1. Let $V=\mathbf{R}^{2}$ be a vector space over \mathbf{R}. Suppose $S: V \rightarrow V$ and $T: V \rightarrow V$ are linear maps represented by the matrices

$$
S=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad T=\left(\begin{array}{cc}
16 & 8 \\
4 & -7
\end{array}\right)
$$

Compute the 4 by 4 matrix for $S \otimes T$ with respect to the ordered basis $e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}$ of $\mathbf{R}^{2} \otimes \mathbf{R}^{2}$ (with $e_{1}=(1,0), e_{2}=(0,1)$).

Solution.

The computation is not mysterious in any way. It is done using the standard method to find the matrix of a linear map written with respect to an ordered basis. Recall that the tensor product of the linear maps S and T is the unique linear map characterized by the property $(S \otimes T)(v \otimes w)=$ $S(v) \otimes T(w)$ for elementary tensors $v \otimes w \in V \otimes V$. Hence, we compute

$$
\begin{aligned}
(S \otimes T)\left(e_{1} \otimes e_{1}\right) & =S\left(e_{1}\right) \otimes T\left(e_{1}\right) \\
& =\left(1 e_{1}+3 e_{2}\right) \otimes\left(16 e_{1}+4 e_{2}\right) \\
& =16\left(e_{1} \otimes e_{1}\right)+4\left(e_{1} \otimes e_{2}\right)+48\left(e_{2} \otimes e_{1}\right)+12\left(e_{2} \otimes e_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(S \otimes T)\left(e_{1} \otimes e_{2}\right) & =S\left(e_{1}\right) \otimes T\left(e_{2}\right) \\
& =\left(1 e_{1}+3 e_{2}\right) \otimes\left(8 e_{1}-7 e_{2}\right) \\
& =8\left(e_{1} \otimes e_{1}\right)-7\left(e_{1} \otimes e_{2}\right)+24\left(e_{2} \otimes e_{1}\right)-21\left(e_{2} \otimes e_{2}\right) .
\end{aligned}
$$

Similarly,

$$
(S \otimes T)\left(e_{2} \otimes e_{1}\right)=32\left(e_{1} \otimes e_{1}\right)+8\left(e_{1} \otimes e_{2}\right)+64\left(e_{2} \otimes e_{1}\right)+16\left(e_{2} \otimes e_{2}\right)
$$

and

$$
(S \otimes T)\left(e_{2} \otimes e_{2}\right)=16\left(e_{1} \otimes e_{1}\right)-14\left(e_{1} \otimes e_{2}\right)+32\left(e_{2} \otimes e_{1}\right)-28\left(e_{2} \otimes e_{2}\right)
$$

Thus, relative to the ordered basis $\left\{e_{1} \otimes e_{1}, e_{1} \otimes e_{2}, e_{2} \otimes e_{1}, e_{2} \otimes e_{2}\right\}$ of $\mathbf{R}^{2} \otimes \mathbf{R}^{2}$, the matrix for $S \otimes T$ is given by

$$
\left(\begin{array}{cccc}
16 & 8 & 32 & 16 \\
4 & -7 & 8 & -14 \\
48 & 24 & 64 & 32 \\
12 & -21 & 16 & -28
\end{array}\right)
$$

Note that if we view this matrix in the form

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

then $A_{i j}$ is given by $a_{i j} T$, where $a_{i j}$ is the element in the i th row and j th column of the matrix S. 2. Let $\left\{v_{i}\right\}$ be a basis of a finite-dimensional vector space V over a field F. Prove that $x=$ $\sum c_{i j} v_{i} \otimes v_{j} \in V \otimes V$ is an elementary tensor if and only if $c_{i j} c_{i^{\prime} j^{\prime}}=c_{i j^{\prime}} c_{i^{\prime} j}$ for all $i, i^{\prime}, j, j^{\prime}$.

Solution.

If $x=v \otimes v^{\prime}$ with $v=\sum c_{i} v_{i}$ and $v^{\prime}=\sum c_{j}^{\prime} v_{j}$ then $x=\sum c_{i} c_{j}^{\prime} v_{i} \otimes v_{j}^{\prime}$, so $c_{i j}=c_{i} c_{j}^{\prime}$ and hence the proposed necessary identities do hold.

Now, we prove the converse. Suppose that the coefficients of x satisfy $c_{i j} c_{i^{\prime} j^{\prime}}=c_{i j^{\prime}} c_{i^{\prime} j}$ for all $i, i^{\prime}, j, j^{\prime}$. To show $x=v \otimes v^{\prime}$ for some $v, v^{\prime} \in V$ we may certainly assume $x \neq 0$. Thus, we can scale x by F^{\times}and assume $c_{i_{0} j_{0}}=1$ for some i_{0}, j_{0}. Consider $v=\sum c_{i} v_{i}$ and $v^{\prime}=\sum c_{j}^{\prime} v_{j}$ with
$c_{i_{0}}=c_{j_{0}}^{\prime}=1$ and all other coefficients unknown. The condition $x=v \otimes v^{\prime}$ says $c_{i j}=c_{i} c_{j}^{\prime}$ (to see this, just "multiply out") for all i and j. In particular, we must have

$$
c_{j}^{\prime}=c_{i_{0}} c_{j}^{\prime}=c_{i_{0} j} \text { and } c_{i}=c_{i} c_{j_{0}}^{\prime}=c_{i j_{0}}
$$

for all i and j. This does give $c_{j_{0}}^{\prime}=1$ and $c_{i_{0}}=1$ because

$$
c_{j_{0}}^{\prime}=c_{i_{0} j_{0}}=1 \text { and } c_{i_{0}}=c_{i_{0} j_{0}}=1 .
$$

It must be proved that these values actually satisfy $c_{i j}=c_{i} c_{j}^{\prime}$ for all i and j, which is to say $c_{i j}=c_{i j_{0}} c_{i_{0} j}$. But this is now clear because

$$
c_{i} c_{j}^{\prime}=c_{i j_{0}} c_{i 0} j=c_{i j} c_{i_{0} j_{0}}=c_{i j} .
$$

3. Let V_{1}, \ldots, V_{n} be finite-dimensional vector spaces over a field, with $n \geq 2$.
(i) By considering multilinear pairings $V_{1} \times \cdots \times V_{n} \rightarrow W$ to varying vector spaces W, adapt the method for $n=2$ to prove the existence and uniqueness (up to unique isomorphism) of a universal such pairing

$$
V_{1} \times \cdots \times V_{n} \rightarrow V_{1} \otimes \cdots \otimes V_{n}
$$

(denoted $\left.\left(v_{1}, \cdots, v_{n}\right) \mapsto v_{1} \otimes \cdots \otimes v_{n}\right)$ If $\left\{e_{1, j}, \cdots, e_{d_{j}, j}\right\}$ is a basis of V_{j} with $d_{j}=\operatorname{dim} V_{j}$, prove that the $\prod d_{i}$ elements $e_{i_{1}, 1} \otimes \cdots \otimes e_{i_{n}, n}$ are a basis of $V_{1} \otimes \cdots \otimes V_{n}$. (Treat the case when some $V_{j}=0$ separately.) In the special case $V_{1}=\cdots=V_{n}=V$, this is denoted $V^{\otimes n}$.
(ii) For linear maps $T_{j}: V_{j} \rightarrow W_{j}$, define and uniquely characterize (via elementary tensors) a linear map

$$
T_{1} \otimes \cdots \otimes T_{n}: V_{1} \otimes \cdots \otimes V_{n} \rightarrow W_{1} \otimes \cdots \otimes W_{n}
$$

and discuss its behavior with respect to composites with linear maps $W_{j} \rightarrow U_{j}$. Also describe its matrix in terms of bases as in (i) and the corresponding matrices of the T_{j} 's. In the special case $V_{i}=V$ and $W_{i}=W$ and $T_{i}=T$ for all i, the map is denoted $T^{\otimes n}: V^{\otimes n} \rightarrow W^{\otimes n}$.

Solutions.

(i) The proof of uniqueness up to unique isomorphism for such a universal object is exactly the same as in the case $n=2$, replacing the word "bilinear" with "multilinear" everywhere. Recall the usual diagram:

where the pairs (W, m) and (\tilde{W}, \tilde{m}) both have the universal property of the tensor product of V_{1}, \ldots, V_{n}. By the universal property, there exists a linear map $\phi: W \rightarrow \tilde{W}$ uniquely satisfying $\phi \circ m=\tilde{m}$ because \tilde{m} is multilinear and m is "universal". In a similar manner, we get the linear $\operatorname{map} \psi: \tilde{W} \rightarrow W$ uniquely satisfying $\psi \circ \tilde{m}=m$. Note that both $(\psi \circ \phi) \circ m=m$ and $\mathrm{id}_{W} \circ m=m$. So by uniqueness, $\mathrm{id}_{W}=\psi \circ \phi$. Using the same idea, $\phi \circ \psi=\mathrm{id}_{\tilde{W}}$. Hence we see that the structure we seek is uniquely determined up to unique isomorphism.

As for the existence aspect, we choose bases $\left\{e_{i j}\right\}_{1 \leq i \leq d_{j}}$ for $1 \leq j \leq n$, and we note that (as with bilinear pairings) a multilinear map

$$
\mu: V_{1} \times \cdots \times V_{n} \rightarrow W
$$

is both determined by the values $\mu\left(e_{i_{1}, 1}, \ldots, e_{i_{n}, n}\right) \in W$ and may be defined by such values arbitrarily assigned (since for any $w_{i_{1}, \ldots, i_{n}} \in W$ with $1 \leq i_{j} \leq d_{j}$ the formula

$$
\mu\left(\sum_{i_{1}} a_{i_{1}} e_{i_{1}, 1}, \ldots, \sum_{i_{n}} a_{i_{n}} e_{i_{n}, n}\right)=\sum a_{i_{j}, j} w_{i_{1}, \ldots, i_{n}} \in W
$$

is a multilinear pairing of the V_{j} 's into W with $\left.\mu\left(e_{i_{1}, 1}, \ldots, e_{i_{n}, n}\right)=w_{i_{1}, \ldots, i_{n}}\right)$. We define T to be the Euclidean space F^{S} with S given as the finite set

$$
S=\left\{1, \ldots, d_{1}\right\} \times \cdots \times\left\{1, \ldots, d_{n}\right\}
$$

For $I=\left(i_{1}, \ldots, i_{n}\right) \in S$, let $e_{I} \in F^{S}$ be the assumed "standard basis" vector. The multilinear pairing $V_{1} \times \cdots \times V_{n} \rightarrow T$ given by

$$
\left(\sum_{i_{1}} a_{i_{1}} e_{i_{1}, 1}, \ldots, \sum_{i_{n}} a_{i_{n}} e_{i_{n}, n}\right) \mapsto \sum_{I} \prod_{j=1}^{n} a_{i_{j}, j} \cdot e_{I}
$$

is universal; the proof of universality (including the uniqueness aspect) is identical to the case $n=2$ in view of the mechanism we have outlined above for both uniquely characterizing as well as defining all possible multilinear μ 's.

If we write $\left(v_{1}, \ldots, v_{n}\right) \mapsto v_{1} \otimes \cdots \otimes v_{n}$ to denote the universal multilinear pairing into T, then with the model as constructed above we have $e_{I}=e_{i_{1}, 1} \otimes \cdots \otimes e_{i_{n}, n}$. Hence, the basis assertion follows. (Of course, as in the case $n=2$ we can prove this basis assertion without reverting to the construction process, instead arguing by "pure thought" in terms of the universal property alone.)
(ii) The map $T: V_{1} \times \cdots \times V_{n} \rightarrow W_{1} \otimes \cdots \otimes W_{n}$ given by

$$
\left(v_{1}, \ldots, v_{n}\right) \mapsto T_{1}\left(v_{1}\right) \otimes \cdots \otimes T_{n}\left(v_{n}\right)
$$

is clearly multilinear in the v_{j} 's (as the T_{j} 's are linear), so by the universal property of the tensor product of the V_{j} 's we get the desired linear map $\tilde{T}=T_{1} \otimes \cdots \otimes T_{n}$ that is uniquely characterized by the condition $v_{1} \otimes \cdots \otimes v_{n} \mapsto T_{1}\left(v_{1}\right) \otimes \cdots \otimes T_{n}\left(v_{n}\right)$:

If $T_{j}^{\prime}: W_{j} \rightarrow U_{j}$ are linear maps, then

$$
\left(T_{1}^{\prime} \otimes \cdots \otimes T_{n}^{\prime}\right) \circ\left(T_{1} \otimes \cdots \otimes T_{n}\right)=\left(T_{1}^{\prime} \circ T_{1}\right) \otimes \cdots \otimes\left(T_{n}^{\prime} \circ T_{n}\right)
$$

as linear maps from $V_{1} \otimes \cdots \otimes V_{n}$ to $U_{1} \otimes \cdots \otimes U_{n}$, as can be checked by working with the elementary n-fold tensors (by the universal property, or because they span the space) as for $n=2$.

