
Math 395. Tensor products and bases
Let V and V ′ be finite-dimensional vector spaces over a field F . Recall that a tensor product of

V and V ′ is a pait (T, t) consisting of a vector space T over F and a bilinear pairing t : V ×V ′ → T
with the following universal property: for any bilinear pairing B : V ×V ′ → W to any vector space
W over F , there exists a unique linear map L : T → W such that B = L ◦ t. Roughly speaking, t
“uniquely linearizes” all bilinear pairings of V and V ′ into arbitrary F -vector spaces.

In class it was proved that if (T, t) and (T ′, t′) are two tensor products of V and V ′, then there
exists a unique linear isomorphism T ' T ′ carrying t and t′ (and vice-versa). In this sense, the
tensor product of V and V ′ (equipped with its “universal” bilinear pairing from V ×V ′!) is unique
up to unique isomorphism, and so we may speak of “the” tensor product of V and V ′. You must
never forget to think about the data of t when you contemplate the tensor product of V and V ′:
it is the pair (T, t) and not merely the underlying vector space T that is the focus of interest. In
this handout, we review a method of construction of tensor products (there is another method that
involved no choices, but is horribly “big”-looking and is needed when considering modules over
commutative rings) and we work out some examples related to the construction.

As was indicated in class, we shall write V × V ′ ⊗→ V ⊗ V ′ to denote a tensor product (if one
exists), and in particular for v ∈ V and v′ ∈ V ′ the image of (v, v′) under the “universal” bilinear
pairing into V ⊗ V ′ shall be denoted v ⊗ v′ ∈ V ⊗ V ′. By virtue of the bilinearity of the pairing
(v, v′) 7→ v ⊗ v′, we have relations such as

(a1v1 + a2v2)⊗ v′ = a1(v1 ⊗ v′) + a2(v2 ⊗ v′)

in V ⊗ V ′ for any a1, a2 ∈ F , v1, v2 ∈ V , and v′ ∈ V ′.
Note that if V = 0 or V ′ = 0, then V ⊗V ′ = 0. Indeed, the only bilinear pairing B : V ×V ′ → W

is the zero pairing, and hence the pairing V × V ′ → {0} given by the zero pairing certainly fits
the bill to be the tensor product. We therefore say V ⊗ 0 = 0 and 0 ⊗ V ′ = 0. This example is
not particularly interesting, but anyway it permits us to focus the existence problem on the more
interesting case when n = dim V and n′ = dim V ′ are both positive.

1. Some generalities with bilinear pairings

The key to everything is the following elementary lemma.

Lemma 1.1. Let {vi}1≤i≤n and {v′j}1≤j≤n′ be ordered bases of V and V ′. To give a bilinear
pairing B : V × V ′ → W is “the same” as to give nn′ vectors wij = B(vi, v

′
j) ∈ W in the following

sense: any B is uniquely determined by the pairings B(vi, v
′
j) ∈ W , and conversely if wij ∈ W are

arbitrarily given then there exists a (necessarily unique!) bilinear pairing B : V ×V ′ → W satisfying
B(vi, v

′
j) = wij.

Proof. Suppose we are given a bilinear pairing B : V × V ′ → W . Any v ∈ V and v′ ∈ V ′ admit
unique expansions v =

∑
aivi and v′ =

∑
b′jv

′
j , so by bilinearity we have

B(v, v′) =
∑
i,j

aib
′
jB(vi, v

′
j).

This formula shows that the pairings B(vi, v
′
j) ∈ W do uniquely determine B. Conversely, given

any wij ∈ W define the set-theoretic map B : V × V ′ → W by the condition B(v, v′) =
∑

aib
′
jwij

where v =
∑

aivi and v′ =
∑

b′jv
′
j are the unique expansions of v and v′ with respect to our choices

of ordered bases of V and V ′. The existence and uniqueness of such expansions for v and v′ ensure
that B is well-defined as a set-theoretic map, and obviously B(vi, v

′
j) = wij . It remains to check
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that this B we have just defined is bilienar, and this will be a computation with its definition. We
check linearity in v′ for a fixed v ∈ V , and the other way around goes similarly: for v′, ṽ′ ∈ V ′ and
c′, c̃′ ∈ F with v′ =

∑
b′jv

′
j and ṽ′ =

∑
b̃′jv

′
j we have c′v′ + c̃′ṽ′ =

∑
(c′b′j + c̃′b̃′j)v

′
j , and so

B(v, c′v′ + c̃′ṽ′) =
∑
i,j

ai(c′b′j + c̃′b̃′j)wij = c′ ·
∑
i,j

aib
′
jwij + c̃′ ·

∑
i,j

aib̃
′
jwij = c′B(v, v′) + c̃B(v, ṽ′),

as desired. �

This lemma shows that the data of a bilinear pairing B : V × V ′ → W is “the same” as the
data of nn′ vectors wij ∈ W with 1 ≤ i ≤ n and 1 ≤ j ≤ n′. But note: although the set of
bilinear pairings B : V × V ′ → W has nothing to do with the choices of bases, and the set of
indexed choices of nn′ vectors wij ∈ W has nothing to do with the choices of bases, the bijection
between these sets depends on the bases! This is actually not a surprise: it is analogous to the
well-known fact from linear algebra that Hom(V, V ′) can be identified with the set Matn′×n(F ) of
n′×n matrices over F upon choosing ordered bases of V and V ′, and that if we change the choices
then the correspondence changes (even though the sets being put in correspondence, Hom(V, V ′)
and Matn′×n(F ), do not “know” about choices of bases of V or V ′).

As an example, if we replace vi with −vi for all i but we leave the v′j ’s unchanged then under
the modified correspondence resulting from this new ordered basis of V the new B associated to
a given collection of wij ’s is the negative of the old B (essentially because β(−vi, v

′
j) = −β(vi, v

′
j)

for any bilinear β : V × V ′ → W ). Of course, if one makes a more elaborate change of bases then
it becomes more complicated to describe how the correspondence between B’s and {wij}’s changes
(just as it can be messy to describe how the matrix corresponding to a linear map changes when we
make a complicated change of bases on the source and target of the bilinear map). As but one more
example, if n ≥ 2 and we replace v1 with v1 + v2 then since B(v1 + v2, v

′
j) = B(v1, v

′
j) + B(v2, v

′
j)

we see that if B corresponds to {wij} with respect to the first choice of ordered bases of V and
V ′ then with respect to this modified basis for V the pairing B will correspond to the collection
of vectors in W whose ij-choice remains wij for i > 1 but whose 1j-vector is w1j + w2j for each
j. The upshot is that the bijection between the B’s and the {wij}’s is not intrinsic to the triple of
vector spaces V , V ′, and W , but rather depends on the choices of ordered bases of V and V ′.

Before we apply the preceding considerations to build tensor products, it is convenient to slightly
generalize the construction of the usual Euclidean space Fn. For any finite non-empty set S, we
define the Euclidean space on S over F to be the set FS of F -valued functions S → F , given
pointwise F -vector space structure; elements of FS are typically denoted (cs)s∈S , or simply (cs),
with cs ∈ F . For example, if S = {1, . . . , n} then FS is just the old example Fn (with (c1, . . . , cn)
corresponding to the function c : {1, . . . , n} → F sending i to ci). For S = {1, . . . , n}, elements of
FS may be “visualized” as rows or columns of elements in F , due to the fact that the set {1, . . . , n}
has an order structure, but this ordering is logically irrelevant to the underlying linear structure
(and it only intervenes due to how human beings prefer to write things conveniently on a piece of
paper). The vector space FS has dimension equal to the positive size of the non-empty set S, and
it has a standard basis consisting of those functions δs0 : S → F that send some s0 ∈ S to 1 and all
other s ∈ S to 0. (Explicitly, (cs)s∈S =

∑
s∈S csδs.) In the special case S = {1, . . . , n} this recovers

the usual notion of standard basis for Fn.

2. The construction

Theorem 2.1. Let V and V ′ be finite-dimensional vector spaces over F . A tensor product of V
and V ′ exists.
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Proof. If V or V ′ vanish then we have seen that the vanishing bilinear pairing into the zero vector
space does the job, so we now suppose n = dim V and n′ = dim V ′ are positive. Let

S = {1, . . . , n} × {1, . . . , n′}

be the set of ordered pairs (i, j) of integers with 1 ≤ i ≤ n and 1 ≤ j ≤ n′.
Now choose ordered bases {vi} of V and {v′j} of V ′. Let T = FS , and let t : V × V ′ → T be the

set-theoretic map
(v, v′) 7→ (aib

′
j)(i,j)∈S ∈ FS

where v =
∑

aivi and v′ =
∑

b′jv
′
j are the unique basis expansions of v and v′. Roughly speaking, t

is just a listing of the set of pairwise products of coefficients of v and v′ with respect to the choices
of bases. (By the proof of Lemma 1.1, such products of coefficients are “all” we need to know to
compute B(v, v′) via a universal formula in terms of the B(vi, v

′
j)’s, so it should not be surprising

that t “knows” every B, as we shall see.)
Note that t is bilinear. For example, if ṽ =

∑
ãivi is an element of V then for any c, c̃ ∈ F we

have cv + c̃ṽ =
∑

(cai + c̃ãi)vi, and hence

t(cv + c̃ṽ, v′) = ((cai + c̃ãi)b′j)(i,j) = c(aib
′
j)(i,j) + c̃(ãib

′
j)(i,j) = ct(v, v′) + c̃t(ṽ, v′).

This gives linearity in the first slot when the second is fixed, and the same method works the other
way around. Clearly t(vi0 , v

′
jj0) = δ(i0,j0) ∈ FS = T is the element whose (i0, j0)-coordinate is 1

and whose other coordinates are zero. That is, the vectors t(vi, v
′
j) ∈ FS form the standard basis

of FS .
Now we verify the universal mapping property. Let B : V × V ′ → W be a bilinear mapping.

We need to prove the existence and uniqueness of a linear map L : T → W such that L ◦ t = B,
which is to say L(t(v, v′)) = B(v, v′) for all v ∈ V and v′ ∈ V ′. But whatever L is to be, L ◦ t and
B are two W -valued bilinear pairings between V and V ′, so to verify their equality it is necessary
and sufficient for them to agree on pairs of vectors from bases of V and V ′. That is, the condition
on L is exactly L(t(vi, v

′
j)) = B(vi, v

′
j) for all i and j. But the vectors t(vi, v

′
j) = δ(i,j) ∈ FS form

the standard basis, and so the condition on the linear map L : FS → W is precisely that its value
on the standard basis vector δ(i,j) is B(vi, v

′
j) ∈ W for each i and j. We know that to give a linear

map from a finite-dimensional vector space to another vector space, it is necessary and sufficient
to specify the values of the mapping on elements of a fixed basis, and so L exists and is uniquely
determined by the conditions δ(i,j) 7→ B(vi, v

′
j). �

This proof deserves to be understood once, but it should never be referred to again because
although the underlying vector space FS in the proof has nothing to do with choices of bases, the
specific universal bilinear pairing t : V × V ′ → FS that is built in the proof depends very much on
choices of bases. One should really imagine the tensor product (V ⊗ V ′,⊗) as an abstract notion,
and the proof merely provides a way to make a concrete model of it (or rather, a linear isomorphism
V ⊗ V ′ ' FS) by using bases, much as the “abstract” dual space V ∨ takes on the more concrete
appearance of “row vectors” upon using a dual basis for a choice of basis of V . In the context of
the above construction, different choices of bases simply give rise to different linear isomorphisms
V ⊗ V ′ ' FS carrying the universal pairing V × V ′ → V ⊗ V ′ to some specific bilinear pairing
V × V ′ → FS . Another example to keep in mind is the distinction between the abstract space
Hom(V, V ′) and the concrete vector space of n′ × n matrices: if we change bases, the identification
with the concrete-looking space of matrices will change. A big difference between the notions of
Hom(V, V ′) and V ∨ and the notion of V ⊗ V ′ is that the first two can be constructed without
mentioning bases whereas for V ⊗ V ′ we have only the construction with bases and thus it is the
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universal mapping property that provides us with the only basis-free way to think about (and
work with) this space. (As we have noted above, there is actually a method to construct V ⊗ V ′

without making any choices at all, but the construction is so horrible and unworkable that it is
uninformative when using tensor product spaces and trying to understand their properties.)

3. An example

Let us work out one concrete example of how the basis change impacts the explicit construction
of the tensor product, and see how the data of the universal bilinear pairing actually dictates a
unique linear isomorphism between the resulting constructions of the tensor product.

Let V = F 2 and V ′ = F 3, and let {e1, e2} and {e′1, e′2, e′3} be the standard bases. Let S =
{1, 2}×{1, 2, 3}. Following the proof, V ⊗V ′ = FS with universal bilinear pairing t : V ×V ′ → FS

determined (in the sense of Lemma 1.1) by the conditions t(ei, e
′
j) = δ(i,j), where δ(i,j) ∈ FS has

ij-coordinate 1 and all other coordinates 0.
Now suppose we pick different ordered bases, such as

{v1 = e1 + e2, v2 = −e2}, {v′1 = e′1, v
′
2 = e′2 − e′3, v

′
3 = 4e′1 + e′2}.

Using the proof with these bases once again exhibits FS as a tensor product, but now the bilinear
pairing τ : V ×V ′ → FS that comes out of the proof is determined by the conditions τ(vi, v

′
j) = δ(i,j).

Note that as bilinear pairings V × V ′ → FS , t and τ are not the same! The uniqueness of tensor
products up to unique isomorphism ensures that there must be a unique isomorphism between
the pairs (FS , t) and (FS , τ), which is to say that there exists a unique F -linear isomorphism
L : FS ' FS such that τ = L ◦ t. The problem we want to solve is: what is L?

The equality τ = L◦ t for bilinear pairings V ×V ′ → FS may be checked on pairs of basis vectors
(by Lemma 1.1), and so we may use the bases {vi} and {v′j} as in the construction of τ . Thus, L
has to satisfy

δ(i,j) = τ(vi, v
′
j) = L(t(vi, v

′
j))

for all i, j. Using the definitions of the vi’s and v′j ’s in terms of the bases {e1, e2} and {e′1, e′2, e′3}
of V and V ′ that were used in the construction of t, we have

t(v1, v
′
1) = t(e1 + e2, e

′
1) = t(e1, e

′
1) + t(e2, e

′
1) = δ(1,1) + δ(2,1),

t(v1, v
′
2) = t(e1 +e2, e

′
2−e′3) = t(e1, e

′
2)− t(e1, e

′
3)+ t(e2, e

′
2)− t(e2, e

′
3) = δ(1,2)−δ(1,3) +δ(2,2)−δ(2,3),

and

t(v1, v
′
3) = t(e1 + e2, 4e′1 + e′2) = 4δ(1,1) + δ(1,2) + 4δ(2,1) + δ(2,2).

This computes t(v1, v
′
j) for all j, and similarly one computes t(v2, v

′
j) for all j:

t(v2, v
′
1) = −δ(2,1), t(v2, v

′
2) = −δ(2,2) + δ(2,3), t(v2, v

′
3) = δ(2,2) + 4δ(2,3).

We have now expressed the t(vi, v
′
j)’s in terms of the “standard basis” δ(1,1), δ(1,2), . . . of FS , and

so the conditions δ(i,j) = L(t(vi, v
′
j)) for all i and j become a system of linear equations on the

matrix of L : FS ' FS with respect to this basis of FS . More specifically, in order to work with
matrices we need to order the set S, and we choose the lexicographical ordering ((i, j) > (i′, j′)
if either i > i′ or i = i′ and j > j′). In this way, one see that the matrix of coefficients for the
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t(vi, v
′
j)’s in terms of the δ(i,j)’s is

M =


1 0 0 1 0 0
0 1 −1 0 1 −1
4 1 0 4 1 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 1 4


The conditions δ(i,j) = L(t(vi, v

′
j)) therefore become: the matrix of L with respect to the standard

basis of FS using the lexicographical ordering is the inverse of the matrix M . That computes
L! This illustrates an important principle when working with tensor products: when using bases,
sometimes things can get quite messy. It is fortunate, as we shall see, that one can virtually always
work with tensor products without ever using a basis.

To summarize: using the matrix inverse to M and the standard basis of FS with lexicographical
ordering so as to convert 6 × 6 matrices into linear self-maps of FS , we get a linear isomorphism
L : FS ' FS that carries t to τ and thereby explains the relationship between the two concrete
models (FS , t) and (FS , τ) for the abstract tensor product (V ⊗ V ′,⊗). Of course, the matrix M
defines the inverse isomorphism FS ' FS that carries τ to t.


