
Math 396. Tensor algebras, tensor pairings, and duality

(This handout was distributed in Math 395, and is being posted again for convenience of reviewing
the material it contains.)

Let V be a finite-dimensional vector space over a field F . We have seen how to make higher
tensor powers V ⊗n, symmetric powers Symn(V ), and exterior (or “wedge”) powers ∧n(V ) for n ≥ 1;
for n = 0 the standard convention is to take these symbols to be F . It has also been seen that
these constructions are “natural” in V in the sense that if T : V → W is a linear map to another
finite-dimensional vector space over F then there are unique linear maps

T⊗n : V ⊗n → W⊗n, Symn(T ) : Symn(V ) → Symn(W ), ∧n(T ) : ∧n(V ) → ∧n(W )

given on elementary tensors (resp. elementary symmetric products, resp. elementary wedge prod-
ucts) by the formulas

T⊗n(v1 ⊗ · · · ⊗ vn) = T (v1)⊗ · · · ⊗ T (vn), Symn(T )(v1 · · · · · vn) = T (v1) · · · · · T (vn),

∧n(T )(v1 ∧ · · · ∧ vn) = T (v1) ∧ · · · ∧ T (vn)
for vi ∈ Vi, and moreover these latter operations are compatible with composition in T in an evident
manner.

The aim of these notes is to take up a more detailed investigation of how these higher powers of
a vector space interact with bilinear forms and duality, and how we can give the collection of all
tensor powers (resp. all symmetric powers, resp. all exterior powers) an interesting multiplicative
structure.

Throughout these notes, we fix a base field F and all vector spaces are understood to be F -vector
spaces and to be finite-dimensional over F unless we say otherwise.

1. Pairings of tensor products

We begin with the case of tensor products, as all others will be easily deduced from it after
we have done the hard work in this case. Let V1, . . . , Vn and W1, . . . ,Wm be vector spaces (with
n, m ≥ 1). We would like to construct a bilinear pairing

(V1 ⊗ · · · ⊗ Vn)× (W1 ⊗ · · · ⊗Wm) → V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm

that satisfies the following formula on elementary tensors:

(v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wm) 7→ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm.

Since such elementary tensors span the respective tensor products of the Vi’s and of the Wj ’s, and
a bilinear pairing is uniquely determined by its values on pairs from spanning sets of the respective
spaces being paired together, such a formula certainly uniquely determines this desired pairing.
The problem (as always in the tensor-product business) is therefore one of existence, or really of
well-definedness: certainly any elements t and t′ in the respective n-fold and m-fold tensor product
spaces can be expressed as a finite sum of such respective elementary tensors, and so the value of
t ⊗ t′ is uniquely determined – except that there are usually many ways to write t and t′ as sums
of elementary tensors and so the difficulty is to ensure that the end result does not depend on the
choice of such expressions for t and t′.

To solve our existence problem, one approach (that would have been used in the 19th century)
is to choose bases of all Vi’s and Wj ’s to make an unambiguous definition and to then follow the
transformation law under change of bases to check that the outputs are independent of these choices
(or, in older language, that the coefficient systems of the outputs “transform tensorially” under
changes of linear coordinates). This is a rather cumbersome method, and we will avoid it in favor

1



2

of a more enlightened approach that lets universal mapping properties do all of the work. Consider
the universal multilinear map

µ : V1 × · · · × Vn ×W1 × · · · ×Wm → V1 ⊗ . . . Vn ⊗W1 ⊗ · · · ⊗Wm.

Let us fix vi ∈ Vi for 1 ≤ i ≤ n. Consider the map

W1 × . . .Wm → V1 ⊗ . . . Vn ⊗W1 ⊗ · · · ⊗Wm

defined by
(w1, . . . , wm) 7→ v1 ⊗ . . . vn ⊗ w1 ⊗ · · · ⊗ wm.

This is clearly multilinear in the wj ’s, and so by the universal property of W1 ⊗ · · · ⊗Wm there is
a unique linear map

mv1,...,vn : W1 ⊗ · · · ⊗Wm → V1 ⊗ . . . Vn ⊗W1 ⊗ · · · ⊗Wm

that satisfies the following formula on elementary tensors:

mv1,...,vn(w1 ⊗ · · · ⊗ wm) = v1 ⊗ . . . vn ⊗ w1 ⊗ · · · ⊗ wm.

Now comes the key point:

Lemma 1.1. The element mv1,...,vn ∈ Hom(W1 ⊗ · · · ⊗Wm, V1 ⊗ . . . Vn ⊗W1 ⊗ · · · ⊗Wm) depends
multilinearly on the vi’s.

Proof. We have to prove that for a, a′ ∈ F and v1, v
′
1 ∈ V1,

mav1+a′v′1,v2,...,vn
= amv1,v2,...,vn + a′mv′1,v2,...,vn

in Hom(W1 ⊗ · · · ⊗Wm, V1 ⊗ . . . Vn ⊗W1 ⊗ · · · ⊗Wm), and likewise for linearity in the ith slot for
i > 1 (and all other slots held fixed). We treat just the case of the first slot, as all others go by the
same method.

How are we to verify this proposed equality of maps between two tensor product spaces? It
suffices to check equality when the two sides are evaluated on an elementary tensor. Hence, let
us compute both sides on w1 ⊗ · · · ⊗ wm for wi ∈ Wi. In view of how the linear structure on a
Hom-space is defined, the desired equality of values is the statement

(av1 + a′v′1)⊗ v2 ⊗ . . . vn ⊗ w1 ⊗ · · · ⊗ wm = a(v1 ⊗ v2 ⊗ . . . vn ⊗ w1 ⊗ · · · ⊗ wm)
+a′(v′1 ⊗ v2 ⊗ . . . vn ⊗ w1 ⊗ · · · ⊗ wm)

in V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm. This equality is simply the multilinearity of the universal map

V1 × · · · × Vn ×W1 × · · · ×Wm → V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm

applied in the first slot. �

In view of the lemma, we have a multilinear map

V1 × · · · × Vn → Hom(W1 ⊗ · · · ⊗Wm, V1 ⊗ . . . Vn ⊗W1 ⊗ · · · ⊗Wm)

given by (v1, . . . , vn) 7→ mv1,...,vn . Hence, by the universal property of the multilinear map

V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn

we obtain a unique linear map

L : V1 ⊗ · · · ⊗ Vn → Hom(W1 ⊗ · · · ⊗Wm, V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm)

that is given as follows on elementary tensors:

L(v1 ⊗ · · · ⊗ vn) = mv1,...,vn .
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Now recall that for vector spaces U , U ′, and U ′′, to give a linear map T : U → Hom(U ′, U ′′)
is the same as to give a bilinear pairing B : U × U ′ → U ′′. Indeed, given T we define B by
(u, u′) 7→ (T (u))(u′) (which is linear in u′ for fixed u because T (u) is linear, and which is linear
in u for fixed u′ because T is linear), and given B we define T by T (u) : u′ 7→ B(u, u′) (this is
linear in u′ for each u ∈ U because B is linear in the second variable when the first is fixed, and
the resulting association u 7→ T (u) is linear from U to Hom(U ′, U ′′) because of the definition of
the linear structure on Hom(U ′, U ′′) and the linearity of B in the first variable when the second is
fixed). One readily checks that these two procedures are inverse to each other. Applying it to our
linear map L, we arrive at a bilinear pairing

(V1 ⊗ · · · ⊗ Vn)× (W1 ⊗ · · · ⊗Wm) → V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm

that satisfies
(v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wm) 7→ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm.

This is exactly the solution to our existence (or well-definedness) problem!
Of course, as with any bilinear pairing, we get a unique factorization through a linear map on

the tensor product: there is a linear map

(1) (V1 ⊗ · · · ⊗ Vn)⊗ (W1 ⊗ · · · ⊗Wm) → V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm

that satisfies

(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wm) 7→ v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm,

and it is unique because V1 ⊗ · · · ⊗ Vn and W1 ⊗ · · · ⊗Wm are spanned by elementary tensors. By
checking with bases of the Vi’s and Wj ’s, one sees that this latter linear map is an isomorphism.
This expresses an “associativity” property of iterated tensor products, and we leave it to the reader
to carry out the same method to prove the existence and uniqueness of a linear isomorphism

(V1 ⊗ (V2 ⊗ V3))⊗ (V4 ⊗ V5) ' ((V1 ⊗ V2 ⊗ V3)⊗ V4)⊗ V5

satisfying (v1⊗ (v2⊗v3))⊗ (v4⊗v5) 7→ ((v1⊗v2⊗v3)⊗v4)⊗v5; as always, the uniqueness aspect is
a trivial consequence of the spanning property of elementary tensors, and it is the existence aspect
that requires some thought (but with a bit of experience it becomes mechanical); the basic principle
is that when expressions are linear in each variable when all others are held fixed, they give rise to
well-defined maps on tensor-product spaces.

Taking Vi = Wj = V for all i and j in what has been done above, we get:

Theorem 1.2. For any vector space V and n, m ≥ 0, there is a unique bilinear pairing

V ⊗n × V ⊗m → V ⊗(n+m)

satisfying (v1 ⊗ · · · ⊗ vn, v′1 ⊗ · · · ⊗ v′m) 7→ v1 ⊗ · · · ⊗ vn ⊗ v′1 ⊗ · · · ⊗ v′m.

(It is understood that if n = 0 or m = 0, then these pairings are just pairings against F via
scalar multiplication.) The F -bilinear pairing in this theorem is usually denoted (t, t′) 7→ t⊗ t′ (by
unfortunate but pervasive abuse of notation, justified by the fact that (1) is an isomorphism). The
key fact is that this procedure is associative:

Lemma 1.3. For n, n′, n′′ ≥ 0 and t ∈ V ⊗n, t′ ∈ V ⊗n′
, and t′′ ∈ V ⊗n′′

, we have t ⊗ (t′ ⊗ t′′) =
(t⊗ t′)⊗ t′′ in V ⊗(n+n′+n′′).

Proof. Since (t, t′) 7→ t⊗ t′ is F -bilinear, both sides of the proposed equality inside of V ⊗(n+n′+n′′)

are trilinear in t, t′, and t′′. Hence, it suffices to check the equality when each of these three vectors
is restricted to lie in spanning sets of the respective spaces V ⊗n, V ⊗n′

, and V ⊗n′′
. The cases when
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n, n′, or n′′ vanish are trivial, so we may assume all three are positive. Naturally enough, we take
as spanning sets the elementary tensors in these spaces, and if

t = v1 ⊗ · · · ⊗ vn, t′ = v′1 ⊗ · · · ⊗ v′n′ , t′′ = v′′1 ⊗ · · · ⊗ v′′n′′

then both sides of our proposed equality are equal to

v1 ⊗ · · · ⊗ vn ⊗ v′1 ⊗ · · · ⊗ v′n′ ⊗ v′′1 ⊗ · · · ⊗ v′′n′′ ∈ V ⊗(n+n′+n′′).

�

The associativity in the lemma permits us to make an important construction in algebra (that
we will not use in this course):

Definition 1.4. The tensor algebra on a vector space V is the (infinite-dimensional, unless V = 0)
vector space

T(V ) =
⊕
n≥0

V ⊗n

with multiplication law mV : T(V )× T(V ) → T(V ) given by

mV ((tn)n≥0, (t′n)n≥0) = (
∑

i+j=n

ti ⊗ t′j)n≥0

(where tn = 0 and t′n = 0 for all but finitely many n).

Note that the definition of mV makes sense because ti ⊗ t′j = 0 for all but finitely many i and
j. The associativity lemma for the pairings V ⊗n × V ⊗n′ → V ⊗(n+n′) ensures that mV is in fact an
associative law of composition (check!), thereby permitting us to drop parentheses when iterating
mV , and by definition mV is clearly distributive over addition.

Example 1.5. Suppose V = F d with d > 0. Let {ei} be the standard basis of V . Let Xi ∈ T(V )
be the element (0, ei, 0, 0, . . . ). We have F = V ⊗0 in T(V ), and upon unwinding the definitions
one sees that elements of T(V ) are “non-commutative polynomials over F” which is to say that
this is an associative ring whose elements are all expressible uniquely as F -linear combinations of
finite products of “non-commuting variables” X1, . . . , Xd subject only to the associative law and
the condition that everything commutes with elements of F under multiplication. For d = 3, a
typical element in T(V ) is aY Z2XY X + bXY 2ZX + cXY XY + dZ3X with a, b, c, d ∈ F , and this
corresponds to

(0, 0, 0, ce1⊗e2⊗e1⊗e2+de3⊗e1⊗e1⊗e1, be1⊗e2⊗e2⊗e3⊗e1, ae2⊗e3⊗e3⊗e1⊗e2⊗e1, 0, 0, . . . ).

The strong non-commutativity is due to the fact that ei ⊗ ej and ej ⊗ ei are linearly independent
in V ⊗2 for i 6= j.

Remark 1.6. We also note that iterating these pairings on tensor products link up the higher
tensor products with tensor products of two spaces: for v1, . . . , vn ∈ V = V ⊗1 ⊆ T(V ), their
product v1v2 · · · vn in T(V ) is equal to the universal multilinear value v1 ⊗ · · · ⊗ vn ∈ V ⊗n (as it
should be!); this is proved by a simple induction on n.
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2. Pairings of symmetric and exterior powers

We now seek to prove the existence and uniqueness of bilinear pairings

Symn(V )× Symm(V ) → Symn+m(V ), ∧n(V )× ∧m(V ) → ∧n+m(V )

satisfying

(v1 ·· · ··vn, v′1 ·· · ··v′m) 7→ v1 ·· · ··vn ·v′1 ·· · ··v′m, (v1∧· · ·∧vn, v′1∧· · ·∧v′m) 7→ v1∧· · ·∧vn∧v′1∧· · ·∧v′m.

Exactly as with the pairings of tensor-product spaces, the uniqueness aspect is obvious and it is
the existence (or well-definedness) aspect that requires some thought. We will use our results from
the above study of tensor products to solve these new existence problems.

Before we explain the argument, we note that the proposed “values” of these pairings on ele-
mentary products are multilinear in the vi’s and v′j ’s, and are suitably symmetric and alternating
as well. This is the basic reason why the well-definedness aspects will work out in the end (just as
multilinearity was the reason things worked out in the preceding discussion for pairings of tensor-
product spaces).

Using the natural linear quotient map from tensor powers onto symmetric and exterior powers,
we can use the bilinear tensor pairings that we worked so hard to construct above to make new
bilinear pairings:

V ⊗n × V ⊗m ⊗→ V ⊗(n+m) � Symn+m(V )
and

V ⊗n × V ⊗m ⊗→ V ⊗(n+m) � ∧n+m(V )
satisfying

(v1 ⊗ · · · ⊗ vn, v′1 ⊗ · · · ⊗ v′m) 7→ v1 · · · · · vn · v′1 · · · · · v′m,

(v1 ⊗ · · · ⊗ vn, v′1 ⊗ · · · ⊗ v′m) 7→ v1 ∧ · · · ∧ vn ∧ v′1 ∧ · · · ∧ v′m
respectively. The specification of the values of these bilinear pairings when evaluated on elementary
tensors uniquely characterizes these pairings. Our goal is to show that these two pairings between
tensor powers uniquely factor through pairings between symmetric and exterior power quotients
respectively.

Observe that the quantities

v1 · · · · · vn · v′1 · · · · · v′m ∈ Symn+m(V ), v1 ∧ · · · ∧ vn ∧ v′1 ∧ · · · ∧ v′m ∈ ∧n+m(V )

are respectively symmetric and alternating in the vi’s and v′j ’s; that is, the first is invariant under
switching two of the vectors and the second vanishes when there is a repetition. In particular, the
first expression is insensitive to permutation of the vi’s and also permutation of the v′j ’s, whereas
the second expression vanishes if vi = vi′ for some i 6= i′ or if v′j = v′j′ for some j 6= j′. We can
therefore apply:

Lemma 2.1. Let V , V ′, and V ′′ be vector spaces and let B : V ⊗n × V ′⊗n′
→ V ′′ be a bilinear

pairing.
(1) If for all v1, . . . , vn ∈ V and v′1, . . . , v

′
m ∈ V ′ the value B(v1 ⊗ · · · ⊗ vn, v′1 ⊗ · · · ⊗ v′m) ∈

V ′′ is invariant under swapping vi, vj ∈ V for any i 6= j and is also invariant under
swapping v′i′ , v

′
j′ ∈ V ′ for any i′ 6= j′ then there is a unique bilinear pairing B : Symn(V )×

Symm(V ′) → V ′′ such that

B(v1 · · · · · vn, v′1 · · · · · v′m) = B(v1 ⊗ · · · ⊗ vn, v′1 ⊗ · · · ⊗ v′m)

for all v1, . . . , vn ∈ V and v′1, . . . , v
′
m ∈ V ′.
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(2) If instead B(v1 ⊗ · · · ⊗ vn, v′1 ⊗ · · · ⊗ v′m) ∈ V ′′ vanishes whenever vi = vj for some i 6= j or
v′i′ = v′j′ for some i′ 6= j′ then there is a unique bilinear pairing B : ∧n(V )× ∧m(V ′) → V ′′

such that

B(v1 ∧ · · · ∧ vn, v′1 ∧ · · · ∧ v′m) = B(v1 ⊗ · · · ⊗ vn, v′1 ⊗ · · · ⊗ v′m)

for all v1, . . . , vn ∈ V and v′1, . . . , v
′
m ∈ V ′.

Proof. Let us first digress to discussion a general criterion for making bilinear pairings factor
through quotients. In general, if B : W ×W ′ → W ′′ is a bilinear pairing and U ⊆ W and U ′ ⊆ W ′

are subspaces such that B(w,w′) = 0 whenever w ∈ U or w′ ∈ U ′, then B uniquely factors through
a well-defined bilinear pairing B : (W/U) × (W ′/U ′) → W ′′ given by B(w,w′) = B(w,w′) where
w ∈ W and w′ ∈ W ′ are arbitrary choices of representatives of w ∈ W/U and w′ ∈ W/U ′. To see
that this makes sense, we simply compute that for w ∈ W , w′ ∈ W ′, u ∈ U , and u′ ∈ U ′,

B(w + u, w′ + u′) = B(w,w′) + B(w, u′) + B(u, w′) + B(u, u′) = B(w,w′)

due to the assumption that U is B-perpendicular to everything in W ′ and that U ′ is B-perpendicular
to everything in W . The bilinearity of B is obvious, and the uniqueness aspect for B is clear since
quotient maps are surjective.

Now returning to the case of interest, we set W = V ⊗n, W ′ = V ⊗m, and W ′′ = V ′′. Two cases
of interest are

U = ker(V ⊗n � Symn(V )), U ′ = ker(V ⊗m � Symm(V ))
and

U = ker(V ⊗n � ∧n(V )), U ′ = ker(V ⊗m � ∧m(V )).
Under each of the two hypotheses on B we want the corresponding pair U and U ′ to satisfy the
annihilation conditions as in the preceding paragraph. Since B is bilinear, it suffices to check the
annihilation conditions using spanning sets of U and U ′ in each case. In the “symmetric” case a
spanning set for U is given by differences

v1 ⊗ · · · ⊗ v ⊗ · · · ⊗ ṽ ⊗ · · · ⊗ vn − v1 ⊗ · · · ⊗ ṽ ⊗ · · · ⊗ v ⊗ · · · ⊗ vn

(with all vectors in V and v and ṽ in the ith and jth slots for some i 6= j), and similarly for U ′

using m replacing n. In the “alternating” case U is spanned by vectors

v1 ⊗ · · · ⊗ v ⊗ · · · ⊗ v ⊗ . . . vn

(with all vectors in V and v in both the ith and jth slots for some i 6= j), and U ′ has a similar
spanning set using m replacing n.

The annihilation condition for such spanning sets in each case can be checked against a spanning
set in the other slot of the bilinear pairing, such as against the set of all elementary tensors in the
other slot. That is, under the symmetry hypothesis we want

B(v1 ⊗ · · · ⊗ v ⊗ · · · ⊗ ṽ ⊗ · · · ⊗ vn − v1 ⊗ · · · ⊗ ṽ ⊗ · · · ⊗ v ⊗ · · · ⊗ vn, t′) = 0

and
B(t, (v′1 ⊗ · · · ⊗ v′ ⊗ · · · ⊗ ṽ′ ⊗ · · · ⊗ v′m − v′1 ⊗ · · · ⊗ ṽ′ ⊗ · · · ⊗ v′ ⊗ · · · ⊗ v′m)) = 0

for elementary tensors t ∈ V ⊗n and t′ ∈ V ⊗m, and similarly under the alternating hypothesis we
want

B(v1 ⊗ · · · ⊗ v ⊗ · · · ⊗ v ⊗ . . . vn, t′) = 0, B(t, v′1 ⊗ · · · ⊗ v′ ⊗ · · · ⊗ v′ ⊗ . . . v′m) = 0

for any elementary tensors t ∈ V ⊗n and t′ ∈ V ⊗m. But (check!) these vanishing statements are
exactly the two respective hypotheses imposed on B! �



7

By the Lemma, we conclude that there exist bilinear pairings

(2) Symn(V )× Symm(V ) → Symn+m(V ), ∧n(V )× ∧m(V ) → ∧n+m(V )

given on elementary products by the desired formulas

(v1 ·· · ··vn, v′1 ·· · ··v′m) 7→ v1 ·· · ··vn ·v′1 ·· · ··v′m, (v1∧· · ·∧vn, v′1∧· · ·∧v′m) 7→ v1∧· · ·∧vn∧v′1∧· · ·∧v′m,

and these conditions certainly uniquely determine these bilinear pairings. Note also that as bilinear
pairings these even factor through the tensor product of the two factor spaces in each case. That
is, we can also say that there exist linear maps

Symn(V )⊗ Symm(V ) → Symn+m(V ), ∧n(V )⊗ ∧m(V ) → ∧n+m(V )

respectively satisfying

(v1 · · · · · vn)⊗ (v′1 · · · · · v′m) 7→ v′1 · · · · · vn · v′1 · · · · · v′m,

(v1 ∧ · · · ∧ vn)⊗ (v′1 ∧ · · · ∧ v′m) 7→ v1 ∧ · · · ∧ vn ∧ v′1 ∧ · · · ∧ v′m,

and such linear maps are uniquely determined by these conditions (as elementary products span
each of the spaces in the tensor product). In general, for s ∈ Symn(V ) and s′ ∈ Symm(V ) we
usually write s · s′ to denote the image of (s, s′) in Symn+m(V ) under (2), and for ω ∈ ∧n(V ) and
ω′ ∈ ∧m(V ) we usually write ω ∧ ω′ to denote the image of (ω, ω′) in ∧n+m(V ) under (2). Exactly
as with tensor products in Lemma 1.3, we have an associativity lemma for these new “products”:

Lemma 2.2. For n, n′, n′′ ≥ 0 and elements s ∈ Symn(V ), s′ ∈ Symn′
(V ), s′′ ∈ Symn′′

(V ) and
ω ∈ ∧n(V ), ω′ ∈ ∧n′

(V ), ω′′ ∈ ∧n′′
(V ) we have

s · (s′ · s′′) = (s · s′) · s′′, ω ∧ (ω′ ∧ ω′′) = (ω ∧ ω′) ∧ ω′′

in Symn+n′+n′′
(V ) and ∧n+n′+n′′

(V ) respectively.

Proof. The identities are trilinear, and so it suffices to check on elementary products. This is a
simple calculation, exactly as in the proof of Lemma 1.3 (treating the cases n = 0 or n′ = 0 or
n′′ = 0 separately). �

The interested reader should compare our elegant proof of associativity with the cumbersome
method used in the course text (and many others that do tensor products “incorrectly”), wherein
there are painful calculations with lots of intervening factorials (due to using the “wrong” definitions
and foundations; see Theorem 3.4ff. below for more on this issue).

Whereas there was no issue of sign-commutativity in the case of pairings of tensor powers, for
symmetric and exterior powers there are further simple identities related to the possible symmetry
of these multiplication laws:

Lemma 2.3. For s ∈ Symn(V ), s′ ∈ Symm(V ), ω ∈ ∧n(V ), and ω′ ∈ ∧m(V ) we have

s · s′ = s′ · s, ω ∧ ω′ = (−1)nmω′ ∧ ω

in Symn+m(V ) and in ∧n+m(V ) respectively.

Proof. These identities are bilinear and so to verify them it is sufficient to consider elementary
products. That is, for v1, . . . , vn, v′1, . . . , v

′
m ∈ V we want

v1·· · ··vn·v′1·· · ··v′m = v′1·· · ··v′m·v1·· · ··vn, v1∧· · ·∧vn∧v′1∧· · ·∧v′m = (−1)nmv′1∧· · ·∧v′m∧v1∧· · ·∧vn

in Symn+m(V ) and in ∧n+m(V ) respectively. Rather more generally, we claim that for any multi-
linear maps

S : V n+m → W, A : V n+m → W ′
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that are respectively symmetric and alternating in all n + m variables in V , we have

S(v1, . . . , vn, v′1, . . . , v
′
m) = S(v′1, . . . , v

′
m, v1, . . . , vn),

A(v1, . . . , vn, v′1, . . . , v
′
m) = (−1)nmA(v′1, . . . , v

′
m, v1, . . . , vn).

In each case, the ordered lists of n + m vectors on the two sides are related by nm swaps of pairs
of vectors (first move vn past all v′j ’s, then move vn−1 past the v′j ’s, and so on down to v1 moving
past all v′j ’s). Each of the nm swaps has no impact on the symmetric S, but introduces a sign on
the alternating A. �

Exactly as with the tensor algebra T(V ), we can use these associative pairings to define the
associative symmetric algebra and exterior algebra

Sym(V ) =
⊕
n≥0

Symn(V ), ∧(V ) =
⊕
n≥0

∧n(V ).

To make these concrete, choose a basis e1, . . . , ed of V and let Xi correspond to ei viewed as an
element of V = Sym1(V ) or V = ∧1(V ) respectively. The symmetric algebra on V is identified
with a commutative polynomial ring in d variables Xj over F . Likewise, the exterior algebra on
V is identified with a polynomial ring in d “alternating” variables Xj over F that satisfy X2

j = 0
and XiXj = −XjXi. By induction on n, we also recover a link between higher symmetric and
exterior powers and multiplication in these associative algebras (analogous to Remark 1.6): for
v1, . . . , vn ∈ V = Sym1(V ) the product v1 . . . vn in Sym(V ) is the “universal symmetric pairing”
v1 · · · · · vn ∈ Symn(V ), and likewise viewing vi ∈ ∧1(V ) allows us to define the product v1 . . . vn in
∧(V ) and this is equal to the “universal alternating pairing” v1 ∧ · · · ∧ vn ∈ ∧n(V ).

We conclude with an interesting application of the “wedge product” pairing. This result is usually
called the Künneth formula (and it is a prototype for an important isomorphism in topology):

Theorem 2.4. For vector spaces V and W , consider V and W as subspaces of V ⊕ W via the
natural inclusions v 7→ (v, 0) and w 7→ (0, w). The linear maps

∧i(V )⊗ ∧j(W ) → ∧i(V ⊕W )⊗ ∧j(V ⊕W ) ∧→ ∧i+j(V ⊕W )

define a linear map ⊕
i+j=n

(∧i(V )⊗ ∧j(W )) → ∧n(V ⊕W )

that is moreover an isomorphism.

In down-to-earth terms, since each element in V ⊕W is a sum of an element in V and an element
in W (i.e., (v, w) = (v, 0) + (0, w)), the theorem essentially says that any n-fold wedge product
of elements in V ⊕W can be expanded out to a sum of wedge products of i elements of V and j
elements of W over all possible decompositions i + j = n.

For applications in our later study of orientations on manifolds and transverse intersections of
submanifolds, there are some further results on pairings of top exterior powers that are particularly
useful.

Theorem 2.5. Let V be a nonzero vector space with dimension n and W ⊆ V a nonzero proper
subspace with dimension m. There exists a unique linear map of 1-dimensional vectors spaces
∧m(W )⊗ ∧n−m(V/W ) → ∧n(V ) satisfying

(w1 ∧ · · · ∧ wm)⊗ (v1 ∧ · · · ∧ vn−m) 7→ w1 ∧ · · · ∧ wm ∧ v1 ∧ · · · ∧ vn−m

(for any vi ∈ V representing vi ∈ V/W ). Moreover, this is an isomorphism.
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Proof. By the same principles of chasing multilinear and alternating expressions, for existence and
uniqueness it is equivalent to show that the map Wm × (V/W )n−m → ∧n(V ) given by

(w1, . . . , wm, v1, . . . , vn−m) 7→ w1 ∧ · · · ∧ wm ∧ v1 ∧ · · · ∧ vn−m

(with vi ∈ V representing vi ∈ V/W ) is well-defined (i.e., independent of the choices of representa-
tives vi), multilinear, and alternating in the wj ’s for fixed vi’s as well as alternating in the vi’s for
fixed wj ’s. Indeed, multilinearity will provide a bilinear pairing W⊗m × (V/W )⊗(n−m) → ∧n(V )
given by the desired formula on elementary tensors, and then the alternating properties would
allow us to use Lemma 2.1 to get the desired pairing on the exterior-power quotients of these tensor
powers.

For well-definedness, we choose w′
1, . . . , w

′
n−m ∈ W and we must show that in ∧n(V )

w1 ∧ · · · ∧ wm ∧ (v1 + w′
1) ∧ · · · ∧ (vn−m + w′

n−m) = w1 ∧ · · · ∧ wm ∧ v1 ∧ · · · ∧ vn−m.

Using multilinearity to expand out the left side as a sum of elementary n-fold wedge products, each
such term involves m + 1 vectors from the m-dimensional space W ⊆ V , so each such term is an
n-fold wedge product of a linearly dependent set of vectors in V . Hence, all such terms in ∧n(V )
vanish. This settles well-definedness.

With well-definedness established, we turn to multilinearity in the wj ’s and the vi’s. The situation
for the wj ’s is clear since wedge products are multilinear, and to handle the vi’s we simply need to
make an artful choice of representatives. More specifically, for scalars a, a′ ∈ F and vectors vi, v

′
i ∈ V

we can use avi + a′v′i ∈ V as a representative for avi + a′v′i ∈ V/W , and so the multilinearity in the
ith entry from V/W is obtained. The alternating property in the wj ’s and vi’s separately is clear:
we have vanishing of the formula when wj = wj′ for some j 6= j′, and if vi = vi′ for some i 6= i′

then we can use a common representative vi = vi′ in V for this common vector in V/W .
To check that the unique linear map just constructed is an isomorphism, we consider bases. Let

{wj} be a basis of W and let {vi} be a basis of V/W . A set of representatives {vi} in V is therefore
independent and the collection {w1, . . . , wm, v1, . . . , vn−m} is a basis for V . Thus, the vectors

w1 ∧ · · · ∧ wm ∈ ∧m(W ), v1 ∧ · · · ∧ vn−m ∈ ∧n−m(V/W )

are bases in these two lines, and likewise

w1 ∧ · · · ∧ wm ∧ v1 ∧ · · · ∧ vn−m ∈ ∧n(V )

is a basis vector for the line ∧n(V ). The map we’ve constructed has the form T : L ⊗ L′ → L′′

where L, L′, and L′′ are 1-dimensional and we have shown that it satisfies `⊗ `′ 7→ `′′ where ` ∈ L,
`′ ∈ L′, and `′′ ∈ L′′ are basis vectors, and so such a map T between 1-dimensional spaces has to
be an isomorphism (as it carries the basis vector `⊗ `′ to the basis vector `′′). �

As the proof will show, the following theorem is a mild generalization of the Künneth formula
isomorphism constructed above.

Theorem 2.6. Let W1, . . . ,WN be a collection of mutually transverse nonzero proper subspaces of
V , and let W ′ = ∩Wi, so if ci = codim(Wi) then c = codim(W ′) is equal to

∑
ci. There exists a

unique linear map of 1-dimensional spaces ∧c1(V/W1)⊗ · · · ⊗ ∧cN (V/WN ) → ∧c(V/W ′) satisfying

(v11 ∧ · · · ∧ v1,c1)⊗ · · · ⊗ (vN,1 ∧ · · · ∧ vN,cN
) 7→ v11 ∧ · · · ∧ v1,c1 ∧ · · · ∧ vN,1 ∧ · · · ∧ vN,cN

for vij ∈ V/W ′ representing vij ∈ V/Wi. Moreover, this map is an isomorphism.
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Proof. To prove the existence (including well-definedness) and uniqueness of the linear map given
by the proposed formula, we can argue exactly as in the preceding proof, essentially by working
with a map

(V/W1)c1 × · · · × (V/WN )cN → ∧c(V/W ′)

and checking it is suitably multilinear and alternating (once it is verified to be well-defined). To
check the isomorphism aspect, it is convenient to slightly simplify the initial setup. Using the
isomorphism V/Wi ' (V/W ′)/(Wi/W ′), we may replace V and Wi with V/W ′ and Wi/W ′ re-
spectively to reduce to the case W ′ = 0. In particular, dim V = codim(W ′) =

∑
cj . Hence, the

map
V → (V/W1)⊕ · · · ⊕ (V/WN )

is injective and dimension considerations then force it to be an isomorphism. It follows that we can
find a basis of V whose first c1 vectors reduce to a basis of V/W1, whose next c2 vectors reduce to a
basis of V/W2, and so on. Using such a collection of vectors, we see that the map of interest between
1-dimensional spaces carries a basis vector to a basis vector and hence is an isomorphism. �

3. Bilinear pairings of tensor, symmetric, and exterior powers

Let B : V × W → F be a bilinear pairing. We shall now use the preceding considerations to
define induced bilinear pairings

B⊗n : V ⊗n ×W⊗n → F, Symn(B) : Symn(V )× Symn(W ) → F, ∧n(B) : ∧n(V )× ∧n(W ) → F.

Perhaps the most important B is the evaluation pairing V ×V ∨ → F , and in this instance we have
already seen a special case of the problem solved in the case of tensor powers: in the homework we
constructed a natural identification of (V ∨)⊗n with the dual of V ⊗n, and this amounts to giving
a natural non-degenerate bilinear pairing V ⊗n × (V ∨)⊗n → F . The interested reader can check
that this homework construction is recovered as B⊗n (to be defined in a moment) when B is the
evaluation pairing.

We first propose formulas to uniquely characterize each of the pairings we will construct, namely
we specify the pairings between elementary tensor products, symmetric products, and wedge prod-
ucts: for v1, . . . , vn ∈ V and w1, . . . , wn ∈ W we wish to require

B⊗n(v1 ⊗ · · · ⊗ vn, w1 ⊗ · · · ⊗ wn) =
n∏

i=1

B(vi, wi)

and

Symn(B)(v1 · · · · ·vn, w1 · · · · ·wn) =
∑
σ∈Sn

n∏
i=1

B(vi, wσ(i)) =
∑
σ∈Sn

B⊗n(v1⊗· · ·⊗vn, wσ(1)⊗· · ·⊗wσ(n)),

∧n(B)(v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn) =
∑
σ∈Sn

sign(σ)
n∏

i=1

B(vi, wσ(i)) = det(B(vi, wj))

where Sn denotes the symmetric group on n letters. The only thing that requires an argument
is to prove that such formulas are well-posed and more specifically do really arise from bilinear
pairings between the desired vector spaces. Lemma 2.1 provides the key: once we make B⊗n,
then the existence of the other two pairings follows immediately (check!) from the symmetric and
alternating natures of the proposed formulas in these two cases. Hence, our only task is to construct
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B⊗n. The proposed formula
∏n

i=1 B(vi, wi) is certainly multilinear in each of the vi’s and wj ’s when
all other vectors are held fixed, so there is a unique linear map

V ⊗ · · · ⊗ V ⊗W ⊗ · · · ⊗W → F

(with n copies of V and n copies of W ) given by v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wn 7→
∏n

i=1 B(vi, wi),
so we get B⊗n by composing this with the bilinear pairing

V ⊗n ×W⊗m → V ⊗ · · · ⊗ V ⊗W ⊗ · · · ⊗W

that we constructed with much effort in §1.
Let us now specialize these considerations to the evaluation pairing B : V × V ∨ → F given by

B(v, `) = `(v). We get unique bilinear pairings

V ⊗n × (V ∨)⊗n → F, Symn(V )× Symn(V ∨) → F, ∧n(V )× ∧n(V ∨) → F

that are respectively characterized by the three formulas

(v1 ⊗ · · · ⊗ vn, `1 ⊗ · · · ⊗ `n) 7→
n∏

i=1

`i(vi), (v1 · · · · · vn, `1 · · · · · `n) 7→
∑
σ∈Sn

n∏
i=1

`i(vσ(i)),

and
(v1 ∧ · · · ∧ vn, `1 ∧ · · · ∧ `n) 7→ det(`i(vj)).

Are these perfect pairings? We shall see that the theory for symmetric powers is a little more tricky
than for tensor and exterior powers, so we first consider the latter two cases.

Theorem 3.1. The preceding bilinear pairings

V ⊗n × (V ∨)⊗n → F, ∧n(V )× ∧n(V ∨) → F

are perfect. If {ei} is a basis of V with dual basis {e∗i } in V ∨ then the dual basis to {ei1 ⊗· · ·⊗ ein}
is {e∗i1 ⊗ · · · ⊗ e∗in} (with 1 ≤ ij ≤ dim V ) and the dual basis to {ei1 ∧ · · · ∧ ein} is {e∗i1 ∧ · · · ∧ e∗in}
(with 1 ≤ i1 < · · · < in ≤ dim V ).

Proof. It suffices to check that the proposed bases and dual bases are in fact dual with respect to
the given pairings, and this is immediate from the given formulas for the pairings on elementary
products since e∗j (ei) vanishes for i 6= j and equals 1 for i = j. �

Corollary 3.2. There are natural isomorphisms (V ∨)⊗n ' (V ⊗n)∨ and ∧n(V ∨) ' (∧n(V ))∨.
Moreover, if B : V ×W → F is a perfect bilinear pairing then B⊗n and ∧n(B) are perfect bilinear
pairings.

Proof. The aspect concerning general perfect pairings B follows from the case of the evaluation
pairing against the dual space because a bilinear pairing B corresponds to a linear map B′ : W ' V ∨

in the sense that composing the evaluation pairing with 1V ×B′ recovers B and the perfectness of
B is equivalent to B′ being an isomorphism. �

The situation for symmetric powers is a bit more subtle because the pairing between ei1 · · · · · ein

and e∗i1 · · · · · e
∗
in

is generally not 1. To make this precise, suppose d = dim V is positive and fix a
monotone sequence I = {i1, . . . , in} of integers between 1 and d. Define

eI = ei1 · · · · · ein ∈ Symn(V ), eI∗ = e∗i1 · · · · · e
∗
in ∈ Symn(V ∨).

We claim that the pairing of eI and eI′∗ is zero when I ′ 6= I but that the pairing of eI and eI∗

is equal to m(I) def=
∏d

j=1 mj(I)!, where mj(I) is the number of 1 ≤ r ≤ n such that ir = j (so
m(I) = 1 if and only if I is a strictly increasing sequence). Note first of all that j with mj(I) = 0
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or 1 do not impact this product, so it is the repetitions among ir’s that are the real issue. For
two monotonically increasing sequences of n indices I and I ′ we compute

∏n
r=1 e∗i′r(eiσ(r)

) vanishes
unless iσ(r) = i′r for all r (in which case it equals 1), and the monotonicity condition on the ir’s
and the i′r’s implies that this non-vanishing holds if and only if I ′ = I and for each 1 ≤ j ≤ d
the permutation σ individually permutes the set of mj(I) consecutive indices r such that ir = j.
There are mj(I)! such permutations of the r’s with ir = j when mj(I) > 0, and so there are
m(I) =

∏d
j=1 mj(I)! such permutations in Sn in total. This shows that the pairing between eI and

eI′∗ vanishes for I ′ 6= I but that the pairing of eI and eI∗ is m(I), as claimed.
When 0 < char(F ) ≤ n (i.e., n! = 0 in F ) it follows that m(I) = 0 for some I, and so some of

these pairings are zero. Thus, the pairing of symmetric powers is not perfect in such cases. On the
other hand, when char(F ) = 0 or char(F ) > n (i.e., n! 6= 0 in F ) then m(I) 6= 0 in F for all I and
so the pairing between nth symmetric powers is perfect (though the bases {eI} and {eI∗} are not
dual to each other when n > 1 since some m(I) 6= 1 in F in such cases).

Remark 3.3. Assuming n! 6= 0 in F , we can divide through by the m(I)’s to arrange that the
pairing is a perfect duality between nth symmetric powers of V and V ∨ with the eI ’s dual to the
eI∗ ’s. However, this is a very bad thing to do, as the resulting pairings will depend very much on
the choice of basis {ei} of V (test V = F 2 for yourself).

Note that without restriction on F , our natural pairing of nth symmetric powers of V and V ∨

defines a natural linear map

(3) Symn(V ∨) → (Symn(V ))∨,

and (if V 6= 0) this is an isomorphism if and only if n! 6= 0 in F . Likewise, by the method of proof
of Corollary 3.2 (reducing to the case of the evaluation pairing), if V,W 6= 0 and B : V ×W → F
is a perfect bilinear pairing then Symn(B) is a perfect pairing if and only if n! 6= 0 in F .

We have now reached the point where we can explain what is “wrong” with the development
of tensor and exterior algebra in books of Munkres, Hoffman–Kunze, Spivak, and most others. In
these books, one finds that V ⊗W is defined as the space of bilinear pairings V ×W → F , which
is to say that they define it to be what we call (V ⊗W )∨ ' V ∨⊗W∨. Right away we see that this
is very bad: there is a confusion between a vector space and its dual, and all “naturality” results
will involve maps going in the wrong direction. Let us now discover why this forces such books to
introduce weird factorials in the definition of symmetric and wedge products, and why they wind
up defining symmetric and exterior powers as subspaces of tensor powers instead of as quotients (as
should be done). These problems are all introduced by the hidden dual operation just mentioned,
due to:

Theorem 3.4. Dualize the surjective quotient maps V ⊗n � Symn(V ) and V ⊗n � ∧n(V ) to get
maps (using (3) and Corollary 3.2)

Symn(V ∨) → (Symn(V ))∨ ↪→ (V ⊗n)∨ ' (V ∨)⊗n

and
∧n(V ∨) ' (∧n(V ))∨ ↪→ (V ⊗n)∨ ' (V ∨)⊗n.

For `1, . . . , `n ∈ V ∨, these composite maps satisfy

`1 · · · · · `n 7→
∑
σ∈Sn

`σ(1) ⊗ · · · ⊗ `σ(n), `1 ∧ · · · ∧ `n 7→
∑
σ∈Sn

sign(σ)`σ(1) ⊗ · · · ⊗ `σ(n).

Proof. This is an instructive exercise in unwinding the definitions of the maps involved. �
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Since we know that the symmetric and exterior powers are naturally quotients of tensor powers,
the composite maps in Theorem 3.4 give rise to self-maps

Symn(V ∨) → (V ∨)⊗n � Symn(V ∨), ∧n(V ∨) → (V ∨)⊗n � ∧n(V ∨).

It follows immediately from the formulas in Theorem 3.4 that these self-maps of the nth symmetric
and exterior powers of V ∨ are not the identity but rather are multiplication by the cardinality of Sn,
which is to say n!. This is why books with the wrong approach to tensor algebra are forced to define
symmetric and wedge powers only when n! 6= 0 in F (usually F = R), and using the “definitions”
given by the sums in Theorem 3.4 divided by n!: it is only with such division that they are computing
the correct products in the correct symmetric and exterior powers of the wrong space (namely, V ∨),
and without such factorials the associativity of symmetric and exterior multiplication as in Lemma
2.2 (with V ∨ secretly replacing V ) would break down (just as associativity of multiplication in R
would break down if we tried to redefine xy by multiplying by an extra factor of 7).


