MATH 396. TENSOR EXAMPLES

1. Let V = R? be a vector space over R. Suppose S: V — V and T: V — V are linear maps

represented by the matrices
1 2 16 8
S_<3 4>’T_<4 —7)'

Compute the 4 by 4 matrix for S®T with respect to the ordered basis e; ® e, e1 Res, eaRe1, 2R eq
of R? ® R? (with e; = (1,0), ez = (0,1)).
Solution.

The computation is not mysterious in any way. It is done using the standard method to find the
matrix of a linear map written with respect to an ordered basis. Recall that the tensor product of
the linear maps S and T is the unique linear map characterized by the property (S® T)(v® w) =
S(v) ® T(w) for elementary tensors v ® w € V ® V. Hence, we compute

(S@T)(e1®er) = S(en) ®T(er)
(lep + 3e2) ® (16e1 + 4ea)
= 16(e1 ®e1) +4(e1 ®e2) +48(e2 ® e1) 4 12(e2 ® e2)

and
(S®T)(e1®er) = S(e1)®@T(e2)
= (le; + 3e2) ® (8e; — Teg)
= 8(61 & 61) — 7(61 ® 62) + 24(62 & 61) — 21(62 & 62).
Similarly,
(S X T)(eg & 61) = 32(61 &® 61) + 8(61 X 62) + 64(62 X 61) + 16(62 & 62)
and

(S &® T)(eg & 62) = 16(61 X 61) — 14(61 & 62) + 32(62 & 61) — 28(62 (%9 62).
Thus, relative to the ordered basis {e; ® e1,e1 ® e2,e2 ® e1,e3 ® ea} of R? ® R?, the matrix for
S ®T is given by
16 8 32 16
4 -7 8 -—-14
48 24 64 32
12 —-21 16 —-28

Note that if we view this matrix in the form
A A
A9 A
then A;; is given by a;;T, where a;; is the element in the ith row and jth column of the matrix S.

2. Let {v;} be a basis of a finite-dimensional vector space V over a field F. Prove that z =
Y cijvi ®@vj € V ®V is an elementary tensor if and only if ¢y = ¢ijrcyj for all 4,7, 5, 5.
Solution.

If z =v®v with v =>¢uv; and v = Zc;vj then = Zcic;-vi ® vé-, SO ¢ij = cicg and hence
the proposed necessary identities do hold.

Now, we prove the converse. Suppose that the coefficients of x satisfy c;jcy;y = ¢;jcyr; for all
i,i',7,7'. To show x = v ® v’ for some v,v" € V we may certainly assume z # 0. Thus, we can
scale x by F* and assume ¢;,;, = 1 for some ig,jo. Consider v = > ¢;v; and v o= Zc;-vj with
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Ciy = c;b = 1 and all other coefficients unknown. The condition z = v ® v’ says Cij = cic; (to see
this, just “multiply out”) for all ¢ and j. In particular, we must have

/ P . / _— . . . —_ . / _ ..
C¢j = CiyCj = Cigj and ¢; = CiCjy = Cijo
for all 7 and j. This does give c;- , = 1 and ¢;, = 1 because
Cjy = Cigjo = 1 and ¢;, = ¢jpj, = 1.

It must be proved that these values actually satisfy c;; = cic;- for all ¢ and j, which is to say
Cij = CijyCioj- But this is now clear because

/ — .. . . — .. . . — ..
CiCj = CijoCigj = CijCigjo = Cig-

3. Let V7, ..., V, be finite-dimensional vector spaces over a field, with n > 2.

(i) By considering multilinear pairings V} x - -+ x V,, — W to varying vector spaces W, adapt the
method for n = 2 to prove the existence and uniqueness (up to unique isomorphism) of a universal
such pairing

Vix - xV,—=Vi® -V,

(denoted (v1,--- ,vp) = v1 ® - @vy) If {e14,-++ ,eq;;} is a basis of V; with d; = dim Vj, prove
that the [[d; elements €;, 1 ® --- ® €;, n are a basis of V] @ --- ® V},. (Treat the case when some
V; = 0 separately.) In the special case V; = --- =V, =V, this is denoted V™.

(#) For linear maps T} : V; — W;, define and uniquely characterize (via elementary tensors) a
linear map

and discuss its behavior with respect to composites with linear maps W; — U;. Also describe its
matrix in terms of bases as in (¢) and the corresponding matrices of the T}’s. In the special case
V=V and W; = W and T; = T for all i, the map is denoted T®" : V& — W&,
Solutions.

(i) The proof of uniqueness up to unique isomorphism for such a universal object is exactly the
same as in the case n = 2, replacing the word “bilinear” with “multilinear” everywhere. Recall the
usual diagram:

Vix--xV,
w w

¢ Y

w

where the pairs (W, m) and (W,7m) both have the universal property of the tensor product of
Vi,...,V,. By the universal property, there exists a linear map ¢: W — W uniquely satisfying
¢ om = m because m is multilinear and m is "universal”. In a similar manner, we get the linear
map 1: W — W uniquely satisfying 1) o7 = m. Note that both (Yop)om =m and idy om = m.
So by uniqueness, idy = 1o ¢. Using the same idea, ¢ o) = idy,. Hence we see that the structure
we seek is uniquely determined up to unique isomorphism.

As for the existence aspect, we choose bases {e;;}1<i<a; for 1 < j < n, and we note that (as with
bilinear pairings) a multilinear map

pVix.--xV,—-W
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is both determined by the values (e, 1,...,€i,n) € W and may be defined by such values arbi-
trarily assigned (since for any w;, . ;, € W with 1 <i; < d; the formula

p(O> i€, Y Giein) = ai jwiy i, €W
i1 in

is a multilinear pairing of the V;’s into W with p(e; 1,...,€i,n) = Wi, 4,). We define T' to be
the Euclidean space F° with S given as the finite set

S=A{1,...;d1} x---x{1,...,d,}.

For I = (i1,...,in) € S, let e € F¥ be the assumed “standard basis” vector. The multilinear
pairing Vi x --- x V,, — T given by

n
(Z A1 €3y 15+ Eaineimn) — Z H aijJ ey
i1 in I j=1
is universal; the proof of universality (including the uniqueness aspect) is identical to the case
n = 2 in view of the mechanism we have outlined above for both uniquely characterizing as well as
defining all possible multilinear pu’s.

If we write (v1,...,v,) — v1 ® -+ - ® vy, to denote the universal multilinear pairing into 7', then
with the model as constructed above we have e = €;,1 ® --- ® ¢;, ,. Hence, the basis assertion
follows. (Of course, as in the case n = 2 we can prove this basis assertion without reverting to the
construction process, instead arguing by “pure thought” in terms of the universal property alone.)

(i) The map T: Vi x -+ x V,, = W1 ®--- ®@ W, given by

(U1, yvn) = T1(01) @ -+ - @ Ty (vp)
is clearly multilinear in the v;’s (as the T}’s are linear), so by the universal property of the tensor

product of the V;’s we get the desired linear map T'=T; ® - - - ® T;, that is uniquely characterized
by the condition v; @ -+ @ vy, = T1(v1) ® + - @ Tp (vy):

Ne @V —=Wi® @ W,

If T; : W; — Uj are linear maps, then
(T1®@ - QT)o(T1® - @T,) =(T1oTh) @ ® (I, 0 Ty)

as linear maps from Vi ®---®V,, to U1 ®- - -®U,, as can be checked by working with the elementary
n-fold tensors (by the universal property, or because they span the space) as for n = 2.



