1. MOTIVATION

Let X_1 and X_2 be C^p premanifolds with corners, $1 \le p \le \infty$. Pick a point $\xi = (\xi_1, \xi_2) \in X_1 \times X_2$. We would like to make precise how the tangent space to $X_1 \times X_2$ at ξ is related to the tangent spaces of X_1 and X_2 at ξ_1 and ξ_2 respectively.

Example 1.1. Consider a cylinder in \mathbf{R}^3 , say the zero locus C of $g(x,y,z)=x^2+y^2-1$. This has a natural smooth manifold structure since $\mathrm{d}g(c)\neq 0$ for all $c\in C$. Also, as the picture suggests, it is abstractly a product $S^1\times\mathbf{R}$ as a C^∞ manifold (and not merely as a set or topological space). This will be proved rigorously, using the C^∞ map $(\theta,t)\mapsto (\cos\theta,\sin\theta,t)$ from $S^1\times\mathbf{R}$ to \mathbf{R}^3 , in §1 in the upcoming handout on bijections and isomorphisms. If we stare at how the tangent plane to the cylinder at each point sits inside of the tangent space to \mathbf{R}^3 at the point, we can "see" the decomposition of each such plane into a direct sum of two (perpendicular) lines corresponding to tangent lines along the factor curves S^1 and \mathbf{R} through the point on the cylinder. It is exactly this sort of decomposition seen physically for the cylinder that we seek to prove in general.

2. Slices

Let $\iota_j: X_j \to X_1 \times X_2$ be defined by $\iota_1(x_1) = (x_1, \xi_2)$ and $\iota_2(x_2) = (\xi_1, x_2)$; these are the inclusions along the horizontal and vertical "slices" through ξ .

Lemma 2.1. The maps ι_j are C^p and homeomorphisms onto their images, with injective tangent maps.

Proof. The topological aspect is clear, so we just have to show that the ι_j 's are C^p with injective tangent maps. This is a local problem on the source and target, so since $X_1 \times X_2$ has local C^p -charts arising from products of local C^p -charts on the factors we may describe ι_j locally in C^p -coordinates as the linear inclusion $V_1 \to V_1 \oplus V_2$ via $v_1 \mapsto (v_1, 0)$ for vectors spaces V_1 and V_2 (really this map restricted to opens in sectors in such vector spaces). Thus, the C^p and injectivity properties are clear.

By the lemma, the maps $d_{ij}(\xi_{j}): T_{\xi_{j}}(X_{j}) \to T_{\xi}(X_{1} \times X_{2})$ are injections, and so we can view the tangent spaces along the factors as subspaces of the tangent space of the product. One approach for relating $T_{\xi}(X_{1} \times X_{2})$ and the $T_{\xi_{j}}(X_{j})$'s is to proceed in an ad hoc manner, as follows. If $\{x_{1}^{(1)}, \ldots, x_{n_{1}}^{(1)}\}$ and $\{x_{1}^{(2)}, \ldots, x_{n_{2}}^{(2)}\}$ are local C^{p} coordinates on X_{1} and X_{2} near ξ_{1} and ξ_{2} , then $\{\partial_{x_{i}^{(1)}}|_{\xi_{1}}\}$ and $\{\partial_{x_{i}^{(2)}}|_{\xi_{2}}\}$ are respective bases of $T_{\xi_{1}}(X_{1})$ and $T_{\xi_{2}}(X_{2})$ whose respective images under $d\iota_{1}(\xi_{1})$ and $d\iota_{2}(\xi_{2})$ give the basis of $T_{\xi}(X_{1} \times X_{2})$ arising from the $x_{j}^{(1)}$'s and $x_{i}^{(2)}$'s considered as providing local C^{p} coordinates on $X_{1} \times X_{2}$ near ξ . (Strictly speaking, it is the functions $x_{j}^{(1)} \circ \pi_{1}$ and $x_{i}^{(2)} \circ \pi_{2}$ that are such coordinates, where $\pi_{j}: X_{1} \times X_{2} \to X_{j}$ is the C^{p} projection, and $d\iota_{j}(\xi_{j})(\partial_{x_{i}^{(j)}}|_{\xi_{j}}) = \partial_{x_{i}^{(j)}\circ\pi_{j}}|_{\xi}$.) This viewpoint is very useful in practice, but we prefer to explain the decomposition of the tangent space of a product into the direct sum of the tangent spaces along the factors by a procedure that is not coordinate-dependent and hence is intrinsic (but will recover the procedure just described when local C^{p} coordinates are given).

3. Decomposition via projections

Consider the linear map

(1)
$$T_{\xi_1}(X_1) \oplus T_{\xi_2}(X_2) \to T_{\xi}(X_1 \times X_2).$$

defined by $(v_1, v_2) \mapsto d\iota_1(\xi_1)(v_1) + d\iota_2(\xi_2)(v_2)$. This gives a coordinate-free version of the decomposition of tangent planes along a cylinder in \mathbf{R}^3 , and if we choose local coordinates around ξ_1 and ξ_2 in X_1 and X_2 then this recovers the inverse of the *ad hoc* procedure with partials along coordinate directions as suggested above. In general, we have:

Theorem 3.1. The linear map (1) is an isomorphism, with inverse given by

$$v \mapsto (\mathrm{d}\pi_1(\xi)(v), \mathrm{d}\pi_2(\xi)(v)),$$

where $\pi_j: X_1 \times X_2 \to X_j$ is the C^p projection.

Proof. The map $\pi_j \circ \iota_j$ is the identity on X_j , so by the Chain Rule $\mathrm{d}\pi_j(\xi) \circ \mathrm{d}\iota_j(\xi_j)$ is the identity on $\mathrm{T}_{\xi_j}(X_j)$. The maps $\pi_2 \circ \iota_1$ and $\pi_1 \circ \iota_2$ factor through 1-point spaces, and hence induce the zero map on tangent spaces. Thus, by the Chain Rule $\mathrm{d}\pi_2(\xi) \circ \mathrm{d}\iota_1(\xi_1) = 0$ and $\mathrm{d}\pi_1(\xi) \circ \mathrm{d}\iota_2(\xi_2) = 0$. (Lest this look like a trick, it can be seen very concretely in terms of coordinates: the point is that the projection π_2 does not depend on the coordinates in the X_1 direction, so the Jacobian matrix for $\pi_2 \circ \iota_1$ must be zero; the same goes for $\pi_1 \circ \iota_2$.) This shows that composing (1) with the map in the statement of the theorem gives the identity, and so for dimension reasons it follows that we have inverse linear maps.