ERRATUM TO MODULAR CURVES AND RAMANUJAN'S CONTINUED FRACTION

BRYDEN CAIS AND BRIAN CONRAD

In [1, Lemma D.3], we made the following claim:

Lemma 1. Let a and k be integers with k > 0, and let p be a prime that divides k. Assume $p \nmid a$, and let ζ be a primitive kth root of unity in **C**. Define

$$c_k(m) = \sum_{\substack{h \in (\mathbf{Z}/k\mathbf{Z})^{\times} \\ h \equiv a \bmod p}} \zeta^{hm}$$

Then

$$c_k(m) = \begin{cases} (\mu(k/(m,k))\varphi(k))/((p-1)\varphi(k/(m,k))) & \text{if } \operatorname{ord}_p(k) \leq \operatorname{ord}_p(m), \\ 0 & \text{otherwise.} \end{cases}$$

This lemma is already false for k = p quite generally, and our error in the proof of the lemma occurs in the line beginning "Evidently..." (the formula given for (k, m + jk/p) in that line is wrong for $j \neq 0 \mod p$). A corrected version of the lemma, sufficient for our single application of Lemma D.3 in [1] is:

Lemma 2. With the notation of Lemma 1, we have

$$|c_k(m)| \le p \cdot (k, m).$$

Proof. Since $\zeta^{k/p}$ is a primitive *p*th root of unity, we may write

$$c_k(m) = \frac{1}{p} \sum_{\zeta_0^p = 1} \sum_{h \in (\mathbf{Z}/k\mathbf{Z})^{\times}} \zeta_0^{-(a-h)} \zeta^{mh}$$
$$= \frac{1}{p} \sum_{j \in \mathbf{Z}/p\mathbf{Z}} \zeta^{-kja/p} \sum_{h \in (\mathbf{Z}/k\mathbf{Z})^{\times}} \zeta^{(m+jk/p)h}$$

We can remove the a in the first exponent since $p \nmid a$. Now the standard evaluation

$$\sum_{h \in (\mathbf{Z}/k\mathbf{Z})^{\times}} \zeta^{\ell h} = \mu(k/(k,\ell)) \cdot \frac{\varphi(k)}{\varphi(k/(k,\ell))}$$

Key words and phrases. q-series, modular curve, Ramanujan continued fraction.

Date: January 20, 2008.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11F03; Secondary 14G35.

We would like to thank Bumkyu Cho, Nam Min Kim and Yoon Kyung Park for noticing the error in [1, Lemma D.3].

for $\ell \in \mathbf{Z}$, together with the bound

$$\varphi(ab) \le a\varphi(b)$$

for all positive integers a, b yields the estimate

T

$$\left|\sum_{h\in(\mathbf{Z}/k\mathbf{Z})^{\times}}\zeta^{(m+jk/p)h}\right| \leq \frac{\varphi(k)}{\varphi(k/(k,m+jk/p))} \leq (k,m+jk/p).$$

Obviously,

$$(k,m+jk/p) = (k,m+jk/p,pm) \le (k,pm) \le p \cdot (k,m);$$

the Lemma follows.

T

The only application of Lemma 1 in [1] is in the proof of Lemma 7.7, directly above and below (7.19), with p = 5. In the application we may absorb the additional factor of 5 into the *O*-constants, so Lemma 7.7 remains valid as stated.

References

 Cais, Bryden and Conrad, Brian. Modular curves and Ramanujan's continued fraction, J. Reine Angew. Math. 597 (2006), 27–104.

CENTRE DE RECHERCHES MATHÉMATIQUES, MONTRÉAL, QC H3C 3J7, CANADA *E-mail address*: bcais@math.mcgill.ca

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA E-mail address: bdconrad@umich.edu