] that this is an equivalence of
categories.

It is natural to ask if a similar theory works over a non-archimedean base field k (i.e., a field k that is
complete with respect to a fixed nontrivial non-archimedean absolute value). This is a surprisingly nontrivial
question. One can carry over the definition of analytification of locally finite type algebraic spaces X over
k in terms of uniquely solving a rigid-analytic étale quotient problem; when the quotient problem has a
solution we say that X is analytifiable in the sense of rigid geometry. (See §2 for a general discussion of
definitions, elementary results, and functorial properties of analytification over such k.) In Theorem 2.2.5
we show that local separatedness is a necessary condition for analytifiability over non-archimedean base
fields, but in contrast with the complex-analytic case it is not sufficient; there are smooth 2-dimensional
counterexamples over any k (even arising from algebraic spaces over the prime field), as we shall explain in
Example 3.1.1. In concrete terms, the surprising dichotomy between the archimedean and non-archimedean
worlds is due to the lack of a Gelfand–Mazur theorem over non-archimedean fields. (That is, any non-
archimedean field k admits nontrivial non-archimedean extension fields with a compatible absolute value,
even if k is algebraically closed.) Since local separatedness fails to be a sufficient criterion for the existence
of non-archimedean analytification of an algebraic space, it is natural to seek a reasonable salvage of the
situation. We view separatedness as a reasonable additional hypothesis to impose on the algebraic space.

1.2. Results. Our first main result is the following (recorded as Theorem 4.2.1):

Theorem 1.2.1. Any separated algebraic space locally of finite type over a non-archimedean field is analyti-
fiable in the sense of rigid geometry.
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For technical reasons related to admissibility of coverings and the examples of non-analytifiable algebraic
spaces in Example 3.1.1, we do not think it is possible to prove this theorem via the methods of rigid
geometry. The key to our success is to study quotient problems in the category of k-analytic spaces in the
sense of Berkovich, and only a posteriori translating such results back into classical rigid geometry. In this
sense, the key theorem in this paper is an existence result for quotients in the k-analytic category (recorded
as Theorem 4.2.2):

Theorem 1.2.2. Let R ⇒ U be an étale equivalence relation in the category of k-analytic spaces. The
quotient U/R exists whenever the diagonal δ : R → U × U is a closed immersion. In such cases U/R is
separated. If U is good (resp. strictly k-analytic) then so is U/R.

The quotient X = U/R in this theorem represents a suitable quotient sheaf for the étale topology, and
the natural map U → X is an étale surjection with respect to which the natural map R → U ×X U is an
isomorphism. (See §4.1 for a discussion of basic notions related to quotients in the k-analytic category.)
The hypothesis on δ in Theorem 1.2.2 is never satisfied by the étale equivalence relations arising from k-
analytification of étale charts R ⇒ U of non-separated locally separated algebraic spaces X locally of finite
type over k.

The locally separated algebraic spaces in Example 3.1.1 that are not analytifiable in the sense of rigid
geometry are also not analytifiable in the sense of k-analytic spaces (by Remark 3.1.2). Thus, some assump-
tion on δ is necessary in Theorem 1.2.2 to avoid such examples. We view quasi-compactness assumptions on
δ as a reasonable way to proceed. Note that since δ is separated (it is a monomorphism), it is quasi-compact
if and only if it is topologically proper (i.e., a compact map in the terminology of Berkovich).

Remark 1.2.3. There are two senses in which it is not possible to generalize Theorem 1.2.2 by just assuming
δ is compact (i.e., topologically proper). First, if we assume that U is locally separated in the sense that
each u ∈ U has a separated open neighborhood then compactness of δ forces it to be a closed immersion.
That is, if an étale equivalence relation on a locally separated k-analytic space U has a compact diagonal
then this diagonal is automatically a closed immersion. For example, a locally separated k-analytic space X
has compact diagonal ∆X if and only if it is separated. This is shown in [CT, 2.2].

Second, with no local separatedness assumptions on U it does not suffice to assume that δ is compact. In
fact, in Example 5.1.4 we give examples of (non-separated) compact Hausdorff U and a free right action on
U by a finite group G such that U/G does not exist. In such cases the action map δ : R = U ×G→ U × U
defined by (u, g) 7→ (u, u.g) is a compact map. We also give analogous such examples of non-existence in
the context of rigid geometry. Recall that in the k-analytic category, separatedness is stronger than the
Hausdorff property since the theory of fiber products is finer than in topology.

The weaker Hausdorff property of U/R in Theorem 1.2.2 can also be deduced from the general fact (left
as an exercise) that a locally Hausdorff and locally compact topological space X is Hausdorff if and only if it
is quasi-separated (in the sense that the overlap of any pair of quasi-compact subsets of X is quasi-compact).

Beware that étaleness in rigid geometry is a weaker condition than in the category of k-analytic spaces
(aside from maps arising from algebraic scheme morphisms), a basic example being the inclusion of an affinoid
subdomain. Thus, our existence result for U/R in the k-analytic category does not yield a corresponding
existence result for étale equivalence relations in rigid geometry when the diagonal map is a closed immersion:
we do not have a truly satisfactory analogue of Theorem 1.2.2 in rigid geometry. The best we can say is
the following. Let R ⇒ U be an étale equivalence relation of rigid spaces over k such that R → U × U is
a closed immersion and U is quasi-separated with a locally finite admissible affinoid covering (so R has the
same properties). By [Ber2, 1.6.1] (and [T2, 4.10]), this data arises from an equivalence relation R′ ⇒ U ′ of
paracompact Hausdorff strictly k-analytic spaces. If the maps R′ ⇒ U ′ are étale in the sense of k-analytic
spaces and U ′ is covered by countably many compact subsets then by Theorem 1.2.2 the k-analytic quotient
U ′/R′ exists as a separated strictly k-analytic space and (using the countability hypothesis) it is necessarily
paracompact. In such cases there is an associated separated rigid space (U ′/R′)0, and we leave it to the
reader to check that this naturally serves as a rigid-analytic quotient U/R in the sense of §2.1.
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Example 1.2.4. Let U be a separated k-analytic space and let G be an abstract group equipped with a
right action on U that is free in the sense that the action map δ : U × G → U × U is a monomorphism.
Equivalently, G acts freely on U(K) for each algebraically closed analytic extension K/k. Assume that the
action is properly discontinuous with finite physical stabilizers in the sense that for each u ∈ U the group
Gu = {g ∈ G | g(u) = u} is finite and u admits an open neighborhood V such that g(V ) ∩ V = ∅ for all
g ∈ G−Gu. In such cases δ is a closed immersion, so by Theorem 1.2.2 the quotient U/G exists as a separated
k-analytic space; it is good (resp. strictly k-analytic) if U is. If U is paracompact and strictly k-analytic
and U0 denotes the associated separated rigid space in the sense of [Ber2, 1.6.1] then the separated strictly
k-analytic quotient U/G is paracompact if either G is finite or U is covered by countably many compacts,
and when U/G is paracompact then the associated separated rigid space (U/G)0 is a quotient U0/G in the
sense of rigid geometry (as defined in §2.1). We leave the details to the reader. As a special case, if k′/k
is a finite Galois extension then descent data relative to k′/k on separated k′-analytic spaces are always
effective. (This allows one to replace G with an étale k-group above, provided that its geometric fiber is
finitely generated.)

The problem of analytifying separated algebraic spaces was independently solved in recent joint work of
Fujiwara and Kato using their alternative approach to rigid geometry via the birational geometry of formal
schemes and formal algebraic spaces. Details will be given in their forthcoming book [FK], where they
clarify the relationship between formal algebraic spaces and rigid spaces and deduce Theorem 1.2.1 by fully
faithfully embedding classical rigid spaces in another larger category.

1.3. Strategy of proof. To construct U/R under our assumptions in Theorem 1.2.2, we first observe that
the problem can be localized because representable functors on the category of k-analytic spaces are sheaves
for the étale topology (proved in [Ber2] under some goodness/strictness hypotheses that we remove). We are
thereby able to use an étale localization argument and the nice topological properties of k-analytic spaces
(via compactness and connectedness arguments) to reduce to the case of a free right action by a finite group
G on a possibly non-affinoid space U . Since the action map δ : U ×G→ U × U is a closed immersion (due
to the initial hypotheses), such U must at least be separated.

Our existence result for U/G requires a technique to construct coverings of U by affinoid domains that
have good behavior with respect to the G-action. We do not know any technique of this type in rigid
geometry (with admissibility of the covering), but in the k-analytic category there is a powerful tool to do
this, namely the theory of reduction of germs of k-analytic spaces that was developed in [T2]. Briefly, this
technique often reduces difficult local construction problems in non-archimedean geometry to more tractable
problems in an algebro-geometric setting (with Zariski–Riemann spaces). Here we use the separatedness
of U : assuming only that U is Hausdorff (and making no assumptions on δ) we formulate a condition on
reduction of germs that is always satisfied when U is separated and is sufficient for the existence of U/G.

A special case of Theorem 1.2.2 is the k-analytification of an étale chart of a separated algebraic space
locally of finite type over k. This yields an analogue of Theorem 1.2.1 using analytification in the sense
of k-analytic spaces. But in Theorem 1.2.2 if U is strictly k-analytic (resp. good) then the quotient space
U/R is as well. Hence, we can make a link with quotient constructions in classical rigid geometry, thereby
deducing Theorem 1.2.1 from Theorem 1.2.2.

1.4. Overview of paper. In §2 we gather some basic definitions, preliminary results, and formalism related
to flat equivalence relations and analytification in the sense of rigid geometry. Examples of non-analytifiable
(but locally separated) algebraic spaces are given in §3, where we also discuss some elementary examples of
étale quotients in the affinoid case and we review GAGA for proper algebraic spaces over a non-archimedean
field. This is all preparation for §4, where we adapt §2 to the k-analytic category and then carry out the
preceding strategy to prove the two theorems stated above. More precisely, in §4 we reduce ourselves to
proving the existence of U/G when G is a finite group with a free right action on a separated k-analytic
space U , and in §5 we solve this existence problem by using the theory from [T2].

Since we can now always analytify proper algebraic spaces, as an application of our results it makes sense
to try to establish a rigid-analytic analogue of Artin’s equivalence between proper algebraic spaces over C
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and Moishezon spaces. This involves new difficulties (especially in positive characteristic), and so will be
given in a subsequent paper [C4].

1.5. Conventions. The ground field k in the rigid-analytic setting is always understood to be a non-
archimedean field, and a field extension K/k is called analytic if K is non-archimedean with respect to
a fixed absolute value extending the one on k. When we work with Berkovich’s theory of analytic spaces
we also allow the possibility that the absolute value on the ground field is trivial, and we define the notion
of analytic extension similarly (allowing trivial absolute values). By abuse of notation, if x is a point in a
k-analytic space X then we write (X,x) to denote the associated germ (denoted Xx in [T1], [T2]).

We require algebraic spaces to have quasi-compact diagonal over Spec Z, and an étale chart R ⇒ U for
an algebraic space X is always understood to have U (and hence R = U ×X U ) be a scheme. Also,
throughout this paper, it is tacitly understood that “algebraic space” means “algebraic space locally of finite
type over k” (and maps between them are k-maps) unless we explicitly say otherwise (e.g., sometimes we
work over C).
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2. Étale equivalence relations and algebraic spaces

In this section we develop basic concepts related to analytification for algebraic spaces X that are locally
of finite type over k. An existence theorem for such analytifications in the separated case is given in §4.2.

2.1. Topologies and quotients. We give the category of rigid spaces (over k) the Tate-fpqc topology that
is generated by the Tate topology and the class of faithfully flat maps that admit local fpqc quasi-sections
in the sense of [C2, Def. 4.2.1]; that is, a covering of X is a collection of flat maps Xi → X such that locally
on X for the Tate topology there exist sections to

∐
Xi → X after a faithfully flat and quasi-compact base

change. If we instead work with étale surjections and require the existence of local étale quasi-sections in the
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sense of [C2, Def. 4.2.1] then we get the Tate-étale topology. By [C2, Cor. 4.2.5], all representable functors
are sheaves for the Tate-fpqc topology.

Example 2.1.1. If {Xi} is a set of admissible opens in X that is a set-theoretic cover then it is a cover of X
for the Tate-fpqc topology if and only if it is an admissible covering for the usual Tate topology.

Example 2.1.2. Let h : X ′ →X be a faithfully flat map of algebraic k-schemes. By [C2, Thm. 4.2.2] (whose
proof uses k-analytic spaces), the associated map han : X ′ → X between analytifications is a covering map
for the Tate-fpqc topology. Likewise, if h is an étale surjection then han is a covering map for the Tate-étale
topology.

Example 2.1.3. We will later need GAGA for proper algebraic spaces, but algebraic spaces have only an
étale topology rather than a Zariski topology. Thus, to make the comparison of coherent cohomologies, on
both the algebraic and rigid-analytic sides we want to use an étale topology. In particular, as preparation
for this we need to compare coherent cohomology for the Tate topology and for the Tate-étale topology on
a rigid space. The explanation is as follows.

For any rigid space S, let STate denote the site defined by the Tate topology (objects are admissible
opens in S) and let Sét denote the site defined by the Tate-étale topology (objects are rigid spaces étale over
S). The evident left-exact pushforward map from sheaves of sets on Sét to sheaves of sets on STate has an
exact left adjoint that is constructed by sheafification in the usual manner, so the continuous map of sites
Sét → STate may be uniquely enhanced to a map of topoi S̃ét → S̃Tate. Descent theory for coherent sheaves
on rigid spaces (see [C2, Thm. 4.2.8] for the formulation we need) shows that OSét(U → S) := OU (U) is
a sheaf on Sét. Using this sheaf of k-algebras makes S̃ét → S̃Tate a map of ringed topoi in the evident
manner. Let F  Fét denote the associated pullback operation on sheaves of modules. This is an exact
functor because for any étale map h : U → V between affinoid spaces the image h(U) is covered by finitely
many admissible affinoid opens Vi ⊆ V and the pullback map of affinoids h−1(Vi)→ Vi is flat on coordinate
rings. It is then easy to check via descent theory (as for schemes with the Zariski and étale topologies) that
F  Fét establishes an equivalence between the full subcategories of coherent sheaves on Sét and STate.

Exactness of pullback provides a canonical δ-functorial OYét -linear comparison morphism

(Rjh∗(F ))ét → Rj(hét)∗(Fét)

for any map of rigid spaces h : X → Y and any OX -module F , and we claim that this is an isomorphism when
h is proper and F is coherent. By coherence of Rjh∗(F ) on Y for such h and F , this immediately reduces
to the general claim that for any rigid space S the canonical δ-functorial comparison map Hi(S,F ) →
Hi(Sét,Fét) for OS-modules F is an isomorphism when F is coherent. Using a Čech-theoretic spectral
sequence exactly as in the comparison of étale and Zariski cohomology for quasi-coherent sheaves on schemes,
this reduces the problem to checking that if Sp(B) → Sp(A) is an étale surjection of affinoids and M is a
finite A-module then the habitual complex

0→M →M⊗̂AB →M⊗̂A(B⊗̂AB)→ . . .

is an exact sequence. By the theory of formal models over the valuation ring R of k, it suffices to consider
the case when there is a faithfully flat map Spf(B)→ Spf(A ) of admissible formal R-schemes and a finitely
presented A -module M giving rise to Sp(B)→ Sp(A) and M on generic fibers. Thus, it is enough to show
that the complex

0→M→M⊗̂A B →M⊗̂A (B⊗̂A B)→ . . .

is exact. For any fixed π ∈ k with 0 < |π| < 1, this is a complex of π-adically separated and complete
R-modules, so by a simple diagram chase with compatible liftings it suffices to prove exactness modulo πn

for all n ≥ 1. This in turn is a special case of ordinary faithfully flat descent theory since A /(πn)→ B/(πn)
is faithfully flat for all n.

Let X ′ → X be a flat surjection of rigid spaces and assume that it admits local fpqc quasi-sections. The
maps R = X ′ ×X X ′ ⇒ X ′ define a monomorphism R→ X ′ ×X ′, and we have an isomorphism X ′/R ' X
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as sheaves of sets on the category of rigid spaces with the Tate-fpqc topology since the maps R ⇒ X ′ are
faithfully flat and admit local fpqc quasi-sections in such cases.

Conversely, given a pair of flat maps R⇒ X ′ admitting local fpqc quasi-sections such that R→ X ′ ×X ′
is functorially an equivalence relation (in which case we call R → X ′ × X ′ a flat equivalence relation),
consider the sheafification of the presheaf Z 7→ X ′(Z)/R(Z) with respect to the Tate-fpqc topology. If
this sheaf is represented by some rigid space X then we call X (equipped with the map X ′ → X) the flat
quotient of X ′ modulo R and we denote it X ′/R. The context will always make clear if X/R denotes a
sheaf or a representing space. By the very definition of the Tate-fpqc topology that is used to define the
quotient sheaf X ′/R, if a flat quotient X exists then the projection map p : X ′ → X admits local fpqc
quasi-sections. Moreover, p is automatically faithfully flat. Indeed, arguing as in the case of schemes, choose
a faithfully flat map z : Z → X such that there is a quasi-section z′ : Z → X ′ over X. The map p is
faithfully flat if and only if the projection q2 : X ′ ×X Z → Z is faithfully flat, and via the isomorphism
X ′ ×X Z ' X ′ ×X X ′ ×X′,z′ Z = R×p2,X′,z′ Z the map q2 is identified with a base change of the projection
p2 : R→ X ′ that is faithfully flat.

When the flat quotient X = X ′/R exists, the map R → X ′ ×X X ′ is an isomorphism and so for every
property P in [C2, Thm. 4.2.7] the map X ′ → X satisfies P if and only if the maps R ⇒ X ′ satisfy P.
Likewise, X is quasi-separated (resp. separated) if and only if the map R→ X ′×X ′ is quasi-compact (resp.
a closed immersion). By descent theory for morphisms, the diagram of sets

(2.1.1) Hom(X,Z)→ Hom(X ′, Z)⇒ Hom(R,Z)

is left-exact for any rigid space Z when X = X ′/R is a flat quotient.

Definition 2.1.4. An étale equivalence relation on a rigid space X ′ is a functorial equivalence relation
R→ X ′ ×X ′ such that the maps R⇒ X ′ are étale and admit local étale quasi-sections in the sense of [C2,
Def. 4.2.1]. If the flat quotient X ′/R exists, it is called an étale quotient in such cases.

Example 2.1.5. If X ′ → X is an étale surjection that admits local étale quasi-sections then the étale quotient
of X ′ modulo the étale equivalence relation R = X ′ ×X X ′ exists: it is X. Thus, the preceding arguments
with flat quotients work with “faithfully flat” replaced by “étale surjective” to show that in the definition of
étale quotient it does not matter if we form X ′/R only with respect to the Tate-étale topology.

Lemma 2.1.6. Let R→ X ′×X ′ be a flat equivalence relation on a rigid space X ′, and assume that the flat
quotient X ′/R exists. The equivalence relation R → X ′ ×X ′ is étale if and only if the map X ′ → X ′/R is
étale and admits local étale quasi-sections.

Proof. Let X = X ′/R. Since R = X ′ ×X X ′ and the map X ′ → X is faithfully flat with local fpqc quasi-
sections, we may use [C2, Thm. 4.2.7] for the property P of being étale with local étale quasi-sections. �

Let X be an algebraic space and let R ⇒ U be an étale chart for X . By Example 2.1.2, the maps
Ran ⇒ U an admit local étale quasi-sections. Since a map in any category with fiber products is a monomor-
phism if and only if its relative diagonal is an isomorphism, analytification of algebraic k-schemes carries
monomorphisms to monomorphisms. Thus, the morphism Ran → U an × U an is a monomorphism and so
Ran is an étale equivalence relation on U an. It therefore makes sense to ask if the étale quotient U an/Ran

exists.
We show in Lemma 2.2.1 that such existence and the actual quotient U an/Ran (when it exists!) are

independent of the chart R ⇒ U for X in a canonical manner, in which case we define U an/Ran to be the
analytification of X . The rigid-analytic étale equivalence relations Ran ⇒ U an that arise in the problem
of analytifying algebraic spaces are rather special, and so one might hope that in such cases the required
quotient exists whenever the algebraic space X is locally separated over k (as is necessary and sufficient for
the existence of analytifications of algebraic spaces over C in the complex-analytic sense). However, we will
give counterexamples in Example 3.1.1: locally separated algebraic spaces that are not analytifiable in the
above sense defined via quotients. In the positive direction, the quotient U an/Ran will be shown to always
exist when X is separated.
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2.2. Analytification of algebraic spaces. Let X be an algebraic space, and R ⇒ U an étale chart for
X . We now address the “independence of choice” and canonicity issues for U an/Ran in terms of X . These
will go essentially as in the complex-analytic case. We give the arguments so we can see that they carry over
to k-analytic spaces, as we shall need later.

Let R1 ⇒ U1 and R2 ⇒ U2 be two étale charts for X . Let U12 = U1 ×X U2 and let R12 = R1 ×X R2,
so R12 ⇒ U12 is an étale chart dominating each chart Ri ⇒ Ui.

Lemma 2.2.1. The natural sheaf maps

πi : U an
12 /R

an
12 → U an

i /Ran
i

are isomorphisms and the induced isomorphism φ = π2 ◦ π−1
1 : U an

1 /Ran
1 ' U an

2 /Ran
2 is transitive with

respect to a third choice of étale chart for X .

Proof. We work with sheaves, but we use notation as if we are working with spaces. The natural composite
map U an

12 → U an
1 → U an

1 /Ran
1 is a surjection of étale sheaves (using Example 2.1.2 applied to U12 → U1

and the defining properties for U an
1 /Ran

1 as an étale quotient sheaf). We claim that this composite map
serves as the étale quotient sheaf for U an

12 by Ran
12 (so π1 is an isomorphism). The problem is to prove

Ran
12

?= U an
12 ×U an

1 /Ran
1

U an
12

as subfunctors of U an
12 ×U an

12 , and this is easily proved via two ingredients: the sheaf isomorphism

Ran
1 ' U an

1 ×U an
1 /Ran

1
U an

1

(that arises from the definition of the quotient sheaf U an
1 /Ran

1 ) and the analytification of the algebraic
isomorphism

R12 ' (U12 ×U12)×U1×U1 R1

as algebraic k-schemes and as subfunctors of U12 ×U12.
The proof that π2 is an isomorphism goes the same way. To check that the isomorphism π2 ◦ π−1

1 :
U an

1 /Ran
1 ' U an

2 /Ran
2 is transitive with respect to a third choice of étale chart for X , it suffices to note

that in the preceding considerations we only needed that the étale chart R12 ⇒ U12 dominates the other
two charts, and not that it is specifically their “fiber product”. �

Lemma 2.2.1 implies that if R ⇒ U is an étale chart for an algebraic space X then the quotient sheaf
U an/Ran for the Tate-étale topology is independent of the choice of chart, so it is an intrinsic property of
X whether or not this sheaf is representable.

Definition 2.2.2. An algebraic space X is analytifiable if the étale quotient U an/Ran exists for some (and
hence any) étale chart R ⇒ U for X .

For an analytifiable X , the analytification X an is defined to be U an/Ran. Up to unique isomorphism,
this étale quotient is independent of the specific choice of étale chart R ⇒ U (by Lemma 2.2.1). If the
context makes it clear, we may also use the notation X an to denote the quotient sheaf U an/Ran for the
Tate-étale topology, without regard to whether or not it is representable. Since analytification for schemes is
expressed in terms of a universal mapping property, it is natural to ask if analytification for algebraic spaces
(when it exists) admits a similar characterization. Here we are faced with the problem that an algebraic
space is a functor on schemes (or rings) with no obvious notion of morphism from a rigid space. Thus,
it seems necessary to work more abstractly in the framework of strictly henselian ringed topoi. As this
viewpoint is irrelevant for our purposes, we omit any further discussion on it but intend to address it more
fully in the appendix to [C4]. We now express the functoriality of analytification.

Theorem 2.2.3. Let X and X ′ be algebraic spaces and let f : X ′ → X be a k-morphism. Let R ⇒ U
and R′ ⇒ U ′ be respective étale charts such that f lifts to a map F : U ′ → U for which F × F carries R′

into R (such a pair of charts always exists). The map of quotient sheaves

fan : (X ′)an ' (U ′)an/(R′)an → U an/Ran 'X an
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induced by F an depends only on f and not on the étale charts or the map F lifting f , and this procedure
enhances the construction X  X an to be a functor from the category of analytifiable algebraic spaces over
k to the category of sheaves for the Tate-étale topology over k. Moreover:

• the category of analytifiable algebraic spaces is stable under the formation of fiber products and passage
to open and closed subspaces,

• the functor X  X an is compatible with the formation of fiber products and it carries open/closed
immersions to sheaf maps that are relatively representable by Zariski-open/closed immersions.

Proof. Any two étale charts are dominated by a third, and any two lifts of f with respect to a fixed choice
of charts are R-equivalent. Thus, the well-definedness of fan is an immediate consequence of Lemma 2.2.1.
The compatibility with composition of morphisms follows from the independence of the choice of charts, so
analytification is indeed a functor as claimed.

Let X be an algebraic space over k and let X ′ → X be an open (resp. closed) immersion. We let
R ⇒ U be an étale chart for X , and let U ′ = U ×X X ′ and R′ = R ×X X ′, so U ′ and R′ are open
(resp. closed) in U and R (so both are schemes) and R′ ⇒ U ′ is an étale chart for X ′. The induced maps
(U ′)an → U an and (R′)an → Ran are Zariski-open (resp. closed) immersions, and the sheaf map

(X ′)an = (U ′)an/(R′)an → U an/Ran = X an

is a monomorphism because of the equality

Ran ×U an×U an ((U ′)an × (U ′)an) = (R′)an

as subfunctors of (U ′)an× (U ′)an (using the compatibility of scheme analytification with fiber products and
the equality U ′ ×X U ′ = R′ that follows from the monicity of X ′ → X ). For any rigid space T and
point t ∈X an(T ) we can étale-locally lift t to a point of U an that is well-defined up to Ran, so we can use
rigid-analytic étale descent theory for coherent ideal sheaves to uniquely “pull back” the coherent ideal sheaf
on U an defined by (U an − (U ′)an)red (resp. by (U ′)an) to a coherent ideal sheaf Jt on T . The associated
Zariski-open locus (resp. closed subspace) in T classifies the subfunctor of points of T whose composite with
t factors through the subfunctor (X ′)an ⊆ X an. This is the desired relative representability property for
the sheaf map (X ′)an →X an.

Now we consider general fiber products. Let X and Y be algebraic spaces over an algebraic space Z .
We need to check that for P = X ×Z Y the natural sheaf map Pan →X an×Z an Y an is an isomorphism.
We choose compatible étale charts X = U ′/R′, Y = U ′′/R′′, and Z = U /R. More specifically, take U ′

to be an étale scheme cover of the algebraic space X ×Z U and likewise take U ′′ to be an étale scheme
cover of Y ×Z U . Consider the fiber product

R′ ×R R′′ ⇒ U ′ ×U U ′′

as an étale chart for X ×Z Y . There is an evident sheaf map

π : (U ′ ×U U ′′)an ' (U ′)an ×U an (U ′′)an →X an ×Z an Y an.

The fiber square of π is identified with R′an×Ran R′′an = (R′×R R′′)an in the evident manner, so analytifi-
cation is compatible with fiber products provided that π is a surjection of sheaves. Due to the surjectivity of
U an → Z an, the surjectivity of π is reduced to the surjectivity of two sheaf maps: (U ′)an →X an×Z an U an

and likewise using U ′′ and Y . By symmetry it suffices to treat the first of these two maps.
Since U ′ is an étale scheme cover of X ×Z U , so it may be used to compute (X ×Z U )an as a

quotient sheaf, the compatibility with fiber products is reduced to the case when Y is a scheme. We can
then repeat the process to reduce to the case when X is a scheme, so P is a scheme. More specifically,
P = (X × Y ) ×Z×Z Z , and an analogous description holds for X an ×Z an Y an (since analytification
commutes with fiber products for schemes). Hence, we are reduced to the case when X is a scheme and
Y → Z is a quasi-compact immersion of algebraic spaces. It suffices to treat open immersions and closed
immersions, which we handled above via relative representability. �

Corollary 2.2.4. Let X be an algebraic space and let {Xi} be an open covering. Analytifiability of X is
equivalent to that of all of the Xi’s.
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Proof. By Theorem 2.2.3, if X an exists then so does X an
i (as a Zariski-open in X an) for all i. Conversely,

assume that X an
i exists for all i. The algebraic space Xij = Xi ∩ Xj is identified with a Zariski-open

subspace of both Xi and Xj , so by Theorem 2.2.3 the rigid space X an
ij exists and is identified with a

Zariski-open locus in X an
i and X an

j . Since Xij ∩Xij′ = Xij ×Xi
Xij′ for any i, j, j′, the fiber-product

compatibility in Theorem 2.2.3 provides the triple-overlap compatibility that is required to glue the X an
i ’s

to construct a rigid space X having the X an
i ’s as an admissible covering with X an

i ∩X an
j = X an

ij inside of
X for all i and j. In particular, X−X an

i meets every X an
j in an analytic set, and hence X an

i is Zariski-open
in X.

We now check thatX serves as an analytification of X . Let p1, p2 : R ⇒ U be an étale chart for X and let
Ui be the preimage of Xi in U . Let Ri = p−1

1 (Ui)∩ p−1
2 (Ui). Clearly Ui is R-saturated in U and Ri ⇒ Ui

is an étale chart for Xi via the natural map Ui → Xi. Let Uij = Ui ∩Uj and Rij = p−1
1 (Uij) ∩ p−1

2 (Uij),
so Uij is R-saturated and Rij ⇒ Uij is an étale chart for Xij . The gluing construction of X implies that
the maps

fi : U an
i →X an

i ↪→ X

satisfy fi|U an
ij

= fj |U an
ij

, so the fi’s uniquely glue to define an étale surjection f : U an → X that restricts
to the canonical map U an

i → X an
i over each Zariski-open X an

i ⊆ X and hence (by the definition of X an
i

as the quotient U an
i /Ran

i ) the map f admits local étale quasi-sections. Since the Ran
i ’s form a Zariski-open

covering of Ran, it is easy to check that the composite maps Ran ⇒ U an → X coincide. Thus, Ran is
naturally a rigid space over X and we obtain a canonical X-map h : Ran → U an ×X U an. The restriction
of h over X an

i is the canonical map Ran
i → U an

i ×X an
i

U an
i that is an isomorphism (due to the definition of

X an
i ), so h is an isomorphism. Hence, X indeed serves as an analytification of X . �

If X is a complex-analytic space then since X rests on an ordinary topological space, we can find an open
subset V ⊆ X ×X such that the diagonal X → X ×X factors through a closed immersion into V . (Take V
to be a union ∪(Ui × Ui) where the Ui are Hausdorff open sets that cover X.) That is, ∆X factors like an
immersion in algebraic geometry. This suggests that local separatedness of X (i.e., the diagonal ∆X being
an immersion) should be a necessary condition for the analytifiability of an algebraic space X over C. Due
to lack of a reference, we now give a proof of this fact and its non-archimedean counterpart.

Theorem 2.2.5. Let X be an algebraic space locally of finite type over either C or a non-archimedean field
k. If X an exists then X must be locally separated.

See Theorem 4.1.4 for an analogous result for k-analytic spaces.

Proof. Choose a scheme U equipped with an étale surjection U � X . Let R = U ×X U , so our aim is
to prove that the monomorphism i : R → U × U is an immersion. The map i is separated since it is a
monomorphism. Note that i is a base change of the quasi-compact diagonal ∆X . By the compatibility of
analytification and fiber products (for algebraic spaces in both the complex-analytic and non-archimedean
cases), X an ×X an is identified with an analytification of X ×X , and in this way ∆an

X is identified with
∆X an . Thus, the map ian is a base change of ∆X an .

We first treat the complex-analytic case, and then we adapt the argument to work in the non-archimedean
case. The diagonal map of a complex-analytic space is a topological embedding. Indeed, if S is such a space
then for each s ∈ S there is a Hausdorff open neighborhood Us ⊆ S around s, so U = ∪(Us × Us) is an
open subset of S × S through which ∆S factors as a closed immersion S ↪→ U . Hence, ∆S is a topological
embedding. Applying this to S = X an gives us that ∆X an is a topological embedding, so its topological base
change ian is also a topological embedding. It therefore suffices to show that if f : Y → S is a quasi-compact
monomorphism between algebraic C-schemes and fan is a topological embedding then f is an immersion.
Since f is monic, so ∆f is an isomorphism, f is certainly separated. We can assume that S is separated
and quasi-compact (e.g., affine), so Y is separated. By Zariski’s Main Theorem [EGA, IV3, 8.12.6], the
quasi-finite separated map f factors as a composition

Y
j
↪→ T

π→ S



10 BRIAN CONRAD AND MICHAEL TEMKIN

where j is an open immersion and π is finite. We can replace T with the schematic closure of Y to arrange
that j has dense image. Thus, jan is an open immersion with dense image with respect to the analytic
topology [SGA1, XII, §2]. We can also replace S with the natural closed subscheme structure on the closed
set π(T ) to arrange that π is surjective.

We now show that jan(Y an) is the preimage of its image under πan, and that the restriction of πan to
jan(Y an) is injective. Choose y ∈ Y an and a point t ∈ T an such that πan(t) = πan(jan(y)) = fan(y) in
Y an. We will prove t = jan(y). By denseness of jan(Y an) in the Hausdorff analytic space T an, there is a
sequence of points yn ∈ Y an such that jan(yn) → t, so applying πan gives us that fan(yn) → fan(y) in the
Hausdorff analytic space S an. But fan is a topological embedding by hypothesis, so yn → y in the Hausdorff
analytic space Y an. Applying jan gives jan(yn) → jan(y), but t is the limit of this sequence, so t = jan(y)
as required. Returning to the algebraic setting, the Zariski-open set j(Y ) ⊆ T is the preimage of its image
under the finite map π because this asserts an equality of constructible sets and it suffices to check such an
equality on closed points. Since π is a finite surjection, hence a topological quotient map, it follows that
f(Y ) = π(j(Y )) is an open subset of S since its preimage j(Y ) in T is a Zariski-open subset. We can
replace S with the open subscheme structure on this open set and replace T with its preimage under π, so
the open immersion j is now surjective on closed points. Thus, j is an isomorphism, so the monomorphism
f = π ◦ j is finite and therefore is a closed immersion.

Next we consider the non-archimedean case. We need to exercise additional care with respect to topological
arguments, due to the role of the Tate topology and the fact that fiber products of rigid spaces are generally
not fiber products on underlying sets (unless the base field is algebraically closed). As a first step, if X is a
rigid space and ∆ : X → X ×X is its diagonal, then for any rigid-analytic morphism h : Z → X ×X we
claim that the induced map of rigid spaces h∗(∆) : Z ×X×X X → Z is an embedding with respect to the
canonical (totally disconnected) topology. To prove this, let {Xj} be an admissible affinoid open covering
of X and let U = ∪j(Xj × Xj), so U is an open subset of X × X with respect to the canonical topology
(though it is unclear if U must be an admissible open subset). The map ∆ factors through a continuous map
∆′ : X → U under which the preimage of Xj × Xj is Xj ⊆ X, and which induces the diagonal ∆Xj that
is a closed immersion (since Xj is affinoid). Hence, ∆′ is a closed embedding with respect to the canonical
topologies. The preimage h−1(U) ⊆ Z is open with respect to the canonical topology on Z, and h∗(∆) factors
continuously through h−1(U) (as a map with respect to the canonical topologies). The resulting continuous
map Z ×X×X X → h−1(U) with respect to the canonical topologies is a closed embedding because on each
of the opens h−1(Xj ×Xj) ⊆ h−1(U) that together cover h−1(U) it restricts to the rigid-analytic morphism
h−1(Xj ×Xj)×Xj×Xj

Xj → h−1(Xj ×Xj) that is a base change of the closed immersion ∆Xj
. Hence, for

any h as above, h∗(∆) is an embedding with respect to the canonical topologies, as claimed. As a special
case, the analytification of the monic map i : R → U × U is a topological embedding with respect to the
canonical topologies since it is a base change of ∆X an .

Thus, exactly as in the complex-analytic case, it suffices to prove that if f : Y → S is a quasi-compact
monomorphism between algebraic k-schemes such that fan is a topological embedding with respect to the
canonical topologies then f is an immersion. The denseness result cited above from [SGA1, XII, §2] remains
valid in the non-archimedean case (with the same proof) when using the canonical topology, so the preceding
argument in the complex-analytic case carries over verbatim once we show that a separated rigid space is
Hausdorff with respect to its underlying canonical topology. (The preceding argument with sequences works
in the rigid-analytic case because any point in a rigid space has a countable base of open neighborhoods,
though this countability property is not needed; we could instead use nets.) Let S be a separated rigid space,
and let |S| denote the underlying set with the canonical topology. To prove that it is Hausdorff, we have
to overcome the possibility that |S × S| → |S| × |S| may not be bijective (let alone not a homeomorphism
with respect to the canonical topologies). Choose s, s′ ∈ |S| and let U and U ′ be admissible affinoid opens
that contain s and s′ respectively. The overlap U ∩U ′ is affinoid and the union U ∪U ′ is an admissible open
subspace with {U,U ′} as an admissible cover (since S is separated). We can replace S with U ∪ U ′, so we
can assume that S has an admissible covering by a pair of affinoid domains U and U ′. Thus, |U | and |U ′|
constitute a cover of |S| by Hausdorff open subsets, so to prove that |S| is Hausdorff it suffices to prove that
|U | − |U ∩ U ′| is open in |U | (hence open in |S|). More generally, if U is an affinoid space and V ⊆ U is an
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affinoid subdomain then |U | − |V | is open in |U |. Indeed, by the Gerritzen–Grauert theorem [BGR, 7.3.5/3]
we can cover V by finitely many rational subdomains of U , so we reduce to the trivial case when V is a
rational subdomain in U . �

Corollary 2.2.6. If f : X ′ →X is a morphism between analytifiable algebraic spaces then fan is separated
if and only if f is separated.

Proof. By Theorem 2.2.5, both X ′ and X are locally separated over k, which is to say that their diagonals are
quasi-compact immersions, so easily ∆f is a quasi-compact immersion. The compatibility of analytification
and fiber products identifies ∆fan and ∆an

f , so upon replacing f with ∆f we are reduced to checking that
if f : X ′ → X is a quasi-compact immersion between algebraic spaces then f is a closed immersion if and
only if fan is a closed immersion. Let h : U →X be an étale covering by a scheme and let F : U ′ → U be
the base change of f along h. Since f is a quasi-compact immersion, so is F . In particular, U ′ is a scheme
and F an is identified with the base change of fan by means of han. The map han is an étale surjection with
local étale quasi-sections, so by rigid-analytic descent theory with respect to the property of being a closed
immersion we see that fan is a closed immersion if and only if F an is a closed immersion. Likewise, on the
algebraic side we see that f is a closed immersion if and only if F is a closed immersion. Thus, we may
replace f with F to reduce to the case when f is a quasi-compact immersion between algebraic k-schemes.
This case is handled by [C1, 5.2.1(2)]. �

2.3. Properties of analytification. We now summarize some basic observations concerning properties of
analytification of algebraic spaces, especially in connection with properties of morphisms between algebraic
spaces.

If f : X → Y is a faithfully flat map between analytifiable algebraic spaces over k, then we claim that
the induced faithfully flat map fan : X an → Y an has local fpqc quasi-sections, and if f is an étale surjection
then we claim that fan has local étale quasi-sections. This generalizes Example 2.1.2 to the case of algebraic
spaces. To prove these claims, pick an étale chart R ⇒ U for Y , so U an → Y an has local étale quasi-
sections (as Y an is the étale quotient U an/Ran). Hence, we may replace X → Y with its base change by
the étale surjection U → Y , so we can assume that Y is an algebraic k-scheme. Running through a similar
argument with an étale chart for X reduces us to the case when X is also an algebraic k-scheme, and so
we are brought to the settled scheme case.

Theorem 2.3.1. If f : X → Y is a map between analytifiable algebraic spaces over k, then f has property
P if and only if fan has property P, where P is any of the following properties: separated, monomorphism,
surjective, isomorphism, open immersion, flat, smooth, and étale. Likewise, if f is of finite type then we
may take P to be: closed immersion, finite, proper, quasi-finite (i.e., finite fibers).

Proof. By [C2, Thm. 4.2.7] and descent theory for schemes, we may work étale-locally on Y and so we can
assume that Y is a scheme of finite type over k. Since flat maps locally of finite type between algebraic
spaces are open, the essential properties to consider are isomorphism and properness; the rest then follow
exactly as in the case of schemes. By Chow’s lemma for algebraic spaces and [C2, §A.1] (for properness),
the proper case is reduced to the case of quasi-compact immersions of schemes (more specifically, a quasi-
compact immersion into a projective space over Y ), and this case follows from [C1, 5.2.1(2)]. If fan is an
isomorphism then f is quasi-finite, flat, and (by Corollary 2.2.6) separated, so X is necessarily a scheme.
Thus, we may use [C1, 5.2.1(1)] to infer that f is an isomorphism. �

Example 2.3.2. Let X be an analytifiable algebraic space. Recall that a point of an algebraic space is a
monic morphism from the spectrum of a field, and the underlying topological space |X | of an algebraic space
is its set of (isomorphism classes of) points. Every map to X from the spectrum of a field factors through a
unique point of X [Kn, II, 6.2], so distinct points have empty fiber product over X . Moreover, every point
of an algebraic space admits a residually-trivial pointed étale scheme neighborhood [Kn, II, 6.4].

With respect to the usual Zariski topology on |X |, it follows by working with an étale scheme cover that
a point Spec(k′) → X is closed in |X | if and only if [k′ : k] is finite. In particular, if j : Spec(k′) → X is
a closed point then analytification defines a map jan : Sp(k′) → X := X an that is a monomorphism (since
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∆jan = ∆an
j is an isomorphism). The monic map jan is easily seen to be an isomorphism onto an ordinary

point of X, so in this way we have defined a map of sets |X |0 → X, where |X |0 is the set of closed points of
X . By a fiber product argument we see that this map is bijective, and by construction it preserves residue
fields over k.

Recall that at any point of an algebraic space there is a naturally associated henselian local ring with the
same residue field (use the limit of residually-trivial pointed étale scheme neighborhoods; for schemes this is
the henselization of the usual local ring). Thus, for any coherent sheaf F on X and closed point x0 ∈ |X |0,
we get a stalk Fx0 that is a finite module over the henselian local noetherian k-algebra OX ,x0 . If x ∈ X is
the corresponding point of X then every residually trivial pointed étale neighborhood (U , x0) → (X , x0)
with analytifiable U (e.g., a scheme) induces an étale map U an → X an that is an isomorphism between
small admissible opens around the canonical copy of x in each (due to residual triviality). Hence, we get
a natural map of k-algebras OX (U ) → OX,x compatible with the k(x)-points on each, and passage to the
direct limit thereby defines a local k-algebra map OX ,x0 → OX,x. There is likewise a map Fx0 → F an

x that
is linear over this map of rings, and so we get a natural OX,x-linear comparison map

OX,x ⊗OX ,x0
Fx0 → F an

x .

This is functorial in (X , x0), so it can be computed on a residually-trivial pointed étale scheme neighborhood
of x0. Hence, by reduction to the scheme case we see that this comparison map between finite OX,x-modules
is an isomorphism because the induced map on completions is an isomorphism (due to the isomorphism
between completions of algebraic and analytic local rings at a common point of an algebraic k-scheme).

Example 2.3.3. Since reducedness is inherited under analytification of reduced algebraic k-schemes, by using
an étale scheme cover we see that if X is an analytifiable reduced algebraic space then X an is reduced.
Thus, if X is any analytifiable algebraic space (so the closed subspace Xred is also analytifiable) then there
is a natural closed immersion (Xred)an ↪→ (X an)red whose formation is compatible with étale base change
on X , so it is an isomorphism by reduction to the scheme case.

As an application of this compatibility, if X is any analytifiable algebraic space and {Xi} is its set
of irreducible components with reduced structure then we get closed immersions X an

i ↪→ X an which we
claim are the irreducible components of X an endowed with their reduced structure. To check this, since
(Xi×X Xj)an 'X an

i ×X an X an
j we see by dimension reasons that it suffices to show that X an is irreducible

when X is irreducible and reduced. There is a dense Zariski-open subspace X0 ⊆X that is a scheme, and by
[C1, 2.3.1] the rigid space X an

0 is irreducible. Thus, by the existence of global irreducible decomposition for
rigid spaces, it suffices to show that the Zariski-open locus X an

0 in X an is everywhere dense. Consideration
of points valued in finite extensions of k shows that the analytic set in X an complementary to X an

0 is Z an,
where Z = X −X0 (say, with its reduced structure). Thus, we just need that the coherent ideal of Z an

in the reduced X an is nowhere zero, and this is clear by comparing its completed stalks with those of Z in
the irreducible and reduced algebraic space X . (Here we use the end of Example 2.3.2 and the fact that
a proper closed subspace of an irreducible algebraic space has nowhere-dense pullback to any étale scheme
cover, even though irreducibility is not local for the étale topology.)

In view of the known converse to Theorem 2.2.5 in the complex-analytic case, it is natural to ask if the
property of being locally separated is sufficient for the analytifiability of an algebraic space over k. We
will see that this is not true, via counterexamples in §3. Such counterexamples will be explained in two
ways, using rigid-analytic methods and using k-analytic spaces. To carry out a rigid-analytic approach, we
need to consider how analytifiability behaves with respect to change in the base field. A relevant notion for
this was used in [C2]: a pseudo-separated map f : X → S between rigid spaces is a map whose diagonal
∆f : X → X ×S X factors as the composite of a Zariski-open immersion followed by a closed immersion.
The reason that we choose this order of composition is that in the scheme case it is available in a canonical
manner (via scheme-theoretic closure) and hence behaves well with respect to étale localization and descent
for schemes (so it generalizes to define the notion of quasi-compact immersion for algebraic spaces). We note
that a map of rigid spaces is pseudo-separated and quasi-separated (i.e., has quasi-compact diagonal) if and
only if it is separated.
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Lemma 2.3.4. Let X be an analytifiable algebraic space. The analytification X an is pseudo-separated. In
particular, k′⊗̂kX an makes sense as a rigid space over k′ for any analytic extension field k′/k.

Proof. Since X is analytifiable, so is X × X . Clearly ∆an
X = ∆X an . By Theorem 2.2.5, X is locally

separated. Thus, by étale descent, the quasi-compact immersion ∆X uniquely factors as a (schematically
dense) Zariski-open immersion followed by a closed immersion, and these intervening locally closed subspaces
of X must be analytifiable (by Theorem 2.2.3). It follows that X an must be pseudo-separated. �

Now we can address the question of compatibility of analytification for algebraic spaces and extension of
the base field, generalizing the known case of analytification of algebraic k-schemes. This compatibility will
be useful for giving a rigid-analytic justification of our counterexamples to analytifiability.

Theorem 2.3.5. Let X be an analytifiable algebraic space over k, and let k′/k be an analytic extension
field. The algebraic space k′ ⊗k X over k′ is analytifiable and there is a natural isomorphism k′⊗̂kX an '
(k′⊗kX )an which is the usual isomorphism when X is an algebraic k-scheme. These natural isomorphisms
are transitive with respect to further analytic extension of the base field and are compatible with the formation
of fiber products.

Proof. Let R ⇒ U be an étale chart for X . Since U an →X an is étale and admits local étale quasi-sections,
the same holds for the map k′⊗̂kU an → k′⊗̂kX an because (as we see via formal models) a faithfully flat
map between k-affinoids induces a faithfully flat map after applying k′⊗̂k(·). Moreover, the natural map

k′⊗̂kRan → (k′⊗̂kU an)×k′ b⊗kX an (k′⊗̂kU an)

is an isomorphism because it is identified with the extension of scalars of the map Ran → U an ×X an U an

that is necessarily an isomorphism (due to the defining property of the étale quotient X an that we are
assuming to exist). Thus, we conclude that k′⊗̂kX an serves as an étale quotient for the diagram

(2.3.1) k′⊗̂kRan ⇒ k′⊗̂kU an

that is an étale equivalence relation, due to its identification with the analytification (k′⊗kR)an ⇒ (k′⊗kU )an

of an étale chart for the algebraic space k′ ⊗k X over k′. This shows that k′⊗̂kX an naturally serves as
an analytification for the algebraic space k′ ⊗k X over k′. Moreover, it is clear that this identification
k′⊗̂kX an ' (k′ ⊗k X )an is independent of the choice of étale chart U ⇒ R for X and that it is therefore
functorial in the analytifiable X . The compatibility with fiber products (when the relevant analytifications
exist over k) is now obvious. �

We can define an exact analytification functor from coherent OX -modules to coherent OX an -modules in
two (equivalent) ways. One method is to use an étale chart R ⇒ U and descent theory for coherent sheaves
on rigid spaces [C2, 4.2.8]; it is easy to see that this approach gives a functor that is independent of the choice
of étale chart and that is natural in X with respect to pullback along maps of algebraic spaces X ′ → X .
An alternative method that avoids the crutch of an étale chart will be explained in §3.3.

3. Analytification counterexamples and constructions

To show that the theory in §2 is not vacuous, we need to prove the analytifiability of an interesting class
of algebraic spaces that are not necessarily schemes. We also explain how analytification interacts with étale
topoi, as is required for GAGA on algebraic spaces over k as well as for a natural definition of analytification
for coherent sheaves on algebraic spaces.

3.1. Non-analytifiable surfaces. By Theorem 2.2.5, it is necessary to restrict attention to those algebraic
spaces (locally of finite type over k) that are locally separated. It will be proved in Theorem 4.2.1 that
such algebraic spaces are analytifiable in the separated case, but we first give locally separated examples
where analytifiability fails. Our construction will provide locally separated smooth algebraic spaces S over
Q such that S an

k does not exist for any non-archimedean field k/Q, though of course S an
C does exist by

local separatedness!



14 BRIAN CONRAD AND MICHAEL TEMKIN

Example 3.1.1. Let k be an abstract field, let T ⊆ A2
k be a dense open subset of the x-axis, and let T ′ → T

be the geometrically connected finite étale covering {ud = f(x)} with degree d > 1 given by extracting the
dth root of a monic separable polynomial f ∈ k[x] whose zeros are away from T ; we assume d is not divisible
by the characteristic of k. By shrinking T near its generic point, we can find an open X ⊆ A2

k in which T
is closed and over which there is a quasi-compact étale cover U →X restricting to T ′ → T over T . There
is a locally separated algebraic space X ′ that is étale over X (hence it is k-smooth and 2-dimensional) and
is obtained from the open X ⊆ A2

k by replacing the curve T with the degree-d covering T ′.
More generally, in [Kn, Intro., Ex. 2, pp.10–12] Knutson gives the following construction. For any quasi-

separated scheme X equipped with a closed subscheme T and a quasi-compact étale surjection π : U →X ,
he builds a locally separated algebraic space X ′ equipped with a quasi-compact étale surjection i : X ′ →X
such that i is an isomorphism over X −T but has pullback to T given by the étale covering T ′ = π−1(T )→
T . When T ′ and T are irreducible and T ′ has generic degree d > 1 over T then the behavior of fiber-rank
for the quasi-finite map X ′ → X is opposite to what happens for quasi-finite separated étale maps of
schemes (via the structure theorem for such maps [EGA, IV4, 18.5.11]) in the sense that the fiber-degree
goes up (rather than down) at special points. Hence, X ′ cannot have an open scheme neighborhood (or
equivalently, a separated open neighborhood) around any point of T ′ in such cases, since if it did then such
a neighborhood would contain the 1-point generic fiber over T , yet no fiber over T can have a separated
open neighborhood in X ′ (e.g., an affine open subscheme).

We now consider the construction over X ⊆ A2
k that replaces an open subset T in the x-axis with a

degree-d finite étale covering {ud = f(x)} as above. For k = C, an analytification of X ′ does exist (since
X ′ is locally separated) and its local structure over an open neighborhood of a point t ∈ T (C) is very easy
to describe: it is a product of an open unit disc with a gluing of d copies of an open disc to itself via the
identity map on the complement of the origin. In particular, this analytification is non-Hausdorff over such
a neighborhood. In the non-archimedean setting, if T ′ → T has a non-split fiber over some t ∈ T (k) then
we will see that no analogous such local gluing can be done over an open neighborhood of t in X an. If k is
algebraically closed then the local gluing can be done but there are global admissibility problems with the
gluing. We shall show that the admissibility problems are genuine. The key is that there is an obstruction to
analytifiability caused by the failure of the Gelfand–Mazur theorem over non-archimedean fields: k admits
analytic extension fields k′/k such that the étale cover T ′ → T has a non-split fiber over some t ∈ T (k′),
even if k is algebraically closed.

Let us now prove that if k is a non-archimedean field then the smooth 2-dimensional locally separated
algebraic space X ′ is not analytifiable. Assume that an analytification X ′ of X ′ exists. By Lemma 2.3.4 the
rigid space X ′ must be pseudo-separated, and by Theorem 2.3.5 if k′/k is any analytic extension field then
k′ ⊗k X ′ is analytifiable with analytification k′⊗̂kX ′. Hence, to get a contradiction it suffices to consider
the situation after a preliminary analytic extension of the base field k → k′ (which is easily checked to
automatically commute with the formation of X ′ in terms of X and T ′ → T ). The extension K ′ = k(T ′)
of K = k(T ) = k(x) is defined by adjoining a root to the irreducible polynomial ud − f ∈ K[u]. We first
increase k a finite amount so that f splits completely in k[x]. We then make a linear change of variable
on x so that f = x

∏
i>1(1 − rix) with |ri| < 1 for each i. In case of mixed characteristic we also require

|ri| to be so small that 1 − rix has a dth root as a power series (a condition that is automatic in case of
equicharacteristic k). Thus, f lies in the valuation ring of the Gauss norm on k(x) = k(T ) and its image in
the residue field k̃(x) for the Gauss norm (with k̃ the residue field of k) is x, which is not a dth power in k̃(x)
since d > 1. In fact, since x is prime in k̃[x] we see that ud − f viewed over the completion K̂ of K = k(x)
with respect to the Gauss norm has reduction that is irreducible over the residue field, so K ′ ⊗K K̂ is a
field strictly larger than K̂. Thus, by taking k′ = K̂ and working with the canonical point in T (K̂) arising
from the generic point of T we put ourselves in the situation (upon renaming k′ as k) where there exists
t0 ∈ T (k) with no k-rational point (and in fact a unique point) in its non-empty fiber in T ′. All we shall
actually require is that there is some t′0 ∈ T ′t0 with k(t′0) 6= k.

Letting X, T , and T ′ denote the analytifications of X , T , and T ′, by Theorem 2.2.3 the analytified
map X ′ → X is an isomorphism over X − T and restricts to a degree-d finite étale covering h : T ′ → T
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over T . Consider the fiber over t0 ∈ T (k) = T (k). Since T ′t0 = (T ′t0)an, we can choose t′0 ∈ T ′ over t0 with
k(t′0) 6= k. Since X ′ → X is locally quasi-finite, by the local structure theorem for quasi-finite maps of rigid
spaces [C2, Thm. A.1.3] there are connected admissible opens U ′ ⊆ X ′ around t′0 and U ⊆ X around t0
such that U ′ lands in U and the induced map U ′ → U is finite étale with fiber {t′0} over t0. Connectedness
of U forces U ′ → U to have constant fiber-degree, so this degree is [k(t′0) : k(t0)] > 1. But the non-empty
2-dimensional admissible open U in X obviously cannot be contained in the 1-dimensional analytic set T in
X, and the fiber-degree of the finite étale covering U ′ → U over any point of U not in T has to be 1 since
X ′ → X restricts to an isomorphism over X −T . This contradicts the constancy of fiber-degree over U , and
so shows that no such analytification X ′ can exist.

Remark 3.1.2. The preceding example can be carried out in the category of k-analytic spaces without
requiring an extension of the base field in the argument. The reason is that on k-analytic spaces there are
generally many non-rational points even if k is algebraically closed. More specifically, the k-analytic space
associated to T has a point ξ with H (ξ) = K̂, and over this point ξ there is a unique point ξ′ in the
k-analytic space associated to T ′ and H (ξ′) is a separable degree-d extension of K̂.

3.2. Finite étale quotients for affinoid spaces. In §4 we will take up a general study of the existence
of analytic étale quotients, and in §5.1 we will give further examples of the failure of existence for certain
kinds of analytic étale quotient problems (in both classical rigid geometry and in the category of k-analytic
spaces). Since Example 3.1.1 shows that the necessary condition for analytifiability in Theorem 2.2.5 is
not sufficient in the non-archimedean case, for a general study of analytifiability of algebraic spaces over
non-archimedean fields we are now motivated to focus attention on the problem of analytifying separated
algebraic spaces. The strategy in the proof that separated algebraic spaces are analytifiable will be to show
that locally (in the rigid sense) we can describe the quotient problem in such cases as that of forming the
quotient of an affinoid by a finite étale equivalence relation. This is difficult to carry out, for two reasons that
have no counterpart in the complex-analytic theory: products for rigid spaces (and k-analytic spaces) cannot
be easily described set-theoretically, and saturation with respect to an equivalence relation is a problematic
operation with respect to the property of admissibility for subsets of a rigid space. In fact, we do not know
how to carry out the reduction to the finite étale case without leaving the rigid-analytic category.

In the finite étale case with affinoid spaces, the construction of quotients goes as in algebraic geometry
except that there is the additional issue of checking that various k-algebras are also k-affinoid:

Lemma 3.2.1. Let f : U → X be a finite étale surjective map of rigid spaces. The rigid space X is affinoid
if and only if the rigid space U is affinoid. Moreover, if R′ ⇒ U ′ is a finite étale equivalence relation on an
affinoid rigid space U ′ then the étale quotient X ′ = U ′/R′ exists and U ′ → X ′ is a finite étale cover.

The étale hypothesis in the first part of the lemma is essential, in contrast with a theorem of Chevalley
[EGA, II, 6.7.1] in the case of finite surjections of schemes. Indeed, in [Liu] there is an example of a non-
affinoid quasi-compact separated surface (over any k) such that the normalization is affinoid. The proof of
Lemma 3.2.1 carries over verbatim to the case of affinoid k-analytic spaces that are not necessarily strictly
k-analytic, the key point being that if A is a k-affinoid algebra in the sense of Berkovich and it is endowed
with a continuous action by a finite group G then the closed subalgebra AG is k-affinoid and A is finite
and admissible as an AG-module [Ber1, 2.1.14(ii)]. We will return to this issue in §4 when we address the
existence problem for étale quotients of k-analytic spaces (as the foundation of our approach to analytifying
separated algebraic spaces via rigid spaces).

Proof. Let R = U ×X U , so the two projections R⇒ U are finite étale covers. If X is affinoid then certainly
U is affinoid, so now assume that U is affinoid. Hence, the U -finite R is affinoid and we have to prove
that U/R is affinoid when it exists. More generally, we suppose that we are given a finite étale equivalence
relation R′ ⇒ U ′ with R′ and U ′ affinoid rigid spaces over k, and we seek to prove that the étale quotient
U ′/R′ exists as an affinoid rigid space with U ′ → U ′/R′ a finite étale covering.

We have U ′ = Sp(A′) for some k-affinoid A′, and likewise R′ = Sp(A′′) for some k-affinoid A′′. The axioms
to be an equivalence relation may be expressed in terms of k-affinoid algebras by using algebraic tensor
products because these coincide with the corresponding completed tensor products due to the finiteness of
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the maps p1, p2 : R′ ⇒ U ′. This equality of completed and algebraic tensor products also implies that for
each map p∗i : A′ ⇒ A′′ the associated A′′-modules of algebraic and continuous Kähler differentials coincide.
Combining this with the fact that flatness of a finite map of affinoid algebras is equivalent to flatness of
the corresponding finite map of rigid spaces, we see that each p∗i is étale in the sense of commutative
algebra. Hence, the resulting pair of maps of affine k-schemes Spec(A′′)⇒ Spec(A′) is therefore a finite étale
equivalence relation in the category of k-schemes provided that the natural map

Spec(A′′)→ Spec(A′)×Spec k Spec(A′)

is a monomorphism. We claim that it is a closed immersion. By hypothesis, the map δ : R′ → U ′ × U ′ is a
monomorphism between rigid spaces, yet the first projection U ′ × U ′ → U ′ is separated and has composite
with δ that is finite, so δ is finite. A finite monomorphism of rigid spaces is a closed immersion (by Nakayama’s
lemma), so δ is a closed immersion. Hence, the natural map A′⊗̂kA′ → A′′ is surjective. The image of a′1⊗̂a′2
is p∗1(a′1)p∗2(a′2), so every element of the Banach A′-module A′′ (say via p∗1) is a convergent linear combination
of elements in the image of p∗2. Since A′′ is in fact A′-finite via p∗1, so all A′-submodules are closed, it follows
that p∗2(A′) algebraically spans A′′ over A′ (via p1). Hence, the natural map A′ ⊗k A′ → A′′ is indeed
surjective, as desired.

By [SGA3, Exp. V, 4.1], the étale quotient of Spec(A′′) ⇒ Spec(A′) exists as an affine scheme Spec(A)
over k, with Spec(A′) → Spec(A) a finite étale covering (and A′ ⊗A A′ → A′′ an isomorphism). If we can
show that A is a k-affinoid algebra, then for X ′ = Sp(A) the finite étale covering U ′ → X ′ yields equal
composites R′ ⇒ X ′ and the induced map R′ → U ′ ×X′ U ′ is an isomorphism since A′ ⊗A A′ = A′⊗̂AA′.
Thus, X ′ would serve as the étale quotient U ′/R′ in the category of rigid spaces.

To show that such an A must be k-affinoid, consider more generally an affine k-scheme SpecA equipped
with a finite étale covering Spec(A′) → Spec(A) with A′ a k-affinoid algebra. We claim that A must be
k-affinoid. Since A′ has only finitely many idempotents, the same must hold for A, and so we may assume
Spec(A) is connected. The map Spec(A′) → Spec(A) is a finite étale covering, so each of the finitely
many connected components of Spec(A′) is a finite étale cover of Spec(A). Thus, we may also assume that
Spec(A′) is connected. By the theory of the étale fundamental group, the connected finite étale covering
Spec(A′) → Spec(A) is dominated by a Galois finite étale covering Spec(B) → Spec(A), say with Galois
group G. The faithful G-action on B is A-linear, hence continuous, and A = BG. Since B is A′-finite, B is
a k-affinoid algebra. Thus, by [BGR, 6.3.3/3] the invariant subalgebra A = BG is k-affinoid. �

To generalize beyond the case of finite étale equivalence relations on affinoids as in Lemma 3.2.1, a
fundamental issue is the possibility that the rigid-analytic morphism R→ U ×U may not be quasi-compact.
For example, if X is a locally separated algebraic space then its diagonal is a quasi-compact immersion that
is not a closed immersion if X is not separated, and so when working over an étale chart of the algebraic
space the pullback of this diagonal morphism has analytification that is not quasi-compact in the sense
of rigid geometry when X is not separated. Lack of such quasi-compactness on the rigid side presents a
difficulty because forming saturations under the equivalence relation thereby involves the image of a non-
quasi-compact admissible open under a flat morphism of rigid spaces, and the admissibility of such images is
difficult to control (even when the flat morphism is quasi-compact). This is what happens in Example 3.1.1
if we try to use gluing to build the non-existent analytification there. We are therefore led to restrict our
attention to the analytic quotient problem when δ : R→ U × U is quasi-compact. For reasons explained in
Remark 1.2.3, we will focus on the case when δ is a closed immersion.

3.3. GAGA for algebraic spaces. We conclude this section with a discussion of cohomological issues
related to the Tate-étale topology. The GAGA theorems aim to compare cohomology of coherent sheaves on
(analytifiable) proper algebraic spaces and proper rigid spaces, so a basic fact that we must confront before
contemplating such theorems is that algebraic spaces have only an étale topology rather than a Zariski
topology whereas rigid spaces have a Tate topology with respect to which étale maps are not generally local
isomorphisms. This contrasts with the situation over C, where étale analytic maps are local isomorphisms.
Thus, it seems appropriate to sketch how the GAGA formalism is to be set up for analytifiable algebraic
spaces over a non-archimedean field k.
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Let X be an analytifiable algebraic space, say with X = X an, and let Xét denote the étale site whose
objects are schemes étale over X . For any sheaf of sets F on Xét, define the pushforward (fX )∗(F ) on Xét

by the formula ((fX )∗(F ))(U ) = F (U an). This is a sheaf, due to Example 2.1.2. It is easy to construct an
exact left adjoint in the usual manner, and this gives a map of ringed topoi fX : X̃ét → X̃ét that is natural
in X .

The pullback operation f∗X on sheaves of modules is exact because if U → U an is an étale map from
an affinoid space over k to the analytification of an affine algebraic k-scheme then the induced map on
coordinate rings is flat (due to the induced map on completed stalks at maximal ideals being finite étale).
We call this the analytification functor on sheaves of modules. By exactness, this functor preserves coherence.
At the end of §2.3 we noted that for any coherent sheaf G on Xét one can use descent theory to naturally
construct a coherent sheaf G an on XTate whose formation is compatible with pullback in X . We claim
that the associated coherent sheaf (G an)ét on Xét is naturally isomorphic to f∗X (G ). This follows from the
commutative diagram of ringed sites

Uét
//

��

Uét

��
UTate

// UZar

for any scheme U étale over X . Since pullback along Xét → XTate defines an equivalence between categories
of coherent sheaves, we may therefore write G an to denote f∗X (G ) for any OXét -module G without creating
confusion.

Example 3.3.1. We can now state GAGA for algebraic spaces. Let h : X → Y be a map between analytifiable
algebraic spaces, with associated map han : X = X an → Y an = Y . Since the commutative diagram of ringed
topoi

X̃ét

��

// X̃ét

��
Ỹét

// Ỹét

has exact pullback operations along the horizonal direction, there is a natural δ-functorial map of OYét -
modules

(Rjh∗(F ))an → Rjhan
∗ (F an).

GAGA for algebraic spaces is the assertion that this comparison morphism is an isomorphism when h is
proper and F is coherent, from which the usual GAGA results concerning full faithfulness on proper objects
over k and equivalences between categories of coherent sheaves on such objects follow exactly as over C
(using Chow’s Lemma for algebraic spaces).

To prove GAGA, first note that by Theorem 2.3.1, han is proper. Also, recall from Example 2.1.3 that
via the pullback equivalence between categories of coherent sheaves for the Tate and Tate-étale topologies,
we get a δ-functorial compatibility between higher direct images for coherent sheaves in the proper case.
Consequently, we can argue exactly as over C to reduce GAGA for proper maps between analytifiable
algebraic spaces to the known case of schemes with the Zariski (rather than étale) topology and rigid spaces
with the Tate (rather than Tate-étale) topology.

4. Analytification via k-analytic spaces

4.1. Preliminary considerations. We are going to now study analytification in the category of k-analytic
spaces, and then use such spaces to overcome admissibility problems in the rigid case. In order to make
sense of this, we briefly digress to discuss how the methods in §2 carry over to the category of k-analytic
spaces, endowed with their natural étale topology. (As usual in the theory of k-analytic spaces, we allow
the possibility that k has trivial absolute value.) An étale equivalence relation in the category of k-analytic
spaces is a pair of étale morphisms R⇒ U such that the map R→ U×U (called the diagonal) is a functorial
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equivalence relation; in particular, it is a monomorphism. As one example, if R ⇒ U is an étale chart for
an algebraic space X over k then the analytification functor [Ber2, 2.6.1] to the category of good strictly k-
analytic spaces yields an étale equivalence relation R⇒ U of k-analytic spaces. (By [T2, 4.10], the category
of strictly k-analytic spaces is a full subcategory of the category of k-analytic spaces, so there is no ambiguity
about where the morphisms R⇒ U take place when R and U are strictly k-analytic.)

Definition 4.1.1. Let R⇒ U be an étale equivalence relation on k-analytic spaces. A quotient of R⇒ U is
a k-analytic space X equipped with an étale surjection U → X such that the composite maps R⇒ U → X
coincide and the resulting map R→ U ×X U is an isomorphism.

In order to check that the quotient (when it exists) is unique up to unique isomorphism (and in fact
represents a specific sheaf functor), we can use the usual descent theory argument as in the case of schemes
provided that representable functors on the category of k-analytic spaces are étale sheaves. This sheaf
property is true within the full subcategories of good k-analytic spaces and strictly k-analytic spaces by
[Ber2, 4.1.5], according to which the general case holds once we prove the next result.

Theorem 4.1.2. Let f : X ′ → X be a finite étale map between k-analytic spaces. If V ′ ⊆ X ′ is a quasi-
compact k-analytic subdomain then f(V ′) ⊆ X is a finite union of k-affinoid subdomains in X. In particular,
f(V ′) is a k-analytic domain in X. If X, X ′, and V ′ are strictly k-analytic then so is f(V ′).

The fiber product R = X ′ ×X X ′ is finite over X ′ (under either projection), so it is good (resp. strictly
k-analytic) when X ′ is. Since X = X ′/R, it will follow from Theorem 4.2.2 below that if X ′ is separated
then X is necessarily good (resp. strictly k-analytic) if X ′ is so.

Proof. The image of f is open and closed in X, so we may and do assume that f is surjective. Since X is
locally Hausdorff and V ′ is quasi-compact, there is a finite collection of Hausdorff open subsets U1, . . . , Un
in X that cover f(V ′). The open cover {f−1(Ui)} of the quasi-compact V ′ has a finite refinement consisting
of k-affinoid subdomains V ′j ⊆ V ′, so if we can settle the case of a Hausdorff target then applying this to
f−1(Ui) → Ui and each V ′j mapping into Ui gives the result for f(V ′). Hence, we now may and do assume
that X is Hausdorff, so X ′ is also Hausdorff.

Let W1, . . . ,Wm ⊆ X be a finite collection of k-affinoid subdomains whose union contains f(V ′) (with all
Wj strictly k-analytic when X ′, X, and V are so). The pullback subdomains W ′j = f−1(Wj) are k-affinoid
in X ′, and are strictly k-analytic when X ′, X, and V ′ are so. Moreover, V ′∩f−1(Wj) is quasi-compact since
the graph morphism Γf : X ′ → X ′ ×X is quasi-compact (as it is a base change of the diagonal morphism
∆X : X → X ×X that is topologically proper since |X| is Hausdorff and |X ×X| → |X| × |X| is proper).
Hence, we may reduce to the case when f(V ′) ⊆ W for some k-affinoid subdomain W ⊆ X. It is harmless
to make the base change by W → X, so we can assume that X and X ′ are k-affinoid and even connected.
Say X ′ = M (A′) and X = M (A).

By the theory of the étale fundamental group as in the proof of Lemma 3.2.1, now applied to SpecA′ →
SpecA, we may find a connected finite étale cover X ′′ → X ′ that is Galois over X. In particular, if X ′ is
strict then so is X ′′. The preimage of V ′ in X ′′ is quasi-compact (and strict when X ′ and V ′ are strict),
so we may assume that X ′ is Galois over X, say with Galois group G. The union W ′ = ∪g∈Gg(V ′) is a
quasi-compact k-analytic subdomain whose image in X is the same as that of V ′, so we can rename W ′ as
V ′ to get to the case when V ′ is G-stable.

For each point x′ ∈ V ′ we let Gx′ ⊆ G denote the stabilizer group of the physical point x′, so by the
Hausdorff property of our spaces we can find a k-affinoid neighborhood W ′ ⊆ V ′ around x′ in V ′ that is
disjoint from its g-translate for each g ∈ G − Gx′ . Replacing W ′ with the k-affinoid overlap ∩g∈Gx′ g(W ′)
allows us to assume that W ′ is Gx′ -stable and that the subdomains g(W ′) for g ∈ G/Gx′ are pairwise
disjoint. Hence, Y ′ =

∐
g(W ′) is a G-stable k-affinoid subdomain in X ′ that is a neighborhood of x′ in V ′.

By quasi-compactness of V ′, finitely many such subdomains Y ′1 , . . . , Y
′
n cover V ′. Thus, we can replace V ′

with each of the Y ′i ’s separately, so we can assume that V ′ = M (B′) is k-affinoid. By [Ber1, 2.1.14(ii)], the
closed k-subalgebra B = B′

G is k-affinoid. It is moreover a strict k-affinoid algebra if V ′ is strict [BGR,
6.3.3]. The map V ′ ⊆ X ′ → X factors through the surjection V ′ = M (B′)→M (B), so it suffices to check
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that the natural map V = M (B) →M (A) = X is a k-analytic subdomain. This amounts to the property
that if Z = M (C) is k-affinoid and a morphism h : Z → X factors through V set-theoretically then it
uniquely does so in the category of k-analytic spaces. It is therefore equivalent to prove that the projection
Z ×X V → Z is an isomorphism. But this is a map of k-affinoids, so it suffices to check the isomorphism
assertion after an analytic extension of the base field (an operation which commutes with the formation of
B from B′). We may therefore put ourselves in the strictly k-analytic case (with |k×| 6= {1}), in which case
the image f(V ′) is a k-analytic subdomain by Raynaud’s theory [BL2, Cor. 5.11], and V ′ → f(V ′) is a finite
mapping because V ′ is the full preimage of f(V ′) in X ′ (due to the G-stability of V ′ in X ′). Hence, Lemma
3.2.1 gives us that f(V ′) is k-affinoid, and then its coordinate ring is forced to be B′G = B since X ′ → X

corresponds to A = A′
G → A′. That is, the k-analytic subdomain f(V ′) ⊆ X is precisely V equipped with

its natural map to X, so V is a k-analytic subdomain of X as desired. �

Example 4.1.3. In the setup of Theorem 4.1.2, if V ′ ⊆ X ′ is a quasi-compact k-analytic subdomain whose
two pullbacks to R = X ′ ×X X ′ coincide then it descends uniquely to a k-analytic subdomain V ⊆ X.
Indeed, if we let V be the quasi-compact k-analytic subdomain f(V ′) ⊆ X then to check that the preimage
of V in X ′ is no larger than (and hence is equal to) V ′ it suffices to check this after base change on X by
geometric points of V . This case is trivial.

By Theorem 4.1.2, if R ⇒ U is an étale equivalence relation on k-analytic spaces and X is a quotient
for this equivalence relation in the sense that we have defined for k-analytic spaces, then X represents the
quotient sheaf of sets U/R on the étale site for the category of k-analytic spaces. Thus, such an X is unique
up to unique isomorphism. We can also use descent arguments as in the classical rigid case to run this in
reverse: if the quotient sheaf U/R on the étale site for the category of k-analytic spaces is represented by a
k-analytic space X then the natural map U → X is automatically an étale surjection that equalizes the maps
R⇒ U and yields an isomorphism R ' U ×X U . In particular, the formation of the quotient is compatible
with arbitrary analytic extension of the base field (when the quotient exists over the initial base field).

In the k-analytic category, if the diagonal R→ U×U of an étale equivalence relation on a locally separated
k-analytic space U is compact then it must be a closed immersion [CT, 2.2]. This is why in Theorem 1.2.2
we impose the requirement that δ be a closed immersion rather than the apparently weaker condition that it
be compact. We do not have an analogous such result in the rigid-analytic case because étaleness and local
separatedness in k-analytic geometry are stronger conditions than in rigid geometry.

The arguments in §2 carry over essentially verbatim to show that if R ⇒ U arises from an étale chart
R ⇒ U for an algebraic space X then whether or not an analytic quotient X = U/R exists is independent
of the choice of étale chart for X , and its formation (when it does exist) is Zariski-local on X . In particular,
when X exists it is canonically independent of the chart and is functorial in X in a manner that respects
the formation of fiber products and Zariski-open and Zariski-closed immersions. We call such an X (when
it exists) the analytification of X in the sense of k-analytic spaces, and we say that X is analytifiable (in
the sense of k-analytic spaces); we write X an to denote this k-analytic space if there is no possibility of
confusion with respect to the analogous notion for rigid spaces. In principle analytifiability in the sense of
rigid spaces is weaker than in the sense of k-analytic spaces since étaleness is a weaker condition in rigid
geometry than in k-analytic geometry. It seems likely (when |k×| 6= {1}) that analytifiability in the sense
of k-analytic spaces implies it in the sense of rigid spaces over k, but we have not considered this matter
seriously because in the separated case we will prove analytifiability in both senses (and the deduction of
the rigid case from the k-analytic case will use separatedness).

Since change of the base field is a straightforward operation for k-analytic spaces (unlike for general
rigid spaces), it is easy to see that if K/k is an analytic extension field and X is analytifiable in the sense
of k-analytic spaces then K ⊗k X is analytifiable in the sense of K-analytic spaces with K⊗̂kX an as its
analytification.

Theorem 4.1.4. If X is analytifiable in the sense of k-analytic spaces then X is locally separated.

Proof. We wish to carry over the method used to prove Theorem 2.2.5 for rigid spaces, so we need to recall
several properties of k-analytic spaces that are relevant to this method. A separated k-analytic space has
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Hausdorff underlying topological space, and by using rigid-analytic techniques we see that a dense open
immersion of algebraic k-schemes induces an open immersion of k-analytic spaces with dense image. Also,
any base change of the diagonal map ∆S : S → S × S of a (not necessarily separated) k-analytic space S is
a topological embedding. To see this, since S is locally Hausdorff we may (as in the complex-analytic case)
reduce to the case when S is Hausdorff. Thus, |S| → |S| × |S| is a closed embedding. Letting h : Z → S ×S
denote a base change morphism, we want to show that the pullback h∗(∆S) : Z ×S×S S → Z of ∆S along
h is a topological embedding. We will show that it is even a topologically closed embedding. On geometric
points this map is clearly injective, so it suffices to prove that it is topologically a proper map. But the map
from the underlying topological space of a k-analytic fiber product to the fiber product of the underlying
topological spaces is always proper, so we are reduced to showing that

|Z| ×|S×S| |S| → |Z|
is a closed embedding. Thus, it is enough to prove that ∆S is topologically a closed embedding. Since
|S × S| → |S| × |S| is separated (even a proper surjection) and |S| → |S| × |S| is a closed embedding (as |S|
is Hausdorff), ∆S is indeed a closed embedding.

To use the proof of Theorem 2.2.5 in the setting of k-analytic spaces, it remains to show that a finite type
map f : V → W of algebraic k-schemes is injective (resp. surjective) if its analytification fan : V → W (in
the sense of k-analytic spaces) is injective (resp. surjective). For surjectivity we use the fact that the natural
map W = W an → W is surjective. For injectivity, recall that a map of algebraic k-schemes is injective if
and only if it is injective on underlying sets of closed points, and the closed points of an algebraic k-scheme
are functorially identified with the set of points of the analytification with residue field of finite degree over
k. Hence, we get the desired inheritance of injectivity from k-analytic spaces to schemes. �

4.2. Main results. Here is the main existence result in the rigid-analytic setting; the proof will occupy
the rest of §4, and will largely be taken up with the proof of an existence result for étale quotients in the
k-analytic category (modulo a crucial existence theorem for quotients by free actions of finite groups, to be
treated in Theorem 5.1.1).

Theorem 4.2.1. Assume |k×| 6= {1}. If X is a separated algebraic space over k then X is analytifiable in
the sense of rigid spaces. Moreover, the rigid space X an is separated.

Once X an is proved to exist, it must be separated since ∆X an = ∆an
X is a closed immersion (as X is

separated). For a separated algebraic space, we will prove analytifiability in the sense of rigid spaces by
deducing it from a stronger existence theorem for étale quotients in the setting of k-analytic spaces (allowing
|k×| = {1}). Consider an étale chart R ⇒ U for X . Note that we can take U to be separated. Let U
and R be the good strictly k-analytic spaces associated to U and R (so U is separated when U is). The
dictionary relating k-analytic spaces and algebraic schemes [Ber2, 3.3.11] ensures that R ⇒ U is an étale
equivalence relation on U and that R → U × U is a closed immersion. At the end of §4.3, Theorem 4.2.1
will be deduced from the following purely k-analytic result (allowing |k×| = {1}).

Theorem 4.2.2. Let R⇒ U be an étale equivalence relation on k-analytic spaces such that R→ U × U is
a closed immersion. The quotient U/R exists and is a separated k-analytic space. If U is strictly k-analytic
(resp. good) then so is U/R.

In Example 5.1.3 we will show that it is insufficient in Theorem 4.2.2 to weaken the hypothesis on δ to
compactness. Before we proceed to global considerations, let us first show that the existence problem for
U/R is local on U (setting aside for now the matter of proving separatedness of U/R).

Lemma 4.2.3. Let R⇒ U be an étale equivalence relation on k-analytic spaces. Let {Ui} be an open cover
of U , and let Ri = R ×U×U (Ui × Ui) = R ∩ (Ui × Ui), so Ri ⇒ Ui is an étale equivalence relation. If
the quotient Xi = Ui/Ri exists for all i then so does X = U/R, and the natural maps Xi → X are open
immersions that cover X. In particular, if each Xi is strictly k-analytic (resp. good) then so is X.

Proof. We need to define “overlaps” along which we shall glue the Xi’s to build a k-analytic quotient U/R.
Let p1, p2 : R ⇒ U be the two projections. The open overlap Rij = p−1

1 (Ui) ∩ p−1
2 (Uj) in R classifies
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equivalence among points of Ui and Uj , so its open image Uij in Ui under the étale morphism p1 : R → U
classifies points of Ui that are equivalent to points of Uj . Let Xij ⊆ Xi be the open image of Uij , so
p1 : Rij → Xij is an étale surjection. Geometrically, the points of Xij are the R-equivalence classes that
meet Ui and Uj (viewed within Xi = Ui/Ri).

The canonical involution R ' R restricts to an isomorphism φij : Rij ' Rji such that φji = φ−1
ij , and

the resulting isomorphism Rij ×Rij ' Rji ×Rji restricts to an isomorphism of subfunctors Rij ×Xij
Rij '

Rji×Xji Rji. Hence, since representable functors on the category of k-analytic spaces are étale sheaves (due
to Theorem 4.1.2 and [Ber2, 4.1.5]), the isomorphisms φij uniquely descend to isomorphisms Xij ' Xji

between open subsets Xij ⊆ Xi and Xji ⊆ Xj . These descended isomorphisms among opens in the Xi’s
satisfy the triple overlap condition, and so we can glue the Xi’s along these isomorphisms to build a k-analytic
space X. The étale composites Ui → Xi ⊆ X glue to define an étale morphism U → X such that the two
composite maps R⇒ U → X coincide and R→ U ×X U is an isomorphism (as it is an étale monomorphism
that is surjective on geometric points). It follows that as an étale sheaf of sets on the category of k-analytic
spaces, X represents the sheafified quotient U/R. �

To use Lemma 4.2.3 to justify working locally on U to prove Theorem 4.2.2, first note that if the natural
map δ : R→ U × U is a closed immersion and {Ui} is an open cover of U then each map δi : Ri → Ui × Ui
is a base change of δ and so is also a closed immersion. Hence, the existence aspect of Theorem 4.2.2 may
indeed by studied by working locally on U . However, the separatedness property of the quotient X = U/R
(when it exists) is not a local property, so we now recall the standard verification that the diagonal map
∆X : X → X ×X is automatically a closed immersion (i.e., X is separated) when X = U/R exists. Étale
surjective base change of ∆X by U ×U → X ×X yields the map R→ U ×U that is a closed immersion by
hypothesis. To deduce that ∆X is a closed immersion it remains to show that the property of a k-analytic
morphism being a closed immersion is étale-local on the target. That is, if f : Y ′ → Y is a map of k-analytic
spaces and V → Y is an étale cover such that the base change F : V ′ → V of f is a closed immersion then
we want to prove that f is a closed immersion. To prove this we require a straightforward descent theory
for coherent sheaves with respect to the G-topology SG [Ber2, §1.3] on k-analytic spaces S:

Lemma 4.2.4. Let f : S′ → S be a flat quasi-finite surjection of k-analytic spaces, and let p1, p2 : S′′ =
S′ ×S S′ ⇒ S′ be the canonical projections. For any coherent sheaf F on SG define F ′ to be the coherent
pullback f∗(F ) on S′G and define ϕF : p∗1(F ′) ' p∗2(F ′) to be the evident isomorphism. The functor
F  (F ′, ϕF ) from the category Coh(SG) of coherent sheaves on SG to the category of pairs consisting of
an object F ′ ∈ Coh(S′G) equipped with a descent datum ϕ : p∗1(F ′) ' p∗2(F ′) relative to f is an equivalence
of categories.

The case of interest to use is when f is étale. The general notions of quasi-finite and flat quasi-finite maps
are discussed in [Ber2, §3.1-§3.2].

Proof. For faithfulness it suffices to work locally on S′ and S, so we can assume f is a flat finite surjection.
Once faithfulness is proved, for full faithfulness we can work locally on S′ since flat quasi-finite maps are open,
so we can again reduce to the case when f is a flat finite map. Similarly, once full faithfulness is proved the
essential surjectivity holds in general if it holds for flat finite f . Hence, we can assume that f is is a flat finite
map. Since the coherent sheaves are taken with respect to the G-topology, for the proof of full faithfulness
we can work locally for the G-topology on S and so we can assume that S is k-affinoid. Similarly, once full
faithfulness is proved we can work locally for theG-topology on S for the proof of essential surjectivity. Hence,
it suffices to prove the lemma when S = M (A ) for a k-affinoid algebra A and S′ = M (A ′) for a finite and
faithfully flat A -algebra A ′ that is admissible as an A -module. (The surjectivity of Spec(A ′)→ Spec(A )
follows from the surjectivity of f and the surjectivity of M (B) → Spec(B) for any k-affinoid algebra B.
This is why the flat map of algebras A → A ′ is faithfully flat.) But in this special case coherent sheaves
correspond to finite modules over the coordinate ring and completed tensor products are ordinary tensor
products, so the required result is a special case of faithfully flat descent for quasi-coherent sheaves on
schemes. �
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To use this lemma, we first recall that there is a natural bijection between (isomorphism classes of) closed
immersions into a k-analytic space S and coherent ideal sheaves for the G-topology SG of S (in the sense
of [Ber2, §3]). More specifically, any closed immersion gives rise to such an ideal sheaf via [Ber2, 1.3.7],
and conversely any coherent ideal sheaf arises from a unique closed immersion (up to unique isomorphism)
by [Ber2, 1.3.7] in the k-affinoid case and a standard gluing procedure [Ber2, 1.3.3(b)] in the general case.
(Strictly speaking there is a local finiteness condition in this general gluing procedure, but it is easily bypassed
in the case of intended application by local compactness considerations on the ambient space S.) In this way,
the closed immersion F : V ′ ↪→ V arising by base change from f naturally corresponds to a coherent ideal
sheaf I on VG, and on (V ′ ×V V ′)G = ((Y ′ ×Y Y ′)×V V ′)G the pullback coherent ideal sheaves p∗j (I ) are
equal since there is an equality of closed immersions p∗1(F ) = p∗2(F ) into (Y ′×Y Y ′×Y Y ′)×Y V . By Lemma
4.2.4, I is therefore the pullback of a unique coherent ideal sheaf I0 on YG. For the associated closed
immersion ι : Y0 ↪→ Y there is a unique V -isomorphism φ : Y0 ×Y V ' V ′ = Y ′ ×Y V (since F and ιV are
closed immersions into V with the same associated coherent ideal sheaves). The two pullback isomorphisms
induced over V ′ ×V V ′ from φ coincide because closed immersions have no nontrivial automorphisms, and
since representable functors in the k-analytic category are sheaves for the étale topology it follows that φ
uniquely descends to a Y -isomorphism Y0 ' Y ′. Hence, f : Y ′ → Y is a closed immersion due to how
Y0 → Y was constructed. This completes the proof that the étale quotient X = U/R is separated when it
exists (given that we are assuming that δ : R→ U × U is a closed immersion).

The next lemma, which is an analogue of Lemma 3.2.1, will be useful for analyzing properties of the map
U → U/R when the quotient has been constructed.

Lemma 4.2.5. Let f : X ′ → X be a finite étale surjection between k-analytic spaces. If X ′ is k-affinoid
then so is X, and if in addition X ′ is strictly k-analytic then so is X.

Proof. Since X ′′ = X ′ ×X X ′ is finite over X ′ under either projection, it is k-affinoid (and strict when
X ′ is so). Also, the map X ′′ → X ′ × X ′ between k-affinoid spaces is a closed immersion because a finite
monomorphism between k-analytic spaces is a closed immersion (as we may check after first using analytic
extension of the base field to reduce to the strict case; the monomorphism property is preserved by such
extension since it is equivalent to the relative diagonal map being an isomorphism). The method of proof of
Lemma 3.2.1 therefore carries over (using [Ber1, 2.1.14(i)] to replace [BGR, 6.3.3]) to construct a k-affinoid
quotient for the finite étale equivalence relation X ′′ ⇒ X ′, and this quotient is (by construction) even strict
when X ′ is strict. But X is also such a quotient, so it must be k-affinoid. �

Lemma 4.2.6. Assume that R⇒ U is a finite étale equivalence relation on k-analytic spaces such that the
quotient X = U/R exists. The map U → U/R must be finite, and if U is Hausdorff then X is Hausdorff.
Moreover, if U is k-affinoid then so is X.

Proof. The base change of π : U → X by the étale covering π : U → U/R is a finite map (it is a projection
R → U), so to prove that π is finite we just have to show that if a map h : Y ′ → Y between k-analytic
spaces becomes finite after an étale surjective base change on Y then it is finite. We can work locally on Y ,
so since étale maps are open and are finite locally on the source we can assume that there is a finite étale
cover Z → Y such that Y ′ ×Y Z → Z is finite. To prove finiteness of h from this we can easily reduce to
the case when Y is k-affinoid, so Z is k-affinoid and hence Y ′ ×Y Z is k-affinoid. The map Y ′ ×Y Z → Y ′

is a finite étale cover with k-affinoid source, so Y ′ is k-affinoid by Lemma 4.2.5. Thus, h : Y ′ → Y is a map
between k-affinoids which becomes finite after the finite étale base change by Z → Y . The desired finiteness
of h is therefore clear.

With π now known to be finite étale (and surjective) in general, if U is k-affinoid then Lemma 4.2.5 ensures
that X must be k-affinoid. To see that X must be Hausdorff when U is Hausdorff, the finite surjective map
π × π : U × U → X × X induces a closed map on topological spaces, so properness and surjectivity of
|T1 × T2| → |T1| × |T2| for k-analytic spaces T1 and T2 imply that |U | × |U | → |X| × |X| is closed. The
diagonal |U | ⊆ |U | × |U | is closed since U is Hausdorff, so we conclude that |X| has closed diagonal image in
|X| × |X| as desired. That is, X must be Hausdorff when it exists. �
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4.3. Étale localization and reduction to group quotients. Now we return to the global construction
problem for p1, p2 : R ⇒ U as in Theorem 4.2.2. The aim of this section is to reduce the problem to the
particular case when p : R ⇒ U is induced by a free right action of a finite group G on U ; i.e., R = U ×G
with p1 the canonical projection and p2(u, g) = u.g. We emphasize that the hypothesis that δ : R→ U×U is
a closed immersion will be preserved under this reduction step. The existence result for U/R in this special
case is proved in Theorem 5.1.1.

We have already seen that it suffices to work locally on U to solve the existence problem for U/R. By
“work locally” we mean that we work with open subspaces V that cover U and with the étale equivalence
relation RV = p−1

1 (V )∩p−1
2 (V ) = δ−1(V ×V ) on V (for δ : R→ U ×U). Note that the map RV → V ×V is

a closed immersion since it is a base change of the map δ that we assume is a closed immersion. Localizing
in this way does not lose the property of the new U being strictly k-analytic or good when the original U is
so.

It is possible to first use topological arguments (especially compactness and connectedness considerations)
to reduce the problem to the case when the maps R⇒ U are finite étale, and to then use étale localization to
split the equivalence relation, thus passing to the group action case. However, it turns out that a shorter way
to the same goal is to first apply étale localization to split the equivalence relation étale-locally around points
of U and to then use compactness and connectedness considerations. Given an étale morphism f : U ′ → U
we define

R′ = R×U×U (U ′ × U ′) = U ′ ×U,p1 R×p2,U U
′,

obtaining an étale equivalence relation p′1, p
′
2 : R′ ⇒ U ′ induced from R. Beware that even if the maps

R⇒ U are quasi-compact, the maps R′ ⇒ U ′ may fail to be quasi-compact. (In the intended applications to
algebraic spaces, such quasi-compactness properties for the projections R ⇒ U are often not satisfied even
when the algebraic space is separated.)

Lemma 4.3.1. Let R ⇒ U be an étale equivalence relation on k-analytic spaces and let f : U ′ → U be
an étale surjection. The quotient X = U/R exists if and only if the quotient X ′ = U ′/R′ exists, and then
X ′ ' X.

Proof. We will need the following set-theoretic analogue of the lemma: if R ⇒ U is an equivalence relation
on a set U and there is given a surjective map of sets U ′ � U then for the induced equivalence relation

R′ = R×U×U (U ′ ×U ′)⇒ U ′

on U ′ we have that the natural map U ′/R′ → U /R is bijective. To apply this, we will work with étale
sheaves of sets on the category of k-analytic spaces; examples of such sheaves are representable functors
Z = Hom(·, Z) for k-analytic spaces Z (as we indicated above Theorem 4.1.2). Consider the equivalence
relations R ⇒ U and R′ ⇒ U ′, and let X and X ′ be the corresponding quotients in the category of étale
sheaves of sets. It suffices to prove that X ′ ' X . By surjectivity of f , the corresponding morphism of
sheaves U ′ → U is surjective. In particular, this latter map of sheaves induces surjections on stalks at
geometric points, so by the above set-theoretic result we conclude that the natural map X ′ → X induces
a bijection on geometric stalks. Hence, by [Ber2, 4.2.3] this natural map is an isomorphism of sheaves of
sets. �

Corollary 4.3.2. If R ⇒ U is an étale equivalence relation on k-analytic spaces then the quotient U/R
exists if and only if for any point u ∈ U there exists an étale morphism U ′ → U whose image contains u and
such that the quotient U ′/R′ exists, where R′ = R×U×U (U ′ × U ′).

Proof. The “if” implication is the only one that requires an argument. Since étale maps are open, we can
assume that U has an open cover {Ui} such that there are étale surjections U ′i → Ui for which the quotient
U ′i/R

′
i exists, with

R′i = R×U×U (U ′i × U ′i) = (R×U×U (Ui × Ui))×Ui×Ui
(U ′i × U ′i) = Ri ×Ui×Ui

(U ′i × U ′i).

By Lemma 4.3.1 the quotient Ui/Ri exists for all i, so by Lemma 4.2.3 the quotient U/R exists. �
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Now we are in position to prove Theorem 4.2.2, assuming that it is true in the case of a free action by a
finite group (with action map U ×G → U × U a closed immersion!), a case that we will settle in Theorem
5.1.1. By Corollary 4.3.2, we just have to prove the following lemma.

Lemma 4.3.3. Let R⇒ U be an étale equivalence relation on k-analytic spaces, and assume that R→ U×U
is a closed immersion. For any point u ∈ U there exists an étale morphism W → U whose image contains
u and such that the induced equivalence relation RW ⇒ W is split; i.e., induced by a free right action of a
finite group G on W .

Note that if U is strictly analytic (resp. good) then so is W .

Proof. By working locally on the topological space of U we can assume that U is Hausdorff (so U ×U and R
are Hausdorff, as |U ×U | → |U |× |U | is topologically proper and R→ U ×U is monic and hence separated).

To construct W and G we first want to split R over u. By hypothesis the diagonal R → U × U is a
topologically proper map, so for any compact analytic domain K ⊆ U that is a neighborhood of u in U we
have that RK = R ∩ (K ×K) is compact. But the closed subset p−1

1 (u) ⊆ R is étale over H (u) and hence
is discrete, so it has finite overlap with RK . Thus, u has an open neighborhood intU (K) in U that contains
only finitely many points which are R-equivalent to u, so by localizing U and using the Hausdorff property
we can arrange that u is not R-equivalent to any other points of U . That is, now we have p−1

1 (u) = p−1
2 (u)

and this common set is finite. For each r in this finite set, the pullback maps H (u) ⇒ H (r) with respect
to p∗1 and p∗2 are finite separable. Hence, we can choose a finite Galois extension H /H (u) that splits each
H (r) with respect to both of its H (u)-structures (via p1 and p2). By [Ber2, 3.4.1] we can find an étale
morphism U ′ → U so that u has a single preimage u′ ∈ U ′ and H (u′) is H (u)-isomorphic to H . Shrinking
U ′ around u′ also allows us to suppose that U ′ → U is separated (even finite over an open neighborhood of
u in U). In particular, U ′ is Hausdorff, so R′ = R×U×U (U ′ × U ′) is Hausdorff.

Since u′ is the only point in U ′ over u and no point in U−{u} is R-equivalent to u, no point in U ′−{u′} is
R′-equivalent to u′. That is, p′1

−1(u′) = p′2
−1(u′) as (finite) subsets of R′. Let {r′1, . . . , r′n} be an enumeration

of this set, so the natural pullback maps H = H (u′)⇒H (r′j) via p′1 and p′2 are isomorphisms for each j,
due to the formula R′ = U ′ ×U,p1 R ×p2,U U

′ and the way that H (u′)/H (u) was chosen. It follows from
these residual isomorphisms and [Ber2, 3.4.1] that the étale maps p′1 and p′2 are local isomorphisms near
each r′j ; i.e., for i = 1, 2 there exist open neighborhoods U ′′i of u′ and open neighborhoods R′ij of r′j for each
j such that p′i induces isomorphisms R′ij → U ′′i for each j. Since our original problem only depends on the
étale neighborhood of (U, u), we can replace R⇒ U and u with R′ ⇒ U ′ and u′ to reduce to the case when
p−1

1 (u) = p−1
2 (u) = {r1, . . . , rn} and there are open subspaces Ui ⊆ U around u such that p−1

i (Ui) contains
an open neighborhood Rij around rj mapping isomorphically onto Ui under pi. However, there may be
overlaps among the Rij for a fixed i and p−1

i (Ui) may contain points not in any Rij .
Choose a compact k-analytic domain U ⊆ U that is a neighborhood of u in U , and let R = U ×U,p1

R ×p2,U U . Note that R is compact since R → U × U is compact. Thus, p : R ⇒ U induces an equivalence
relation p : R ⇒ U that may not be étale (though it is rig-étale in the strictly analytic case). Since p is
induced by p, R = p−1

1 (U) ∩ p−1
2 (U) is a compact neighborhood of p−1

1 (u) = p−1
2 (u) in R. Make an initial

choice of the open subspace U1 ⊆ U around u as above, and let R1j ⊆ R∩p−1
1 (U1) be an open neighborhood

around rj in R that is small enough so that it maps isomorphically onto an open subspace of U1 and such
that the R1j ’s are pairwise disjoint. The image p1(R − (∪R1j)) is compact in U and does not contain u,
so for any open subspace U ′ ⊆ U1 around u with U ′ ⊆ U − p1(R − ∪R1j) we have that p−1

1 (U ′) contains
pairwise disjoint open neighborhoods R′1j around the rj ’s such that each R′1j maps isomorphically onto U ′

under p1 and p−1
2 (U ′) meets p−1

1 (U ′) inside of R. Thus, p−1
1 (U ′) is the disjoint union of the open subspaces

R′1j and p−1
1 (U ′) ∩ (R−R). We can likewise choose U2 and R2j adapted to p2, so by choosing

U ′ ⊆ U − (p1(R− ∪R1j) ∪ p2(R− ∪R2j))

we also have that p−1
2 (U ′) is the disjoint union of open subspaces R′2j and p−1

2 (U ′) ∩ (R−R) with rj ∈ R′2j
and p2 : R′2j ' U ′.
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Let R′ = p−1
1 (U ′)∩p−1

2 (U ′) ⊆ R be the étale equivalence relation on U ′ induced from R. Thus, the excess
open sets p−1

i (U ′) ∩ (R − R) are disjoint from R′, so R′ is the disjoint union of the overlaps R′ij ∩ R′ij′ for
1 ≤ j, j′ ≤ n. The initial choices of Rij above (prior to the choice of U ′) should be made so that not only
are these pairwise disjoint for fixed i but also so that R1j ∩ R2j′ = ∅ for j 6= j′. (This can be done since
rj 6= rj′ and R is Hausdorff.) Thus, R′ij ∩ R′ij′ = ∅ for j 6= j′, so R′ is the disjoint union of the n open
subspaces R′j = R′1j ∩ R′2j with rj ∈ R′j . Each pi induces an open immersion p′ij : R′j → U ′ whose image is
a neighborhood of u. We will prove that a careful choice of U ′ leads to a split equivalence relation R′, so in
particular the p′ij ’s are isomorphisms in such cases.

Let V be the connected component of ∩i,jp′ij(R′j) that contains u, so it is an open neighborhood of u in
U ′ and applying p′2j to p′1j

−1(V ) for each 1 ≤ j ≤ n yields open immersions

φj : V ' p′1j
−1(V ) ⊆ R′j → U ′

that fix u. Consider the equivalence relation of sets

P : R = Hom(V,R′)⇒ U = Hom(V,U ′).

Since V is connected and R′ =
∐
R′j with p′1j : R′j → U ′ an open immersion that hits u ∈ V , there exist

exactly n ways to lift the canonical open immersion iV : V → U ′ with respect to p′1 to a morphism V → R′

(just liftings with respect to p′1j). Therefore, {φj}1≤j≤n is the set of all elements of U that are P-equivalent
to iV . In particular, for any pair 1 ≤ a, b ≤ n the morphisms φa and φb are P-equivalent, and therefore
(again using the connectedness of V ) the morphism φb ◦ φ−1

a : φa(V ) → φb(V ) is induced from p′2c ◦ p′1c
−1

for some 1 ≤ c ≤ n. Let ψj denote the automorphism of the germ (V, u) induced from φj , so the above
argument implies that ψb ◦ψ−1

a = ψc. Since the set G = {ψj}1≤j≤n includes the identity (which corresponds
to the identity point rj0 over u in the identity part of the equivalence relation), it follows that G is actually
a group of automorphisms of (V, u). Note that composition of these automorphisms corresponds to a right
action on this germ due to how each φj is defined in the form “p2 ◦ p−1

1 ”.
We identify the index set {1, . . . , n} for the R′j ’s with G via j 7→ ψj . Since G is a finite group of

automorphisms of (V, u), there exists an open neighborhood V ′ of u in V such that for any g ∈ G we have
g(V ′) ⊆ V . It is clear that the open subspace W = ∩g∈Gg(V ′) ⊆ V ′ is taken to itself by each g ∈ G, so G
thereby acts on W . (This is a right action.) It follows that the equivalence relation R′ induces on W the
split equivalence relation corresponding to this right action of G. Thus, W and G are as required. �

Granting Theorem 4.2.2 (whose proof rests on Theorem 5.1.1 that is proved below), we return to the
étale equivalence relation Ran ⇒ U an on rigid spaces for proving Theorem 4.2.1 for an algebraic space X
(with |k×| 6= {1}). By Corollary 2.2.4 we may assume that X is quasi-compact, so we can and do take
U to be affine. This forces R to be quasi-compact and separated since R → U × U is a quasi-compact
monomorphism. Hence, the associated k-analytic spaces U and R are paracompact. By using analytification
with values in the category of good strictly k-analytic spaces, we conclude from Theorem 4.2.2 that X admits
an analytification X in the sense of k-analytic spaces (as opposed to the sense of rigid spaces, which is what
we want), and X is separated, good, and strictly k-analytic. Let us check that X is also paracompact. The
Hausdorff space U is covered by a rising sequence {Kj}j≥1 of compact subsets such that Kj ⊆ intU (Kj+1)
for all j because U arises from an affine U . (Choose a closed immersion of U into an affine space over k and
intersect U with closed balls of increasing radius centered at the origin in the analytified affine space.) The
images of the Kj ’s under the open surjective map U → X are therefore an analogous sequence of compact
subsets in the Hausdorff space X, so X is indeed paracompact.

It follows that under the equivalence of categories in [Ber2, 1.6.1] there is a quasi-separated rigid space X0

uniquely associated to X, and the étale surjective map U → X (which is in the full subcategory of strictly
k-analytic spaces) arises from a unique morphism U an → X0 that is necessarily étale (as we may check
using complete local rings) and surjective (due to k-strictness). The two maps Ran ⇒ U an are equalized
by the map U an → X0 because this equality holds back in the k-analytic setting (since X = U/R). The
resulting map Ran → U an ×X0 U an is likewise an isomorphism due to the isomorphism R ' U ×X U and
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the functoriality and compatibility with fiber products for the functor from paracompact strictly k-analytic
spaces to quasi-separated rigid spaces.

Hence, by Example 2.1.5 we see that X0 represents U an/Ran as long as the map U an → X0 admits
local étale quasi-sections. Since X is paracompact and Hausdorff, by [Ber2, 1.6.1] the rigid space X0 has an
admissible covering arising from a locally finite collection of strictly k-analytic affinoid subdomains D that
cover X. The étale surjection U → X gives an étale cover U ×X D → D, so by quasi-compactness of D
and the local finiteness of étale maps we get a finite collection of strictly k-analytic subdomains Yi ⊆ D that
cover D and over which there is a finite étale cover Y ′i → Yi that maps into U ×X Yi over Yi. The rigid space
associated to

∐
Y ′i is then a quasi-compact étale cover of D0 ⊆ X0 over which U an → X0 acquires a section.

5. Group quotients

5.1. Existence result and counterexamples. We shall now use the theory of reduction of germs as
developed in [T1] for strictly analytic spaces and in [T2] in general to prove an existence result for group-
action quotients to which the proof of Theorem 4.2.2 was reduced in the previous section.

Theorem 5.1.1. Let G be a finite group equipped with a free right action on a k-analytic space U . Assume
that the action map α : U × G → U × U defined by (u, g) 7→ (u, u.g) is a closed immersion. The quotient
U/G exists as a separated k-analytic space. If U is strictly k-analytic (resp. good, resp. k-affinoid) then so
is U/G.

The inheritance of strict k-analyticity (resp. goodness) from that of U will follow from our method of
construction of U/G. Note also that the action map α : U×G→ U×U is the diagonal of an étale equivalence
relation since the action is free, and since it is a closed immersion the space U must be separated (since
∆U is the restriction of α to the open and closed subspace U × {1} in U × G). The separatedness of U/G
(once it exists) follows by the same étale descent argument as we used for a general quotient X = U/R in
the discussion immediately preceding Lemma 4.2.4. Observe that if we assume U is Hausdorff then α is a
compact topological map (since |U ×U | → |U | × |U | is compact) but it is not a closed immersion if U is not
separated, and Example 5.1.4 shows that U/G can fail to exist in such cases.

Example 5.1.2. Let us see how the formation of U/G in Theorem 5.1.1 interacts with passage to G-stable
k-analytic subdomains in U . In the setup of Theorem 5.1.1, assume that U/G exists and let π : U → U/G
be the quotient map, which must be finite étale (by Lemma 4.2.6). Let N ⊆ U be a G-stable quasi-compact
k-analytic subdomain, so π(N) ⊆ U/G is a k-analytic domain by Theorem 4.1.2 and it is good (resp.
strictly k-analytic) if U , N , and U/G are good (resp. strictly k-analytic). The inclusion of analytic domains
N → π−1(π(N)) in U is bijective on geometric points due to G-stability of N , so it is an isomorphism. Thus,
the map π : N → π(N) serves as a quotient N/G. Likewise, if moreover N , U , and U/G are good (resp.
strictly k-analytic) then so is N/G. Note in particular that the natural map N/G → U/G identifies N/G
with a k-analytic domain in U/G.

Before we prove Theorem 5.1.1, we give an example that shows that the closed immersion hypothesis
on α in Theorem 5.1.1 cannot be replaced with a compactness hypothesis for the purposes of ensuring the
existence of U/G.

Example 5.1.3. We give an example of a 1-dimensional compact Hausdorff (and non-separated) strictly
k-analytic space U equipped with a free action of the group G = Z/2Z such that U/G does not exist,
assuming that there is a separable quadratic extension k′/k that is ramified in the sense that k → k′

induces an isomorphism on residue fields (so in particular, |k×| 6= {1}). We also give an analogous such
non-existence result in the rigid-analytic category (with quasi-compact quasi-separated rigid spaces that are
not separated). In Example 5.1.4 this will be adapted to work in both the rigid-analytic and k-analytic
categories with an arbitrary k (perhaps algebraically closed or, in the k-analytic case, with trivial absolute
value) using 2-dimensional compact Hausdorff strictly k-analytic spaces.

Let U be the strictly k′-analytic gluing of the closed unit ball M (k′〈t〉) to itself along the identity map on
the k′-affinoid subdomain {|t| = 1}. Let B1 and B2 be the two canonical copies of M (k′〈t〉) in U , so B1∩B2



NON-ARCHIMEDEAN ANALYTIFICATION OF ALGEBRAIC SPACES 27

is the affinoid space {|t| = 1} over k′ whose (diagonal) map into B1 × B2 is not finite (since this map of
strict affinoids over k′ has reduction over k̃′ that is not finite: it is the diagonal inclusion of Gm into A2ek′).
In particular, this map is not a closed immersion, so U is not separated. However, U is compact Hausdorff
since it is a topological gluing of compact Hausdorff spaces along a closed subset. Under the equivalence
of categories between compact Hausdorff strictly k′-analytic spaces and quasi-compact quasi-separated rigid
spaces over k′, U corresponds to the non-separated gluing U0 of two copies of B1

k′ = Sp(k′〈t〉) along the
admissible open Sp(k′〈t, 1/t〉) via the identity map. Now view this gluing in the k-analytic category. Let the
nontrivial element in G = Z/2Z act on U over k by swapping B1 and B2 and then acting via the nontrivial
element of Gal(k′/k) on each Bj . This is seen to be a free action by computing on geometric points. (The
action would not be free if we used only the swap.)

There is an analogous such action of G on the rigid space U0 over k. Let us check that non-existence of
U/G as a k-analytic space implies non-existence of U0/G as a rigid space. Assume that U0/G exists. Since
U0 is quasi-compact and quasi-separated, the natural map U0×G→ U0×U0 is quasi-compact. Thus, U0/G
is quasi-separated, so any set-theoretic union of finitely many affinoid opens in U0/G is a quasi-compact
admissible open subspace of U0/G. It follows that U0/G must be quasi-compact. In particular, U0/G
corresponds to a compact Hausdorff k-analytic space. Since the étale quotient map π : U0 → U0/G has
local fpqc quasi-sections and U0 × G ' U0 ×U0/G U0, by [C2, Thm. 4.2.7] the map π must be finite étale
(of degree 2). The map of k-analytic spaces U → U corresponding to π is therefore finite étale (of degree
2), G-invariant, and gives rise to a map U × G → U ×U U that is an isomorphism. Hence, U serves as a
quotient U/G in the category of k-analytic spaces. Once it is proved that U/G does not exist, it therefore
follows that U0/G does not exist.

To see that U/G does not exist as a k-analytic space, assume to the contrary that such a quotient does
exist. Let ξ ∈ B1 ∩B2 be the common Gauss point in the gluing U of the two unit disks Bj over k′, and let
ξ′ = π(ξ) ∈ U/G. Since U/G is a k-analytic space, there exist finitely many k-affinoid domains V ′1 , . . . , V

′
n

in U/G containing ξ′ with ∪V ′j a neighborhood of ξ′ in U/G. The preimage Vj = π−1(V ′j ) is a G-stable
k-affinoid in U containing ξ with ∪Vj a neighborhood of ξ in U .

Choose some j and let V = Vj . Since G physically fixes the point ξ ∈ U , the action of G on U induces
a G-action on the strictly k-affinoid germ (V, ξ). Let Ṽξ be the reduction of (V, ξ) in the sense of [T1]; this
is a birational space over the residue field k̃ (not to be confused with the theory of reduction of germs and
birational spaces over R×>0-graded fields as developed in [T2]). This reduction is a separated birational space
over k̃ since V is k-affinoid, and it inherits a canonical G-action from the one on (V, ξ). By separatedness
of the birational space, the G-action on this reduction is uniquely determined by its effect on the residue
field H̃ (ξ). But this latter residue field is identified with k̃′(t) compatibly with the natural action of
G = Gal(k′/k), so since k̃ = k̃′ (by hypothesis) we see that this G-action is trivial. Hence, G acts trivially
on Ṽξ. Letting Y ′ (resp. Y ′′) denote the k-analytic domain V ∩B1 (resp. V ∩B2) in U , (V, ξ) is covered by
(Y ′, ξ) and (Y ′′, ξ), so by [T1, 2.3(ii)] the reductions Ỹ ′ξ and Ỹ ′′ξ are an open cover of Ṽξ and are swapped
by the G-action. But we have seen that this G-action is trival, so we obtain the equality Ỹ ′ξ = Ṽξ. Thus,
by [T1, 2.4] it follows that (Y ′, ξ) = (V, ξ) as germs at ξ. Likewise, (Y ′′, ξ) = (V, ξ), so (Y ′ ∩ Y ′′, ξ) = (V, ξ).
Hence, for a sufficiently small open W ⊆ U around ξ we have V ∩W ⊆ Y ′ ∩ Y ′′ ⊆ B1 ∩B2. But V = Vj for
an arbitrary choice among the finitely many j’s, so for any sufficiently small open W around ξ in U we have
that W ∩ (∪Vj) ⊆ B1 ∩B2. We can take W so small that it is contained in the neighborhood ∪Vj of ξ in U ,
so W ⊆ B1 ∩ B2. Hence, B1 ∩ B2 is a neighborhood of ξ in U , so M (k′〈t, 1/t〉) is a (closed) neighborhood
of the Gauss point in M (k′〈t〉). This is a contradiction, since the closure in M (k′〈t〉) of the open residue
disc around any k′-point (such as the origin) contains the Gauss point. Thus, U/G does not exist.

Example 5.1.4. The preceding example can be adapted to the rigid-analytic and k-analytic categories to give
similar non-existence examples in the 2-dimensional case without restriction on k (e.g., k may be algebraically
closed or, in the k-analytic case, have trivial absolute value). Rather than work with a ramified quadratic
extension of the constant field, consider a finite étale degree-2 map of connected smooth affinoid strictly
k-analytic curves C ′ → C such that for some c ∈ C there is a unique point c′ ∈ C ′ over c and H (c′)/H (c)



28 BRIAN CONRAD AND MICHAEL TEMKIN

is a quadratic ramified extension. Such examples are easily constructed from algebraic curves (even if k
is algebraically closed or has trivial absolute value) by taking c to correspond to a suitable completion of
the function field of an algebraic curve. Let D = M (k〈t〉), and let U be the gluing of S1 = C ′ × D to
S2 = C ′ × D along C ′ × {|t| = 1} via the identity map. This is a compact Hausdorff k-analytic space of
dimension 2, and it is not separated. Let the nontrivial element in G = Z/2Z act on U by swapping S1 and
S2 and then applying the nontrivial automorphism of C ′ over C. This is a free action. As in the previous
example, if the analogous rigid space situation admits a quotient then so does the k-analytic situation, so
to show that no quotient exists in either case it suffices to prove that U/G does not exist as a k-analytic
space. Assume U/G exists. The natural map U → C is invariant by G, so it uniquely factors through a
map U/G→ C. The fiber Uc equipped with its G-action is an instance of Example 5.1.3 with k′/k replaced
with H (c′)/H (c). Moreover, the finite étale map Uc → (U/G)c clearly serves as a quotient Uc/G in the
category of H (c)-analytic spaces, contradicting that such a quotient does not exist (by Example 5.1.3).

5.2. Local existence criteria. We now turn to the task of proving Theorem 5.1.1. It has already been
shown that the closed immersion hypothesis on the action map α : U ×G→ U ×U forces U to be separated,
and conversely it is clear that if U is separated then for any finite group equipped with a free right action
on U the action map is a closed immersion. To keep the role of the separatedness conditions clear, we will
initially consider free right actions without any assumption on the action map, and assuming only that U
is Hausdorff rather than separated. For any point u ∈ U , with Gu ⊆ G its isotropy group, say that the
G-action on U is locally effective at u if there is a Gu-stable analytic domain Nu ⊆ U that is a neighborhood
of u such that Nu/Gu exists; obviously Gu acts freely on Nu.

Lemma 5.2.1. Assume that U is Hausdorff. The quotient U/G exists if and only if the G-action is locally
effective at all points of U . If the quotient Nu/Gu exists and is good for each u ∈ U and some Gu-stable
k-analytic domain Nu ⊆ U that is a neighborhood of u then U/G is also good. The same holds for the
property of being strictly k-analytic.

Proof. First assume that U/G exists. By Lemma 4.2.6, the étale surjective quotient map π : U → U/G must
be finite. It is clearly a right G-torsor, so for each u ∈ U/G the fiber π−1(u) = {u1, . . . , un} has transitive
G-action with π−1(u) =

∐
M (H (ui)) over M (H (u)) for a finite Galois extension H (ui) of H (u) with

Galois group Gui
⊆ G. The equivalence of categories of finite étale covers of the germ (U/G, u) and finite

étale covers of Spec(H (u)) [Ber2, 3.4.1] thereby provides a connected open V ⊆ U/G around u such that
π−1(V ) =

∐
Vi, with Vi the connected component through ui and Vi → V a finite étale Gui

-torsor. Hence,
Vi/Gui

exists and equals V . Varying u, this implies that G acts locally effectively on U .
Conversely, assume that the G-action is locally effective at every u ∈ U . Let Nu ⊆ U be a Gu-stable

analytic domain that is a neighborhood of u in U and for which Nu/Gu exists. The quotient map πu : Nu →
Nu/Gu is a finite étale Gu-torsor, so u is the only point over u = πu(u) and any Gu-stable open subset
Wu ⊆ Nu admits the open subset πu(Wu) ⊆ Nu/Gu as a quotient Wu/Gu. In particular, any open set
around u in Nu contains π−1

u (V ) for some open V ⊆ Nu/Gu around u. Since Nu is a neighborhood of u in
U , it follows that u has a base of Gu-stable open neighborhoods in U that admit a quotient by their Gu-
action. Since U is Hausdorff and G is finite, we can therefore shrink the choice of Nu so that g(Nu)∩Nu = ∅
for all g ∈ G with g 6∈ Gu. Hence, the pullback RNu of the analytic domain Nu × Nu ⊆ U × U along the
action map (that is a closed immersion) R = U × G ↪→ U × U is the action map Nu × Gu ↪→ Nu × Nu.
Let N0

u = intU (Nu), an open subset of U containing u. This is Gu-stable by functoriality of the topological
interior with respect to automorphisms, and the open overlap RN0

u
= R∩ (N0

u ×N0
u) inside of R = U ×G is

exactly N0
u ×Gu. Thus, the quotient N0

u/Gu serves as the quotient N0
u/RN0

u
. We can therefore use Lemma

4.2.3 to glue the N0
u/Gu’s to get a global quotient U/G (which is good when every Nu/Gu is good, and

likewise for strict k-analyticity, since N0
u/Gu is an open subspace of Nu/Gu for every u ∈ U). �

By Lemma 5.2.1, the global existence of U/G for a free right action of a finite group G on a Hausdorff
k-analytic space U is reduced to the local effectivity of the G-action (and keeping track of the properties
of goodness and strict k-analyticity for the local quotients by isotropy groups). We now use this to give a
criterion for the existence of U/G in terms of good analytic domains when U is Hausdorff.
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Lemma 5.2.2. With notation and hypotheses as above, G is locally effective at u ∈ U if and only if there
are finitely many k-affinoid domains V ⊆ U containing u such that the germs (V, u) ⊆ (U, u) cover (U, u)
and are Gu-stable as germs. It is equivalent to take the V ’s to merely be good analytic domains in U with
u ∈ V . In such cases, if U contains a strictly k-analytic (resp. good) open neighborhood of u then Nu/Gu
exists and is strictly k-analytic (resp. good) for some Gu-stable k-analytic domain Nu in U containing u
that we may take to be compact and as small as we please.

Note that Gu-stability of a germ (V, u) is a weaker condition than Gu-stability of the k-analytic domain
V in U .

Proof. First assume that G is locally effective at u, so Nu/Gu exists for some Gu-stable k-analytic domain
Nu ⊆ U that is a neighborhood of u in U . We can replace U and G with Nu and Gu so that G = Gu and
U/G exists. Let π : U → U/G be the quotient map and let u = π(u). Let V 1, . . . , V n be k-affinoid domains
in U/G containing u such that ∪V i is a neighborhood of u in U/G. Each Vi = π−1(V i) is a k-affinoid domain
(since π is finite), contains u, and is G-stable. The finite collection of germs (Vi, u) therefore satisfies the
required conditions.

Conversely, assume that there are good k-analytic domains V1, . . . , Vn in U containing u such that (Vi, u) ⊆
(U, u) is Gu-stable as a germ and such that these germs cover (U, u). We may and do shrink each good domain
Vi around u so that it is a separated (e.g., k-affinoid) domain. Thus, ∪Vi is a neighborhood of u in U and
gVi∩Vi is a neighborhood of u in both Vi and gVi for all g ∈ Gu. In particular, V ′i = ∩g∈GugVi is a Gu-stable
k-analytic domain with (V ′i , u) = (Vi, u) as domains in the germ (U, u). We may therefore assume that each
Vi is separated, good, and Gu-stable. Let Ui ⊆ Vi be a k-affinoid neighborhood of u in the good k-analytic
space Vi. The overlap U ′i = ∩g∈Gu

gUi is a k-affinoid neighborhood of u in Vi (hence in Ui) since Vi is
separated. But (Ui, u) = (Vi, u) is a Gu-stable germ domain in (U, u), so (U ′i , u) = (Vi, u) as well. Thus, we
can assume that each Vi = M (Ai) is k-affinoid and Gu-stable. As we noted immediately following Lemma
3.2.1, the proof of Lemma 3.2.1 carries over to the k-analytic case, so A Gu

i is a k-affinoid algebra over which
Ai is finite and admissible with M (A Gu

i ) as the quotient Vi/Gu for all i.
Let Nu = ∪Vi, a compact Gu-stable k-analytic domain in U that is a neighborhood of u. Observe that by

our initial shrinking of the Vi’s we can take Nu to be as small as we please. If U is strictly k-analytic then
it is clear that we could have taken each Vi to be strictly k-analytic, and every overlap Vi ∩ Vj = Vi ×U Vj
is then strictly k-analytic. If U is good then we could have shrunk U around u to be separated, so there is
a Gu-stable k-affinoid neighborhood V ⊆ U around u, and hence Nu = ∩g∈Gu

gV is a Gu-stable k-affinoid
neighborhood of u in U .

It suffices to prove that Nu/Gu exists (and that it is strictly k-analytic, resp. k-affinoid, when Nu is).
Thus, we can replace U and G with Nu and Gu. That is, we may assume that U is covered by G-stable
k-affinoid domains V1, . . . , Vn, and that Vi/G exists as a k-affinoid domain (even strictly k-analytic when Vi
is so). Our aim is to construct U/G in this case, with U/G strictly k-analytic when U and all Vi are strictly
k-analytic, and with U/G a (strictly) k-affinoid space when U is (strictly) k-affinoid. This latter (strictly)
k-affinoid case was already settled above. In general, since U is Hausdorff, each overlap Vij = Vi ∩ Vj is a
G-stable compact k-analytic domain in U . Moreover, if U and all Vi are strictly k-analytic then so is each
Vij . Applying Example 5.1.2 to the finite étale quotient maps πi : Vi → Vi/G and πj : Vj → Vj/G, πi(Vij)
and πj(Vij) are each identified as a quotient Vij/G and each is strictly k-analytic when U , Vi, and Vj are
strictly k-analytic. Thus, πi(Vij) and πj(Vij) = πj(Vji) are uniquely isomorphic (say via an isomorphism
φji : πi(Vij) ' πj(Vji)) in a manner that respects the maps from Vij onto each, and the analogous quotient
conclusions hold for the triple overlaps among the Vi’s.

It is easy to check (by chasing G-actions) that the triple overlap cocycle condition holds. Thus, we can
define a k-analytic space U that is covered by the k-analytic domains Vi/G with overlaps Vij/G (using the
φji’s), and this gluing U is strictly k-analytic when U and all Vi are strictly k-analytic. By computing on
geometric points we see that the maps Vi → Vi/Gi → U uniquely glue to a morphism π : U → U whose
pullback over each k-analytic domain Vi/G ⊆ U is the k-analytic domain Vi ⊆ U . Hence, π is finite étale
since each πi is finite étale, and π is G-invariant since every πi is G-invariant. The resulting natural map
U × G → U ×U U over U × U restricts to the natural map Vji × G → Vji ×Vji/G,φji◦πi

Vij over Vj × Vi



30 BRIAN CONRAD AND MICHAEL TEMKIN

for all i and j, and these latter maps are isomorphisms. Hence, π : U → U serves as a quotient U/G. By
construction, if U is strictly k-analytic then so is U . �

By Lemma 5.2.2 and Lemma 5.2.1, it remains to show that if U is separated then every germ (U, u) is
covered by finitely many Gu-stable good subdomain germs (V, u) ⊆ (U, u) with V ⊆ U a k-analytic domain.
In particular, the finer claims in Theorem 5.1.1 concerning inheritance of goodness and strict k-analyticity
of U/G are immediate corollaries of such an existence result in the general (separated) case. As above, we
postpone the separatedness hypothesis on U until we need it, assuming at the outset just that U is Hausdorff.
We fix u ∈ U , and by Lemma 5.2.1 we may rename Gu as G, so we can assume G = Gu. To construct the
required collection of subdomains around u we will use the theory of reduction of germs developed in [T2].

For ease of notation, we now write Uu rather than (U, u). We also write Ũu to denote the reduction of
this germ, so it is an object in the category birek of birational spaces over the R×>0-graded field k̃. We refer
the reader to [T2, §1–§3] for terminology related to graded fields and birational spaces over them, such as
the quasi-compact Zariski–Riemann space PL/` of graded valuation rings associated to an extension `→ L

of graded fields. Explicitly, k̃ = ⊕r>0k<r/k≤r, where k<r = {c ∈ k× | |c| < r} and k≤r is defined similarly.
The theory of reduction of germs provides a useful technique for studying the local structure of a k-analytic
space. For example, in [T2, 4.5] it is shown that Vu 7→ Ṽu is a bijection from the set of subdomains of Uu
to the set of quasi-compact open subspaces of the birational space Ũu, and by [T2, 4.1(ii)] this bijection is
compatible with inclusions and finite unions and intersections. Moreover, by [T2, 4.8(iii)] (resp. [T2, 5.1])
the germ Vu is separated (resp. good) if and only if the reduction Ṽu is a separated birational space (resp.
an affine birational space) over k̃.

At this point we assume that U is separated. To find a finite collection of G-stable good subdomains (Vj)u
in Uu that cover Uu, it is equivalent to cover the separated birational space Ũu over k̃ by G-stable affine open
subspaces. Note that any intersection of finitely many affine subspaces of Ũu is affine because separatedness
of Ũu allows us to identify Ũu with an open subspace of the birational space P eK/ek, where K = H (u) is the

completed residue field on U at u and K̃ = ⊕r>0K<r/K≤r is the associated R×>0-graded field. Choose a
point z ∈ Ũu and let Gz denote its G-orbit. If Gz is contained in an affine open subspace V ⊆ Ũu then the
intersection of all G-translates of V is a G-stable affine neighborhood of z. Thus, by quasi-compactness of
Ũu our problem reduces to proving the following statement.

Theorem 5.2.3. Let H be a commutative group and let k be an H-graded field and U a separated birational
space over k provided with an action of a finite group G. Any G-orbit S ⊆ U admits an affine open
neighborhood.

In the intended application of this theorem we have H = R×>0, so the group law on H will be denoted
multiplicatively below. By the separatedness hypothesis, we can identify U with an open subspace of a
Zariski–Riemann space of H-graded valuations PK/k, where K/k is an extension of H-graded fields. In
the classical situation when K/k is finitely generated and gradings are trivial (i.e., H = {1}) one can use
Chow’s lemma to prove the generalization of Theorem 5.2.3 in which there is no G-action and S ⊆ U is an
arbitrary finite subset of PK/k: (i) find a model Spec(K)→ X in Vark for U (see [T1, §1]), (ii) using Chow’s
lemma, replace X with a modification that is quasi-projective over k, and (iii) use that any finite set in a
quasi-projective k-scheme is contained in an open affine subscheme. Surprisingly, one has to be very careful
in the general graded case. For example, Theorem 5.2.3 without the G-action is false for an arbitrary finite
S.

5.3. Graded valuations on graded fields. To prove Theorem 5.2.3, we first need to generalize some
classical results to the graded case. Throughout this section, we assume all gradings are taken with respect
to a fixed commutative group H, and “graded” always means “H-graded”. We start with a certain portion
of Galois theory that is very similar to the theory of tamely ramified extensions of valued fields. Let K/L
be an extension of graded fields. Since K is a free L-module by [T2, 2.1], we can define the extension degree
n = [K : L] to be the L-rank of K; we say that K/L is a finite extension when the extension degree is finite.
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Two more invariants of the extension K/L are analogues of the residual degree and ramification index in
the classical theory, defined as follows. Writing ⊕h∈HKh and ⊕h∈HLh for the decompositions of K and L
into their graded components, the components K1 and L1 indexed by the identity of H are ordinary fields
and we define f = fK/L = [K1 : L1]. For any nonzero graded ring A we let A× denote the homogeneous
unit group of A (i.e., the ordinary units of A that are homogeneous with respect to the grading); note that
A1 ∩ A× is the unit group of the ring A1. We let ρ : A× → H denote the multiplicative map that sends
each homogeneous unit to its uniquely determined grading index, so ρ(A×) ⊆ H is a subgroup. Define
e = eK/L = #(ρ(K×)/ρ(L×)). The invariants n, e, and f of K/L may be infinite.

Lemma 5.3.1. The equality n = ef holds, where we use the conventions ∞· d =∞·∞ =∞ for any d ≥ 1.

Proof. Let B be a basis of K1 over L1 and T ⊆ K× be any set of representatives for the fibers of the
surjective homomorphism K× → ρ(K×) → ρ(K×)/ρ(L×). Since K is a graded field, in the decomposition
K = ⊕r∈ρ(K×)Kr the Kr’s are all 1-dimensional as K1-vector spaces. The same holds for L, so the products
bt for (b, t) ∈ B × T are pairwise distinct and the set of these products is a basis of K over L. The lemma
now follows. �

For any extension K/L of graded fields, the set of intermediate graded fields F satisfying eF/L = 1
is in natural bijection with the set of intermediate fields F1 in K1/L1 via the recipe F1 7→ F1 ⊗L1 L, so
F = K1 ⊗L1 L is such an intermediate graded field and it contains all others. It is clear that this particular
F is the unique intermediate graded field in K/L satisfying eF/L = 1 and fK/F = 1. For a fixed K the
graded subfields L ⊆ K such that fK/L = 1 are in natural bijection with subgroups of ρ(K×) via the recipe
L = ⊕r∈ρ(L×)Kr, and in such cases K/L is finite if and only if eK/L is finite. We say that an extension K/L
is totally ramified if it is a finite extension and fK/L = 1.

Let K be a graded field and G ⊆ Aut(K) a finite subgroup. The graded subring L = KG is obviously a
graded field, and L1 = KG

1 . The inertia subgroup I ⊆ G is the subgroup of elements that act trivially on K1,
so G/I ⊆ Aut(K1). An element σ ∈ I acts K1-linearly on the 1-dimensional K1-vector space Kr for each
r ∈ ρ(K×), so this action must be multiplication by an element ξσ,r ∈ K×1 that is obviously a root of unity.
In particular, I is always abelian, just like for tamely ramified extensions in classical valuation theory. By
a lemma of Artin, K1/L1 is a finite Galois extension with G/I ' Gal(K1/L1). In particular, [K1 : L1]|#G.
Here is an analogue of the lemma of Artin for K/L.

Lemma 5.3.2. Let K be a graded field and G ⊆ Aut(K) a finite subgroup. The degree of K over the graded
subfield L = KG is finite and equal to #G.

Proof. Let I be the inertia subgroup of G. The graded subfield F = KI has F1 = K1 (i.e., fK/F = 1),
so F is uniquely determined by its value group ρ(F×) ⊆ ρ(K×). Clearly ρ(F×) is the set of r’s such that
I acts trivially on Kr, and this is a subgroup V ⊆ ρ(K×). Since fK/F = 1, we have [K : F ] = eK/F =
#(ρ(K×)/V ). For any r ∈ ρ(K×) and σ ∈ I, the ratio σ(x)/x ∈ K×1 for nonzero x ∈ Kr is independent
of x and only depends on r mod V . Thus, we can denote this ratio ξσ,r for r = r mod V . The pairing
ξ : I × (ρ(K×)/V ) → K×1 defined by (σ, r) 7→ ξσ,r is biadditive and nondegenerate in each variable. In
particular, ρ(K×)/V is finite and ξ takes values in a finite subgroup of K×1 that is necessarily cyclic with
order that annihilates I and ρ(K×)/V . Thus, by duality for finite abelian groups we get #(ρ(K×)/V ) = #I,
so [K : F ] is finite and equal to #I. That is, the result holds with I in the role of G.

The group G′ = G/I naturally acts on F . Since FG
′

= L, it suffices to prove [F : L] = #G′. Viewing F
as a vector space over F1 = K1, its G′-action is semilinear. Artin’s lemma in the classical case gives us that
F1 is a finite Galois extension of L1 with Galois group G′. Hence, Galois descent for vector spaces provides
an identification F = F1 ⊗L1 L, so [F : L] = [F1 : L1] = #G′ (and eF/L = 1). �

We now study extensions of graded valuation rings. Let L be a graded field, and let R be a graded
valuation ring of L, meaning that R ⊆ L is a graded subring that is a graded valuation ring with L equal
to its graded fraction field. Let K/L be an extension of graded fields. For any graded valuation ring A
of K, A1 is a valuation ring of K1 and A ∩ L is a graded valuation ring of L whose inclusion into A is a
graded-local map. If A ∩ L = R then we say that A extends R (with respect to K/L). Note that in such
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cases, the valuation ring A1 of the field K1 extends the valuation ring R1 of the field L1, and R1 → A1 is a
local map (i.e., A×1 ∩ L1 = R×1 ).

Lemma 5.3.3. Let K/L be a finite extension of graded fields and fix a graded valuation ring R of L. The
correspondence A 7→ A1 is a bijection between the set of extensions of R to a graded valuation ring of K
and the set of extensions of R1 to a valuation ring of K1. Moreover, if R ⊆ R′ is an inclusion of graded
valuation rings of L, and A and A′ are graded valuation rings of K that respectively extend R and R′, then
A ⊆ A′ if and only if A1 ⊆ A′1.

Proof. The intermediate graded field F = K1⊗L1L satisfies eF/L = 1 and fK/F = 1, so it suffices to consider
separately the cases e = 1 and f = 1. First assume f = 1, so we have to show that R admits a unique
extension to K (and that inclusions among such extensions over an inclusion R ⊆ R′ in L can be detected
in K1). An extension of R to K exists without any hypotheses on the graded field extension K/L (by
Zorn’s Lemma), so the main issue is to prove uniqueness. Due to the grading, we just have to check that the
homogeneous elements in such an A ⊆ K are uniquely determined. Since L1 = K1, we have L = ⊕r∈ρ(L×)Kr

with ρ(L×) an index-e subgroup of ρ(K×). Hence, any homogeneous element a ∈ K is an eth root of a
homogeneous element of L. If a ∈ K× satisfies a 6∈ A then 1/a lies in the unique graded-maximal ideal of A,
so (1/a)e ∈ A ∩ L = R lies in the unique graded-maximal ideal of R (since R → A is a graded-local map).
Hence, ae 6∈ R in such cases, so we have the characterization that a homogeneous a ∈ K lies in A if and
only if ae ∈ R. This gives the desired uniqueness, and also shows that if R ⊆ R′ is a containment of graded
valuation rings of L then their unique respective extensions A,A′ ⊆ K satisfy A ⊆ A′; observe also that in
this case A1 = R1 and A′1 = R′1.

It remains to analyze the case e = 1, so K = K1 ⊗L1 L. In particular, Kr = K1 · Lr for all r ∈ ρ(K×) =
ρ(L×). We have to prove that for any extension A1 ⊆ K1 of R1 ⊆ L1, there exists a unique graded valuation
ring B ⊆ K that extends R and satsifies B1 = A1, and that if A′1 is an extension of R′1 where R′ := R′1 ∩ L
is a graded valuation ring of L containing R then the corresponding B′ in K satisfies B ⊆ B′ if and only
if A1 ⊆ A′1. As a preliminary step, we recall a fact from classical valuation theory: if k′/k is a degree-d
extension of fields and V ′ is a valuation ring of k′ then (x′)d! ∈ k · V ′× for all x′ ∈ k′. This follows from the
fact that all ramification indices are finite and bounded above by the field degree. In our initial situation,
we conclude that for N = f ! and any homogeneous element x ∈ Kr = K1 · Lr, we have

xN ∈ (K1 · Lr)N ⊆ KN
1 · LrN ⊆ (L1 ·A×1 ) · LrN = A×1 · LrN .

Given such a factorization xN = a1` with a1 ∈ A×1 and (necessarily) homogeneous ` ∈ L, the element ` is
uniquely determined up to a factor lying in L ∩ A×1 = R×1 . In particular, it is an intrinsic property of x
whether or not ` ∈ R, so if B exists then it is contained in the set A of x ∈ K each of whose homogeneous
components xh ∈ Kh lies in the subset

Ah := {y ∈ Kh | yN ∈ A×1 ·RhN }.

We will show that this set A is a graded valuation ring of K, so its homogeneous units are those homogeneous
x ∈ K× such that xN ∈ A×1 · R×, and moreover A ∩ L = R and A ∩ K1 = A1. Hence, this A works as
such a B, and any valuation ring B of K that extends R and satisfies B ∩K1 = A1 must have graded-local
inclusion into A, thereby forcing B = A. This would give the required uniqueness, and also implies the
desired criterion for containment of extensions (over a containment R ⊆ R′ in L) by checking in K1.

Since it is clear that Ah · Ah′ ⊆ Ahh′ for all h, h′ ∈ H, to show that A is a graded subring of K we just
need to prove that if x, y are two nonzero elements of Ah = A ∩Kh for some h ∈ H then x + y ∈ Ah. The
ratios x/y and y/x in K both lie in K1 and are inverse to each other, so at least one of them lies in the
valuation ring A1 of K1. Thus, by switching the roles of x and y if necessary we may assume x/y ∈ A1.
We then have (x+ y)/y = 1 + x/y ∈ A1, so ((x+ y)/y)N ∈ A×1 ·R1 by the classical valuation-theoretic fact
recalled above. Hence,

(x+ y)N =
(
x+ y

y

)N
· yN ∈ (A×1 ·R1) · (A×1 ·RhN ) = A×1 ·RhN ,
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so x + y ∈ A as desired. Finally, to show that A is a graded valuation ring of K it suffices to prove that
for any homogeneous nonzero t ∈ K either t or 1/t lies in A. We have tN = a1` with a1 ∈ A×1 and a
homogeneous nonzero ` ∈ L. But L is the graded fraction field of the graded valuation ring R, so ` ∈ R or
1/` ∈ R, and hence t ∈ A or 1/t ∈ A respectively. �

Corollary 5.3.4. Let K be a graded field, G ⊆ Aut(K) a finite subgroup, and R a graded valuation ring of
L = KG. Then

(i) G acts transitively on the non-empty set of extensions of R to K;
(ii) if R′ is a graded valuation ring of L containing R as a graded subring and A′ is an extension of R′ to

K, then there exists an extension A of R to K with A ⊆ A′ as graded subrings of K.

Proof. Let I ⊆ G be the inertia subgroup, so G/I = Gal(K1/L1). By classical valuation theory, G/I acts
transitively on the set of extensions of R1 to K1, so (i) follows from Lemma 5.3.3. For (ii), classical valuation
theory also gives us that R1 admits an extension A1 to K1 with A1 ⊆ A′1, so consider the corresponding A
extending R to K. To see A ⊆ A′ we can use the containment criterion in Lemma 5.3.3. �

Corollary 5.3.5. If K/k is an extension of graded fields, G ⊆ Autk(K) is a finite subgroup, and L = KG,
then

(i) G acts transitively on the fibers of the natural surjective map ψ : PK/k → PL/k;
(ii) if x ∈ PL/k is a point, S = ψ−1(x) is the fiber, and x is the set of generalizations of x in PL/k then

ψ−1(x) is the set of generalizations of the points of S.

Proof. The first part is Corollary 5.3.4(i). To prove the second part we note that a point y ∈ PL/k is a
generalization of x (i.e., is contained in every open neighborhood of x) if and only if its associated graded
valuation ring of L contains the one associated to x. Hence (ii) follows from Corollary 5.3.4(ii). �

Another classical notion whose graded analogue will be used in the proof of Theorem 5.2.3 is the con-
structible topology on a Zariski–Riemann space (also sometimes called the patching topology). Let K/k be
an extension of graded fields, and let PK/k be the associated Zariski–Riemann space. Consider subsets

PK/k{F}{G} = {O ∈ PK/k |F ⊆ O, G ∩ O = ∅} ⊆ PK/k

for F,G ⊆ K×. Such subsets with finite F and empty G form a basis of the usual topology on PK/k.
Since ∩iPK/k{Fi}{Gi} = PK/k{∪Fi}{∪Gi}, the subsets PK/k{F}{G} with finite F and G satisfy the
requirements to be a basis of open sets for a finer topology on PK/k called the constructible topology.

Lemma 5.3.6. For arbitrary F,G ⊆ K×, the subset X = PK/k{F}{G} ⊆ PK/k is compact and Hausdorff
with respect to the constructible topology on PK/k. In particular, with respect to the constructible topology
the space PK/k is compact Hausdorff and each such X is a closed subset.

Proof. Let SK be the set of all subsets of K×. Any graded valuation ring of K is uniquely determined by
its intersection with K×, so there is a natural injection i : PK/k → SK given by i(O) = O ∩K×. Consider
the bijection SK → {0, 1}K

×
that assigns to each Σ ∈ SK the characteristic function of Σ. The discrete

topology on {0, 1} thereby endows SK with a compact Hausdorff product topology, and a basis of open sets
for this topology is given by the sets

SK{F ′}{G′} = {Σ ∈ SK |F ′ ⊆ Σ, G′ ∩ Σ = ∅}

for finite subsets F ′, G′ ⊆ K×. The sets SK{F ′}{∅} and SK{∅}{G′} will be denoted SK{F ′} and SK{G′}
respectively. Clearly the subspace topology induced on PK/k via i is the constructible topology, so it suffices
to prove that i(X) is closed in SK . We will show that SK − i(X) is open in SK by covering it by members
of the above basis of open sets in SK .

Choose a point Σ ∈ SK . The condition that Σ 6∈ i(X) means that the subset Σ ⊆ K× cannot be expressed
as O∩K× for a graded valuation ring O of K containing k. The only possibility for such an O is the graded
additive subgroup OΣ ⊆ K generated by Σ. Thus, Σ 6∈ i(PK/k) if and only if either OΣ ∩ K× is strictly
larger than Σ or OΣ ∩K× = Σ but O fails to be a graded valuation ring of K containing k. If Σ ∈ i(PK/k)
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(i.e., OΣ is a graded valuation ring of K containing k with OΣ ∩K× = Σ) then the finer condition Σ 6∈ i(X)
says exactly that F 6⊆ OΣ or G ∩ OΣ 6= ∅. In other words, Σ 6∈ i(X) if and only if Σ satisfies at least one
of the following seven properties: (i) a+ b 6∈ Σ for some a, b ∈ Σ lying in the same graded component of K
with a+ b ∈ K× (i.e., with a+ b 6= 0), (i′) −a 6∈ Σ for some a ∈ Σ, (ii) a 6∈ Σ for some a ∈ k×, (iii) ab 6∈ Σ
for some a, b ∈ Σ, (iv) a 6∈ Σ and 1/a 6∈ Σ for some a ∈ K×, (v) f 6∈ Σ for some f ∈ F , (v′) g ∈ Σ for some
g ∈ G. Hence, it suffices to show that if Σ ⊆ K× is a subset satisfying one of these conditions then it has
an open neighborhood in SK satisfying the same condition. For each respective condition, use the following
neighborhood (with notation as above): (i) SK{a, b}{a+ b}, (i′) SK{a}{−a}, (ii) SK{a}, (iii) SK{a, b}{ab},
(iv) SK{a, 1/a}, (v) SK{f}, (v′) SK{g}. �

Proof. (of Theorem 5.2.3). By definition, the data of the separated birational space U consists of the
specification of a connected quasi-compact and quasi-separated topological space equipped with an open
embedding into PK = PK/k. Thus, although (by abuse of notation) we shall write U to denote the open
subspace, the action of G on U as a birational space really means an action α of G on both the open subspace
and on the graded field K over k such that the induced action on PK carries the open subspace back to itself
via α. That is, the action by G on PK arising from the G-action on K over k induces the original action of
G on U ⊆ PK . Let L = KG, so L/k is a graded field extension as well. By Corollary 5.3.5(i), S is a fiber
of the induced map ψ : PK → PL over a point x ∈ PL. Our problem is therefore to find a G-stable affine
open neighborhood of S in PK that is contained in U .

Let {Ui}i∈I be set of affine open neighborhoods of x, so {Vi = ψ−1(Ui)}i∈I is a family of G-stable affine
open neighborhoods of S. Clearly x := ∩i∈IUi is the set of all generalizations of x, and by Corollary 5.3.5(ii)
we see that S := ∩i∈IVi is the set of generalizations of points of S. In particular, S ⊆ U . Note that U is open
and (by Lemma 5.3.6) the Vi’s are closed in the constructible topology on PK , so U is an open neighborhood
of the intersection of closed subsets Vi in the compact Hausdorff space PK (provided with the constructible
topology). It follows that U contains the intersection of finitely many Vi’s, and that intersection is the
required G-stable affine open neighborhood of S. �
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