
Math 396. Construction of vector fields

1. Motivation

Let (X,O) be a Cp manifold with corners, p > 0. We have given a general definition of the
notion of Cp−1 vector field on an open set U in X, and in particular the notion of a global Cp−1

vector field: the case U = X. But the only “obvious” element of VecX(X) is 0. How do we know it
is any bigger? Locally where we have Cp coordinates it is obvious that there are lots of Cp−1 vector
fields. That is, for small open U ⊆ X we can use Cp coordinates to construct many elements of
VecX(U). But for “big” U not admitting a coordinate system, how can we build anything? In fact,
a similar question comes up even for the Cp-structure: how do we know O(X) is any bigger than
R (assuming X to be connected and non-empty, say)? Once again, for small U it is obvious that
O(U) is very big. But in the absence of coordinates it is not immediately obvious how to “write
down” Cp functions, and so in particular elements in O(X).

As an indication that something serious has to be done, we note that in the theory of complex-
analytic manifolds (properly defined) it is very common that O(X) = C and VecX(X) = {0} for
many interesting compact complex manifolds X. Thus, if we are to get rather different results
in the Cp case, clearly we have got to make use of something beyond definition-chasing with the
general formalism of manifolds, and that special device has to be something not available in the
complex-analytic case. The key device we are going to use are bump functions. As we learned in
our study of real-analytic functions, the concept of a bump function is alien to the real-analytic
world (due to uniqueness of analytic continuation).

In order to use bump functions effectively, we will need partitions of unity, and so for the first
time (we’re actually constructing global things, not just making definitions!) we have to impose
the condition that our spaces be topologically reasonable: at least Hausdorff, and more specifically
manifolds with corners (i.e., Hausdorff and second countable). For the remainder of this handout,
we assume X is Hausdorff and second-countable (so all compact subsets of X are closed). In
particular, as was shown in the handout on paracompactness, it is equivalent to say that X is
Hausdorff and paracompact with countably many connected components.
Remark 1.1. A basic lesson of this handout is that the ring of global functions and the module of
global vector fields on a Cp manifold are very “floppy” things.

2. Making many functions and vector fields

There is an important topological consequence of the Hausdorff and second countability assump-
tions on X that we shall use repeatedly without comment (and which was proved in the handout
on paracompactness): open covers of X have locally finite refinements. As is explained in pages
50–52 of the course text, this guarantees the existence of partitions of unity subordinate to any
open covering, and this is an absolutely fundamental device used in nearly all global constructions
in differential geometry. Let us record the main result (Corollary 16 on page 52):
Theorem 2.1. Let M be a Cp manifold with corners, 0 ≤ p ≤ ∞. Let U = {Uα} be an open
covering of M . There exists a Cp partition of unity subordinate to U: that is, a set {φi} of Cp

functions φi : M → [0, 1] such that:
(1) the supports Ki = supp(φi) are compact and form a locally finite collection in M (i.e., each

m ∈M admits an open neighborhood meeting only finitely many Ki’s),
(2)

∑
φi(m) = 1 for all m ∈M (by the first condition, this sum is locally finite – around each

m ∈ M there is an open on which all but finitely many φi’s vanish – and so there is no
subtle convergence issue for

∑
φi),
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(3) each Ki is contained in some Uα(i).

The course text asserts the theorem for smooth manifolds, but the proof only uses the para-
compactness and Hausdorff properties of the topological space and the existence of a good local
concept of “smooth function”; hence, the proof works verbatim in the Cp case on manifolds with
corners for any 0 ≤ p ≤ ∞ (check this, ignoring the second sentence in Theorem 13). Of course,
for the local steps of the proof it is perfectly fine to use smooth bump functions in local charts (as
they’re certainly Cp for any p). In fact, since we’ve proved some general properties of paracompact
spaces in an earlier handout, a few steps in the proof in the course text can be skipped.

As an easy application of partitions of unity, let’s construct lots of elements in O(X) for any
Cp manifold with corners (X,O). Let {Uα} be any open cover and fα ∈ O(Uα); for example, the
Uα’s could be domains of Cp-charts (on which there is a plentiful supply of fα’s). Let {φi} be a Cp

partition of unity subordinary to this cover, with the compact Ki = supp(φi) contained in Uα(i).
Using Lemma 2 on page 33, and reviewing how {φi} is constructed from a locally finite refinement
of {Uα}, it is not difficult to see how to carry out the construction (with the help of some cutoff
functions) so that many φi’s are equal 1 on rather “large” subsets of coordinate balls. That is, we
can arrange that many φi’s are equal to 1 on a substantial part of Ki (so all other φi′ vanish there).

Consider the product φifα(i) ∈ O(Uα(i)). This vanishes off of the compact Ki, so it vanishes
on the open subset Uα(i) −Ki of Uα(i). Intuitively, φifα(i) vanishes near the “edge” of Uα(i) in X.
Hence, φifα(i) ∈ O(Uα) and 0 ∈ O(X −Ki) are Cp functions on open sets Uα(i) and X −Ki that
cover X, so they unique “glue” to a Cp function Fi ∈ O(X); this is called the “extension by zero”
(it is only reasonable because φifα(i) vanishes near the “edge” of Uα(i) in X).

By construction, since locally on X all but finitely many φi’s vanish, it follows that locally on
X all but finitely many Fi’s vanish. Hence, the summation F =

∑
Fi is locally a finite sum and

thus is a perfectly straightforward sum presenting no delicate convergence problems whatsoever.
In particular, F ∈ O(X) (as this condition is local on X!). Note that for those i’s such that φi = 1
on a large subset K ′i ⊆ Ki, we have that Fi|K′i = fα(i)|K′i and Fj |K′i = 0 for all j 6= i (as φj |K′i = 0
since all φr ≥ 0 with

∑
φr = 1 but φi|K′i = 1). Hence, F |K′i = fα(i)|K′i . To summarize, we have

constructed F ∈ O(X) such that on “large” subsets K ′i of the open Uα(i) the function F is equal
to a prescribed function fα(i). In this way, we see that there is an astoundingly large collection of
elements of O(X) and that such elements may be built with prescribed restrictions on big closed
subsets of many open coordinate domains with disjoint closures. This puts to rest any question of
O(X) being “small”.

How about VecX(X) for p ≥ 1? In fact, the exact same method works, since VecX(U) is a module
over O ′(U) compatible with restriction on the open set U ⊆ X, where O ′ is the “underlying Cp−1-
structure”. We pick opens {Uα} covering X with ~vα ∈ VecX(Uα). We let {φi} be a Cp−1 partition
of unity subordinary to the covering by the Uα’s (or a Cp partition of unity, if you prefer), and we
consider the Cp−1 vector field ~Vi ∈ VecX(X) given by “extension of zero” of the Cp−1 vector field
φi~vα(i) ∈ VecX(Uα(i)) that vanishes away from the compact Ki (why?). As in the case of functions,
we form the locally finite sum ~V =

∑ ~Vi ∈ VecX(X) and we note that this gives rise to a vast
collection of elements of VecX(X) (with ~V |K′i = ~vα(i)|K′i if φi|K′i = 1). Thus, VecX(X) is very big.

3. Global definition

As a further application of the technique of bump functions, for smooth manifolds with corners
we link up the definition of global vector fields from the course text and the definition used in
class; our definition is promotes local thinking and works in the real-analytic and complex-analytic
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cases (whereas the definition of the course text and virtually all introductory books on differential
geometry is the wrong concept in such cases).

Let (M,O) be a smooth manifold with corners. For any open set U ⊆M , O(U) is the R-algebra
of smooth functions on U . Let DerR(O(U)) be the set of R-linear derivations

D : O(U)→ O(U)

of the R-algebra O(U). That is, D is an R-linear map satisfying the Leibnitz rule: D(fg) =
fD(g) + gD(f) in O(U). The fundamental distinction between this and the notion of R-linear
derivation of O|U as discussed in class is that the latter concept was a collection D = {DU ′}U ′⊆U
of R-linear derivations DU ′ of O(U ′) for every open U ′ ⊆ U with a compatibility condition on the
DU ′ ’s via restriction maps for inclusions among open subsets of U . In contrast, the notion we have
just introduced is the data of a single R-linear derivation D on O(U) and we do not give ourselves
any additional data of DU ′ ’s on O(U ′)’s for all open U ′ ⊆ U .

Note that DerR(O(U)) is an O(U)-module in an obvious way: for D1, D2 ∈ DerR(O(U)) we
define (D1 + D2)(f) = D1(f) + D2(f) (this is an R-linear derivation of O(U); check!), and for
h ∈ O(U) and D ∈ DerR(O(U)) we define hD : f 7→ h ·D(f) (again, check that this really is an
R-linear derivation of O(U)). Of course, one should check that these definitions really do satisfy
the axioms for DerR(O(U)) to be an O(U)-module, but this is straightforward definition-chasing
and so is left to the reader.

If we are given ~v ∈ VecM (U), then we have seen how to make

D~v = {D~v,U ′}U ′⊆U ∈ DerM (O|U ),

so in particular we get D~v
def= D~v,U ∈ DerR(O(U)). Explicitly, for all f ∈ O(U) the smooth function

D~v(f) ∈ O(U) has value ~v(u)(fu) ∈ R at u ∈ U (with fu the germ of f in Ou); the function D~v(f)
is usually just denoted ~v(f) ∈ O(U), as in our course text and virtually all works in differential
geometry. The mapping

VecM (U)→ DerR(O(U))
defined by ~v 7→ D~v is trivially checked to be an O(U)-linear map. That is, for ~v1, ~v2 ∈ VecM (U)
and h1, h2 ∈ O(U),

Dh1~v1+h2~v2
= h1D~v1

+ h2D~v2
;

this amounts to comparing what happens when each side is applied to an arbitrary f ∈ O(U), and
it is a simple calculation left to the reader.

The entire preceding discussion could have been carried out without knowing anything about
whether or not VecM (U) or O(U) are “big”. It is interesting to note that in the setting of complex-
analytic manifolds, there are many examples where VecM (M) nonzero (and even quite large) but
O(M) = C (so DerC(O(M)) = 0). This does not contradict the fact that in the complex-analytic
case one has VecM (U) ' DerM (O|U ), as an element D = {DU ′}U ′⊆U may well be nonzero even
if DU = 0! The purpose of mentioning the complex-analytic case here (even though we have
not discussed it in any rigorous manner) is to emphasize that one cannot expect to determine by
“general nonsense” definition-chasing alone whether or not the O(U)-linear map we have built from
VecM (U) to DerR(O(U)) is an isomorphism. We have got to use something specific to the setting of
Cp manifolds if we are to verify an isomorphism result in this direction; we will use bump functions
Here is the result:
Theorem 3.1. Let M be a smooth manifold with corners. For any open set U ⊆ M , the natural
O(U)-linear map

VecM (U)→ DerR(O(U))
is an isomorphism.
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Incredibly, the right side of the isomorphism in this theorem is usually taken as the definition
of the left side! The conclusion of the theorem is in fact a very convenient device in the study of
smooth manifolds. The proof only uses local bump functions, not partitions of unity, so the proof
works if M is merely Hausdorff and not assumed to be second countable (or paracompact).

Proof. We may and do rename U as M (thereby cutting down on the amount of notation). We
have to prove two things: if ~v ∈ VecM (M) satisfies D~v = 0 then ~v = 0 (this gives injectivity), and
if D : O(M) → O(M) is an R-linear derivation then D = D~v for some ~v ∈ VecM (M) (this gives
surjectivity).

For injectivity, suppose that for all f ∈ O(M) we have D~v(f) = 0; that is, the point derivation
~v(m) : Om → R kills the u-germ of f for all f ∈ O(M). We wish to conclude ~v(m) = 0 for all
m ∈M . By Lemma 3.2 in the handout on “globalization via bump functions”, the natural map of
R-algebras O(M) → Om sending each f ∈ O(M) to its m-germ [(M,f)]m is surjective. Thus, it
follows trivially that ~v(m) vanishes for all m ∈M , which is to say ~v = 0. This gives injectivity.

We now choose an R-linear derivativeD : O(M)→ O(M) and we seek to construct ~v ∈ VecM (M)
such that D~v = D. Let us first pick m ∈ M , and define ~v(m) ∈ Tm(M). Since M is smooth, to
give a tangent vector at m is to give an R-linear mapping Om → R satisfying the “Leibnitz Rule
at m”. Observe that the R-linear mapping

D|m : O(M)→ R

defined by D|m(f) = (Df)(m) is R-linear in f and satisfies the Leibnitz at m (simply evaluate at m
for the identity D(fg) = fD(g)+gD(f)). As was shown in §3 in the handout on “globalization via
bump functions”, such a mapping D|m uniquely has the form ~v(m) ◦ πm where πm : O(M)→ Om

is the natural R-algebra surjection sending any f to its germ at m and ~v(m) : Om → R is a
point-derivation at m (i.e., an element in Tm(M), as M is smooth).

Consider the set-theoretic vector field ~vD on M whose value at each m ∈ M is ~v(m) as just
defined; that is, (Df)(m) = ~vD(m)(fm) with fm ∈ Om the germ of f at m. We shall prove that ~vD
is a smooth vector field on M , and that it recovers D. For any f ∈ O(M) we have

(~vDf)(m) def= ~vD(m)(fm) = (Df)(m),

so the set-theoretic function ~vD(f) : M → R agrees with Df ∈ O(M). Hence, once ~vD is proved
to be a smooth vector field it must satisfy the requirements to solve our problem.

Let ({x1, . . . , xn}, U) be a smooth coordinate chart on M , so ~vD|U =
∑
aj∂xj as set-theoretic

vector fields on U . It must be proved that aj : U → R is a smooth function. This problem is
local on U , so pick u0 ∈ U and let φ ∈ O(M) be a global smooth function that is supported in
some compact subset K ⊆ U and equal to 1 near u0. (Again, see Lemma 2 on page 33 for the
construction of such bump functions.) In particular, each φxj ∈ O(U) is supported in the compact
K ⊆ U and thus extends by zero to a smooth function x̃j on M . We claim that each ai near u0 is
equal to D(x̃i) ∈ O(M), whence we get the desired smoothness of each ai near the arbitrary point
u0 ∈ U (thereby settling the proof). By the definition of ~vD, for u ∈ intM (K) and xi,u ∈ Ou the
germ associated to xi, this germ is also induced by x̃i ∈ O(M) (as φ = 1 near u) and so

ai(u) =
∑

aj(u)(∂xj |u)(xi,u) = ~vD(u)(xi,u) = D(x̃i)(u).

This shows ai and D(x̃i) agree on the open set intM (K) around u0 in U , as desired. �


