ERRATUM TO MODULAR CURVES AND RAMANUJAN'S CONTINUED FRACTION

BRYDEN CAIS AND BRIAN CONRAD

In [1, Lemma D.3], we made the following claim:
Lemma 1. Let a and k be integers with $k>0$, and let p be a prime that divides k. Assume $p \nmid a$, and let ζ be a primitive k th root of unity in C. Define

$$
c_{k}(m)=\sum_{\substack{h \in(\mathbf{Z} / k \mathbf{Z})^{\times} \\ h \equiv a \bmod p}} \zeta^{h m} .
$$

Then

$$
c_{k}(m)= \begin{cases}(\mu(k /(m, k)) \varphi(k)) /((p-1) \varphi(k /(m, k))) & \text { if } \operatorname{ord}_{p}(k) \leq \operatorname{ord}_{p}(m) \\ 0 & \text { otherwise }\end{cases}
$$

This lemma is already false for $k=p$ quite generally, and our error in the proof of the lemma occurs in the line beginning "Evidently..." (the formula given for ($k, m+j k / p$) in that line is wrong for $j \not \equiv 0 \bmod p$). A corrected version of the lemma, sufficient for our single application of Lemma D. 3 in [1] is:

Lemma 2. With the notation of Lemma 1, we have

$$
\left|c_{k}(m)\right| \leq p \cdot(k, m)
$$

Proof. Since $\zeta^{k / p}$ is a primitive p th root of unity, we may write

$$
\begin{aligned}
c_{k}(m) & =\frac{1}{p} \sum_{\zeta_{0}^{p}=1} \sum_{h \in(\mathbf{Z} / k \mathbf{Z})^{\times}} \zeta_{0}^{-(a-h)} \zeta^{m h} \\
& =\frac{1}{p} \sum_{j \in \mathbf{Z} / p \mathbf{Z}} \zeta^{-k j a / p} \sum_{h \in(\mathbf{Z} / k \mathbf{Z})^{\times}} \zeta^{(m+j k / p) h} .
\end{aligned}
$$

We can remove the a in the first exponent since $p \nmid a$. Now the standard evaluation

$$
\sum_{h \in(\mathbf{Z} / k \mathbf{Z})^{\times}} \zeta^{\ell h}=\mu(k /(k, \ell)) \cdot \frac{\varphi(k)}{\varphi(k /(k, \ell))}
$$

Date: January 20, 2008.
1991 Mathematics Subject Classification. Primary 11F03; Secondary 14G35.
Key words and phrases. q-series, modular curve, Ramanujan continued fraction.
We would like to thank Bumkyu Cho, Nam Min Kim and Yoon Kyung Park for noticing the error in [1, Lemma D.3].
for $\ell \in \mathbf{Z}$, together with the bound

$$
\varphi(a b) \leq a \varphi(b)
$$

for all positive integers a, b yields the estimate

$$
\left|\sum_{h \in(\mathbf{Z} / k \mathbf{Z})^{\times}} \zeta^{(m+j k / p) h}\right| \leq \frac{\varphi(k)}{\varphi(k /(k, m+j k / p))} \leq(k, m+j k / p)
$$

Obviously,

$$
(k, m+j k / p)=(k, m+j k / p, p m) \leq(k, p m) \leq p \cdot(k, m) ;
$$

the Lemma follows.
The only application of Lemma 1 in [1] is in the proof of Lemma 7.7, directly above and below (7.19), with $p=5$. In the application we may absorb the additional factor of 5 into the O-constants, so Lemma 7.7 remains valid as stated.

References

[1] Cais, Bryden and Conrad, Brian. Modular curves and Ramanujan's continued fraction, J. Reine Angew. Math. 597 (2006), 27-104.

Centre de Recherches Mathématiques, Montréal, QC H3C 3J7, CANADA
E-mail address: bcais@math.mcgill.ca
Department of Mathematics, University of Michigan, Ann Arbor, Mi 48109, USA
E-mail address: bdconrad@umich.edu

