\textbf{Introduction}

We’d like to understand abelian schemes A over an arbitrary base S, or at least over rings of integers and localizations and completions thereof. That’s very difficult. As a first step, we consider its associated torsion group schemes. Let $G_v = \ker(A^p \to A)$; we’ll justify later that these are commutative finite flat groups schemes over S. They fit in an exact sequence

$$0 \to G_v^i \to G_{v+1}^i \to G_{v+1},$$

where $G_v^i \to G_{v+1}^i$ is the natural inclusion. Furthermore, the order of G_v, as a group scheme over S, is p^{2gv}, where g is the relative dimension of A over S. These are the characterizing properties of a p-divisible groups over S of height $2g$. This write up is devoted to some basic but important aspects of the structure theory of p-divisible groups. The most exciting thing discussed will be the relation between connected p-divisible groups and divisible formal Lie groups over R.

\textbf{Connection with Faltings’ Proof}

This section is very rough and intended for motivation only. Please take it with a grain of salt, since I don’t properly understand the contents myself. Large parts might even be wrong.

The main goals of our seminar are proving (for a number field K):

- \textit{Weak Tate Conjecture.} The map

\[
\{\text{Abelian varieties of dimension } g/K\} \xrightarrow{\mathcal{I}} \{\text{Galois representations } G_K \to GL_{2g}(\mathbb{Q}_p)\}
\]

has fibers consisting of isogeny classes.

- Isogeny classes are finite.

The key will be a careful analysis of Faltings height \hat{h}, namely that “Faltings height doesn’t change much under isogeny”. Though we haven’t defined Faltings height yet, it will be roughly $\text{volume}(A(K \otimes \mathbb{Q} \mathbb{C}))^{-1}$, where this volume is normalized by a basis of Neron differentials (an integral structure on the 1-forms of A). It will turn out that this height is controlled by discriminants of various p-divisible groups of A.

Consider an abelian varieties A/K of fixed dimension g with good reduction outside a fixed finite set Σ of places of K. By semi-stable reduction, there is a fixed finite field extension K'/K, depending only on g and Σ so that $A \otimes_K K'$ has semi-stable reduction at places of bad reduction (a theorem to be discussed in the winter).
The change in height under isogenies \(f : A \to A' \) between *semistable* abelian varieties is therefore the main focus. Assume \(A \) has good reduction at \(v \), an \(l \)-adic place of \(K \), and \(f \) is an \(l \)-isogeny. Raynaud’s computation of the Galois action on \(\det(\ker(f))/K' \) for \(l \)-torsion groups over \(l \)-adic integer rings gives an explicit expression for the change in Faltings height, when \(e(v) \leq l - 1 \). So while Raynaud’s calculation of the discriminant applies for large \(l \), relative to the absolute ramification of \(K'/\mathbb{Q} \), it won’t suffice for small \(l \), in particular for small \(l \) of bad reduction. Tate’s computation of the discriminant of constituents of a \(p \)-divisible groups over a complete, local, noetherian ring will be crucial to bypass this problem.

Definitions

A \(p \)-divisible group of height \(h \) over a scheme \(S \) is an inductive system \(G = (\{G_v\}, G_v \xrightarrow{i_v} G_{v+1})_{v \geq 1} \) of group schemes over \(S \) satisfying the following:

(i) \(G_v \) is a finite locally free commutative group scheme over \(S \) of order \(p^{hv} \).

(ii) \(0 \to G_v \xrightarrow{i_v} G_{v+1} \xrightarrow{p^v} G_{v+1} \) is an exact sequence of group schemes.

For ordinary abelian groups, these axioms imply that

\[
G_v \cong (\mathbb{Z}/p^v\mathbb{Z})^h \quad \text{and} \quad \varinjlim G_v = (\mathbb{Q}_p/\mathbb{Z}_p)^h.
\]

A homomorphism of \(p \)-divisible groups \(f : G = (G_v, i_v) \to H = (H_v, i'_v) \) is a system of homomorphisms of group schemes \(f_v : G_v \to H_v \) which are compatible with the structure maps:

\[
i'_vf_v = f_{v+1}i_v.
\]

Let \(i_{v,m} : G_v \to G_{m+v} \) denote the closed immersion \(i_{v+m-1} \circ \ldots \circ i_{v+1} \circ i_v \).

A diagram chase shows that \(G_{m+v} \xrightarrow{p^m} G_{m+v} \) can be factored uniquely through \(i_{v,m} \) via a map \(j_{m,v} : G_{m+v} \to G_v \) (so \(i_{m,v} \circ j_{m,v} = p^m \)) and furthermore that

\[
0 \to G_m \xrightarrow{i_{v,m}} G_{m+v} \xrightarrow{j_{m,v}} G_v \to 0
\]

is exact. But since orders are multiplicative in exact sequences, a consideration of orders shows that

\[
0 \to G_m \xrightarrow{i_{v,m}} G_{m+v} \xrightarrow{j_{m,v}} G_v \to 0
\]

is exact (i.e. the closed immersion \(\text{coker}(i_{v,m}) \to G_v \) is an isomorphism).

Here are some examples of \(p \)-divisible groups.

(a) The simplest \(p \)-divisible group over \(S \) of height \(h \) is the constant group:

\[
(\mathbb{Q}_p/\mathbb{Z}_p)^h = ((\mathbb{Z}/p^v)^h \xrightarrow{i_v} (\mathbb{Z}/p^{v+1})^h)
\]

with \(i_v \) the natural inclusion (using multiplication by \(p \)).

(b) The \(p \)-divisible group of the multiplicative group \(\mathbb{G}_m/S \) is

\[
\mathbb{G}_m(p) = (\mathbb{G}_m[p^v] \xrightarrow{i_v} \mathbb{G}_m[p^{v+1}])
\]

where \(\mathbb{G}_m[p^v] \) is the \(p^v \)-torsion subgroup scheme of \(\mathbb{G}_m \) and the \(i_v \) are the natural inclusions.

To be precise, the inclusions
\[\mathbb{G}_m[p^v](T) = \{ f \in \mathcal{O}(T) : f^{p^v} = 1 \} \rightarrow \{ f \in \mathcal{O}(T) : f^{p^{v+1}} = 1 \} = \mathbb{G}_m[p^{v+1}](T) \]

are functorial in \(S \)-schemes \(T \) and so defines a map \(i_v : \mathbb{G}_m[p^v] \rightarrow \mathbb{G}_m[p^{v+1}] \).

- Over an affine \(\text{Spec} R \subset S \), \(\mathbb{G}_m[p^v]/R \) is just \(\text{Spec} R/(x^{p^v} - 1) \), which is free over \(R \) of rank \(p^v \). Hence, \(\mathbb{G}_m[p^v] \) is finite flat over \(S \) of order \(p^v \).

\[
\ker(\mathbb{G}_m[p^{v+1}] \xrightarrow{p^v} \mathbb{G}_m[p^{v+1}]) (T) = \{ f \in \mathcal{O}(T) : f^{p^{v+1}} = 1 \text{ with } f^{p^v} = 1 \} = \text{image}\{\mathbb{G}_m[p^{v+1}](T) \xrightarrow{i_v(T)} \mathbb{G}_m[p^{v+1}]\}
\]

functorially in \(S \)-schemes \(T \). Thus, \(i_v \) is the kernel of \(\mathbb{G}_m[p^{v+1}] \xrightarrow{p^v} \mathbb{G}_m[p^{v+1}] \).

It follows that \(\mathbb{G}_m(p) \) is a \(p \)-divisible group of height 1 over \(S \).

(c) What follows is the most important example, alluded to in the introduction. Let \(A/S \) be an abelian scheme of relative dimension \(g \). That is, \(A \) is a proper, smooth group scheme over \(S \) whose geometric fibers are connected of dimension \(g \). The hypotheses imply that \(A \) has commutative multiplication.

Let \([n] : A \rightarrow A\) denote multiplication by \(n \in \mathbb{Z} - \{0\} \).

- For any geometric point \(s : \text{Spec} \Omega \rightarrow A \), the fiber \([n]_s : A_s \rightarrow A_s\) is a finite map. Thus, \([n]\) is quasifinite and proper, and thus is finite. In particular, \(A[n]/S \) is finite.

- The structure map \(A \rightarrow S \) is flat and for any geometric point \(s \), \([n]_s : A_s \rightarrow A_s \) is flat. Thus, by the fibral flatness theorem, \([n]\) is flat. In particular, \(A[n]/S \) is flat.

Thus, \(A[n]/S \) is a finite flat group scheme. It is also finitely presented since \(A/S \) is, and so it is locally free over \(S \).

Because all of its geometric fibers have order \(n^{2g} \), by theory for abelian varieties over an algebraically closed field, \(A[n]/S \) has order \(n^{2g} \).

Also, as explained for \(\mathbb{G}_m \), the natural inclusion \(i_v : A[p^v] \rightarrow A[p^{v+1}] \) is the kernel of \(A[p^{v+1}] \xrightarrow{p^v} A[p^{v+1}] \).

Thus, \(A(p) = (A[p^v], i_v) \) is a \(p \)-divisible group of height \(2g \) over \(S \).

Etale and Connected Groups

In topology, we know that for reasonable connected spaces \(S \) and a choice of base point \(\alpha \in S \), there is a functorial bijection between coverings of \(S \) and actions of \(\pi_1(S, \alpha) \) on finite sets realized through the deck transformation action on the fiber over \(\alpha \). Remarkably, the same correspondence often carries over algebraically.

Let \(S \) be connected and locally noetherian with geometric point \(\alpha : \text{Spec} \Omega \rightarrow S \). Let \(\text{Fet}/S \) denote the category of finite etale coverings of \(S \).

There is a functor...
\[D : \text{Fet}/S \rightarrow \text{Sets} \]
\[Y \mapsto Y(\alpha) \]

where \(Y(\alpha) \) denotes the set of geometric points of a finite etale covering \(Y \rightarrow S \) lying over \(\alpha \). This functor has an automorphism group \(\pi = \pi_1(S, \alpha) \), the fundamental group of \(S \) with basepoint \(\alpha \). It is naturally a profinite group.

Let \(\text{F} \pi \text{-Sets} \) denote the category of finite sets with a continuous action of \(\pi \). By construction, each \(Y(\alpha) \) carries an action of \(\pi \). Thus, we can view \(D \) as a functor

\[D : \text{Fet}/S \rightarrow \text{F} \pi \text{-Sets}. \]

\(D \) has two good properties: it commutes with products and disjoint unions. This is especially useful in light of

Theorem (Grothendieck). \(D : \text{Fet}/S \rightarrow \text{F} \pi \text{-Sets} \) is an equivalence of categories.

We can describe the inverse equivalence in certain cases of interest.

- If \(S = \text{Spec}(k) \) for a field \(k \), then a geometric point is an embedding \(\alpha : k \rightarrow \Omega \).
 \(Aut_k(\Omega) \) acts on \(Y(\alpha) = \text{Hom}_S(\text{Spec}\Omega, Y) \). This action gives a map \(Aut_k(\Omega) \rightarrow \pi \) which factors through \(\text{Gal}(k^s/k) \). The induced map \(\text{Gal}(k^s/k) \rightarrow \pi \) is an isomorphism. The reverse equivalence is given by

 \[X \mapsto \text{Spec}(\text{Maps}_\pi(X, k^s)). \]

- If \(S = \text{Spec} R \) is local henselian with closed point \(s \), then \(Y \mapsto Y_s \) is an equivalence of categories

 \[\text{FEt}/S \rightarrow \text{FEt}/s. \]

 Thus, we have the exact same description of the inverse equivalence in this case:

 \[X \mapsto \text{Spec}(\text{Maps}_\pi(X, R^{sh})). \]

 where \(R^{sh} \) is the strict henselization of \(R \) which is compatible with our choice of \(k^s/k \).

We can restrict this equivalence to the subcategory \(\text{FGet}/S \) of finite etale group schemes with maps of groups between them.

Let \(G/S \) be a group scheme with \(m, e, i \) denoting the multiplication, inversion, and identity morphisms respectively. \(G(\alpha) \) is a group whose underlying set carries an action of \(\pi \). But we say much more! \(G \times_S G \) is also finite etale over \(S \). Thus, \(\pi \) acts through the automorphism group of \(G(\alpha) \). We denote \(\text{F} \pi \text{-Gps} \) the category of finite groups with a continuous action of \(\pi \).

Also, if we let \(D' \) denote the inverse equivalence to \(D \), then \(H = D'(G(\alpha)) \) is a finite etale group scheme over \(S \). Indeed, because \(D \) commutes with products and is full, there is a morphism \(m \) lifting the multiplication of \(G(\alpha) \). Similarly, there are morphisms \(e \) and \(i \) lifting inversion and the identity. They satisfy the appropriate commutativity because \(D \) is faithful. It follows that by restricting \(D \) to \(\text{FGet}/S \) gives an equivalence of categories.
\[D : \text{FGet}/S \to \text{F}_\pi\text{-Gps}. \]

This equivalence gives us a fairly completely understanding of finite etale \(S \)-groups. As a toy example, we can use this equivalence to prove that the only connected etale group is trivial. Because \(D \) is an equivalence of categories which commutes with disjoint unions, connected finite etale \(S \)-schemes \(Y \) are exactly those for which \(\pi \) acts transitively on \(Y(\alpha) \). But as explained above, for \(G \) a finite etale group scheme, \(\pi \) acts on \(G(\alpha) \) as group automorphisms. In particular, it preserves the identity of \(G(\alpha) \). Thus, \(\pi \) permutes \(G(\alpha) \) transitively iff \(G(\alpha) \) is a singleton, which implies that \(G \) is trivial.

Now let \(S = \text{Spec} R \), where \(R \) is a Henselian local ring. That way, the connected component \(G^0 \) of the identity section lifts the identity component of the special fiber, so its formation commutes with products (and local henselian base change) and hence it is a finite flat group scheme over \(S \). For any finite flat group scheme \(G \), define \(G^\text{et} = G/G^0 \). Because its identity section is an open immersion, it is an etale group scheme. Further, if \(f : G \to H \) is any map with \(H \) etale, then \(G^0 \) factors through \(H^0 \), which is trivial by our above discussion. Thus, we have the exact sequence

\[0 \to G^0 \overset{i}{\to} G \overset{j}{\to} G^\text{et} \to 0. \]

with \(G^0 \overset{i}{\to} G, G \overset{j}{\to} G^\text{et} \) characterized by the following universal properties:

- If \(f : H \to G \) is any map from a connected finite flat group scheme over \(S \), then \(f \) factors uniquely through \(i \).
- If \(f : G \to H \) is any map to a finite etale group scheme over \(S \), then \(f \) factors uniquely through \(j \).

Thus, \(G \mapsto G^0, G \mapsto G^\text{et} \) are actually a functors on finite flat commutative \(S \)-group schemes. Over a field, we can prove that these functors are exact as follows.

Suppose \(0 \to K \overset{i}{\to} G \overset{j}{\to} H \to 0 \) is an exact sequence of finite flat commutative groups over \(R \). Then we have the following short exact triple of complexes:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & K^0 & \overset{i^0}{\longrightarrow} & G^0 & \overset{j^0}{\longrightarrow} & H^0 & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & K & \overset{i}{\longrightarrow} & G & \overset{j}{\longrightarrow} & H & \longrightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & K^\text{et} & \overset{i^\text{et}}{\longrightarrow} & G^\text{et} & \overset{j^\text{et}}{\longrightarrow} & H^\text{et} & \longrightarrow & 0 \\
\end{array}
\]

We readily check that \(i^0 \) is the kernel of \(j^0 \) and that \(j^\text{et} \) is the cokernel of \(i^\text{et} \).

Let \(\alpha \) be a closed geometric point of \(S \). Note that since \(K \overset{j}{\to} G \) is the functorial kernel of \(G \overset{j}{\to} H \), we have that \(0 \to K(\alpha) \to G(\alpha) \to H(\alpha) \) is exact. But \(A(\alpha) = A^\text{et}(\alpha) \) for any finite flat commutative group scheme \(A \). Thus, by the equivalence of categories, \(K^\text{et} \overset{i^\text{et}}{\to} G^\text{et} \) is the kernel of \(G^\text{et} \overset{j^\text{et}}{\to} H^\text{et} \) in the category of etale groups over \(S \). But any map from a finite group \(A \) to the etale group \(G^\text{et} \) which is killed by \(j^\text{et} \) must factor uniquely through \(A^\text{et} \) and so uniquely through \(K^\text{et} \). It follows that the bottom sequence is exact. By a comparison of orders, the top row must be left exact too.
In general, any left exact sequence $0 \to A \xrightarrow{i} B \xrightarrow{f} C$ is a left exact sequence of finite flat commutative group schemes over R with $\text{order}(B) = \text{order}(A)\text{order}(C)$ is exact. The induced map $\overline{f} : B/A \to C$ has kernel 0. Indeed, $B \xrightarrow{q} B/A$ is faithfully flat, so if $x \in \ker(f)(T)$, then \overline{x}, the base change of x via some faithfully flat $T' \to T$, has a preimage $y \in B(T')$. But then $y \in \ker(f)(T') = A(T')$, whence $\overline{x} = 0$ since the composition $A \xrightarrow{i} B \xrightarrow{q} B/A$ is zero. This implies that $x = 0$.

Hence, the homomorphism f is a closed immersion between two finite flat R-groups of the same order, and so is an isomorphism. Thus, $f = \overline{f} \circ q$ is faithfully flat.

In conclusion, we see that $G \mapsto G^0, G \mapsto G^{et}$ are exact functors.

Now let $G = (G_v, i_v)$ be a p-divisible group. By the exactness proved above, $G^0 := (G^0_v, i^0_v), G^{et} := (G^{et}_v, i^{et}_v)$ are p-divisible groups. The connected etale sequence at finite level

$$0 \to G^0_v \to G_v \to G^{et}_v \to 0$$

leads to the exact sequence of p-divisible groups

$$0 \to G^0 \to G \to G^{et} \to 0$$

For finite groups G over a perfect field k of characteristic p, the connected etale sequence

$$0 \to G^0 \to G \to G^{et} \to 0$$

is particularly nice. The map $G \to G^{et}$ admits a section. Indeed, over such k, G^{red} is etale over k. Thus, $G^{red} \times G^{red}$ is reduced, and so multiplication $G^{red} \times G^{red} \to G$ factors through G^{red}, whence G^{red} is a closed subgroup scheme of G. Since $G^{red}(\alpha) = G(\alpha) = G^{et}(\alpha)$ for a geometric point α, we conclude $G^{red} = G^{et}$. The closed immersion $G^{red} \to G$ is a section.

For finite groups over a general henselian local base, $G \to G^{et}$ does not admit a section. But this much is true:

Call a p-divisible group G ordinary if the finite level terms of G^0 are multiplicative, i.e. have etale Cartier duals.

Theorem. Let G be a p-divisible group over a perfect field k of characteristic p. Let R be any henselian local ring with residue field k. Then G admits a unique lift \overline{G} to R with split connected-etale sequence (necessarily lifting the connected-etale sequence of G).

This plays an important role in the deformation theory of abelian varieties.

Etale p-divisible groups

At this point, it seems worthwhile to mention that this equivalence of categories extends to etale p-divisible groups over a henselian local ring R with closed geometric point α.

Suppose we have an etale p-divisible group $G = (G_v, i_v)$ of height h over R. Each $G_v(\alpha)$ is isomorphic to $\mathbb{Z}/p^r\mathbb{Z}$. We can form the inverse limit over multiplication by p maps

$$G(\alpha) := \lim_{\leftarrow} G_v(\alpha).$$
The multiplication by \(p \) maps are compatible with the action of \(\pi_1(R, \alpha) \). Thus, \(G(\alpha) \) still carries a continuous action of \(\pi_1(R, \alpha) \). Furthermore, since \(G_\nu(\alpha) \cong (\mathbb{Z}/p^\nu\mathbb{Z})^h \), it follows that \(G(\alpha) \) is a free \(\mathbb{Z}_p \)-module of rank \(h \).

Furthermore, suppose \(M \) is a free \(\mathbb{Z}_p \)-module of rank \(h \) with a continuous action of \(\pi \). Then the quotient \(M/p^\nu M \) is a group of order \(p^\nu h \) with a continuous action of \(\pi \) on it. Thus, by the equivalence of categories, there is an etale group over \(R \), say \(G_\nu \), corresponding to it. The Galois compatible multiplication map \(M/p^\nu M \to M/pM \) is induced by \(G_\nu/p^\nu \to G_1 \), has kernel \(M/p^\nu M \to M/p^{\nu+1}M \). By the equivalence of categories, there is a corresponding map \(G_\nu \to G_{\nu+1} \). Thus, \(G = (G_\nu, i_\nu) \) is an etale \(p \)-divisible group.

As a consequence of the above, we conclude

Theorem. Let \(p\text{div}Et/R \) be the category of etale \(p \)-divisible groups of over \(R \), and let \(\text{Free-}\pi\text{ Mod}/\mathbb{Z}_p \) denote the category of free \(\mathbb{Z}_p \) modules with a continuous action of \(\pi \). The functor \(G \mapsto G(\alpha) \) is an equivalence of categories

\[
\text{pdivEt}/R \to \text{Free-}\pi\text{ Mod}/\mathbb{Z}_p(h).
\]

carrying height to \(\mathbb{Z}_p \) rank.

As usual, the most important instance of this is for abelian schemes.

- Let \(A/R \) be an abelian scheme. Then if \(l \neq p \), \(A(l) \) is an etale \(l \)-divisible group. The corresponding \(\mathbb{Z}_l \) module is none other than \(T_l(A) \) with action of \(\pi_1(R, \alpha) \).

Then enter Grothendieck, who proved an amazing result.

Theorem (Grothendieck). Let \(R \) be a henselian dvr with fraction field \(K \), and let \(l \) be a rational prime. An abelian variety \(A/K \) extends to an abelian scheme \(/R \) iff \(A(l) \) extends to an \(l \)-divisible group over \(R \).

This is proven through the theory of Neron models and the semi-stable reduction theorem. The deepest case is when \(l \) is the residue characteristic.

As an example of the power of this result, note that we can recover the classical Neron-Ogg-Shafarevic criterion.

Theorem. Let \(p \) be the residue characteristic of \(R \). Choose any \(l \neq p \) be a prime, \(A \) an abelian variety over \(K \). Then \(A \) has good reduction at \(l \) iff the Galois representation on \(T_l(A) \) is unramified at \(l \).

Proof. If \(A(l) \) admits a prolongation to \(R \), then it is etale since each \(A[l^n] \) has order a power of \(l \), which is prime to the residue characteristic. But by the equivalence of categories for etale \(l \)-divisible groups, \(A(l) \) admits a prolongation iff the action of \(\pi_1(K, \alpha) \) on the corresponding \(\mathbb{Z}_l \)-module, which is none other than \(T_l(A) \), factors through \(\pi_1(R, \alpha) \), i.e. iff the Galois action on \(T_l(A) \) is unramified. \(\square \)
Let R be a complete, noetherian, local ring with residue field k of characteristic $p > 0$. And let $A = R[[X_1,\ldots,X_n]]$ be the power series ring over R in n variables.

Definition. An n dimensional commutative formal Lie group Γ over R is a pair of maps $m : A \to \hat{A} \otimes_R A$ (the completed tensor product being given the max-adic topology), $e : A \to R$ such that m is coassociative and cocommutative with e as a counit. Concretely, e is given by $X_i \mapsto 0$ and m is given by a family $f(Y,Z) = (f_i(Y,Z))$ of n power series in $2n$ variables such that

1. $X = f(X,0) = f(0,X)$.
2. $f(X,f(Y,Z)) = f(f(X,Y),Z)$.
3. $f(X,Y) = f(Y,X)$.

There is a much more functorial interpretation of formal Lie groups over R which is convenient for many purposes. Namely, a formal group over R is a group object in the category of formal schemes over R and a formal Lie group over R is formally smooth formal group over R. In other words, a formal group is a “pro-representable” functor $F : \text{Profinite Artinian}/R \to \text{Gps}$, and a formal Lie group is one for which $F(B) \to F(B/I)$ is surjective for any finite artinian R-algebra B and any square zero ideal $I \subset B$. It’s a non-trivial fact that the latter condition implies that the pro-representing object is a power series ring over R.

Some interesting examples:

- Let G be an algebraic group over a field k with identity e. Let T be a finite artinian k-scheme. Call $x \in G(T)$ small if x is supported at e. The small T-points form a subgroup of $G(T)$ because $e \cdot e = e, e^{-1} = e$. Thus, restricting G to small points determines a functor

 $$\hat{G} : \text{Profinite Artinian}/k \to \text{Gps}.$$

 Also, any small point factors through an artinian quotient of $\text{Spec}(O_{G,e})$. Thus, \hat{G} is pro-represented by $\text{Spf}_k(\hat{O}_{G,e})$.

 In the case where G is smooth over k, one can see that $\hat{O}_{G,e}$ is a power series ring in $n = \dim G$-variables and so is formally smooth, i.e. \hat{G} is a formal Lie group.

- We show how to recover the formal group law, as originally defined, from the functor on small artinian points. Take $G = \mathbb{G}_m$, for concreteness. We simply take the canonical inclusion $i_n : \text{Spec}(O_{G,e}/m_e^n) \times_k \text{Spec}(O_{G,e}/m_e^n) \subset G \times_k G$, compose with the two projection maps, and multiply the two of them together using the functor \hat{G}.

 Knowing abstractly that the formal group multiplication is given by a power series, the result of the above computation of $\text{proj}_1 \circ i_n \ast \text{proj}_2 \circ i_n$, * denoting multiplication in $G(G \times_k G)$, tells us what the coefficients are up to order n. In the case of $\mathbb{G}_m = \text{Spec} k[Z, Z^{-1}]$, reparameterizing with $Z = 1 + T$, (so that $X \mapsto 0$ is the counit) we get

 $$f(X,Y) = X + Y + XY + \geq n\text{th powers}.$$

 Similarly, we can recover the inversion.
Back to the original set up, as in the first definition of formal Lie groups. Let $X * Y := f(X, Y) = X + Y + \text{higher powers}$.

Define $[p]_{\Gamma}(X) = X * \ldots * X$ (p times), the homomorphism corresponding to multiplication by p in Γ. We call Γ divisible if $[p]^*: A \to A$ is finite free.

Let $I = (X_1, \ldots, X_n)$ be the augmentation ideal of A. Consider $A_\psi = A/[p^\psi]_\Gamma(I)$. This is a finite flat R module. Thus, since A satisfies the Hopf algebra axioms “at finite level”, each $\Gamma_\psi = \text{Spec}(A_\psi)$ is a group scheme with multiplication induced by m.

We claim that any finite (locally) free map $\phi: A \to A$ has rank $= \text{rank}_R A/\phi(I)$.

- Indeed, let a_1, \ldots, a_n be a basis for A over itself via ϕ. We can even assume that $a_1 = 1$.

Let $\overline{a} = a_i \mod \phi(I)$.

- If we can find a relation,
 \[
 r_1 \overline{a_1} + \ldots + r_n \overline{a_n} = 0 \mod \phi(I)
 \]
 for some $r_i \in A$, then
 \[
 \phi(r_1) a_1 + \ldots + \phi(r_n) a_n = \phi(i) \implies \phi(r_1 - i) a_1 + \ldots + \phi(r_n) a_n = 0
 \]
 for some $i \in I$ (remember that ϕ is an R-algebra map). This implies that $r_1 = i \in I \cap R = \{0\}$, $r_2 = \ldots = r_n = 0$ because the a_i form a basis for A_ϕ. Thus, the \overline{a}_i are linearly independent over R.

- By assumption, we can express any $a \in A$ as
 \[
 a = \phi(b_i) a_1 + \ldots + \phi(b_n) a_n
 \]
 for some $b_i \in A$. Write each $b_* = r_* + i_*$ for $r_* \in R, i_* \in I$. Then
 \[
 \overline{a} = r_1 \overline{a_1} + \ldots + r_n \overline{a_n}.
 \]
 Thus, the \overline{a}_i also generate $A/\phi(I)$ as an R-module.

Our claim is thus true: ϕ has rank $= \text{rank}_R A/\phi(I)$.

In particular, since “free over itself of degree ψ” is multiplicative in ψ with respect to composition of maps,

\[
\text{rank}_R A/[p^\psi](I) = (\text{rank}_R A/[p](I))^\psi.
\]

But each $A_\psi = A/[p^\psi](I)$ is a local ring. Thus, each Γ_ψ is connected and so has order a power of p.

Let p^h be the order of Γ_ψ. Then by the above, Γ_ψ has order $p^{h\psi}$.

But Γ_ψ represents $\Gamma[p^\psi]$, the p^ψ-torsion functor of Γ. Thus, the canonical inclusion $i_\psi : \Gamma_\psi \to \Gamma_{p^{\psi+1}}$, realized through Yoneda via the functorial inclusion $\Gamma[p^\psi] \subset \Gamma[p^{\psi+1}]$ is the kernel of $\Gamma_{p^{\psi+1}}[p^\psi] \to \Gamma_{p^{\psi+1}}$.

Thus, $\Gamma(p) = (\Gamma_{p^\psi}, i_\psi)$ is a connected p-divisible group. Thought of in terms of the functor of small artinian points, it is clear that the association $\Gamma \mapsto \Gamma(p)$ is functorial. The following remarkable fact is true:
Theorem. Let R be a complete, local, noetherian ring with maximal ideal m and residue field $k = R/m$ of characteristic $p > 0$. Then $\Gamma \mapsto \Gamma(p)$ is an equivalence between the category of divisible commutative formal Lie groups and the category of connected p-divisible groups.

Proof. (Tate)

Step 1: Full Faithfulness
Let Γ be a divisible formal Lie group over R. Its coordinate ring $A = R[[X_1,...,X_n]]$ has maximal ideal $M = mA + I$, where $I = (X_1,...,X_n)$. As above, we let $[p] : A \rightarrow A$ correspond to multiplication by p in Γ.

First, note that the ideals $m^n A + [p^n](I)$ form a neighbourhood base of 0 in A:

- $A/(m^n A + [p^n](I)) = A_v/m^n A_v$ is artinian. Thus, each $m^n A + [p^n](I)$ is open.

- $[p](X_i) = pX_i +$ higher order. Thus, $[p](I) \subset pI + I^2 \subset (mA + I)I = MI$. So $[p^n](I) \subset M^n I$,

and these neighbourhoods are arbitrarily small.

Thus,

$$A = \lim A/[p^n](I)$$

and so the functor is fully faithful.

Step 2: Reduction to $R = k$

Let $G = (G_v = \text{Spec}(A_v), i_v)$ be our connected p-divisible group with base change $\overline{G} = (\overline{G_v} = \text{Spec}(\overline{A_v})), \overline{i_v}$ to k. Let $A = \lim A_v, \overline{A} = \lim \overline{A_v}$.

Choose an augmented topological isomorphism $\overline{A} \simeq k[[X_1,...,X_n]]$. Pick liftings $R[[X_1,...,X_n]] \rightarrow A_v$ of the quotient maps $k[[X_1,...,X_n]] \rightarrow \overline{A_v}$, and arrange these choices to be compatible with change in v. This can be arranged because $A_{v+1} \rightarrow A_v$ is a surjection between finite free R-modules.

By Nakayama’s Lemma, the mapping $R[[X_1,...,X_n]] \rightarrow A_v$ to a finite free R-module target is surjective, whence due to R-module splittings of the surjections $A_{v+1} \rightarrow A_v$ we get two conclusions:

(i) $\lim A_v$ is topologically isomorphic as an R-module to a product of countably many copies of R,

and (ii) the natural map $R[[X_1,...,X_n]] \xrightarrow{J} \lim A_v$ is surjective and splits in the sense of R-modules. By the construction of the countable product decomposition in (i) for the inverse limit as an R-module, it follows that the formation of the module splitting in (ii) is compatible with passage to the quotient modulo m. By the result assumed over the residue field, $\ker(f) \otimes_R k = 0$, i.e. $m\ker(f) = \ker(f)$. Since $R[[X_1,...,X_n]]$ is a noetherian, $\ker(f)$ is a finitely generated $R[[X_1,...,X_n]]$-module with $M\ker(f) = (mR[[X_1,...,X_n]] + I)\ker(f) = \ker(f)$. Thus by Nakayama, $\ker(f) = 0$.

Hence, our map of R-algebras

$$R[[X_1,...,X_n]] \rightarrow \lim A_v$$

is an isomorphism. This is even a topological isomorphism: its formation commutes with passage to quotients modulo any $m^N (N \geq 1)$, and for artinian R the ideals $a_v = \ker(R[[X_1,...,X_n]] \rightarrow A_v)$
are a system of open ideals (as each A_v has finite length), so a beautiful theorem of Chevalley [Matsumura, Exercise 8.7] (see hint in the back of the book!) gives the cofinality of the a_v's. This is the desired topological aspect for the isomorphism.

As a consequence of the topological nature of the isomorphism, artinian points can be “read off” from the inverse limit description, and so we get a functorial formal group law on $R[[X_1, ..., X_n]]$ (via the group laws on the G_v's), with the formation of this group law commuting with passage to the residue field. Hence, $[p]^*$ is finite flat (as this is assumed known after reduction over the residue field, and can be pulled up by m-adic completeness and the local flatness theorem). We likewise see that G_v is the p^n-torsion on our formal group law over R because this is true on the level of artinian points (by construction of the formal group law on the inverse limit).

Consequently, taking $v = 1$ shows that the finite flat map $[p]^*$ has degree p^h, completing the argument over R (granting the results over the residue field). Thus, it suffices to prove the result for p-divisible groups over k, which is characteristic p.

Step 3: Proof when $R = k$

The key is to use Frobenius F and Verschiebung V.

Consider the category of fppf sheaves of abelian groups over k, which contains finite groups and p-divisible groups as full subcategories. p-divisible groups can be characterized as those sheaves G for which $G(B)$ is p-power torsion for all k-algebras B, $[p]$ is surjective, and each $G(p^n)$ is representable by a finite commutative groups schemes over k.

The functor $G \mapsto G(p)$ makes sense for finite groups, but also for p-divisible groups. This is because:

- $*$\((p)\) is exact.
- It preserves the orders of objects represented by finite flat commutative group schemes objects.

In particular, for any p-divisible group G, $G(p) = (G(p), i_v(p))$ is a p-divisible group. We also get maps of p-divisible groups $F : G \to G(p)$ and $V : G(p) \to G$ defined by the usual Frob and Ver maps at finite level. These satisfy $VF = [p]G$, $FV = [p]G(p)$. Since $[p] : G \to G$ is a surjective map of fppf sheaves of abelian groups, if G has height h, then so does $G(p)$ and F and V are both surjective with finite kernel of order $\leq p^h$.

Let $H_v = \ker(G \xrightarrow{E_v} G(p)) = \text{Spec}(B_v)$. $H_v \subset G_v$ and $G_v \subset H_N$ for some large N, since any finite connected group is killed by a sufficiently high power of Frobenius. Thus,

$$A = \lim A_v = \lim B_v.$$

Let I_v be the maximal ideal of B_v. Then $I = \lim I_v$ is the maximal ideal of A.

Suppose that $x_1, ..., x_n$ are elements of I whose images form a k basis for I_1/I_1^2. These elements also form a k basis for I_v/I_v^2.

- Indeed, $H_1 \subset H_v$ is the kernel of F on H_v. Thus, $I_v \to I_1$ is a surjective k map with kernel $I_v(p)$, the ideal generated by pth powers of elements of I_v. Thus,

$$I_v/I_v^2 \cong I_v/(I_v(p) + I_v^2) \cong I_1/I_1^2.$$
Consider the maps

\[u_v : k[X_1, \ldots, X_n] \to B_v ; X_i \mapsto x_i. \]

By the above, these maps are surjective. The kernel contains \((X_1^{p^v}, \ldots, X_n^{p^v})\) because \(F^v \) kills \(H_v\).

Thus, the homomorphism

\[u_v : k[X_1, \ldots, X_n]/(X_1^{p^v}, \ldots, X_n^{p^v}) \to B_v \]

is surjective.

But we can actually compute the dimension of \(B_v\) as a \(k\)-vector space! Indeed, we claim that the sequences

\[0 \to H_1 \xrightarrow{i} H_{v+1} \xrightarrow{F} H_v^{(p)} \to 0. \]

are exact. That \(i\) is the kernel of \(H_{v+1} \xrightarrow{F} H_v^{(p)}\) is clear. Also, the identity \(FV = [p]_G^{(p)}\) implies that \(F : G \to G^{(p)}\) is surjective in the sense of fppf abelian sheaves (as this holds for \([p]\) on the \(p\)-divisible group \(G^{(p)}\), so \(H_{v+1} \xrightarrow{F} H_v^{(p)}\) is surjective in that sheaf sense by pullback. But we know that for finite commutative \(k\)-groups, a homomorphism is faithfully flat iff it is surjective in the sheaf sense. Thus, \(H_{v+1} \xrightarrow{F} H_v^{(p)}\) is faithfully flat and so the above sequence is exact, as claimed.

In particular, it follows that

\[\text{order}(H_v) = (\text{order}(H_1))^v. \]

But \(H_1\) is a finite group killed by \(F\) with an \(n\) dimensional Lie algebra. We digress to discuss its structure.

Lemma. Let \(H = \text{Spec}(R)\) be a finite commutative group scheme over \(k\) killed by \(F\) with \(n\) dimensional Lie algebra. Then as a scheme,

\[H = \text{Spec}(k[X_1, \ldots, X_n]/(X_1^{p^v}, \ldots, X_n^{p^v})). \]

Proof. (Mumford, p. 139) Choose \(x_1, \ldots, x_n \in m_e\) which generate the cotangent space \(m_e/m_e^2\). Then the map

\[k[X_1, \ldots, X_n]/(X_1^{p^v}, \ldots, X_n^{p^v}) \to R; X_i \mapsto x_i \]

is surjective.

On the other hand, because it is a group scheme, \(R = \Gamma(O_H)\) admits derivations \(D_i\) so that \(D_i(x_j) = 1 \mod m_e\) (the proof of the existence of “enough invariant differentials” for not necessarily smooth finite flat group schemes is given in [Neron Models, p.100]). Then expanding monomials \(X_1^{a_1} \ldots X_n^{a_n}, 0 \leq a_i < p\) by the Leibnitz rule, it is straightforward to see that there can be no lower order linear dependences over \(k\) (since \(\text{char}(k) = p\).)

The claim follows. \(\square\)

It follows that \(\text{order}(H_v) = p^{nv}\). On the other hand, \(k[X_1, \ldots, X_n]/(X_1^{p^v}, \ldots, X_n^{p^v})\) is \(p^{nv}\)-dimensional. Thus, \(u_v\) is an isomorphism. Passing to the limit, we get

\[k[[X_1, \ldots, X_n]] \to \overline{A} \]

is an isomorphism, as desired. \(\square\)
We interpret the Serre-Tate equivalence in more concrete terms for an abelian variety X/k, where k is a field of characteristic p. The formal Lie group corresponding to $X(p)^0$ is none other than the formal group of X/k!

- X/k is smooth. Thus, \hat{X}, the completion of X along the identity section is a power series ring over k.

Recall that we defined \hat{X} to be the restriction of the functor X to small artinian local k-algebras. $\hat{X}[p^v]$ is tautologically isomorphic to

$$T \mapsto X(T)[p^v] = X[p^v](T).$$

But any small artinian point lies of $X[p^v]$ automatically lies in $X[p^v]^0$ because it is supported at the identity. Thus, \hat{X} and $X[p^v]^0$ are canonically isomorphic. Since any small artinian point is p^v-torsion for some v, we get the functor isomorphism

$$\hat{X} = \lim_{\rightarrow} \hat{X}[p^v] \cong \lim_{\rightarrow} X[p^v]^0.$$

Hence, \hat{X} corresponds to $X(p)^0$ via the Serre-Tate equivalence.

Life is better with the Serre-Tate equivalence in hand.

We define the dimension of G to be the dimension of the divisible formal Lie group associated to G^0.

We digress to discuss a cool result. It’s a nice illustration of how to use the connected etale sequence.

Claim. If (R, m) is a local noetherian ring with residue characteristic $p > 0$, then the “special fiber” functor from p-divisible groups over R to p-divisible groups over the residue field is faithful.

The noetherian hypothesis is necessary here. Indeed, for the non-noetherian valuation ring $R = \mathbb{Z}_p[\zeta_p^\infty]$, there’s the map $\mathbb{Q}_p/\mathbb{Z}_p \to \mathbb{G}_m(p)$ given by $1/p^n \mapsto \zeta_p^n$ (for a p-power compatible system of choices of ζ_p^n’s), and this map is an isomorphism on generic fibers but vanishes on the special fiber.

Proof. (Brian)

Let G and H be p-divisible groups over R, and $f : G \to H$ a map whose special fiber $f_0 : G_0 \to H_0$ vanishes. We want to prove that $f = 0$.

We start off knowing that $f \otimes_R R/m = 0$. Suppose that for any artinian quotient A of R that whenever $I \subset A$ is an ideal with $mI = 0$ and that $f \otimes_R A/I = 0$ then $f \otimes_R A = 0$ (*). If we assume by induction that $f \otimes_R R/m^n = 0$, then applying (*) with $A = R/m^{n+1}, I = m^n \subset R/m^{n+1}, A/I = R/m^n$ shows that $f \otimes_R R/m^{n+1} = 0$. But $f_v : G_v = \text{Spec}(A) \to H_v = \text{Spec}(B)$ is the zero map precisely when the corresponding R-Hopf algebra map $B \xrightarrow{f_v^*} A$ factors through B/J, J the augmentation ideal of B. By assumption, $J \subset \ker(f_v^*) + m^n B$ for each n. By Krull’s intersection theorem, this implies that f_v^* factors through B/J, i.e. that $f_v = 0$.

Since now we only need to prove the inductive step (*), we can assume for an ideal I in R killed by m that $f \mod I$ vanishes. I will prove that $f \circ [p] = 0$, so then $f = 0$ (that this suffices uses
that \([p]\) is surjective, which is only true at the level of \(p\)-divisible groups, not for finite flat group schemes).

Functoriality of the connected-etale sequence leads us to first consider the etale and connected cases separately, and then we’ll be reduced to proving that there’s no nonzero map from an etale \(p\)-divisible group over \(R\) to a connected one (which is false without a noetherian condition, by the above example).

The case of etale \(G\) and \(H\) is trivial. Indeed, the equivalence of categories for etale \(p\)-divisible groups says that any map \(f : G \to H\) corresponds to a \(\pi_1(R, \alpha)\)-equivariant map \(\tilde{f}\) of free \(\mathbb{Z}_p\)-modules with a continuous linear actions. But \(\tilde{f}_0\) is the same underlying map of \(\mathbb{Z}_p\)-modules (the difference being the Galois action, given through the isomorphism \(\pi_1(k, \bar{\alpha}) \to \pi_1(R, \alpha)\)). So

\[f_0 = 0 \implies \tilde{f}_0 = 0 \implies \tilde{f} = 0 \implies f = 0.\]

For the connected case, we switch viewpoint to that of formal Lie groups, so \(f\) corresponds to a map of augmented \(R\)-algebras

\[f^* : R[[x_1, \ldots, x_n]] \to R[[y_1, \ldots, y_N]]\]

such that \(f^*(x_j)\) has all coefficients in \(I\) (since \(f \mod I = 0\)) with constant term 0. But then

\[(f \circ [p])^*(x_j) = [p]^*(f^*(x_j)) = [p]^*(\text{stuff with } I\text{-coefficients with constant term 0}),\]

yet every \([p]^*(x_i)\) has linear terms with coefficient \(p\). So, if we plug into it anything with \(I\)-coefficients (and no constant term!) then we get zero since \(pI = 0\) and \(I^2 = 0\) (as \(I\) is killed by the maximal ideal of \(R\)).

So, the map \(f : G \to H\) factors uniquely through \(G \xrightarrow{j_G} G^{et}\), the cokernel of \(G^0 \xrightarrow{i_G} \tilde{G}\), say through \(f' : G^{et} \to H\). Since \(j_H \circ f' = f^{et} \circ j_G = 0\), \(f'\) factors through \(i_H\), the kernel of \(j_H\). Say \(i_H \circ f'' = f'\).

It clearly suffices to prove that \(f'' = 0\). Thus, we are reduced to prove that \(f = 0\) if \(G\) is etale and \(H\) is connected, and can assume \(f \mod I = 0\).

By replacing the artin local \(R\) with a strict henselization, we can assume \(G\) is constant, and then that \(G = \mathbb{Q}_p/\mathbb{Z}_p\). Thus, \(f\) corresponds to a sequence of \(p\)-power compatible elements in the groups \(\ker(H_n(R) \to H_n(R/I))\). By viewing each coordinate ring \(O_{H_n}\) as a quotient of the formal power series ring \(O_H\), it is clear that the kernel of each map \(H_n(R) \to H_n(R/I)\) is killed by \([p]\).

Another fundamental quantity associated with finite group schemes \(H = \text{Spec}(B)\) is the discriminant: \(\text{disc}(H)\) is defined to be the ideal \(\text{disc}(B) \subset R\) of the finite free \(R\)-algebra \(B\).

Lemma. Let \(0 \to H' \to H \to H'' \to 0\) be an exact sequence of finite flat \(R\)-groups of respective orders \(m', m, m''\). Then

\[\text{disc}(H) = (\text{disc}(H'))^{m''} (\text{disc}(H''))^{m'}\]

Proof. See Rebecca’s notes. □

Our next immediate goal will be to prove the following theorem:
Theorem. Let $G = (G_v, i_v)$ be a p-divisible group of height h and dimension n over a complete local noetherian ring R with residue characteristic p. Then

$$\text{disc}(G_v) = (p^{np^h}).$$

Proof. The preceding lemma allows us to simplify our computation of the discriminant in two ways:

- From the definition of p-divisible groups, we have an exact sequence
 $$0 \rightarrow G_1^i \rightarrow G_{v+1}^j \rightarrow G_v \rightarrow 0.$$
 Thus, it suffices to compute the discriminant of G_1.

- If H is a finite etale group scheme, then $\text{disc}(H) = 1$. Thus, by the connected-etale sequence, our computation is reduced to the case of connected p-divisible groups.

So, if Γ is the divisible formal Lie group, with coordinate ring \mathcal{A}, associated to G, then $G_1 = \text{Spec}(\mathcal{A}/[p]^*(I))$. But by an earlier discussion, if $a_1, ..., a_n$ denotes a basis for \mathcal{A}, viewed as a module over itself via another copy \mathcal{A}' of itself through $[p]$, then $\overline{a_1}, ..., \overline{a_n}$ is an R-basis for $\mathcal{A}/[p](I)$. Since the discriminant is computed by the determinant of a matrix of traces, it is compatible with reduction. Thus, it will suffice to compute $\text{disc}_{\mathcal{A}'/\mathcal{A}}$.

Let Ω, Ω' be the modules of formal differentials of $\mathcal{A}, \mathcal{A}'$ respectively. They are R-linearly spanned by the dX_i, dX'_i respectively. The map $[p] : \mathcal{A}' \rightarrow \mathcal{A}$ induces $d[p] : \Omega' \rightarrow \Omega$. A choice of bases for \mathcal{A} (resp. \mathcal{A}') determines generators θ (resp. θ') of $\wedge^n \Omega$ (resp. $\wedge^n \Omega'$). Thus, $\wedge^n d\psi(\theta') = a\theta$ for some $a \in \mathcal{A}$.

In the appendix, we show that

$$\text{disc}_{\mathcal{A}/\mathcal{A}'} = N_{\mathcal{A}/\mathcal{A}'}(a).$$

Grant this fact for now. Choose a basis ω_i of “translation invariant differentials”. The existence of such a basis is proven in [Conrad, Leiblich, p. 73], which follows a similar line of reasoning to [Neron Models, p. 100]. For our purposes, it will suffice to note that any invariant differential ω satisfies the property that $d\mu(\omega) = \omega \oplus \omega$. Since $[p]$ corresponds to multiplication by p in Γ, $d[p](\omega'_i) = p\omega_i$.

Using this particular basis of differentials to determine θ, it follows that a, from above, equals p^n. Thus, from above, it follows that

$$\text{disc}_{\mathcal{A}/\mathcal{A}'} = N_{\mathcal{A}/\mathcal{A}'}(a) = (p^n)^{\text{rank}_{\mathcal{A}'A}} = (p^{np^n}).$$

\[\square\]
Duality for p-divisible Groups

As explained earlier, for any p-divisible group $G = (G_v, i_v)$ of height h over a commutative ring R, we have an exact sequence

$$0 \to G_1 \xrightarrow{i_{1,v}} G_{v+1} \xrightarrow{j_{1,v}} G_v \to 0.$$

Taking Cartier duals gives the dual exact sequence

$$0 \to G_1^\vee \xrightarrow{j_{1,v}^\vee} G_{v+1}^\vee \xrightarrow{i_{1,v}^\vee} G_1^\vee \to 0.$$

The maps $j_{1,v}^\vee$ are the kernels of $G_{v+1}^\vee \xrightarrow{F^\vee} G_{v+1}$. Also, since duality preserves the order of finite objects, we get that $G^\vee = (G_v^\vee, j_{1,v}^\vee)$ is a p-divisible group of the same height h. We have the following important theorem relating G and G^\vee.

Theorem. Let R be a complete, local, noetherian ring with residue field k of characteristic p. Let n, n^\vee denote the dimensions of G, G^\vee. Then

$$n + n^\vee = h.$$

Proof. The dimensions and heights of G, G^\vee are the same as the dimensions and heights of G_k, G_k^\vee. Thus, we are reduced to the case where R is a field of characteristic p.

In the abelian category of fppf abelian group sheaves over k, we have the following commutative diagram

$$
\begin{array}{cccccc}
0 & \rightarrow & \ker F & \rightarrow & G & \rightarrow & G^{(p)} & \rightarrow & 0 \\
\downarrow & & \downarrow p & & \downarrow v & & \\
0 & \rightarrow & 0 & \rightarrow & G & \rightarrow & G & \rightarrow & 0
\end{array}
$$

with exact rows. The snake lemma then yields the exact sequence

$$0 \rightarrow \ker F \rightarrow \ker p \rightarrow \ker V \rightarrow 0. \quad (*)$$

But we can compute the orders of each term in the exact sequence:

- $\ker p = G_1$ has order p^h.
- As explained in the proof of the Serre-Tate equivalence, $\ker F$ (called H_1 in that proof) has order p^n.
- By definition, V is the dual map to F. Thus, because duality is exact, the kernel of V is the dual of the cokernel of

$$F : G_1^\vee \rightarrow (G_1^{(p)})^\vee.$$

Since G_1^\vee and $(G_1^{(p)})^\vee$ have the same order, and since orders are multiplicative in exact sequences, the cokernel of F the above map has the same order as its kernel, namely p^h.

By multiplicativity or orders applied to $(*)$, it follows that $n + n^\vee = h$, as claimed. \qed
Here are some basic instances of this great result.

- \(\mathbb{G}_m(p) \) has height 1 and dimension 1. It’s dual is \(\mathbb{Q}_p/\mathbb{Z}_p \), which has height 1 and dimension 0.
- Consider an abelian scheme \(X \) of dimension \(g \) over \(R \). A couple well known facts over fields are, remarkably, true over any base whatsoever (Faltings-Chai):
 - The dual abelian scheme \(X'/R \) always exists.
 - Duality of abelian schemes is compatible with Cartier duality, i.e.

\[
X(p)^\vee = X'(p).
\]

Composing this natural isomorphism with the Cartier duality pairing

\[
X[p^n] \times X'[p^n] \xrightarrow{\sim} X[p^n] \times X[p^n]^\vee \to \mu_{p^n}.
\]

gives the usual Weil pairing.

Via a generalization of the fact proved earlier about abelian varieties, the formal Lie group corresponding to \(X(p)^0 \) under the Serre-Tate equivalence is \(\hat{X} \), the formal Lie group of \(X \).

In particular, it follows that \(X(p) \), \(X'(p) \) both have height \(2g \) and dimension \(g \).

The height of \(X(p)^0 \) thus assumes values between \(g \) to \(2g \). (It turns out that it can assume all of them.) For example, if \(X/R \) is an elliptic curve, then the height is 2 if the elliptic curve has supersingular reduction over the special fiber and 1 if it has ordinary reduction.

Appendix

Using the notation from our partial proof of Tate’s discriminant calculation, we want to prove that

\[
\text{disc}_{\mathcal{A}/\mathcal{A}'} = N_{\mathcal{A}/\mathcal{A}'}(a).
\]

The reference that Tate gives for this fact is inadequate. So during the Wiles Seminars for FLT, Brian devised a proof on his own. I include it here for completeness.

Suppose we have an \(\mathcal{A} \)-module isomorphism \(Tr : \mathcal{A} \cong \text{Hom}_{\mathcal{A}'}(\mathcal{A}, \mathcal{A}') \), so \(Tr_{\mathcal{A}/\mathcal{A}'}(x) = Tr(dx) \) for some \(d \in \mathcal{A} \) unique up to unit multiple (and independent of choice of \(Tr \) too).

We wish to compute \((d) \). If \(f_i(X_1, ..., X_n) = [p](X_i) \in R[[X_1, ..., X_n]], [p] \) gives an isomorphism of \(\mathcal{A}' \) algebras

\[
\mathcal{A} \cong \mathcal{A}'[[X_1, ..., X_n]]/(F_i),
\]

where \(F_i = f_i(X_1, ..., X_n) - X_i' \) and \(\partial F_i/\partial X_j = \partial f_i/\partial X_j \).

Claim 2.

- \((d) = (\det(\partial f_i/\partial X_j)). \)
- \(\text{disc}_{\mathcal{A}/\mathcal{A}'} = (N_{\mathcal{A}/\mathcal{A}'}(\det(\partial f_i/\partial X_j))). \)
If \(\theta \) denotes the \(\mathcal{A}' \)-module generator \(dX_1 \wedge \ldots \wedge dX_n \) of \(\Omega \) (resp. \(\theta' \) denotes the \(\mathcal{A}' \)-module generator \(dX'_1 \wedge \ldots \wedge dX'_n \) of \(\Omega' \)), then

\[
\wedge^n d[p] : \wedge^n \Omega' \to \wedge^n \Omega; \theta' \mapsto \det(\partial f_i/\partial X_j) \theta,
\]

so \((a) = (\det(\partial f_i/\partial X_j)).\)

By claim 2(i), it follows that

\[
\text{disc}_{\mathcal{A}/\mathcal{A}'} = (N_{\mathcal{A}/\mathcal{A}'}(a)) = ((p^{vn})p^{vh}) = (p^{vn}p^{vh})
\]

where the second last equality follows by choosing a basis of \(\Omega' \) consisting of invariant differentials to compute that \(a \) and \(p^{vn} \) differ by an \(\mathcal{A}' \)-multiple.

Claim 2(ii) falls into a more general framework.

Claim 2'. Let \(A \) be a ring, \(R \) an \(A \)-algebra which is finite an free as an \(R \)-module. Assume \(\text{Hom}_A(R, A) \cong R \) as \(R \)-mods, and let \(\text{Tr}_{R/A} \to \tau \in R \) under such an isomorphism (so \(\tau \) is well defined up to \(R^x \)). Then

\[
\text{disc}_{R/A} = (N_{R/A}(\tau)).
\]

Proof. Say \(R = \oplus_{i=1}^n A e_i \) with \(\pi_i \) the \(i \)th coordinate projection. By definition, \(\text{disc}_{R/A} \) is generated by \(\det(\text{Tr}_{R/A}(e_ie_j)) \). Let \(\text{Hom}_A(R, A) \cong R \) take \(f_0 \) to 1, and choose \(r_i \in R \) such that \(\pi_i \mapsto r_i \) so that \(\pi_i(x) = f_0(r_i x) \). Thus,

\[
N_{R/A}(\tau) = \det(\pi_j(\tau e_i)) = \det(f_0(r_j \tau e_i)) = \det(f_0(\tau(r_j e_i))) = \det(\text{Tr}_{R/A}(r_j e_i)).
\]

But \(\{r_i\} \) forms an \(A \)-basis of \(R \) because \(\{\pi_i\} \) forms an \(A \)-basis of \(\text{Hom}_A(R, A) \). Thus, \(r_j = \sum_l a_{jl} e_l \) for some \((a_{ij}) \in GL_n(A) \). Then

\[
(\text{Tr}_{R/A}(r_j e_i)) = \left(\sum_l a_{jl} \text{Tr}_{R/A}(e_l e_i) \right) = (a_{jl})(\text{Tr}_{R/A}(e_l e_i)).
\]

Therefore, \(N_{R/A}(\tau) = \text{unit} \cdot \det(\text{Tr}_{R/A}(e_i e_j)) \), as desired. \(\square \)

Finally, claim 2(i), and our original assumption that \(A \cong \text{Hom}_{\mathcal{A}'}(\mathcal{A}, \mathcal{A}') \), are special cases of the next result, where we first observe that \(\{F_i\} \) is a regular sequence in \(\mathcal{A}'[[X_1, \ldots, X_n]] \).

Claim 2'. Let \(\mathcal{O} \) be a complete local noetherian ring,

\[
\mathcal{O}' = \mathcal{O}[[T_1, \ldots, T_n]]/(f_1, \ldots, f_n)
\]

non-zero with \(\{f_i\} \) a regular sequence in \(\mathcal{O}[[T_1, \ldots, T_n]] \). Then one has an isomorphism

\[
\text{Hom}_\mathcal{O}(\mathcal{O}', \mathcal{O}) \cong \mathcal{O}'
\]
as \(\mathcal{O}' \)-modules where \(\text{Tr}_{\mathcal{O}'/\mathcal{O}} \mapsto \det(\partial f_i/\partial T_j) \).
Proof. For this, we use Tate’s results in appendix 3 to Mazzur-Roberts (see references). His theorem A.3 there (with $R = \mathcal{O}, A = \mathcal{O}[[T_1, ..., T_n]], f_i = f_i, C = \mathcal{O}'$) gives an explicit isomorphism $\text{Hom}_\mathcal{O}(\mathcal{O}', \mathcal{O})$ as \mathcal{O}'-modules with $Tr_{\mathcal{O}'/\mathcal{O}} \mapsto \beta(d)$ where

$$
\beta : \mathcal{O}'[[T_1, ..., T_n]] \mapsto \mathcal{O}', T_i \mapsto T_i
$$

and $f_i(T_1, ..., T_n) = \sum_j b_{ij}(T_j - \overline{T_j}), d = \det(b_{ij})$.

But $b_{ij} = \partial f_i / \partial T_j = \sum (T_i - \overline{T_i}) \cdot \text{stuff}$, so

$$
\beta(d) = \det(\partial f_i / \partial T_j)(\overline{T_1}, ..., \overline{T_n}) = \overline{\det(\partial f_i / \partial T_j)}.
$$

\[\square\]

References

- Conrad, B. *Shimura-Taniyama Formula.*
- Matsumura. *Commutative Ring Theory.*
- Mumford. *Abelian Varieties.*
- Tate. *p-divisible Groups.*