
Math 396. Submersions and transverse intersections
Fix 1 ≤ p ≤ ∞, and let f : X ′ → X be a Cp mapping between Cp premanifolds (no corners

or boundary!). In a separate handout there is proved an important local structure theorem: if
df(x′) : Tx′(X

′)→ Tf(x′)(X) has rank r that is independent of x′ then for any x′ ∈ X ′ there exist
small opens U ′ ⊆ X ′ around x′ and U ⊆ X around x = f(x′) with f(U ′) ⊆ U such that U and U ′

admit Cp coordinate systems φ′ : U ′ → Rn′ and φ : U → Rn with respect to which f looks like
(a1, . . . , an′) 7→ (a1, . . . , ar, 0, . . . , 0). That is,

φ ◦ f ◦ φ′−1 : φ′(U ′)→ φ(U) ⊆ Rn

is the map (a1, . . . , an′) 7→ (a1, . . . , ar, 0, . . . , 0). In class we explained two important consequences,
the local coordinatized descriptions of submersions and immersions. The aim of this handout is to
explain some further applications of submersions via this local structure theorem. In particular,
we analyze transverse intersections of embedded Cp submanifolds and give a clean geometric proof
of the theorem on Lagrange multipliers in its natural setting on premanifolds.

1. Preliminaries on topologies and tangent spaces

Before we study transversality for submanifolds of a manifold, generalizing the notion of transver-
sality for subspaces of a vector space, we need to clarify the topological properties of submersions
and the behavior of tangent spaces with respect to product decompositions. We begin with the
latter.

Let X1 and X2 be Cp premanifolds with 1 ≤ p ≤ ∞. Pick a point ξ = (ξ1, ξ2) ∈ X1 ×X2. We
would like to make precise how the tangent space to X1 ×X2 at ξ is related to the tangent spaces
of X1 and X2 at ξ1 and ξ2 respectively. Let us record a theorem proved in an earlier handout:

Theorem 1.1. Let ιj : Xj → X1×X2 be the Cp maps ι1(x1) = (x1, ξ2) and ι2(x2) = (ξ1, x2). The
linear map

(1.1) Tξ1(X1)⊕ Tξ2(X2)→ Tξ(X1 ×X2).

defined by (v1, v2) 7→ dι1(ξ1)(v1) + dι2(ξ2)(v2) is an isomorphism, with inverse given by

v 7→ (dπ1(ξ)(v),dπ2(ξ)(v)),

where πj : X1 ×X2 → Xj is the Cp projection.

Our interest in tangent spaces to products is due to the fact that the submersion theorem tells
us that Cp submersions locally (on the source) look like projections to the factor of a product of
Cp premanifolds. In general, when studying the projection π : P = X × X ′ → X to a factor
of a product, at any point ξ = (x, x′) the tangent map dπ(ξ) : Tξ(P ) → Tx(X) is a surjection
and its kernel is the subspace Tx′(X

′) via dι′(x′), with ι′ : X ′ → P the embedding that is an Cp

isomorphism onto the fiber π−1(x) = {x}×X ′ as an embedded submanifold of P . That is, for such
a projection π the kernel of its tangent map at ξ is the tangent space Tξ(π

−1(x)) along the fiber
π−1(π(ξ)). This latter description is intrinsic to the projection map π : P → X in the sense that it
makes no reference to the product decomposition of P . Hence, we arrive at the second part of the
following result for general submersions:

Theorem 1.2. Let π : P → X be a Cp submersion between Cp premanifolds with 1 ≤ p ≤ ∞.

(1) The map π is an open map, and a subset S in the open set π(P ) ⊆ X is open in π(P ) (or
equivalently, in X) if and only if π−1(S) ⊆ P is an open set. In particular, the topology on
π(P ) is determined by the topology on P and the set-theoretic map π.
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(2) For x ∈ π(P ) the fiber π−1(x) is a closed Cp subpremanifold in P , and for all ξ ∈ π−1(x)
the kernel of the surjection dπ(ξ) : Tξ(P ) � Tx(X) is the tangent space Tξ(π

−1(x)) along
the fiber through ξ.

Proof. We first show that π is an open map. By the submersion theorem, for each ξ ∈ P over x ∈ X
there exist opens U0 ⊆ X around x and U ⊆ π−1(U0) around ξ such that there is a Cp isomorphism
ϕ : U ' U0 × U ′0 with U ′0 an open box in a Euclidean space and π|U ◦ ϕ−1 : U0 × U ′0 → U0 equal to
the standard projection. Such projections are visibly open maps, and hence π|U : U → U0 is open.
Since the inclusion U0 → X is open, it follows that π|U : U → X is an open map. Such opens U
cover P , so it follows that π : P → X is open.

We next check that the subspace topology on π(P ) ⊆ X is given by the condition for openness
of preimages in P . Since π(P ) is open in X, when it is given its standard Cp-structure induced
by X we see that π uniquely factors through a Cp mapping π : P → π(P ) that is also clearly a
submersion. We may therefore replace X with π(P ) to reduce to the case when π is surjective. In
this case, we need to prove that a subset S ⊆ X is open if and only if its preimage π−1(S) ⊆ P is
open. One implication follows from continuity of π, and conversely if π−1(S) is open then π(π−1(S))
is open (since π is an open map). But surjectivity of π implies S = π(π−1(S)), so S is open as
desired.

Now we turn to the second part of the theorem. To see that π−1(x) is closed in P , it suffices that
x is closed. Rather generally, any point z in a locally Hausdorff space Z is closed. Indeed, if {Zi} is
a covering of Z by Hausdorff open sets then Zi∩{z} is either a point or the empty set and hence is
closed in Zi for every i. Thus, {z} is closed in Z. With π−1(x) now known to be a closed subset of
P , the problem of whether or not it is an embedded Cp subpremanifold in P (and the description of
its tangent spaces inside tangent spaces to P as kernels of maps dπ(ξ) for ξ ∈ π−1(x)) is a problem
local on π−1(x) within P . (See the beginning of the proof of Theorem 2.1 for a general discussion of
the local nature of the problem of constructing Cp subpremanifold structures on a locally closed set
in a Cp premanifold.) Working locally on P and X, the submersion theorem identifies the situation
π : P → X with a product projection π : U × U ′ → U . However, this is exactly the situation that
we have already considered prior to the statement of the theorem, in which case the identification
of the kernel of the tangent map with the tangent space along the fiber was deduced from Theorem
1.1. �

One very useful consequence of this theorem is that surjective Cp submersions satisfy a simple
mapping property with respect to Cp maps:

Corollary 1.3. Let π : P → X be a surjective Cp submersion, with 1 ≤ p ≤ ∞. If f : P → Y
is a Cp map to a Cp premanifold Y and f has constant value on each fiber of π, then the unique
set-theoretic map f : X → Y satisfying f ◦ π = f is in fact a Cp mapping. In particular, it is
continuous.

Before we prove the corollary, we note that the key aspect of the corollary is to ensure that f
is a Cp mapping. This is false without the submersion property. For example, consider the map
t 7→ t3 that is a C∞ surjection π : P = R→ R = X but fails to be a submersion at the origin. Any
Cp map f : P → Y (such as the identity on P = R) trivially has constant value on each fiber of π

(as the fibers π−1(t) = {t1/3} are 1-point sets), and f(t) = f(t1/3), so if the corollary were to apply

to π then the conclusion would be that t 7→ f(t1/3) is Cp whenever t 7→ f(t) is Cp. This already
fails even for the identity map f : R→ R.

As a simple example to illustrate the usefulness of the corollary, let V be a finite-dimensional R-
vector space with dimension ≥ 2 and let π : V ∨−{0} → P(V ) be the natural submersion (sending
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each nonzero linear functional to its kernel hyperplane). By the corollary, if h : V ∨ − {0} → Y is
a Cp mapping to a Cp premanifold Y such that h is constant on lines through the origin, then the
unique set-theoretic factorization h = h ◦ π has h : P(V ) → Z a Cp mapping. The key is that we
do not need to muck around with explicit local coordinate systems on P(V ) or descriptions of h
in local coordinates to verify this; once we have used coordinate systems on P(V ) to verify that
the surjective map h is a Cp submersion, the rest comes for free. To summarize, the problem of
factoring a Cp map through a surjective Cp submersion is entirely set-theoretic: the submersion
theorem does all of the hard work of keeping track of the Cp aspects of the problem.

Now we prove the corollary.

Proof. By Theorem 1.2, a subset S ⊆ X is open if and only if its preimage in P is open. Thus,
to see that f : X → Y is continuous we have to show that for any open set U ⊆ Y the preimage

π−1(f
−1

(U)) is open in P . But this is f−1(U) since f = f ◦ π, so continuity of f gives what we
need. This takes care of the topological aspect of the problem, and to verify that f is a Cp mapping
we may work locally near a point x ∈ X. Pick ξ ∈ P over x, so by the submersion theorem we
can find opens U0 ⊆ X around x and U ⊆ π−1(U0) around ξ such that there is a Cp isomorphism
ϕ : U ' U0 × U ′0 with π|U ◦ ϕ−1 : U0 × U ′0 → U0 the standard projection.

Clearly f |U0 arises as the factorization of f |U ◦ ϕ−1 through π|U ◦ ϕ−1. To verify that f |U0 is a
Cp map (which certainly suffices to get the Cp property for f near our arbitrary choice of point
x ∈ X around which U0 is a small open), we may therefore replace π : P → X with the projection
π0 : U0×U ′0 → U0. Let (x, x′) ∈ U0×U ′0 correspond to ξ, so the “section” s : U0 → U0×U ′0 defined
by s(u) = (u, x′) is a Cp map (this is one of the “slice inclusions” considered in our general study
of products above). Since π0 ◦ s is the identity on U0, we have

f = f ◦ (π0 ◦ s) = (f ◦ π0) ◦ s = f ◦ s

with f : U0 × U ′0 → Y the given Cp mapping. Hence, we have presented f as the composite of the

Cp maps s and f , so f is a Cp map. �

2. The Jacobi criterion

We now turn to a very important application of the local structure theorem for Cp maps, essen-
tially a criterion for fibers of Cp mappings to be Cp submanifolds. Here is the general problem. Let
f : X ′ → X be a Cp mapping between Cp premanifolds (1 ≤ p ≤ ∞), and pick a point x ∈ f(X ′),
so the fiber f−1(x) is a non-empty closed subset of X ′. Is it a Cp subpremanifold? In special
situations, fibers of a map can become “degenerate”. For example, consider the map f : R2 → R
defined by f(u, v) = u2 − v2. For t ∈ R− {0}, the fiber f−1(t) is the hyperbola Ht : u2 − v2 = t in
R2, and this is certainly a smooth submanifold (as the differential of the defining equation of Ht is
non-vanishing along Ht, and hence the implicit function theorem kicks in as usual). However, the
fiber f−1(0) is the union of the coordinate axes and this has a problem at the point where the lines
cross. In this case, for points x′ ∈ H0 we have dh(x′) 6= 0 except at x′ = (0, 0). Geometrically, the
fibers Ht degenerate to something singular as t→ 0.

The one tool we have had so far to make embedded submanifolds is the case of vanishing for a
single function: if the differential of Cp function h is nonvanishing at the points in the set {h = 0}
then {h = 0} a (codimension-1) Cp submanifold. We seek a version that works for simultaneous
zero loci of several Cp functions, but we first emphasize that we can only give sufficient conditions
and not necessary ones. Indeed, even in the case of a single equation {h = 0}, the condition of
non-vanishing on the differential along the zero locus is merely sufficient and not necessary for the
zero locus to be a submanifold, since we could be using the “wrong” equations: the equation h2 = 0
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defines the set {h = 0} but it never satisfies the differential criterion to be a submanifold – eve
when {h = 0} is a Cp submanifold – because ∂xj (h

2) = h · ∂xjh vanishes where h2 vanishes.)
Just as the sufficient condition for {h = 0} to be a submanifold even gave that it is “codimension

1”, we expect a codimension aspect in the conclusion for any reasonable criterion for smoothness
of simultaneous zero loci. Thus, let us first give a precise definition of codimension in the setting
of embedded premanifolds. For a Cp subpremanifold Z in a Cp premanifold Z ′, the codimension of
Z in Z ′ at a point z ∈ Z is the codimension of Tz(Z) in Tz(Z

′); in other words, it is the difference
of the pointwise dimensions of Z and Z ′ at z. If this number is a constant c independent of z, we
say Z has codimension c in Z ′. For example, if Z and Z ′ are connected then there is necessarily
such a constant codimension (as the dimensions of tangent spaces on Z and Z ′ are the same at all
points of Z and Z ′ respectively, and so the codimension at each z ∈ Z is just the difference of these
constant tangent space dimensions).

Theorem 2.1. With notation as given above, suppose that for all x′ ∈ X ′ the tangent map df(x′) :
Tx′(X

′)→ Tx(X) has constant rank r ≥ 0, where x = f(x′). For each x ∈ X, the fiber f−1(x) ⊆ X ′
is a closed Cp subpremanifold of X ′ with codimension r in X ′ at all points.

This theorem is the Jacobi criterion for smoothness of fibers of a map. (The same name is also
used for a variant in Theorem 3.3.) The failure of the submersion condition usually means that
some fiber is “bad” (such as in our hyperbola example, where the submersion property fails at
exactly the point (0, 0) that is “bad” in its fiber H0), but the situation can be more complicated.
For example, if C ⊆ R2 is the parabola y = x2 then the projection f : C → R to the x-axis fails
to be a submersion at (0, 0) but the fiber is perfectly nice: a single point. However, the geometry
shows that something has still “gone wrong” here: the fiber f−1(t) for t > 0 consists of two points
{(t,±

√
t)} and as t → 0+ these “come together” to the single point (0, 0) that morally ought to

count twice; even worse, for t < 0 the fibers are empty. Thus, the fiber situation at t = 0 is
geometrically a bit more complicated than one would guess from considering f−1(0) in isolation
without noticing the nature of f−1(t) for t < 0 and t > 0 near 0.

Proof. We fix x ∈ f(X ′) and aim to prove that the non-empty closed subset f−1(x) in X ′ is a Cp

subpremanifold with codimension r at all points. Our first task is to show that the problem is
local on X ′ around points of f−1(x), as this will open the door to using the local structure theorem
for Cp maps with constant Jacobian rank. We will exploit a powerful general principle, which is
that to solve global construction problems admitting unique solutions it suffices to make solutions
locally, as the uniqueness will ensure that local solutions agree on overlaps and hence “glue” to
give a global solution! In our present circumstances, the a priori uniqueness result is the fact that
locally closed sets in X ′ admit at most one structure of Cp subpremanifold of X ′. Thus, if f−1(x)
is to admit a structure of Cp subpremanifold, such a structure is unique (and we can try to work
locally to check its codimension is r at all points). Let us first explain how this uniqueness lets us
reduce the global problem to the local case.

Let {U ′i} be a collection of opens in X ′ that cover f−1(x), and let fi : U ′i → X be the restriction of

f . Clearly f−1i (x′) = U ′i ∩f−1(x), so this is a closed set in U ′i and hence is a locally closed set in X ′.

Suppose we can solve the problem for each fi, so we get a Cp-structure on each f−1i (x′) = U ′i∩f−1(x)
making it an embedded Cp subpremanifold of U ′i and hence of X ′ (as U ′i is open in X ′). These Cp-
structures on the open subsets U ′i ∩ f−1(x) in the topological space f−1(x) must agree on overlaps.
(In the more classical language of atlases, this just says that Cp atlases arising on the overlap from
the respective maximal Cp-atlases on f−1i (x) and f−1j (x) must be Cp-compatible with each other.)

Indeed, on (U ′i ∩ f−1(x)) ∩ (U ′j ∩ f−1(x)) we get two induced Cp-structures, one from its nature
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as an open set in U ′i ∩ f−1(x) and one from its nature as an open set in U ′j ∩ f−1(x), and so both

structures make it a locally closed Cp subpremanifold in X ′. But we have seen in class that locally
closed sets in a Cp premanifold (such as X ′) have at most one structure of Cp subpremanifold, and
thus we get the asserted agreement on overlaps. The Cp-structures on the f−1i (x)’s therefore arise

from a unique Cp-structure on f−1(x) (proof: the Cp-atlases on the open subsets f−1i (x) ⊆ f−1(x)

are Cp-compatible on all overlaps f−1i (x) ∩ f−1j (x), and hence their union is a Cp-atlas on f−1(x);

the associated Cp-structure is the only possibility, and clearly it does work).
Continuing to assume that we can solve the problem for the maps fi : U ′i → X, we claim

that the resulting Cp-structure that we have just constructed on f−1(x) makes the inclusion map
f−1(x) → X ′ an immersion (and hence a Cp embedding). Indeed, f−1(x) is covered by the open
subsets f−1i (x) on which the induced Cp-structure is the one we assumed to exist as a local solution

to our original problem, and so since the inclusion maps f−1i (x) → U ′i are Cp immersions (by

assumption!) we deduce the same for the inclusion maps f−1i (x)→ X ′ and hence for the inclusion
map f−1(x) → X ′. Likewise, the property that f−1(x) with its Cp structure has codimension r
in X ′ may be inferred from the same codimension property for the inclusion maps f−1i (x) → X ′.
To summarize, we have shown that to solve the original global problem for f : X ′ → X it suffices
to solve it for the maps fi : U ′i → X for opens {U ′i} in X ′ whose union contains f−1(x). In other
words, for each x′ ∈ f−1(x) it suffices to find an open U ′ ⊆ X ′ around x′ such that we can solve
the problem for the map f |U ′ : U ′ → X. Also, if U ⊆ X is an open set around x then f−1(U) ⊆ X ′
is an open set around f−1(x) and so we can replace X ′ and X with f−1(U) and U respectively.
Hence, we can work locally in X ′ around a fixed point x′ ∈ f−1(x) and locally in X around x. That
is, for opens U ⊆ X around x and U ′ ⊆ f−1(U) around x′ ∈ f−1(x) it suffices to solve the problem
for the map f : U ′ → U as we vary x′ ∈ f−1(x).

Now we bring in the local structure theorem: since it is assumed that f has constant Jacobian
rank r, we can find small opens U ⊆ X around x and U ′ ⊆ X ′ around x′ admitting respective Cp

coordinate systems φ : U → Rn and φ′ : U ′ → Rn′ satisfying φ(x) = 0 ∈ Rn and φ′(x′) = 0 ∈ Rn′

such that in terms of the associated Cp coordinate systems we have the following “coordinatized”
description of the map fU ′,U : U ′ → U induced by f :

f̃ = φ ◦ fU ′,U ◦ φ′
−1

: (a′1, . . . , a
′
n′) = (a′1, . . . , a

′
r, 0, . . . , 0) ∈ φ(U) ⊆ Rn

on φ′(U ′). Thus, as a subset of the open domain φ′(U ′) ⊆ Rn′ , we have the following coordinatized
description of the part of the fiber f−1(x) that meets U ′ (i.e., f−1U ′,U (x)):

φ′(U ′ ∩ f−1(x)) = f̃−1(0) = φ′(U ′) ∩ {x′1 = · · · = x′r = 0}

inside of φ′(U ′). This is an open subset of the codimension-r linear subspace

W = Rn′−r = {x′1 = · · · = x′r = 0}

in Rn′ , and the standard linear coordinates x′r+1|W , . . . , x′n′ |W on this subspace provide the solution
to our problem. More precisely, by taking x′j ◦ φ′|U ′∩f−1(x) = (x′j |W ) ◦ φ′ for r + 1 ≤ j ≤ n′ as

coordinates on U ′ ∩ f−1(x), we get a Cp atlas on f−1(x) ∩ U ′ with respect to which its inclusion
map into U ′ is a codimension-r Cp subpremanifold (because {x′1 ◦φ′, . . . , x′n′ ◦φ′} is a Cp coordinate
system on U ′ with respect to which U ′ ∩ f−1(x) is the zero locus of the first r coordinates). This
gives a solution to our problem on U ′, including the property of having codimension r. �
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3. Transversal submanifolds

To apply the theorems in the previous section, we turn to an important topic in the geometry of
submanifolds that generalizes the notion of transversality for linear subspaces of a finite-dimensional
vector space. As a special case, we will deduce the theorem on Lagrange multipliers in its natural
geometric setting (recovering the “traditional” version on open sets in Rn as a special case). The
starting point is:

Definition 3.1. Let X be a Cp premanifold, 1 ≤ p ≤ ∞. A collection Z1, . . . , Zn of embedded
Cp subpremanifolds in X is mutually transverse if for each z ∈ Z = ∩jZj the subspaces Tz(Zj) in
Tz(X) are mutually transverse.

Note that this definition is vacuously satisfied (and not interesting) if ∩Zj is empty.

Example 3.2. Let f1, . . . , fn : X → R be Cp mappings such that {dfj(x)} is an independent set
in Tx(X)∨ for all x ∈ X. (In particular, dfj(x) 6= 0 for all x ∈ X.) By the differential criterion
for zero loci to be subpremanifolds, the non-vanishing of dfj(x) for all x ∈ X implies that for any

c1, . . . , cn ∈ R the level sets Zj = f−1j (cj) = {fj − cj = 0} are closed Cp subpremanifolds of X with

codimension 1 at all points when Zj 6= ∅. We claim that the Zj ’s are mutually transverse in X.
By Theorem 1.2, for any z ∈ Zj the subspace Tz(Zj) in Tz(X) is the hyperplane kernel ker dfj(z)

of the nonzero linear functional dfj(z) ∈ Tz(Z)∨. Thus, the condition on mutual transversality of
the Zj ’s at z ∈ ∩Zj reduces to the claim that if V is a vector space (such as Tz(X)) and `1, . . . , `n ∈
V ∨ are linearly independent functionals on V (such as the dfj(z)’s) then the hyperplanes ker `j are
mutually transverse in V . This fact from linear algebra was proved on an earlier homework.

The most classical instance of this example is to take X to be an open set U in some RN (with
its usual Cp-structure). In this case, the result is that if f1, . . . , fn are Cp functions on U with
n ≤ N and c1, . . . , cn ∈ R are numbers such that the Jacobian matrix (∂fi/∂xj) has rank n (i.e.,

independent columns) at all points on ∩f−1j (cj), then if this set is non-empty it is a closed Cp

submanifold of U with codimension n in U (i.e., dimension N −n) at all of its points. Beware that
just checking this “Jacobi condition” at points on the mutual overlap of the level sets Zj = f−1j (cj)
does not tell us anything about the global geometry of overlaps of fewer than n of the Zj ’s. Of
course, since linear independence of a collection of n vectors in RN is an open condition on (RN )n,
it does follow automatically from the continuity of the ∂fi/∂xj ’s that for some open U ′ around ∩Zj
in U each Z ′j = Zj ∩ U ′ is a closed Cp submanifold in U ′ and that these are mutually transverse.
However, “far away” there could of course be nasty singularities on the Zj ’s if we do not examine
the dfj ’s away from Z1 ∩ · · · ∩ Zn.

The preceding example can be pushed a little further:

Theorem 3.3. Let f1, . . . , fn ∈ O(X) be global Cp functions on X such that the functionals dfj(x)

in Tx(X)∨ are linearly independent for all x ∈ X. Let Zj = f−1j (cj) for c1, . . . , cn ∈ R, and assume
Z = ∩Zj is non-empty, so the Zj’s are mutually transverse Cp hypersurfaces in X. The closed set
Z a closed Cp subpremanifold with codimension n at all points and Tz(Z) = ∩ ker dfj(z) for all
z ∈ Z.

Proof. Let f = (f1, . . . , fn) : X → Rn, so Z = f−1(c1, . . . , cn). For any x ∈ X, the standard
linear isomorphism Tf(x)(R

n) ' Rn identifies df(x) with the linear map Tx(X) → Rn whose
component functions are the functionals dfj(x), and so ker df(x) is the intersection of the kernels
of the dfj(x)’s. Thus, the theorem says that for c = (c1, . . . , cn) ∈ Rn with f−1(c) non-empty,
the fiber f−1(c) is a closed Cp subpremanifold of X with codimension n at all points and for all
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z ∈ f−1(c) the tangent space Tz(f
−1(c)) to the fiber is ker df(z). By Theorem 1.2, it suffices to

show that f is a submersion. That is, for every x ∈ X we want df(x) : Tx(X)→ Tf(x)(R
n) to be

surjective.
We have noted above that under the standard linear isomorphism Tf(x)(R

n) ' Rn, df(x) has
component functionals dfj(x). Thus, our problem is a special case of a more general claim in
linear algebra: if V is a finite-dimensional vector space over a field F (such as Tx(X) over R) and
`1, . . . , `n ∈ V ∨ are linearly independent functionals (such as the dfj(x)’s) then the map V → Fn

with `j ’s as component functions is surjective. Dualizing, it is equivalent to say that the map
Fn → V ∨ sending the standard (dual!) basis vectors to the `j ’s is injective, and this is exactly the
hypothesis of linear independence on the `j ’s. �

A very interesting corollary is the theorem on Lagrange multipliers:

Corollary 3.4. Let f1, . . . , fn : X → R be Cp functions on a Cp premanifold. Fix c1, . . . , cn ∈ R
and let Z = ∩f−1j (cj). Assume Z is non-empty, so it is a closed Cp subpremanifold of X with

codimension n at all points, by Theorem 3.3. Assume that {dfi(x)} is linearly independent in
Tx(X)∨ for all x ∈ Z.

For a Cp function g : X → R, if g|Z has a local extremum at z ∈ Z then dg(z) =
∑
λjdfj(z) in

Tz(X)∨ for some λ1, . . . , λn.

Taking X to be an open set in RN , this corollary is exactly the theorem on Lagrange multipliers
in multivariable calculus. There is no doubt that the theory of transverse submanifolds of a manifold
(as used in the following proof) provides a powerful geometric intuition for the real meaning of this
theorem. It is precisely the possibility of viewing the “constraint locus” Z = ∩f−1j (cj) as a manifold

in its own right (compatibly with the manifold structure on X as well) that is the key to the whole
proof.

Proof. Since the dfj(z)’s are linearly independent functionals, the intersection Tz(Z) of their kernels
is annihilated by exactly those functionals on Tz(X) that are linear combinations of the dfj(z)’s in
Tz(X)∨. (This is a general fact in linear algebra that is easily proved by extending the independent
functionals to a basis of the dual space, and then computing in a dual basis of the original space.)
Thus, the meaning of the conclusion in the theorem is simply that dg(z) ∈ Tz(X)∨ vanishes on
Tz(Z).

Let i : Z → X be the Cp inclusion, so di(z) : Tz(Z) → Tz(X) is the linear injection by which
we are identifying Tz(Z) with a linear subspace of Tz(X). The restriction of dg(z) to Tz(Z) is
thereby identified with the composite d(z) ◦ di(z) (we have i(z) = z), and by the Chain Rule this
is d(g ◦ i)(z). Hence, our goal is to prove d(g ◦ i)(z) = 0 as a functional on Tz(Z). But g ◦ i is
the Cp function on Z obtained by restricting g to Z, and so our problem is now intrinsic to the
Cp premanifold Z (and the ambient X and constraint functions fj may now be discarded from
consideration): we have a Cp function h : Z → R with a local extremum at a point z ∈ Z, and we
want to prove that the linear functional dh(z) : Tz(Z)→ R vanishes.

For local Cp coordinates {x1, . . . , xm} on Z near z, the tangent vectors ∂xj |z are a basis of
Tz(Z), and so it is equivalent to say that dh(z)(∂xj |z) = 0 for all j. But we know that this value
is (∂h/∂xj)(z), and so the problem becomes one in multivariable calculus: if a Cp function on an
open set in Rm has a local extremum at some point, its partials in every coordinate direction vanish
at the point. But this is obvious: taking a partial derivative (of a Cp function) in a coordinate
direction at a point in Rm is just a 1-variable derivative for the restriction of the function to the
line through the point parallel to the coordinate axis, and so the statement is that a Cp function on
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an open interval in R has vanishing derivative at any local extremum. This is the first interesting
theorem about derivatives that one learns in calculus. �

So far we have examined transversality for hypersurfaces in some detail, but we now want to
show that the general situation for transversality also accords with our geometric intuition. The
interesting feature of transversality in general (not just in the case of hypersurfaces) is that it
ensures intersections are “nice” and have the “expected” codimension when non-empty:

Theorem 3.5. Let Z1, . . . , Zn be mutually transverse embedded Cp subpremanifolds in a Cp pre-
manifold X. If the intersection ∩Zj is non-empty then it is an embedded Cp subpremanifold of
X with tangent space ∩Tz(Zj) inside of Tz(X) for all z ∈ ∩Zj. In particular, if Zj has constant
codimension cj in X for each j then ∩Zj has constant codimension

∑
cj at all points when it is

non-empty.

As the proof of the theorem will show, the local situation near points in ∩Zj is rather similar to
that in Theorem 3.3. Also, the transversality hypothesis is crucial for relations such as Tz(∩Zj) =
∩Tz(Zj) and codimX(∩Zj) =

∑
codimX(Zj) to hold, even if the subset ∩Zj happens to be a Cp

subpremanifold of X for “accidental” reasons. For example, consider X = R3, Z1 = {x2 + y2 = z},
and Z2 = {x2 + y2 = −z}. These two paraboloid C∞ surfaces in X are non-transverse at the
unique point (0, 0, 0) in the intersection Z1∩Z2 whose dimension is “lower than expected” (a generic
intersection of surfaces in 3-space “ought” to be a curve): the tangent planes T0(Z1) and T0(Z2)
inside of T0(X) ' R3 coincide with the xy-plane R∂x|0 + R∂y|0. This failure of transversality
of tangent planes at the origin is “why” this intersection fails to exhibit the pleasant geometric
features as in the transversal case addressed in the theorem.

Proof. The calculation of the codimension follows from the rest because of an earlier homework
result in linear algebra: intersections of mutually transverse linear subspaces of a finite-dimensional
vector spaces necessarily have the “expected” codimension. Recall also from the homework that
the property of mutual transversality for a collection of linear subspaces W1, . . . ,Wn in a finite-
dimensional vector space V is equivalent to pairwise transversality for ∩j≤iWj and Wi+1 for 1 ≤ i <
n. Thus, in view of the asserted description of the tangent spaces on ∩Zj (if non-empty), we may
proceed by induction on n, and more specifically we immediately reduce to the special case n = 2:
if Z and Z ′ are transverse embedded Cp subpremanifolds in X, and if the locally closed set Z ∩Z ′
in X is non-empty, then it is an embedded Cp subpremanifold with tangent space Tx(Z) ∩Tx(Z ′)
inside of Tx(X) for each x ∈ Z ∩ Z ′.

In view of the uniqueness of Cp subpremanifold structures on locally closed subsets of X, the
problem of constructing the asserted Cp-structure on Z ∩ Z ′ is local on Z ∩ Z ′ in X. (This goes
by the same localization method as in the proof of Theorem 2.1.) Hence, for each x ∈ Z ∩ Z ′ it
suffices to solve the problem after replacing X with an open set U around x. In particular, since
the pointwise dimension on a premanifold is locally constant and both Z and Z ′ have the subspace
topology from X, we may shrink around x so that X, Z, and Z ′ have constant dimensions. Thus,
Z and Z ′ have constant codimensions in X, say c and c′. In view of the immersion theorem (that
gives a local description of embedded Cp subpremanifolds in a Cp premanifold), we may therefore
shrink X so that there exist Cp functions f1, . . . , fc and f ′1, . . . , f

′
c′ on X such that {f1, . . . , fc} and

{f ′1, . . . , f ′c′} are each subsets of Cp coordinate systems (not necessarily the same ones, a priori)

with Z = ∩f−1j (0) and Z ′ = ∩f ′j
−1(0).

Since these fi’s and f ′j ’s are subsets of Cp coordinate systems on X, it follows that the sub-

sets {dfi(x)}i and {df ′j(x)} in Tx(X)∨ are linearly independent sets. Pick x ∈ Z ∩ Z ′ and let

Hi = ker dfi(x) and H ′j = ker df ′j(x) be the kernel hyperplanes in Tx(X). The collection of
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Hi’s is mutually transverse in Tx(X) (as the fi’s are part of a Cp coordinate system), and like-
wise the collection of H ′j ’s is mutually transverse in Tx(X). Moreover, by Theorem 3.3, we have

∩ ker dfj(z) = Tz(Z) for each z ∈ Z, and likewise ∩ ker df ′i(z
′) = Tz′(Z

′) for each z′ ∈ Z ′. Thus, for
our x ∈ Z∩Z ′ we have ∩Hi = Tx(Z) and ∩H ′j = Tx(Z ′). These respective subspaces of Tx(X) have

codimensions c and c′, and the transversality hypothesis on Z and Z ′ at x says that Tx(Z)∩Tx(Z ′)
has codimension c + c′ in Tx(X). Thus, the c + c′ hyperplanes H1, . . . ,Hc, H

′
1, . . . ,H

′
c′ in Tx(X)

have intersection with codimension c + c′, whence the combined collection of hyperplanes is mu-
tually transverse in Tx(X). By the homework problem on transversality of linear subspaces of a
finite-dimensional vector space, this implies that the combined collection of functionals given by
the dfi(x)’s and df ′j(x)’s span lines whose direct sum injects into the dual space Tx(X)∨ and hence
these functionals are linearly independent.

Such a linear independence property at the point x says exactly that the map

f : (f1, . . . , fc, f
′
1, . . . , f

′
c′) : X → Rc+c′

is a submersion at x (as the dual map on cotangent spaces Rc+c′ = Tf(x)(R
c+c′)∨ → Tx(X)∨ is

injective, since it sends the collection of dual basis vectors dtk(f(x)) to the linearly independent
collection of cotangent vectors given by the dfi(x)’s and df ′j(x)’s at x). By the submersion theorem,

this submersion property at our point x ∈ Z ∩ Z ′ extends to an open set in X around x, so by
shrinking X around x we may arrange that for all points ξ ∈ X the collection of functionals given
by the dfi(ξ)’s and df ′j(ξ)’s in Tξ(X)∨ are independent, or equivalently that f is a submersion on

X. Hence, Theorem 1.2 ensures that the fiber f−1(0) is a Cp subpremanifold of X and its tangent

space at any point ξ is the kernel of df(ξ) : Tξ(X)→ T0(R
c+c′). Identifying T0(R

c+c′) with Rc+c′

in the usual manner gives the dfi(ξ)’s and df ′j(ξ)’s as the component functions of df(ξ), and so

the kernel Tξ(f
−1(0)) of df(ξ) is the intersection of the kernels of the dfi(ξ)’s and df ′j(ξ)’s. But

we rigged the fi’s and f ′j ’s so that f−1(0) = Z ∩ Z ′, and hence for our point x ∈ Z ∩ Z ′ we have

Tx(Z ∩ Z ′) = (∩Hi) ∩ (∩H ′j) = Tx(Z) ∩ Tx(Z ′)

inside of Tx(X). �

Remark 3.6. Even if X and the Zj ’s in the theorem are connected, the overlap ∩Zj may have
infinitely many connected components. For example, consider X = R2 and Z and Z ′ the graphs
y = cos(x) and y = sin(x) respectively. (Check using the rigorous definition and not just drawing of
pictures these really are transverse at their points of intersection.) In more complicated geometric
settings, finding the connected components of ∩Zj can be extremely hard!

We conclude by recording an important observation that is implicit in the preceding proof: if
{Z1, . . . , Zn} is a collection of mutually transverse embedded Cp subpremanifolds of a Cp preman-
ifold X (1 ≤ p ≤ ∞), then around each z ∈ ∩Zj there exists a local Cp coordinate system in terms
of which the collection of Zj ’s is carried over to a collection of mutually transverse linear subspaces
in some RN , at least in a small open neighborhood of the origin. Thus, in a sense, the local theory
of mutually transverse subpremanifolds is a non-linear version of the theory of mutually transverse
linear subspaces of a finite-dimensional vector space. In particular, from Theorem 3.5 and the linear
theory in the homework we get:

Corollary 3.7. Let Z1, . . . , Zn be a collection of embedded Cp subpremanifolds of a Cp premanifold
X. If ∩j≤iZj and Zi+1 are transverse in X for 1 ≤ i < n, then the Zj’s are mutually transverse in
X.
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Remark 3.8. Theorem 3.5 ensures (by induction on i) that the intersections ∩j≤iZi are embedded
Cp subpremanifolds of X for 2 ≤ i ≤ n due to the assumption at stage i−1. Hence, the hypothesis
in the corollary “makes sense” when considered as an ordered set of hypotheses for i = 1, . . . , n−1.

4. Applications to Lie groups

A Lie group is a C∞ manifold G equipped with a group structure such that the multiplication
map m : G × G → G and the inversion map i : G → G in the group law are C∞ maps. (It is
a remarkable theorem in Lie theory that weakening C∞ to C0 does not give a new concept: any
topological group manifold admits a unique C∞-structure with respect to which it is a C∞ Lie
group.) The theory of Lie groups pervades most of pure mathematics and large parts of theoretical
physics, even it even touches parts of pure algebra where it would seem to a beginner that ideas
from differential geometry ought to have no relevance. It is awesome, and you should study it.

The most basic example of a Lie group is G = GL(V ) for a finite-dimensional vector space V , say
of dimension n > 0. This is considered with the C∞-structure that it acquires as an open subset of
the vector space Hom(V, V ). Concretely, if we choose linear coordinates on V then Hom(V, V ) is just
the space of n×n matrices (with “matrix entries” as its own linear coordinates) and GL(V ) becomes
the open subset GLn(R) of invertible n× n matrices. The explicit universal algebraic formulas for
matrix multiplication and inversion in terms of matrix entries show that matrix multiplication (and
inversion) makes this a Lie group with respect to the given C∞ structure. (This can also be proved
withour recourse to coordinates, a task we leave to the interested reader.)

There are two rather interesting applications of Theorem 2.1 in this context. As our first applica-
tion, we shall prove that in the definition of a Lie group, it is not necessary to assume that the inver-
sion map is C∞: this follows automatically from the hypothesis that the group law m : G×G→ G
is C∞! To see why this is, we require some lemmas. In what follows, note that we only use the C∞

hypothesis on m and not for the inversion map.

Lemma 4.1. The manifold G has the same dimension at all points.

Though the conclusion of this lemma is valid for any connected topological premanifold whatso-
ever, we emphasize that there are interesting examples of disconnected Lie groups (such as GLn(R)).

Proof. If e ∈ G is the identity element and g ∈ G is an arbitrary point, the left multiplication map
`g : G→ G defined by x 7→ gx is C∞ (as it is the composite of the C∞ slice embedding G→ G×G
onto {g}×G and the group law m that we are assuming to be C∞). Since `g−1 is a C∞ inverse, it
follows that `g is a C∞ automorphism of G and it carries e to g, so its differential at the identity
gives a linear isomorphism of Te(G) onto Tg(G). Thus, the pointwise dimension at the arbitrary g
agrees with the one at the identity e. �

The preceding proof made crucial use of the C∞ translation automorphisms of the manifold
underlying G, and the proofs that follow will demonstrate the power of these maps; in effect, they
make G a rather homogeneous space.

Lemma 4.2. With respect to the natural isomorphism Te(G)⊕Te(G) ' T(e,e)(G×G) as in Theorem
1.1, the differential

dm(e, e) : Te(G)⊕ Te(G)→ Te(G)

of the group law at the identity is the addition mapping (v, v′) 7→ v + v′.

Proof. The map dm(e, e) is a linear map between the two indicated spaces, and in general if
T : V ⊕ V → V is a linear map then since T (v, v′) = T ((v, 0) + (0, v′)) = T (v, 0) + T (0, v′)
we see that T is (v, v′) 7→ v + v′ if and only if the restrictions of T to the embedded subspaces
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V ⇒ V ⊕ V via v 7→ (v, 0) and v 7→ (0, v) are each the identity map. By the very construction of
the isomorphism in Theorem 1.1 (applied to m and (e, e) ∈ G × G), these embeddings of Te(G)
into the “factors” of T(e,e)(G×G) are given by the tangent maps of the slice inclusions G⇒ G×G
defined by R : g 7→ (g, e) and L : g 7→ (e, g). Thus, by the Chain Rule, restricting dm(e, e) to these
slices amounts to computing dm(e, e) ◦ dR(e) = d(m ◦ R)(e) and dm(e, e) ◦ dL(e) = d(m ◦ L)(e)
as self-maps of Te(G). We want these self-maps to be the identity. But this is clear because by
the identity axioms for the group law we have m ◦ L and m ◦R as self-maps of G are the identity
maps (and each tangent map induced by the identity map on the manifold is the identity map on
the corresponding tangent space). �

We now claim that m : G × G → G is a submersion at all points. At (e, e) this follows from
the preceding lemma, as the addition map V ⊕ V → V is clearly surjective for any vector space
V . We now deduce the result at an arbitrary point (g, g′) ∈ G × G by translations, as follows.
We have (g, g′) = (`g × ρg′)(e, e) where `g, ρg′ : G ⇒ G are the C∞ automorphisms given by left
multiplication by g (x 7→ gx) and right multiplication by g′ (x 7→ xg′). By the group axioms,

m ◦ (`g × ρg′) = `g ◦ ρg′ ◦m

as C∞ maps from G × G to G (this just says (gx)(yg′) = g(xy)g′ for all x, y ∈ G). Applying the
Chain Rule at (e, e), we get

dm(g, g′) ◦ d(`g × ρg′)(e, e) = d`g(g
′) ◦ dρg′(e) ◦ dm(e, e).

Since `g and ρg′ are C∞ automorphisms, the right side is surjective because dm(e, e) is surjective,
and so from the left side it follows that dm(g, g′) is surjective because `g × ρg′ is a C∞ automor-
phism (so its tangent maps are linear automorphisms). This completes the verification that m is a
submersion, so its tangent maps have constant rank equal to the constant pointwise dimension of
G, say d.

By Theorem 2.1 (!), we conclude that the fiber m−1(e) as a closed subset of G × G is a C∞

submanifold of G×G with constant codimension d and hence constant dimension 2d− d = d. The
C∞ projection G×G→ G onto the first factor restricts to a C∞ map m−1(e)→ G (using the C∞

submanifold structure on m−1(e)). By group theory, m−1(e) is the set of points (g, g−1) in G×G,
so the projection map m−1(e) is a bijection. We can say more:

Lemma 4.3. The C∞ projection map p1 : m−1(e) → G to the first factor is a C∞ isomorphism
with respect to the C∞ submanifold structure on m−1(e).

Proof. Since p1 is bijective, if it is a local C∞ isomorphism then its set-theoretic inverse is C∞ and
so p1 is a C∞ isomorphism. Our problem is therefore to show that p1 is a local C∞ isomorphism,
and for this the inverse function theorem provides necessary and sufficient conditions: the tangent
maps should be linear isomorphisms at all points of m−1(e). Let us first use translations to show
that it suffices to check this linear isomorphism property at the point (e, e) ∈ m−1(e). For an
arbitrary point (g, g−1) ∈ m−1(e), the map `g × ρg−1 : G × G → G × G is a C∞ map that carries

the C∞ submanifold m−1(e) back into itself (since (gx)(x−1g−1) = e for all x ∈ G), so by the
mapping property of embedded submanifolds it restricts to a C∞ self-map of m−1(e). As such, this
restricted map is a C∞ automorphism ϕg of m−1(e) because `g−1×ρg induces a C∞ inverse. The C∞

automorphism ϕg of m−1(e) carries (e, e) to (g, g−1), and by the definitions we see p1 ◦ϕg = `g ◦ p1
as C∞ maps from m−1(e) to G. Applying the Chain Rule at (e, e) ∈ m−1(e) to both sides, we get

dp1(g, g
−1) ◦ dϕg(e, e) = d`g(e) ◦ dp1(e, e).
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Since `g and ϕg are C∞ automorphisms (of G and m−1(e) respectively), it follows that dp1(g, g
−1)

is an isomorphism if and only if dp1(e, e) is an isomorphism, as desired.
We now wish to compute dp1(e, e) : T(e,e)(m

−1(e)) → Te(G) to see that this is a linear iso-

morphism. The map p1 is the composite of the C∞ embedding ι : m−1(e, e) → G × G and the
projection π1 : G×G→ G onto the first factor. Hence, by the Chain Rule,

dp1(e, e) = dπ1(e, e) ◦ dι(e, e).

By Theorem 1.1, under the natural isomorphism

T(e,e)(G×G) ' Te(G)⊕ Te(G)

the map dπ1(e, e) is projection onto the first factor and dm(e, e) is the addition map. By Theorem
1.2, the kernel of dm(e, e) is identified with the tangent space T(e,e)(m

−1(e)) of the fiber of m over
m(e, e) = e, via the injection dι(e, e). Hence, we conclude that the composite of the inclusion
dι(e, e) and the isomorphism T(e,e)(G × G) ' Te(G) ⊕ Te(G) identifies T(e,e)(m

−1(e)) with the
subspace of points (v,−v) in Te(G)⊕Te(G). Our problem is therefore reduced to the obvious fact
that if V is a vector space then the projection map V ⊕ V → V onto the first factor restricts to a
linear isomorphism from the subspace of points (v,−v) onto the target V . �

By the preceding lemma, the set-theoretic inverse map G → m−1(e) given by g 7→ (g, g−1) is a
C∞ map with respect to the C∞-structures on source and target. Composing this with the C∞

inclusion map m−1(e)→ G×G and the C∞ second projection G×G→ G yields a C∞ composite
map G → G that is g 7→ g−1! Hence, we have proved that inversion on G is indeed automatically
a C∞ map (and even necessarily a C∞ automorphism, as it is its own inverse map).

We now turn to a more striking application of Theorem 2.1 in the context of Lie groups:

Theorem 4.4. Let f : G → G′ be a group homomorphism between Lie groups, and assume that
f is a C∞ map. The kernel K = ker f is a closed C∞ submanifold of G, and in particular has a
natural structure of Lie group.

It is a remarkable theorem in Lie theory that any continuous homomorphism between Lie groups
is automatically C∞, but we shall not consider this issue here. As a simple application of the
theorem, note that the determinant map det : GLn(R)→ R× is a C∞ group homomorphism (via
the explicit polynomial formula for matrix determinants), and so the theorem implies that the
closed subgroup SLn(R) of matrices with determinant 1 is a C∞ submanifold. This can also be
proved “by hand” via the implicit function theorem and some considerations with translations and
the formula for determinants (try!), but the theorem shows that such explicit considerations are
not necessary. Note also that even if G and G′ in the theorem are connected, the kernel K can
have infinitely many connected components (and so this gives motivation for avoiding connectivity
conditions in the foundations of the theory). For example, if G = C (considered as a Lie group via
addition) and G′ = C× (considered as a Lie group via multiplication), then the mapping

z = x+
√
−1 · y 7→ ez = ex cos(y) +

√
−1 · ex sin(y)

is a C∞ group homomorphism (that is independent of the choice of
√
−1!) and its kernel is the

infinite discrete subgroup 2π
√
−1 · Z inside of C.

Proof. Let e ∈ G and e′ ∈ G′ be the respective identity elements. The kernel is f−1(e′), so by
Theorem 2.1 it suffices to show that f has constant Jacobian rank at all points. Choose g ∈ G.
The rank of the tangent map df(g) : Tg(G) → Tf(g)(G

′) is the difference of the dimensions of
Tg(G) and ker df(g), so since dim Tg(G) is independent of g (Lemma 4.1) it is equivalent to show
that dim ker df(g) is independent of g. We shall again use translations to show that this dimension
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is equal to the value in the case g = e. For an arbitrary g ∈ G, since f is a group homomorphism
we have f ◦ `g = `f(g) ◦ f (this says f(gx) = f(g)f(x) for any x ∈ G), so using the Chain Rule at e
and the equality f(e) = e′ we get

df(g) ◦ d`g(e) = d`f(g)(e
′) ◦ df(e).

The maps d`g(e) and d`f(g)(e
′) are linear isomorphisms (as left translations are C∞ automor-

phisms), so it follows that df(g) and df(e) must have kernels with the same dimension. (Con-
cretely, the linear isomorphism d`g(e) : Te(G) ' Tg(G) must carry ker df(e) isomorphically over
to ker df(g).) �


