
Math 396. Higher derivatives and Taylor’s formula via multilinear maps

Let V and W be finite-dimensional vector space over R, and U ⊆ V an open subset. Recall that
a map f : U → W is differentiable if and only if for each u ∈ U there exists a (necessarily unique)
linear map Df(u) : V →W such that

||f(u+ h)− (f(u) + (Df(u))(h))||
||h||

→ 0

as h → 0 in V (where the norms on the top and bottom are on V and W , and the choices do not
impact the definition since any two norms on a finite-dimensional R-vector space are bounded by
a constant positive multiple of each other). We want to interpret the theory of higher derivatives
in the language of multilinear mappings. From this vantage point we will acquire an insight into
the true meaning of the equality of mixed higher partial derivatives, and moreover Taylor’s formula
will take on its most natural formulation in a manner that looks virtually identical to the classical
version in calculus. (In contrast, the usual coordinatized presentation of Taylor’s formula that
involves hoardes of factorials and indices; we will derive the classical presentation from the “clean”
version that we prove.)

1. Some motivation

If U is open in Rn and f : U → Rm is a map, there’s a down-to-earth way to define what it
means to say that f is p-times continuously differentiable: for each component function fi of f
(1 ≤ i ≤ m) all p-fold iterated partial derivatives

∂xj1 . . . ∂xjpfi : U → R

should exist and be continuous on U , for arbitrary collections (with repetition allowed) of p indices
1 ≤ j1, . . . , jp ≤ n. If this holds for all p ≥ 1, we say f is a C∞ map. We want to give an alternative
definition that does not require coordinates and is better-suited to giving a clean statement and
proof of the multivariable Taylor formula.

To get started, let V and W be finite-dimensional vector spaces over R and let f : U → W be
a map on an open subset U ⊆ V . If f is differentiable, then for each u ∈ U we get a linear map
Df(u) : V →W . Hence, we get a map

Df : U → Hom(V,W )

into a new target vector space, namely Hom(V,W ). In terms of linear coordinates, this is a “matrix-
valued” function on U , but we want to consider this target space of matrices as a vector space in
its own right and hence on par with the initial target W . By avoiding coordinates it will be easier
to focus on the underlying linear structure of the target and to not put too much emphasis on
whether the target is a space of column vectors, matrices, and so on.

What does it mean to say that Df : U → Hom(V,W ) is continuous? Upon fixing linear
coordinates on V and W , such continuity amounts to continuity for each of the component functions
∂xjfi : U → R of the matrix-valued Df , and so the concrete definition of f being C1 (namely,
that each ∂xjfi exists and is continuous on U) is equivalent to the coordinate-free property that
f : U → W is differentiable and that the associated total derivative map Df : U → Hom(V,W )
from U to a new vector space Hom(V,W ) is continuous. With this latter point of view, wherein
Df is a map from the open set U ⊆ V into a finite-dimensional vector space Hom(V,W ), a very
natural question is this: what does it mean to say that Df is differentiable, or even continuously
so?
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Lemma 1.1. Suppose f : U → W is a C1 map, and let Df : U → Hom(V,W ) be the associated
total derivative map. As a map from an open set in V to a finite-dimensional vector space, Df is
C1 if and only if (relative to a choice of linear coordinates on V and W ) all second-order partials
∂xj1∂xj2fi : U → R exist and are continuous.

Proof. Fixing linear coordinates identifies Df with a map from an open set U ⊆ Rn to a Euclidean
space of m × n matrices, with component functions ∂xjfi for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Hence,
this map is C1 if and only if these components admit all first-order partials that are moreover
continuous, and this is exactly the statement that the fi’s admit all second-order partials and that
such partials are continuous. �

Let us say that f : U → W is C2 when it is differentiable and Df : U → Hom(V,W ) is C1. By
the lemma, this is just a fancy way to encode the concrete condition that all component functions of
f (relative to linear coordinatizations of V and W ) admit continuous second-order partials. What
sort of structure is the total derivative of Df? That is, what sense can we make of the map

D2f = D(Df) : U → Hom(V,Hom(V,W ))?

More to the point, how do we work with the vector space Hom(V,Hom(V,W ))? I claim that it
is not nearly as complicated as it may seem, and that once we understand how to think about
this iterated Hom-space we will see that the theory of higher-order partials admits a very pleasing
reformulation in the language of multilinear mappings. The underlying mechanism is a certain
isomorphism in linear algebra, so we now digress to discuss the algebraic preliminaries in a purely
algebraic setting over any field.

2. Hom-spaces and multilinear mappings

Let V , V ′, W be arbitrary vector spaces over a field F . (We will only need the finite-dimensional
case, but such a restriction is not relevant for what we are about to do on the algebraic side.)
We want to establish some general relationships between spaces of bilinear (and more generally,
multilinear) mappings. This will help us to think about the higher-dimensional “total second
derivative” map as a symmetric bilinear pairing (the symmetry encoding the equality of mixed
second-order partials for a C2 function), and similarly for higher-order derivatives using multilinear
mappings.

Let BilF (V ×V ′,W ) denote the set of F -bilinear maps V ×V ′ →W , endowed with its natural F -
vector space structure (i.e., using the linear structure on W we can add such pairings, and multiply
them by scalars, in the usual pointwise manner on V × V ′). Suppose we’re given a bilinear map

ψ : V × V ′ →W.

Thus, for each fixed v ∈ V we get a linear map

ψ(v, ·) : V ′ →W

given by v′ 7→ ψ(v, v′). In other words, we have a set-theoretic map

V → HomF (V ′,W )

which assigns to any v ∈ V the linear map ψ(v, ·).
We wish to show that this set map V → HomF (V ′,W ) is also linear, and hence gives rise to a

general construction assigning to each bilinear ψ : V × V ′ →W an element in

HomF (V,HomF (V ′,W )).
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That is, we’ll have constructed a map of sets

BilF (V × V ′,W )→ HomF (V,HomF (V ′,W )).

In fact, we’ll even show that this latter map is linear. And we’ll go one step further and show it is
a linear isomorphism.

Who cares? Why would anyone want to deal with such a bewildering array of complexity?
The point is this. In the higher-dimensional theory of the second derivative, we have seen the
intervention of

HomF (V,Hom(V,W ))

(with F = R). But this may seem to be a hard thing to internalize. What does it mean? The
construction we outlined above will essentially lead us to the fact that this iterated Hom-space can
be naturally (and linearly) identified with the space

BilF (V × V,W )

of bilinear pairings on V with values in W . This latter point of view is much more tractable and
geometric, as we shall see, and leads to the higher-dimensional second derivative test. Thus, the
ability to repackage HomF (V,HomF (V ′,W )) into a space of bilinear maps is quite convenient in
various contexts.

We claim that the map

ξ : HomF (V,HomF (V ′,W )) → BilF (V × V ′,W )
ϕ 7→ ((v, v′) 7→ (ϕ(v))(v′))

is linear and the map

η : BilF (V × V ′,W ) → HomF (V,HomF (V ′,W ))
ψ 7→ (v 7→ (v′ 7→ ψ(v, v′)))

is also linear, and that these are inverse to each other (and hence are linear isomorphisms). This
provides the explicit mechanism for translating into the language of bilinear pairings. Part of the
work necessary to verify these claims is to see that things live where they should (e.g., in the first
map ξ, we must check that the expression ϕ(v)(v′) is actually bilinear in v and v′).

We first check that ξ(ϕ) : V × V ′ →W is actually bilinear. That is, we want

(v, v′) 7→ (ϕ(v))(v′)

to be bilinear, which is to say that it should be linear in v for fixed v′ and it should be linear in
v′ for fixed v. Since ϕ(v) ∈ HomF (V ′,W ) is a linear map, this gives exactly the linearity in v′

for fixed v. Meanwhile, if v′ is fixed that since v 7→ ϕ(v) is linear (by the very definition of the
Hom-space in which ϕ lives!) we have

ϕ(c1v1 + c2v2) = c1ϕ(v1) + c2ϕ(v2)

in HomF (V ′,W ). Now evaluating both sides on v′ ∈ V ′ and recalling what it means to add and
scalar multiply in HomF (V ′,W ) yields

ϕ(c1v1 + c2v2)(v′) = c1ϕ(v1)(v′) + c2ϕ(v2)(v′).

This is exactly the linearity in v for fixed v′. This completes the verification that ξ(ϕ) lives in the
asserted space of bilinear maps.
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Now that ξ makes sense, let’s check it is linear. We want ξ(cϕ + c′ϕ′) = cξ(ϕ) + c′ξ(ϕ′) in
BilF (V × V ′,W ). We simply evaluate on a pair (v, v′) ∈ V × V ′:

ξ(cϕ+ c′ϕ′)(v, v′) = ((cϕ+ c′ϕ′)(v))(v′)
= (c(ϕ(v)) + c′(ϕ′(v)))(v′)
= c(ϕ(v))(v′) + c′(ϕ′(v))(v′)
= cξ(ϕ)(v, v′) + c′ξ(ϕ′)(v, v′)
= (cξ(ϕ) + c′ξ(ϕ′))(v, v′)

so the linearity of ξ follows.
Now we turn to study η. Pick ψ ∈ BilF (V × V ′,W ). For v ∈ V , the map v′ 7→ ψ(v, v′) is linear

in v′ (as ψ is bilinear), so in other words fv : v′ 7→ ψ(v, v′) is an element in HomF (V ′,W ). Now we
check that the map V → HomF (V ′,W ) defined by v 7→ fv is actually linear, so indeed η(ψ) will
make sense as an element in HomF (V,HomF (V ′,W )). In order to verify the linearity of v 7→ fv,
we must show

fc1v1+c2v2 = c1fv1 + c2fv2

inside of HomF (V ′,W ). That is, upon evaluating both sides at an arbitrary v′ ∈ V ′, we want (using
the definition of fv)

ψ(c1v1 + c2v2, v
′) ?= c1fv1(v′) + c2fv2(v′) = c1ψ(v1, v

′) + c2ψ(v2, v
′).

But this follows from the bilinearity of ψ.
With η at least now meaningful, we check it is actually linear. That is, we want

η(c1ψ1 + c2ψ2) = c1η(ψ1) + c2η(ψ2).

In order to check an equality among elements in HomF (V,HomF (V ′,W )), we evaluate on an arbi-
trary v ∈ V and hope to get the same result in HomF (V ′,W ) on each side. That is, we want an
equality

η(c1ψ1 + c2ψ2)(v) = c1η(ψ1)(v) + c2η(ψ2)(v)
in HomF (V ′,W ). To check an equality in here, we evaluate each side on an arbitrary v′ ∈ V ′ and
hope to get the same result on each side. That is, we want an equality

(c1ψ1 + c2ψ2)(v, v′) = c1ψ1(v, v′) + c2ψ2(v, v′).

But this is how the linear structure on BilF (V × V ′,W ) is defined!
Having done the exhaustive work to check that ξ and η are meaningful and linear, the fact that

they’re inverses is actually a lot easier, since it is just a set-theoretic problem of computing the
composites. First we consider ξ ◦ η. Evaluating on a bilinear map ψ : V × V ′ → W , we want
ξ(η(ψ)) = ψ, or in other words

ξ(η(ψ))(v, v′) = ψ(v, v′)
for all v ∈ V , v′ ∈ V ′. By unwinding the definitions of ξ and η, we compute

ξ(η(ψ))(v, v′) = (η(ψ)(v))(v′) = ψ(v, v′),

as desired. To compute the composite the other way around, we choose ϕ ∈ HomF (V,HomF (V ′,W ))
and we want η(ξ(ϕ)) = ϕ. Evaluating both sides on v ∈ V , we want

(ξ(ϕ))(v, ·) = ϕ(v)

in HomF (V ′,W ). Evaluating on an arbitrary v′ ∈W , we want

ξ(ϕ)(v, v′) = (ϕ(v))(v′).
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But this is true by the very definition of the bilinear form ξ(ϕ)!
Having succeeded in identifying HomF (V,HomF (V ′,W )) with Bil(V × V ′,W ), we want to push

this further. For any positive integer d and vector spaces V1, . . . , Vd, and W over F , we will now
define a natural F -linear isomorphism

HomF (V1,HomF (V2,HomF (V3, . . . ,HomF (Vd,W ) . . . ))) ' Mult(V1 × · · · × Vd, ,W )

to the space of multilinear mappings

µ : V1 × · · · × Vd →W

(made into an F -vector space just as in the case of Mult(V1 × V2,W ) = Bil(V1 × V2,W ) for d = 2,
namely via pointwise operations on V1× · · ·×Vd and the linear structure on W ). In the case d = 2
we will recover the preceding considerations in the bilinear setting. Much of this is quite similar to
what was just done, so we won’t write out the complete details of a mechanical argument which
was worked out fully above when it essentially carries over verbatim in the new situation.
Theorem 2.1. With notation as introduced above, there is a natural linear isomorphism

ξ : HomF (V1,HomF (V2,HomF (V3, . . . ,HomF (Vd,W ) . . . ))) ' Mult(V1 × · · · × Vd, ,W ).

Proof. We define ξ as follows: for ϕ ∈ HomF (V1,HomF (V2,HomF (V3, . . . ,HomF (Vd,W ) . . . ))),
ξ(ϕ) ∈ Mult(V1 × · · · × Vd, ,W ) is the multilinear mapping

(ξ(ϕ))(v1, . . . , vd) = (. . . ((ϕ(v1))(v2))(. . . ))(vd) ∈W.

If d = 2, this recovers our construction in the bilinear case: (ξ(ϕ))(v1, v2) = (ϕ(v1))(v2). If d = 3
then

(ξ(ϕ))(v1, v2, v3) = ((ϕ(v1))(v2))(v3) ∈W.
Make sure you understand the definition of ξ in these special cases, and then the general case,
before reading further.

The definition of ξ(ϕ) is multilinear in any one of v1, . . . , vd with all other vj ’s held fixed; the
argument goes just as in the previous section. Work out the case d = 3 (and review the case d = 2)
to see what is going on, and then you’ll see the general pattern. Thus, ξ(ϕ) makes sense as a
multilinear mapping from V d into W . This defines ξ as a map of sets. To see that ξ is actually
linear in ϕ amounts to exactly the same style of calculation we did earlier, once one sees that the
collection of vectors v1, . . . , vd essentially moves through the calculation rather formally. We leave
this to the reader (and again suggest both reviewing the case d = 2 and working out d = 3 by hand
to see the pattern in the argument).

Next we define an inverse

η : Mult(V1 × · · · × Vd, ,W )→ HomF (V1,HomF (V2,HomF (V3, . . . ,HomF (Vd,W ) . . . ))).

For a multilinear ψ, we define η(ψ) by the rule

(. . . (((η(ψ))(v1))(v2)) . . . )(vd) = ψ(v1, v2, . . . , vd).

To see that this makes sense, let us focus on the case d = 3. In this case, for a fixed v1 ∈ V1, the
linear mapping (η(ψ))(v1) ∈ HomF (V2,HomF (V3,W )) is the map sending a fixed v2 ∈ V2 to the
element of HomF (V3,W ) given by v3 7→ ψ(v1, v2, v3). When v1 and v2 are fixed, this construction
is indeed linear in v3 because ψ is linear in v3 when the other variables are fixed. Moreover, for a
fixed v1 the association v2 7→ ψ(v1, v2, ·) ∈ HomF (V3,W ) really is linear in v2 because ψ is linear
in v2 when the other variables are fixed, and because the linear structure on the target is defined
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by pointwise operations. (This goes as in our earlier direct treatment of the bilinear case d = 2.)
Finally, it follows from linearity of ψ in the first variable when the others are fixed that

v1 7→ (v2 7→ ψ(v1, v2, ·)) ∈ HomF (V2,HomF (V3,W ))

is itself linear in v1. That is, η(ψ) really is a linear map from V1 to HomF (V2,HomF (V3,W )), so
for d = 3 the map η makes sense as a set-theoretic map from a space of multilinear maps to an
interated Hom-space. Once you understand the case d = 3, you should be able to see that the
general case works in exactly the same manner.

With η at least defined now as a map of sets, we have to check it is linear. Here again the
argument is basically identical to what we did in the case d = 2 because of how the linear structure
on spaces of multilinear mappings is defined. The fact that ξ and η are inverse to each other is
exactly the same calculation that we did in the case d = 2. The details are left to the reader. �

Setting V1 = · · · = Vd, we get:
Corollary 2.2. Let V and W be vector spaces over a field. For any positive integer d, there is a
natural linear isomorphism

HomF (V,HomF (V, . . . ,HomF (V,W ) . . . )) ' MultF (V d,W )

(with d iterated Hom’s) to the space of multilinear mappings V × · · · × V →W on a d-fold product
of copies of V .

3. Higher derivatives as symmetric multilinear mappings

This section is partly a review of the theory of higher derivatives from Math 296, and also a
reformulation of that theory in terms of multilinear mappings. Let V and W be finite-dimensional
vector spaces over R, and let U be open in V . Let f : U →W be a map of sets. We say f is a C0

map if it is continuous. We have seen above that f is differentiable with

Df : U → Hom(V,W )

continuous if and only if, with respect to a choice of linear coordinates, the components fi of f admit
continuous first-order partials across all of U with respect to the coordinates on V . This property
of f is called being a C1 map, and we may rephrase it as the property that f is differentiable and
Df is continuous. We now make a recursive definition:
Definition 3.1. In general, for an integer p ≥ 1 we say that f : U →W is a Cp map, or is p times
continuously differentiable, if it is differentiable and

Df : U → Hom(V,W )

is a Cp−1 map. If f is a Cp map for every p, we shall say that f is a C∞ map, or is infinitely
differentiable.

Even if we are ultimately most interested in C∞ mappings, the merit of first working in the
context of Cp maps with finite p is that it opens the door to the possibility of doing proofs by
induction on p ≥ 0 (something we can’t do if we insist on working from the start with only the
concept of an infinitely differentiable map).

Assuming f is C2, we write D2f(u) to denote D(Df)(u), and by definition since Df : U →
Hom(V,W ) is a differentiable map from an open in V to the vector space Hom(V,W ), we see that
D2f(u) is a linear map from V to Hom(V,W ). That is, we have

D2f : U → Hom(V,Hom(V,W ))
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and this is continuous (as f is C2). More generally, if f is Cp then for i ≤ p we write Dif =
D(Di−1f), and arguing recursively (check low-degree cases by hand) we see that Dpf(u) is a linear
map from V to Hom(V,Hom(V, . . . ,Hom(V,W ) . . . )) where there are p − 1 iterated Hom’s. That
is, we have

Dpf : U → Hom(V,Hom(V, . . . ,Hom(V,W ), . . . ))
where there are p iterated Hom’s. By Corollary 2.2, we may rewrite this:

Dpf : U → Mult(V p,W ).

It behooves us to now relate our abstract definition of Cp maps with a more down-to-earth one
in terms of iterated partials. We begin with:
Theorem 3.2. Suppose V = Rn and W = Rm. Let U ⊆ V be open and let fi : U → R denote
the ith component of f , so f is described as a map f = (f1, . . . , fm) : U → Rm = W . Let p ≥ 0 be
a non-negative integer. Then f is a Cp map if and only if all p-fold iterated partial derivatives of
the fi’s exist and are continuous on U . Likewise, f is C∞ if and only if all fi’s admit all iterated
partials of all orders.

The criterion in this theorem is exactly the traditional definition of a Cp map for 1 ≤ p ≤ ∞.

Proof. We induct on p, the case p = 0 being the old result that a map f to a product space is
continuous if and only if its component maps fi are continuous. For p = 1, the theorem is our
earlier observation that f is differentiable with Df : U → Hom(V,W ) continuous if and only if the
component functions fi of f admit continuous first-order partials.

Now we assume p > 1, so in either direction of implication in the theorem we know (from the
C1 case which has been established) that f admits a continuous derivative map Df and that all
partials ∂xjfi exist as continuous functions on U . Also, we know that the map

Df : U → Hom(V,W ) ' Matm×n(R)

to the vector space of m×n matrices has as its component functions (i.e., “matrix entries”) precisely
the first-order partials ∂xjfi : U → R.

By definition, f is Cp if and only if the map Df is Cp−1, but since this latter map has the ∂xjfi’s
as its component functions, by the inductive hypothesis applied to Df (with the target vector space
now Hom(V,W ) rather than W , and linear coordinates given by matrix entries), it follows that
Df if Cp−1 if and only if all ∂xjfi’s admit all (p− 1)-fold iterated partial derivatives in the linear
coordinates on V and that these are all continuous. Since an arbitrary (p − 1)-fold partial of an
arbitrary first order partial ∂xjfi is nothing more or less than an arbitrary p-fold partial of fi with
respect to the linear coordinates on V , we conclude that f is Cp if and only if all p-fold partials of
all fi’s with respect to the linear coordinates on V exist and are continuous. �

Let f : U →W be a Cp mapping with p ≥ 1, and consider the continuous pth derivative mapping

Dpf : U → Mult(V p,W ).

We want to describe this in terms of partial derivatives using linear coordinates on V and W .
That is, we fixed ordered bases {e1, . . . , en} of V and {w1, . . . , wm} of W , so for each u ∈ U the
multilinear mapping

Dpf(u) : V p →W = Rm

is uniquely determined by the m-tuples

Dpf(u)(ej1 , . . . , ejp) ∈W = Rm

for 1 ≤ j1, . . . , jp ≤ n. What are the m components of this vector in Rm? The answer is very nice:
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Theorem 3.3. With notation as above, let x1, . . . , xn ∈ V ∨ be the dual basis to the basis {e1, . . . , en}
of V . Let ∂j denote ∂xj , and let f1, . . . , fm be the component functions of f : U → W with respect
to the basis of wi’s of W . For 1 ≤ j1, . . . , jp ≤ n,

Dpf(u)(ej1 , . . . , ejp) = ((∂jp . . . ∂j1f1)(u), . . . , (∂jp . . . ∂j1fm)(u)) ∈ Rm.

Proof. We induct on p, the base case p = 1 being the old theorem on the determination of the
matrix for the derivative map Df(u) : V → W in terms of first-order partials of the component
functions for f (using linear coordinates on W to define these component functions, and using
linear coordinates on V to define the relevant partial derivative operators on these functions). Now
we assume p ≥ 2.

By definition of the isomorphism in Corollary 2.2, which is how we identify Dpf(u) with a
multilinear map V p →W , we have

Dpf(u)(v1, . . . , vp) = (. . . ((Dpf(u)(v1))(v2)) . . . )(vp) ∈W
for any ordered p-tuple v1, . . . , vp ∈ V . Let F = Df : U → Hom(V,W ). Using the given linear
coordinates on V and W , the associated “matrix entries” are taken as the linear coordinates on
Hom(V,W ) to get component functions Fij for F (with 1 ≤ i ≤ m and 1 ≤ j ≤ n). Considering
v2, . . . , vp as fixed but v1 as varying, we have

Dpf(u)(·, v2, . . . , vp) = (. . . ((Dp−1F )(u)(v2)) . . . )(vp) = Dp−1F (u)(v2, . . . , vp) ∈ Hom(V,W )

where Hom(V,W ) is the target vector space for F . (Make sure you understand this displayed equa-
tion.) Setting vk = ejk for 2 ≤ k ≤ p, the inductive hypothesis applied to F : U → Hom(V,W ) =
Matm×n(R) gives

Dp−1F (u)(ej2 , . . . , ejp) = (∂jp . . . ∂j2Fij(u)) ∈ Matm×n(R).

In view of how the matrix coordinatization of Hom(V,W ) was defined using the chosen ordered
bases on V and W , evaluating on ej1 in Hom(V,W ) ' Matm×n(R) corresponds to pass to the j1th
column of a matrix. Hence taking v1 = ej1 gives

Dpf(u)(ej1 , ej2 , . . . , ejp) = (∂jp . . . ∂j2F1j1(u), . . . , ∂jp . . . ∂j2Fmj1(u)) ∈ Rm = W.

By the C1 case, F = Df : U → Hom(V,W ) = Matm×n(R) has ij-component function Fij = ∂jfi,
so Fij1 = ∂j1fi. Thus, we get the desired formula. �

By induction on the positive integer p, the theorem on equality of mixed partials for C2 functions
gives the general equality of mixed p-fold partials for Cp functions f on U : for an ordered p-
tuple (j1, . . . , jp) of integers between 1 and n the function ∂xj1 . . . ∂xjpf : U → R is insensitive to
permutation of the jk’s. This has the following beautiful coordinate-free interpretation:
Corollary 3.4. For any positive integer p and any Cp map f : U →W on an open subset U ⊆ V ,
the pth total derivative map Dpf : U → Mult(V p,W ) takes values in the subspace of symmetric
multilinear maps. That is, for u ∈ U and v1, . . . , vp ∈ V , Dpf(u)(v1, . . . , vp) ∈ W is invariant
under permutation of the vj’s.

In particular, if f : U → W is C∞ then for all positive integers p, the multilinear mapping
Dpf(u) : V p →W is symmetric for all u ∈ U .

Proof. The symmetry assertion is that for any σ ∈ Sp and u ∈ U ,

Dpf(u)(v1, . . . , vp) = Dpf(u)(vσ(1), . . . , vσ(p))

in W for any v1, . . . , vp ∈ V . Both sides of the equality are multilinear in (v1, . . . , vp) ∈ V p, and so
to check the equality it suffices to check when the vj ’s are taken from a fixed basis {e1, . . . , en} of
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V . Taking vk = ejk for 1 ≤ j1, . . . , jp ≤ n and inspecting the proposed equality in each component
of the vector values in W ' Rm (using a basis of W ), Theorem 3.3 reduces the proposed equality
to the known symmetry of p-fold mixed partials on Cp functions. �

Example 3.5. When p = 2, W = R, and dimV = n with linear coordinates x1, . . . , xn on V relative
to some ordered basis e = {e1, . . . , en}, then the Hessian Hf (u) = (D2f)(u) is the symmetric
bilinear form on V (or equivalently, self-dual map V → V ∨) represented by the matrix

e∗ [Hf (a)]e =
(

∂2f

∂xi∂xj
(a)
)
.

Hence, the Hessian that appears in the second derivative test in several variables is not a linear map
(as might be suggested by its traditional presentation as a matrix) but rather is intrinsically seen
to be a symmetric bilinear form (and the traditional matrix is thereby seen to be an instance of
the description of symmetric bilinear forms in terms of matrices for self-dual mappings V → V ∨).

We now apply the Hessian to give the higher-dimensional “second derivative” test:

Theorem 3.6. Let U ⊆ V be an open set and let f : U → R be a C2 function. Suppose that a
is a critical point for f in the sense that Df(a) = 0 for some a ∈ U . Let Hf (a) : V × V → R be
the symmetric bilinear Hessian D2f(a), and let qf,a : V → R be the associated quadratic form. If
Hf (a) is non-degenerate then f has an isolated local minimum at a when qf,a is positive-definite,
an isolated local maxiumum at a when qf,a is negative-definite, and neither a local minimum nor
maximum in the indefinite case.

In the 1-dimensional case this recovers the usual second derivative test from calculus at critical
points: the non-degeneracy condition specializes to the 1-variable condition f ′′(a) 6= 0, and that
leaves only the positive-definite and negative-definite cases. The remaining possibities are so-
called “saddle points” and are a strictly higher-dimensional phenomenon. As with the second
derivative test in calculus, when Hf (a) is not non-degenerate, no inference can be made. (Consider
f(x, y) = ±(x4 + y4), for which Df(0, 0) = 0 and D2f(0, 0) = 0.)

Proof. Replacing f with f − f(a), we may assume f(a) = 0. By Taylor’s formula in the higher-
dimensional formulation given in Theorem 5.1, for small h we have f(a+ h)/||h||2 = Hf (a)(ĥ, ĥ) +
Ra(h) = qf,a(ĥ) + Ra(h) where Ra(h) → 0 as h → 0 and ĥ = h/||h|| is a unit vector (with respect
to the norm) pointing in the same direction as h. (Here we have fixed an arbitrary norm on V ).
Thus, f(a+ h)/||h||2 is approximated by qf,a(ĥ) up to an error that tends to 0 locally uniformly in
a as h→ 0. Provided that qf,a is non-degenerate, in the positive-definite case it is bounded below
by some c > 0 on the unit sphere for the chosen norm, and hence (depending on c) by taking h
sufficiently small we get f(a+h)/||h||2 ≥ c/2 > 0. This shows that f has an isolated local minimum
at a, and a similar argument gives an isolated local maximum at a if qf,a is negative-definite.

Now suppose that qf,a is indefinite. By the spectral theorem, if we choose the norm on V to come
from an inner product then the pairing Hf (a) is given by the inner product against an orthogonal
linear map. Hence, in such cases we can find an orthnormal basis with respect to which qf,a is
diagonalized, and so in the indefinite case there are lines on which the restriction of qf,a is positive-
definite and there are lines on which the restriction of qf,a is negative-definite. Approaching a along
such directions gives different types of behavior for f at a (isolated local minimum when approaching
through the positive light cone for qf,a, and an isolated local maximum when approaching through
the negative light cone for qf,a, provided the approach is not tangential to the null cone of vectors
v ∈ V for which qf,a(v) = 0). This gives the familiar “saddle point” picture for the behavior of
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f , with the shape of the saddle governed by the eigenspace decomposition for the orthogonal map
arising from the Hessian Hf (a) and the choice of inner product on V . �

4. Higher-dimensional Taylor’s formula: motivation and preparations

Fix an integer p ≥ 1. As an application of the formalism of higher derivatives as multilinear
mappings, we wish to state and proof Taylor’s formula (with an integral remainder term) for Cp

maps f : U → W on any open U ⊆ V . In the special case V = W = R and U a non-empty open
interval, this will recover the usual Taylor formula from calculus. There is also a more traditional
version of the multivariable Taylor formula given with loads of mixed partials and factorials, and
we will show that this traditional version is equivalent to the version we will prove in the language
of higher derivatives as multilinear mappings. The power of our point of view is that it permits
one to give a proof of Taylor’s formula that is virtually identical in appearance to the proof in the
classical case (with V = W = R); proofs of Taylor’s formula in the classical language of mixed
partials tend to become a big mess with factorials, and the integral formula and error bound for
the remainder term are unpleasant to formulate in the classical language.

Before we state the general case, let us first recall the 1-variable Taylor formula for a Cp function
f : I → R on an interval I ⊆ R with a ∈ I an interior point: for |h| sufficiently small so that
(a− r, a+ r) ∈ I we have

f(a+ h) = f(a) + f ′(a)h+
f ′′(a)

2!
· h2 + · · ·+ f (p)(a)

p!
· hp +Rp,a(h)

with error term given by

(1) Rp,a(h) =
∫ 1

0

f (p)(a+ th)− f (p)(a)
(p− 1)!

· (1− t)p−1hp dt = hp(· · · ),

where |(. . . )| can be made below any desired ε for h near 0 (uniformly for a in a compact subinterval
of I) since the continuous f (p) is uniformly continuous on compacts in I. In particular, as h → 0
we have |Rp,a(h)|/|h|p → 0 uniformly for a in a compact subinterval of I.

The remainder formula (1) is related to the version on p. 392 of the Spivak text by means of the
change of variable t ↔ (t − a)/h to convert

∫ a+h
a into

∫ 1
0 . The reason we want to get parameters

out of the integral bounds is that we’re going to want to be in a situation where a and h will
become vectors. Strictly speaking, our integral formula for the remainder is a mild (but useful!)
modification on the integral formula in Spivak’s book. The point is that Spivak merely gives a Taylor
expansion to degree p− 1 and integrates with f (p)(a+ th), whereas we give a Taylor expansion to
degree p (which seems fitting for a Cp function!) and in the integral we are subtracting the constant
f (p)(a). However, if one directly integrates our subtraction term f (p)(a)(1 − t)p−1hp/(p − 1)! one
gets f (p)(a)hp/p!, and so this exactly cancels the degree-p Taylor polynomial term that we have
inserted. Hence, the formula above really is equivalent to what is in Spivak’s Calculus.

In order to state a higher-dimensional Taylor formula that resembles the classical case, we need
some convenient notation:

Definition 4.1. For symmetric T ∈ Mult(V p,W ) and v ∈ V , T (vp) means T (v, . . . , v). For
v, v′ ∈ V and 0 ≤ i ≤ p, T (vi, v′p−i) means T (v, . . . , v, v′, . . . , v′) with v appearing i times and v′

appearing p− i times.

In the second piece of notation introduced here, it actually does not matter where the v’s and v′’s
are placed, as T is assumed to be symmetric. The utility of this notation is due to the “binomial
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formula”:

T ((v + v′)p) =
p∑
i=0

(
p

i

)
T (vi, v′p−i).

The proof is the same as for the binomial formula. Indeed, since

T ((v + v′)p) = T (v + v′, . . . , v + v′)

with p appearances of v+ v′, if we expand out in each slot via multilinearity of T , we get 2p terms,
each consisting of T evaluated on some set of v’s and v′’s. The symmetry of T ensures that the
value of each term depends only on the number of v’s and v′’s, and not on their specific positions
(this plays the role of the commutative law of multiplication in the usual proof of the binomial
theorem), and so T ((v + v′)p) is given as a sum of terms T (vi, v′p−i) with 0 ≤ i ≤ p, and the term
for a given i shows up as many times as there are i-element subsets of a set of size p. This gives
the binomial multiplier coefficients.

In general, the higher-dimensional analogue of the term

f (i)(a)
i!

· hi ∈ R

in Taylor’s formula is

(2)
((Dif)(a))

i!
(h(i)) ∈W

where
h(i) = (h, . . . , h) ∈ V i.

For example, when i = 2, W = R, and V has linear coordinate functions x1, . . . , xn relative to
some ordered basis e, then

(3)
((D2f)(a))

2!
(h, h) =

1
2!

[h]te · e∗ [Hf (a)]e · [h]e =
1
2!

[h]te ·
(

∂2f

∂xi∂xj
(a)
)
· [h]e,

where [h]e is the column vector encoding the expansion of h ∈ V in the standard e-coordinates
(and [h]te is the corresponding transposed row vector). Expanding out the bilinear expression on
the right side of (3), the cross-terms

hihj
∂2f

∂xi∂xj
(a)

for i 6= j appear twice, cancelling out the 2! in the denominator, so we get

(4)
((D2f)(a))

2!
(h, h) =

∑
i<j

∂2f

∂xi∂xj
(a) · hihj +

m∑
i=1

1
2!
∂2f

∂x2
i

(a) · h2
i .

The general shape of (2) in terms of partial derivatives, generalizing (4), is given by the following
theorem.
Theorem 4.2. Let dimV = n <∞ and choose an ordered basis, with associated linear coordinate
functions x1, . . . , xn. Let f : U → W be a Cp map, with U ⊆ V open. Choose a ∈ U and r > 0
such that Br(a) ⊆ U for a choice of norm on V . Choose h =

∑
hjej ∈ V with ||h|| < r. For

non-negative integers k ≤ p we have an equality

(5)
(Dkf)(a)

k!
(h(k)) =

∑
i1+···+in=k

1
i1! · · · in!

hi11 · · ·h
in
n ·

∂kf

∂xi11 · · · ∂x
in
n

(a),
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in W , where h(k) = (h, . . . , h) ∈ V k and the sum is taken over all ordered n-tuples (i1, . . . , in) of
non-negative integers whose sum is k.

In this theorem we are taking partial derivatives of the W -valued (rather than R-valued) mapping
f , but such partials only require the target to be a finite-dimensional vector space rather than to
be R. (Alternatively, one can choose a basis to identify W with some Rm and then such W -valued
partials are componentwise computed as iterated partials of the R-valued Cp component functions
of f .) It is easy to check that when k = 2 this recovers the explicit formula (4). It is also instructive
to write out the right side of this general formula says for k = 3:

n∑
i=1

h3
i

3!
· ∂

3f

∂x3
i

(a) +
∑
i6=j

h2
ihj

2! · 1!
· ∂2f

∂x2
i ∂xj

(a) +
∑

i6=j 6=k 6=i
hihjhk ·

∂3f

∂xi∂xj∂xk
(a).

Now let’s proof Theorem 4.2.

Proof. If we multiply through both sides of (5) by k!, then on the left side we get

((Dkf)(a))(h, . . . , h)

and on the right side we have coefficients

k!
i1! · · · in!

.

This ratio is just a binomial coefficient when n = 2 and in general is a positive integer which counts
exactly the number of ways to decompose a set S of k things into an ordered collection of disjoint
subsets S1, . . . , Sn with Sj of size ij . For n = 2 this is just the combinatorial interpretation of the
coefficients in the binomial theorem, and for n > 2 it analogously corresponds to the “multinomial
theorem” (which is readily verified by induction).

In other words, if we consider all k-fold partial derivative operators

(6)
∂k

∂xj1 · · · ∂xjk
with ordered k-tuples of indices (j1, . . . , jk), then the ordering among the k partial derivative oper-
ators ∂/∂xjs does not affect the value of (6) and if we let it denote the number of times t appears
in a fixed (j1, . . . , jk), then (6) can be rewritten as

∂k

∂xi11 · · · ∂x
in
n

,

and this particular ordered n-tuple of “exponents” (i1, . . . , in) arises from exactly

k!
i1! · · · in!

of the expressions (6) as we run over all k-tuples (j1, . . . , jk) with 1 ≤ j1, . . . , jk ≤ n. Thus, k! times
(5) can be written in the form

(7) ((Dkf)(a))(h, . . . , h) ?=
∑

(j1,...,jk)

hj1 · · ·hjk ·
∂kf

∂xj1 · · · ∂xjk
(a)

in W where the sum is taken over all nk ordered k-tuples (j1, . . . , jk) of integers between 1 and n.
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A more general assertion we can try to prove is

(8) ((Dkf)(a))(v1, . . . , vk) =
∑

(j1,...,jk)

cj1,1 · · · cjk,k ·
∂kf

∂xj1 · · · ∂xjk
(a),

where vs =
∑
cisei ∈ V are k arbitrary vectors (setting all vs’s to be equal to a common h ∈ V then

recovers (7)). We will prove the more general (8). By multilinearity of both sides in (v1, . . . , vk) ∈
V k, it suffices to treat the case when the vs’s come from the initially chosen basis of V . This special
case is exactly the identity in Theorem 3.3. �

5. Taylor’s formula: statement and proof

Let V and W be finite-dimensional over R, U an open in V , and f : U → W a Cp map with
p ≥ 1. We choose a ∈ U and r > 0 such that Br(a) ⊆ U (relative to an arbitrary but fixed choice
of norm on V ). Thus, f(a + h) makes sense for h ∈ V satisfying ||h|| < r. Now we can state and
prove Taylor’s formula by essentially just copying the proof from calculus!
Theorem 5.1. With notation as above,

(9) f(a+ h) =
p∑
j=0

(Djf)(a)
j!

(h(j)) +Rp,a(h)

in W , where

(10) Rp,a(h) =
∫ 1

0

(1− t)p−1

(p− 1)!
((Dpf)(a+ th)− (Dpf)(a))(h(p)) dt

satisfies

(11) ||Rp,a(h)|| ≤ Cp,h,a||h||p, lim
h→0

Cp,h,a = 0

with

Cp,h,a = sup
t∈[0,1]

||(Dpf)(a+ th)− (Dpf)(a)||
p!

.

The convergence Cp,h,a → 0 as h→ 0 is uniform for a supported in a compact subset of U .
Remark 5.2. The norm on Mult(V p,W ) that is implicit in the numerator defining Cp,h,a is defined
in terms of arbitrary but fixed choices of norms on V and W : for any multilinear µ : V p →W there
exists a constant B ≥ 0 such that ||µ(v1, . . . , vp)|| ≤ B

∏p
j=1 ||vj ||, by elementary arguments exactly

as in the simplest case p = 1, and the infimum of all such B’s also works and is called ||µ||. More
concretely, ||µ|| is the minimum of ||µ(v1, . . . , vp)|| for the compact set of points (v1, . . . , vp) ∈ V p

satisfying ||vj || = 1 for all j. It is easy to check that µ 7→ ||µ|| is a norm on the finite-dimensional
vector space Multp(V,W ), and in particular it is a continuous R-valued function on this space of
multilinear mappings.

The supremum defining Cp,h,a is finite because [0, 1] is compact and t 7→ (Dpf)(a + th) is
continuous (since f is a Cp mapping).

Before giving the proof of the general Taylor formula modelled on the one from calculus, we
stress that Theorem 4.2 makes (9) more concrete when we choose linear coordinates on V , say
with n = dimV . Here is the “explicit” version of (9) with the remainder (10) in such coordinates:
f(a+ h) ∈W is equal to ∑

i1+···+in≤p

hi11 · · ·hinn
i1! · · · in!

∂i1+···+inf

∂xi1i · · · ∂x
in
n

(a)
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+
∑
∑
ij=p

(1− t)p−1

(p− 1)!

∫ 1

0

hi11 · · ·hinn
i1! · · · in!

(
∂pf

∂xi1i · · · ∂x
in
n

(a+ th)− ∂pf

∂xi1i · · · ∂x
in
n

(a)

)
dt.

There is no doubt that (9) and (10) are far simpler expressions than this coordinatized version.
Describing Cp,h,a (or a reasonable substitute) in terms of such coordinates is a total mess.

One important consequence of the error estimate (11) is that it shows the error Rp,a(h) in the
“degree p” expansion (9) of f(a + h) about a dies off more rapidly than ||h||p as h → 0 (i.e.,
||Rp,a(h)||/||h||p → 0 as h → 0) with the rate of such decay actually uniform for a supported in a
fixed compact subset of U . This is tremendously important for some applications.

A particularly important case is p = 2: the approximation

f(a+ h) = f(a) + ((Df)(a))(h) + ((D2f)(a))(h, h) + (. . . )

has an error which dies more rapidly than ||h||2. This is what underlies the reason why the symmetric
bilinear Hessian Hf (a) = (D2f)(a) governs the structure of f near critical points (i.e., those with
Df(a) = 0, such as local extrema) in the case when W = R. That is, the signature of the quadratic
form associated to Hf (a) encodes much of the local geometry for f near a when Df(a) = 0.

Now we are ready to present the proof of Taylor’s formula. We emphasize that it is really
Theorem 4.2 that encapsulates all of the gritty work with bases and coordinates. In the general
coordinate-free setup in which we have presently placed ourselves, the use of total derivatives will
make arguments from 1-variable calculus adapt almost without change; part of the purpose of the
multilinear formalism is to enable us to make clean multivariable arguments “as if” we were in the
1-variable case. Trying to prove Theorem 5.1 by using the classical explicit formula with all of the
factorials and iterated partials looks unpleasant.

Proof. (of Theorem 5.1). Granting the formula for a moment, let us briefly explain the error
estimates. The uniform continuity of the continuous ||Dpf || on compacts is the reason for the
uniformity (with respect to a in a compact) for the rate of decay Cp,h,a → 0 as h → 0. As for the
bound Cp,h,a||h||p on the norm of the integral formula for Rp,a(h), since

∫ 1
0 (1− t)p−1/(p− 1)! = 1/p!

we can use the general inequality

||µ(v1, . . . , vp)|| ≤ ||µ|| ·
p∏
j=1

||vj ||

for µ ∈ Mult(V p,W ) to reduce the problem to proving ||
∫ 1

0 g(t) dt|| ≤
∫ 1

0 ||g(t)||dt for any continuous
map g : [0, 1] → W . This inequality for integrals is an analogue of the estimate |

∫ b
a φ| ≤

∫ b
a |φ|

in calculus, and since we require our W -valued g to be continuous (and hence it is uniformly
continuous, as [0, 1] is compact), we may express g as a uniform limit of W -valued step functions.
Thus, by chopping up the interval [0, 1] into pieces (depending on the discontinuous step-function
approximation) it is easy to thereby reduce the general inequality ||

∫ 1
0 g|| ≤

∫ 1
0 ||g|| to the trivial

special case when the W -valued function g is constant. This establishes the error estimate (11).
Now we prove the formulas (9) and (10) for all p. By the second Fundamental Theorem of

Calculus (applied componentwise using a basis of W , say), we have

f(a+h) = f(a)+
∫ 1

0
((Df)(a+ th))(h) dt = f(a)+(Df)(a)(h)+

∫ 1

0
((Df)(a+ th)− (Df)(a))(h) dt

in W . This takes care of the case p = 1.
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Now we assume p > 1 and we use induction. Since f is also of class Cp−1, we have

f(a+ h) =
p−1∑
j=0

(Djf)(a)
j!

(h(j)) +
∫ 1

0

(1− t)p−2

(p− 2)!
((Dp−1f)(a+ th)− (Dp−1f)(a))(h(p−1)) dt

in W . Thus, we just have to show∫ 1

0

(1− t)p−2

(p− 2)!
((Dp−1f)(a+ th)− (Dp−1f)(a))(h(p−1)) dt

?=
(Dpf)(a)

p!
(h(p)) +

∫ 1

0

(1− t)p−1

(p− 1)!
((Dpf)(a+ th)− (Dpf)(a))(h(p)) dt

in W . Since the first term on the right exactly cancels what is being subtracted within the integral
on the right, by using the identification Mult(V p,W ) ' Hom(V,Mult(V p−1,W )) it suffices to prove
that in Mult(V p−1,W ) we have an equality∫ 1

0
(p− 1)(1− t)p−2((Dp−1f)(a+ th)− (Dp−1f)(a)) dt ?=

∫ 1

0
(1− t)p−1((Dpf)(a+ th))(h) dt,

(where the evaluation at h ∈ V on the right is really evaluation in the first slot of a symmetric
multilinear mapping on V p), since then evaluation on (h, . . . , h) ∈ V p−1 (which can be moved inside
a definite integral!) and division by (p− 1)! will yield what we want.

Let g = Dp−1f : U → Mult(V p−1,W ), so g is a C1 map and we want∫ 1

0
(p− 1)(1− t)p−2(g(a+ th)− g(a)) dt ?=

∫ 1

0
(1− t)p−1((Dg)(a+ th))(h) dt.

This essentially comes down to integration by parts. We can rewrite our desired equation as

(12) g(a) ?=
∫ 1

0
((p− 1)(1− t)p−2g(a+ th)− (1− t)p−1((Dg)(a+ th))(h)) dt.

Consider the map
φ : (−1, 1 + ε) 7→ Mult(V p−1,W )

defined by
φ(t) = −(1− t)p−1g(a+ th),

where ε > 0 is small enough so that (1 + ε)||h|| < r and hence a+ th ∈ Br(a) for t ∈ (−1, 1 + ε).
Since g is C1, a straightfoward application of the Chain Rule yields that φ is C1 with

φ′(t) def= ((Dφ)(t))(1) = (p− 1)(1− t)p−2g(a+ th)− (1− t)p−1((Dg)(a+ th))(h)

in Mult(V p−1,W ). This is exactly the integrand in (12), so we are reduced to proving g(a) =
∫ 1

0 φ
′.

But by the second Fundamental Theorem of Calculus (applied componentwise with respect to a
basis of the vector space Mult(V p−1,W ), say), this latter integral is equal to φ(1) − φ(0), and
from the definition of φ this is exactly g(a) as desired! It is an instructive exercise to check that
when V = W = R, this is the proof in Spivak’s Calculus (up to linear change of variable on the
integrals). �


