
Math 396. Subbundles and quotient bundles

1. Motivation

We want to study the bundle analogues of subspaces and quotients of finite-dimensional vector
spaces. Let us begin with some motivating examples.
Example 1.1. Let i : H ↪→ Rn be a smooth embedded hypersurface. By the universal property
of bundle pullback, the natural mapping of tangent bundles di : TH → T (Rn) over i : H → Rn

uniquely factors through a C∞ bundle mapping f : TH → i∗(T (Rn)) over H. On fibers over h ∈ H,
this is the injection Th(H)→ Ti(h)(Rn). If t1, . . . , tn are the standard coordinate functions on Rn

then T (Rn) is trivialized by the sections ∂tj , and so defines a bundle isomorphism T (Rn) ' Rn×Rn

over Rn (using projection to the first Rn-factor on the target) that on fibers over x ∈ Rn is the
linear isomorphism Tx(Rn) ' Rn via the ordered basis {∂tj |x} of Tx(Rn). Using this trivialization
of T (Rn) → Rn we get an induced trivialization of the pullback i∗(T (Rn)) → H via the pullback
sections i∗(∂tj ).

Concretely, in the fiber (i∗(T (Rn)))h ' T (Rn)i(h) ' Ti(h)(Rn) over h ∈ H the section i∗(∂tj )
has value ∂tj |i(h). In this way, we have i∗(T (Rn)) ' H ×Rn as C∞ vector bundles over H, and so
we get a bundle mapping

TH
f→ i∗(T (Rn)) ' H ×Rn

over H that is the composite injection

Th(H)
di(h)
↪→ Ti(h)(R

n) ' Rn

on fibers over h ∈ H. Visually, as h moves in H the tangent hyperplanes Th(H) “move” in Rn

in a manner that (in a sense to be made precise) depends “smoothly” on h. This is the local
visualization motivating the idea of subbundles: nicely moving subspaces of fixed dimension in a
fixed vector space.
Example 1.2. Give R3 its standard inner product, with associated standard norm. Let X =
R3 − {0}, and for each point x ∈ X let S(x) ⊆ X be the sphere centered at the origin and passing
through x. Consider the tangent plane Tx(S(x)) inside of Tx(X) = Tx(R3) ' R3. As we vary x,
how do these planes in R3 “move”? The simplest way to get our hands on the situation is to observe
that the smooth surfaces S(x) are level sets for the smooth function f(u, v, w) = u2 +v2 +w2 on X
that has no critical points, and so for each x ∈ X the functional df(x) : Tx(R3)→ Tf(x)(R) ' R
(via the basis ∂t|f(x) of Tf(x)(R)) has as its kernel exactly the tangent plane to the level set
S(x) of f through x. Explicitly, the matrix for df(x) (using basis ∂u|x, ∂v|x, ∂w|x in Tx(R3)) is
(u(x) v(x) w(x)), and so

Tx(S(x)) = {a∂u|x + b∂v|x + c∂w|x ∈ Tx(X) |u(x)a+ v(x)b+ w(x)c = 0}.

Using the trivializing frame {∂u, ∂v, ∂w} of TX, for x in the open locus W = {w 6= 0} in X we
may solve the equation

u(x)a+ v(x)b+ w(x)c = 0
for c in terms of a and b, so by taking the pairs (a, b) of “free parameters” to be (1, 0) and (0, 1)
we arrive at a “universal formula” for a basis of Tx(S(x)) ⊆ Tx(X) = R3 for x ∈W , namely

s1(x) = ∂u|x − (u(x)/w(x))∂w|x, s2(x) = ∂v|x − (v(x)/w(x))∂w|x.

That is, over the open subset W the C∞ sections

s1 = ∂u − (u/w)∂w, s2 = ∂v − (v/w)∂w
1
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in (TX)(W ) have two properties: they are part of a trivializing frame for TX|W ({s1, s2, ∂w|W })
and fiberwise they give a basis for Tx(S(x)) for all x ∈W .

Though s1 and s2 do not extend to (TX)(X) (since u/w and v/w “blow up” as we approach
the boundary of W in X, whereas {∂u, ∂v, ∂w} is a global frame for TX), over the other two opens
U = {u 6= 0} and V = {v 6= 0} in X we may likewise find trivializing frames for (TX)|U and
(TX)|V whose first two members give a fiberwise basis for Tx(S(x)) at each point x ∈ U and x ∈ V
respectively. Note that if x0 ∈ X lies in two or more of the opens U , V , and W , then the above
procedures give different “families of bases” of the fiber spaces Tx(S(x)) for x near x0. The key
point is this: there is no “smooth formula” for a trivializing frame of the family of planes Tx(S(x))
inside of R3 as x varies across all of X. Indeed, even over the points x on a single sphere S in R3

centered at the origin these Tx(S)’s are exactly the fibers of TS → S inside of the pullback of T (R3)
along S ↪→ R3, and we know that the tangent bundle TS to a 2-sphere S has no non-vanishing
continuous section over S (hairy ball theorem), let alone a continuous family of frames.

To summarize, it is geometrically appealing to view the planes Tx(S(x)) ⊆ Tx(X) ' R3 as a
“nicely varying family” parameterized by x ∈ X, and one feature of the niceness is that locally on X
(namely, over each of the opens U, V,W that cover X) we can find a local frame for TX containing
a subset whose specialization in the fiber (TX)(x) = Tx(X) at each point x in the domain of the
frame is a basis of the subspace Tx(S(x)). This is a sort of “local triviality” condition for the
planes Tx(S(x)) inside of the fibers Tx(X) of the vector bundle TX. We therefore wish to say that
the collection of Tx(S(x))’s is a “subbundle” of the vector bundle TX. The novelty is that this
“subbundle” cannot be expected to exhibit the global triviality that is satisfied by TX but rather
seems to only be trivializable over some opens that cover X.

The preceding two examples capture the essential idea for what a Cp subbundle of a Cp vector
bundle E → X should be: a Cp-varying family of subspaces of the E(x)’s that is locally “trivialized”
over X using subsets of local trivializing frames for E → X. This is analogous to the fact from
linear algebra that for any subspace of a finite-dimensional vector space we can find a basis of the
subspace that extends to a basis of the entire vector space.

We conclude this preliminary discussion with a natural example of how the notion of subbundle
(still to be defined!) arises in practice. Let f : E′ → E be a Cp vector bundle morphism between
Cp vector bundles over a Cp premanifold with corners X. For each x ∈ X, we get a subspace
ker(f |x) ⊆ E′(x) for the fiber map f |x : E′(x) → E(x). For example, if h : X = R3 − {0} → R
is the map h(u, v, w) = u2 + v2 + w2 then dh : TX → TR over h gives rise to a bundle mapping
f : E′ = TX → h∗(TR) = E over X that on fibers is the mapping dh(x) : E′(x) = Tx(X) →
Th(x)(R) = E(x) whose kernel is the tangent plane Tx(S(x)) to the standard sphere in R3 centered
at the origin and passing through x. In other words, the study of the family of fibral kernels
ker(f |x) ⊆ E′(x) is a generalization of Example 1.2.

Let us prove a general theorem on kernels of varying families of matrices, as this will point the
way to a good notion of “subbundle” that gives the right bundle generalization of the notion of
subspace of a vector space.

Theorem 1.3. Let f : E′ → E be a Cp vector bundle map between Cp vector bundles over a Cp

premanifold with corners X. The function x 7→ dim(ker f |x) is locally constant if and only if there
is a covering of X by opens Ui such that each E′|Ui admits a trivializing frame containing a subset
whose specialization in the fiber over each point x ∈ Ui is a basis of ker(f |x).

The local constancy condition on the dimensions of the kernels is crucial. In Example 1.2 if we
had worked with R3 rather than R3 − {0} (using the bundle mapping T (R3) → h̃∗(TR) induced
by the tangent mapping of h̃ : (u, v, w) 7→ u2 +v2 +w2 on R3) then at x = 0 the fiber map would be
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0 and so the dimension of the kernel on that fiber would “jump” from 2 (the dimension at nearby
fibers) to 3 (the dimension in the 0-fiber). In case of such dimension jumping at special points, one
cannot expect the fibral kernels to arise as the fibers of a vector bundle (since the dimension of the
fibers of a vector bundle is locally constant on the base).

Proof. The “if” direction is obvious (why?), so now we assume local constancy for the dimension
of the fiberwise kernels and we seek to find the asserted local frames for E′. The problem is local
on X, so we can assume E′ and E are trivial and that the kernels of the maps f |x have a common
dimension d. Let {s′i} and {sj} in E′(X) and E(X) be trivializing frames with 1 ≤ i ≤ n′ and
1 ≤ j ≤ n, so r = n′ − d is the common rank of the maps f |x. Define aij ∈ O(X) by the
condition f(s′j) =

∑
i aijsi. For any x ∈ X some r × r submatrix in (aij(x)) is invertible, say

for i and j running through r-tuples of indices I and J , and so by continuity for x′ near x the
“same” submatrix (aij(x′))(i,j)∈I×J has non-vanishing determinant and so is invertible. Hence, we
can cover X by opens Uα so that over Uα there are r-tuples of indices Iα and Jα such that the r× r
submatrix (aij)(i,j)∈Iα×Jα is invertible over Uα. Since the theorem is a local problem over X, we
may work separately over the Uα and so upon renaming each as X we may assume there is some
r × r submatrix of (aij) that is invertible over X. By rearranging the indices, we can assume for
convenience of notation that the upper left r × r submatrix (i.e., 1 ≤ i, j ≤ r) that is invertible,
though there could well be other invertible r × r submatrices (we simply have to choose one). In
terms of the setup before we localized on X, this rearrangement of indices over each Uα will usually
depend on Uα. (Compare with the considerations over U, V,W in Example 1.2, where we were
really picking an invertible 1 × 1 submatrix in a 1 × 3 matrix over each of three opens that cover
X = R3 − {0}.)

Since (aij(x)) has rank exactly r for all x ∈ X and the submatrix for 1 ≤ i, j ≤ r is invertible for
all x ∈ X, the first r columns are linearly independent. Hence, the image of this matrix is spanned
by the first j columns. In coordinate-free language, this says that for all x ∈ X and all j > r the
vector (f(s′j))(x) = f |x(s′j(x)) ∈ E(x) is a unique linear combination of (f(s′1))(x), . . . (f(s′r))(x).
That is, for each j > r if we consider the equation

(f(s′j))(x) =
r∑

k=1

ckj · (f(s′k))(x)

in E(x) for r unknowns c1j , . . . , crj (with j fixed in the range r < j ≤ n′ = r + d), then this is a
“universal” (typically overdetermined!) system of n′ linear equations

(1) aij(x) =
r∑

k=1

aik(x)ckj

upon expanding the f(s′k)’s and f(s′j) in the frame of the si’s for E(X) (here, 1 ≤ i ≤ n′). But
in our situation we know a priori that the system of equations (1) for 1 ≤ i ≤ n′ and a fixed j
satisfying r < j ≤ n′ = r+d has a unique solution. Since (aij(x))1≤i,j≤r is invertible, the subsystem
of r equations for 1 ≤ i ≤ r has invertible coefficient matrix. We can therefore use this subsystem to
uniquely solve for each ckj via Cramer’s formula, and we know automatically that such c1j , . . . , crj
will have to satisfy all n′ equations in (1) for 1 ≤ i ≤ n′ (as we know in advance that there is a
unique solution to the entire overdetermined system).

One consequence of the solution via Cramer’s formula is that each ckj = ckj(x) is a rational
function of the aij(x)’s for 1 ≤ i ≤ r with denominator that is a determinant polynomial non-
vanishing on X. In particular, each ckj for 1 ≤ k ≤ r and r + 1 ≤ j ≤ n′ is a Cp function on X.
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Hence, we get d sections

(2) vj = s′j+r −
r∑

k=1

ck,j+rs
′
k ∈ E′(X)

with 1 ≤ j ≤ d and ck,j+r ∈ O(X) such that vj(x) ∈ ker(f |x) for all x ∈ X. By inspection the d
vectors vj(x) ∈ E′(x) are linearily independent (as vj(x) involves s′j+r(x) but vj′(x) does not for
j′ 6= j) and they lie in the d-dimensional ker(f |x), so they must be a basis of this kernel. (This
argument is a generalization of what we did in Example 1.2.)

Consider the n′ sections s′1, . . . , s
′
r, v1, . . . , vd ∈ E′(X). For each x ∈ X, the vectors vj(x) ∈ E′(x)

are a basis of the kernel of f |x and the vectors f |x(s′1(x)), . . . , f |x(s′r(x)) are a basis of the image
of f |x, whence these n′ vectors in E′(x) are a basis. Hence, we have built a new frame for E′ such
that d of the members of the frame (namely, v1, . . . , vd in (2)) give a fiberwise basis of the kernels
of the maps f |x. �

The preceding considerations suggest a couple of different ways to define the notion of subbundle
of a vector bundle. We begin with the most naive definition, and it will later be shown to admit
equivalent reformulations in terms of local frames.
Definition 1.4. Let X be a Cp premanifold with corners. Let E be a Cp vector bundle over X. A
Cp subbundle is a morphism i : E′ → E of Cp vector bundles over X such that i|x : E′(x)→ E(x)
is injective for all x ∈ X.

Applying pullback along a Cp map f : X ′ → X carries subbundles to subbundles: if i : E′ → E
over X is fiberwise injective, so is f∗(i) : f∗E′ → f∗E over X ′. (For the mapping f∗(i), see
Corollary 2.5 in the handout on pullback bundles.)
Example 1.5. Let h : Y ↪→ X be a Cp immersion between Cp premanifolds, with p ≥ 1. The
tangent mapping dh : TY → TX over h : Y → X uniquely factors through a Cp−1 vector bundle
mapping i : TY → h∗(TX) as Cp−1 vector bundles over Y . On fibers over y ∈ Y this is the map
di(y) : Ty(Y )→ Th(y)(X) that is injective since h is an immersion. Hence, i exhibits TY as a Cp−1

subbundle of h∗(TX) in the sense of the preceding definition (viewing the base Y as of class Cp−1).
A special case of this is Example 1.1.

The reason we prefer to view subbundles as fiberwise injective bundle maps rather than as literal
subsets of the target is because unlike in linear algebra we have to keep track of more than just the
fibral linear structure, namely the differentiable structure, and so for such purposes it is best to keep
the spaces E′ and E “separate” from each other. An exception can be made in the case when there
is no boundary or corner on X (and hence none on vector bundles over X) because in such cases we
have the local immersion theorem available as a tool to tell us that certain subsets have a unique
differentiable structure compatible with that on the ambient space. It will be essential in Stokes’
theorem that we work with manifolds with boundary, and so we cannot restrict our attention to
just the case of premanifolds. Hence, after we sort out special features of the case of subbundles of
vector bundles over premanifolds we will return to the general setting of premanifolds with corners.

2. Properties of subbundles

We first wish to show that if X is a Cp premanifold (no corners or boundary), so there is a good
notion of Cp embedding and all vector bundles over X also have no corners or boundary, then for a
Cp subbundle i : E′ → E the fiberwise images i(E′(x)) ⊆ E(x) for x ∈ X (i.e., the physical image
i(E′) ⊆ E) do determine the pair (E′, i) up to unique Cp vector bundle isomorphism over X. This
is analogous to “identifying” a linear injection with its image inside of the target vector space.
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Lemma 2.1. Let X be a Cp premanifold with corners. Let i : E′ → E be a Cp subbundle of
a Cp vector bundle E over X. The map i is a Cp closed immersion: it is topologically a closed
embeddings, and as a map of premanifolds with corners it has injective tangent mappings. Moreover,
if f : E′1 → E is a bundle mapping with f(E′1) ⊆ i(E) then there is a unique Cp bundle mapping
φ : E′1 ' E′ over X such that i ◦ φ = f , and if f is fiberwise injective with f(E′1) = i(E′) then φ is
a Cp bundle isomorphism. In particular, the subset i(E′) ⊆ E uniquely determines the pair (E′, i)
up to unique Cp isomorphism.

The lemma suggests a natural question for Cp premanifolds with corners X: if Σ ⊆ E is a subset
such that Σ ∩ E(x) is a subspace of E(x) for all x ∈ X, is Σ the union of the set of fibers of a Cp

subbundle of E (necessarily unique up to unique Cp bundle isomorphism, by Lemma 2.1)? The
necessary and sufficient conditions for an affirmative answer will be given in Theorem 2.5 in terms
of local frames.

Proof. Since i is a mapping over X, the property of it being a closed immersion is a local problem
over X. Hence, by working locally we may suppose E′ and E are both trivial, say with trivializing
frames {s′k} and {sj}. By hypothesis, {i|x(s′k(x))} is a linearly independent set in E(x) for all
x ∈ X. That is,

i|x(s′k(x)) =
∑

ajk(x)sj(x)

with ajk ∈ O(X) and the n × n′ matrix (ajk(x)) having rank n′ for all x ∈ X. Hence, for each
x there exists an invertible n′ × n′ submmatrix, so by working locally on X and rearranging the
indices (as in the proof of Theorem 1.3) we may arrange that the left n′ × n′ block (ajk)1≤j,k≤n′ is
invertible over all of X.

Consider the ordered set of n vectors

Σx = {i|x(s′1(x)), . . . , i|x(s′n′(x)), sn′+1(x), . . . , sn(x)}
in the n-dimensional E(x). The matrix of coefficients for this ordered set in terms of the frame of
sj(x)’s is an n×n matrix whose upper left n′×n′ block is invertible, upper right n′× (n−n′) block
is 0, and lower right (n− n′)× (n− n′) block is the identity matrix. Thus, this matrix is invertible
and so Σx is a basis of E(x) for all x ∈ X. That is,

Σ = {i(s′1), . . . , i(s′n′), sn′+1, . . . , sn} ⊆ E(X)

is a trivializing frame for E. (Keep in mind that to get to this step we have already localized
quite a bit on the original X, and also rearranged the original sj ’s in the process.) In terms of the
resulting bundle isomorphisms

E′ ' X ×Rn′ , E ' X ×Rn

associated to the frames {s′k} and Σ of E′ and E, the composite Cp bundle map

X ×Rn′ ' E′ i→ E ' X ×Rn

is the standard inclusion

(x, (a1, . . . , an′)) 7→ (x, (a1, . . . , an′ , 0, . . . , 0)).

That is, it is the standard map X ×Rn′ → (X ×Rn′) ×Rn−n′ defined by setting the last n − n′
coordinates in Rn−n′ equal to 0. This completes the proof that i is a closed immersion.

Now suppose f : E′1 → E is a bundle mapping with f(E′1) ⊆ i(E′). We want to show that f
uniquely factors through i via a bundle mapping φ : E′1 → E′ and that φ is an isomorphism if f
is fiberwise injective with f(E′1) = i(E′). Once we build φ uniquely as a bundle mapping, then in
the case that f is fiberwise injective with f(E′1) = i(E′) it follows that φ : E′1 → E′ is a bundle
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mapping that is a bijective on fibers, hence a linear isomorphism on fibers, and so φ is a Cp bundle
isomorphism in such cases. The uniqueness of φ in general follows from the fiberwise injectivity of
i, and certainly φ exists set-theoretically as a map φ : E′1 → E′ over X that is linear on fibers. The
only problem is to prove that this map is Cp, and this problem is local over X. As we have seen
above, by working locally over X we can assume that there are trivializations E′ ' X ×Rn′ and
E ' X×Rn with n′ ≤ n under which i is carried to the bundle mapping X×Rn′ → X×Rn given
by the standard inclusion of Rn′ into the first n′ coordinates of Rn on all fibers. Hence, the problem
for proving φ is Cp becomes the problem of showing that a map E′1 → X ×Rn over X whose last
n−n′ component maps are 0 has Cp factorization through the mapping X ×Rn′ → X ×Rn given
by the identity on X and the standard inclusion of Rn′ into the first n′ coordinates of Rn. This
follows from the universal properties of products and the fact that any Euclidean space RN with its
standard Cp structure is indeed a product of N copies of R as a Cp premanifold with corners. �

The local picture in the lemma is quite attractive: a subbundle locally looks like a standard
inclusion X ×Rn′ → X ×Rn by appending 0’s in the last n−n′ coordinates. Here is a coordinate-
free formulation, essentially saying that subbundles admit local bundle complements (just as for
any subspace V ′ in a finite-dimensional vector space V , we can find a subspace V ′′ ⊆ V that is
complementary to V ′ in the sense that the natural linear “addition” map V ′ ⊕ V ′′ → V is an
isomorphism).
Theorem 2.2. A map of Cp vector bundles f : E′ → E over X is a subbundle if and only if there
is a covering of X by opens Ui such that E′|Ui is a direct summand of E|Ui as vector bundles over
Ui: there exists a Cp vector bundle E′′i over Ui and a Cp vector bundle isomorphism

φi : E′|Ui ⊕ E′′i ' E|Ui
over Ui such that f |Ui is the composite φi ◦ ji with ji : E′|Ui → E′|Ui ⊕ E′′i defined by (id, 0).

Proof. Working locally as in the proof of Lemma 2.1, we have seen that if f is a subbundle then
upon shrinking X we can choose local frames so that there are isomorphisms E′ ' X × Rn′

and E ' X × Rn such that f is identified with the standard inclusion X × Rn′ → X × Rn by
appending 0’s in the last n− n′ coordinates. Define E′′ = X ×Rn−n′ and define the isomorphism
φ : E′ ⊕ E′′ ' E by

E′ ⊕ E′′ ' (X ×Rn′)⊕ (X ×Rn−n′) ' X × (Rn ⊕Rn−n′) = X ×Rn ' E.
This has the desired relationship with f , and so settles one direction of the theorem. Conversely,
if the local direct summand condition holds then f is trivially injective on fibers and so it is a
subbundle. �

The following corollary shows that Cp subbundles behave very much like linear subspaces of
vector spaces in terms of factorization of maps:
Corollary 2.3. If f : E′ → E is a Cp subbundle and h : V → E is a Cp bundle morphism such that
on fibers V (x) → E(x) factors through the subspace E′(x) ⊆ E(x) for all x ∈ X then h uniquely
factors through f via a Cp bundle morphism V → E′ over X.

Proof. The set-theoretic factorization exists and is unique (and respects projection to X and linear
structure on the fibers), so the only problem is to prove that it is a Cp map. This is local over
X, so by Theorem 2.2 we can shrink X to get to the case when there is a Cp bundle isomorphism
φ : E′⊕E′′ ' E satisfying φ|x(s′, 0) = f |x(s′) for all x ∈ X and s′ ∈ E′(x), and we can study φ−1◦h
rather than h. That is, we may assume E = E′ ⊕E′′ with f the standard inclusion E′ → E′ ⊕E′′
via the 0-map to E′′ and the identity map to E′. The assumption on h says that the composite
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mapping of bundles V → E′ ⊕ E′′ → E′′ is the zero map on fibers and hence is 0. Thus, if we
let h′ : V → E′ be the composite of h and the “projection” E′ ⊕ E′′ → E′ then h|x = (h′|x, 0) as
maps from V (x) to E′(x)⊕E′′(x) for all x ∈ X. That is, h = (h′, 0) = j ◦ h′ is a factorization of h
through the standard inclusion j : E′ → E′ ⊕ E′′. �

Corollary 2.4. If f : E′ → E is a subbundle then every local frame for E′ locally extends to a local
frame for E. That is, for any open set U ⊆ X and trivialization {s′j} of E′|U there is a covering
of U by opens Uα such that the restrictions f(s′j)|Uα ∈ E(Uα) are a subset of a frame for E|Uα.

Proof. The problem is local on X, so we may assume U = X and (by Theorem 2.2) that there is a
Cp isomorphism of bundles E′ ⊕ E′′ ' E such that the composite

E′
(id,0)→ E′ ⊕ E′′ ' E

is f . There is a covering of X by opens Uα such that E′′|Uα admits a frame {s′′k}. Hence, upon
renaming Uα as X, the sections (s′j , 0) and (0, s′′k) of E′(X)⊕E′′(X) = (E′ ⊕E′′)(X) for all j and
k give a trivialization of E′ ⊕ E′′ because they give a basis on all fibers. Their image in E(X)
therefore gives a trivialization of E. But the direct summand isomorphism was rigged to carry a
section (s′, 0) to f(s′), and so the f(s′j)’s are a subset of a trivializing frame for E. �

We now answer the question: what ways of selecting subspaces of fibers of a vector bundle gives
a subbundle? By Lemma 2.1, this set-theoretic question is most reasonable (in the sense of having
an answer that is unique up to unique isomorphism) when X is a premanifold with corners. The
answer is a mixture of manifold conditions and linear algebra in the fibers:
Theorem 2.5. Assume X is a Cp premanifold with corners and let E → X be a Cp vector
bundle. Let Z ↪→ E be a Cp closed immersion from a Cp premanifold with corners Z such that
Z ∩ E(x) ⊆ E(x) is a linear subspace whose dimension is locally constant as a function of x ∈ X.
Also assume that locally near each z ∈ Z, the map Z → E splits as a slice-inclusion by a factor
of a product decomposition. Finally, assume that for every z ∈ Z there is a local Cp section to π
around π(z) ∈ X carrying π(z) back to z.

This Z admits a unique structure of a Cp vector bundle over X such that the given mapping
Z → E makes it a subbundle of E over X. If X has no corners then the assumption on the
existence of local Cp-sections to Z → X through all points of Z is automatically satisfied.

In view of the preceding results, the conditions on Z are certainly necessary in order that Z be
a Cp subbundle of E over X. Also, by the immersion theorem, if X has no corners then the local
hypothesis on the structure of the map Z → E is equivalent to Z → E being an immersion.

Proof. The given conditions provide a linear structure on the fibers of π : Z → X such that the
Cp map Z → E is a linear injection on fibers, so the only problem is to show that with its fibral
linear structure the map Z → X satisfies the local Cp triviality condition in the definition of Cp

vector bundle. This problem is local on X, so we may assume E has constant rank n and (by the
local constancy hypothesis) that Z ∩ E(x) has a common dimension d for all x ∈ X. We next
check that if X has no corners then Z → X has local Cp-sections through all points of Z. The
zero-section X → E lands inside of Z set-theoretically (since 0 ∈ E(x) is contained in Z ∩E(x) for
all x ∈ X), so by the immersion theorem (no corners!) the zero section X → E uniquely factors
through Z → E as a Cp map 0 : X → Z. Hence, there is a composite of Cp maps

X
0→ Z

π→ X

that is the identity, so by the Chain Rule the tangent maps for π : Z → X are surjective. By
the submersion theorem (no corners!), it follows that for every z ∈ Z there is a local Cp section
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to π around π(z) ∈ X carrying π(z) back to z. Hence, if we choose any x0 ∈ X and pick a basis
v1, . . . , vd of Z ∩ E(x0) ⊆ E(x0) then by shrinking X around x0 we can find Cp sections s1, . . . , sd
of Z → X such that sj(x0) = vj for 1 ≤ j ≤ d.

Choose x0 ∈ X. We aim to prove the local triviality condition for π : Z → X over an open
neighborhood of x0 ∈ X. Shrinking X around x0 so that E has a trivialization, consider the
resulting coordinates for the d linearly independent vectors sj(x) with respect to the x-fibers of the
chosen frame of E. These form the columns of an n×d matrix whose value at x0 has d independent
columns (as the vectors sj(x0) = vj ∈ E(x0) are linearly independent by construction of the vj ’s).
Thus, by equality of row rank and column rank for matrices there are d independent rows at x0

and hence there is a d× d submatrix that is invertible at x0 and therefore invertible at x near x0.
By shrinking X around x0, we may thereby arrange that the d vectors sj(x) in the d-dimensional
subspace Z ∩ E(x) ⊆ E(x) are linearly independent and hence a basis of Z ∩ E(x) for all x ∈ X.

Consider the bundle morphism φ : X × Rd → E over X defined by the sj ’s. This map is
fiberwise injective with image Z because it carries each x-fiber Rd to a linear subspace of E(x)
spanned by the basis sj(x) of Z ∩ E(x). In particular, X ×Rd → E is a subbundle, whence it is
a topological embedding and injective on tangent spaces (by Lemma 2.1). But Z → E is another
Cp map with the same properties and the same image subset inside of E. It follows that the map
φ : X ×Rd → E and the given Cp inclusion Z → E each factor uniquely through each other as Cp

maps (the Cp property holds because both maps locally can be described as slice-inclusions of a
factor of a product space), and the resulting Cp maps X×Rd → Z and Z → X×Rd are inverse to
each other (and linear on fibers). Thus, we have a Cp isomorphism X ×Rd ' Z over X respecting
the linear structure on fibers; this is the desired local trivialization. �

The last result we prove concerning subbundles is a criterion for the fiberwise kernels of a bundle
mapping to “be” a subbundle of the source bundle. This was hinted at in Theorem 1.3.
Theorem 2.6. Let f : E′ → E be a Cp bundle morphism over X. The following conditions are
equivalent:

(1) the function x 7→ dim(ker f |x) is locally constant on x,
(2) there is a subbundle E′0 → E′ such that the image of E′0(x) in E(x) is ker f |x for each

x ∈ X.
When these conditions hold, the O(U)-linear map E′0(U)→ E′(U) is an isomorphism onto ker f

U
=

ker(E′(U)→ E(U)) ⊆ E′(U) for every open set U ⊆ X.
When the conditions of the theorem are satisfied, then the O-module U 7→ ker f

U
is locally free

of finite rank because it is O-linearly isomorphic to E′0. We then call the subbundle E′0 the kernel
of f and denote it ker f (so (ker f)(x) = ker(f |x) for all x ∈ X). If the dimensions of the kernels
ker(f |x) are not locally constant in x then we do not speak of the kernel of f because there is no
good way to make sense of it as a vector bundle. (It is always possible to make sense of a good
notion of kernel by working with O-modules not necessarily arising from vector bundles, but that
goes beyond the level of the course and so we won’t discuss it any further here.)

Proof. The implication (2) ⇒ (1) is trivial: E′0(x) → E′(x) is an injection, so dim(ker f |x) =
dimE′0(x) is locally constant in x. To prove that (1) implies (2), let K (U) = ker f

U
⊆ E′(U)

for open U ⊆ X. We shall begin by proving that K is locally free of finite rank. This is a local
question, so we may work locally over X to arrange that (by Theorem 1.3) E′ is trivial with a frame
{s′1, . . . , s′n′} whose first d elements give a fiberwise basis of ker(f |x) for all x ∈ X. For open U ⊆ X,
suppose s′ ∈ E′(U) maps to 0 in E(U) (i.e., s′ ∈ K (U)). We may uniquely write s′ =

∑
ais
′
i|U

with ai ∈ O(U). Since s′(x) =
∑
ai(x)s′i(x) lies in the span ker(f |x) of the s′i(x)’s for i ≤ d for all
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x ∈ U , we have ai(x) = 0 for all x ∈ U and i > d. That is, ai = 0 for all i > d. This shows that
K (U) ⊆ E′(U) is the free O(U)-submodule spanned by the s′i|U ’s for i ≤ d. We have proved that
the sections s′1, . . . , s

′
d in K (X) have restriction in K (U) that is an O(U)-module basis of K (U)

for all opens U ⊆ X. In other words, K is locally free of finite rank.
Since K is locally free of finite rank, it arises from a unique Cp vector bundle E′0 on X, and the

mapping E′0 ' K → E′ of O-modules arises from a unique map of Cp vector bundles E′0 → E′ over
X. Using the isomorphism E′0(x) ' E′0(x) between fibers of O-modules and vector bundles, the
preceding local calculation in frames shows that E′0 admits local frames ({s′1, . . . , s′d} in K (X) =
E′0(X) in the preceding notation, at least after working locally on X) whose values in each fiber
E′0(x) map to a basis of ker(f |x) ⊆ E′(x) for each x in small opens that cover X. Hence, the fiber
map E′0(x)→ E′(x) is injective with image ker f |x for all x ∈ X. �

Example 2.7. Beware that if the O-module U 7→ ker f
U

is locally free of finite rank, it does not
necessarily happen that the conditions of the preceding theorem are satisfied. For example, let
X = R with standard coordinate t and let E′ = E = X×R be trivial line bundles (with associated
O-module O). Let f : E′ → E be the map (x, c) 7→ (x, cx) that corresponds to the O-module map
f : O → O given by multiplication by t|U . That is, f |U : O(U)→ O(U) is exactly h 7→ th. This is
certainly injective for all U , even if U contains the origin (since a continuous function h vanishing
on a punctured neighborhood of the origin must also vanish at the origin by continuity). Hence,
ker f

U
= 0 for all open U ; this is certainly locally free of finite (vanishing!) rank. However, ker(f |x)

has a dimension-jump at the origin: its dimension is 1 at x = 0 and is 0 for x 6= 0.
Example 2.8. There is a very important class of Cp bundle maps f : E′ → E for which the criteria in
Theorem 2.6 are satisfied: those f such that f |x : E′(x)→ E(x) is surjective for all x ∈ X. Indeed,
in such cases dim ker(f |x) = dimE′(x)− dimE(x) is a difference of locally constant functions and
hence is locally constant.

3. Bundle quotients

In the preceding section we made an exhaustive study of the bundle analogue of a linear injection.
We now take up the analogue of a linear surjection and a quotient by a subbundle.
Definition 3.1. A Cp bundle surjection is a Cp bundle map f : E′ → E such that f |x : E′(x) →
E(x) is surjective for all x ∈ X.

Recall that in linear algebra, a linear map between finite-dimensional vector space is injective
(resp. surjective) if and only if its dual map is surjective (resp. injective). The same holds for
vector bundles: a Cp bundle mapping f : E′ → E with dual map f∨ : E∨ → E′∨ (inducing
(f |x)∨ : E(x)∨ → E′(x)∨ on x-fibers for all x ∈ X) has the property that f is a bundle surjection
(resp. subbundle) if and only if f∨ is a subbundle (resp. bundle surjection). Indeed, these conditions
are fibral by definition, so the old result from linear algebra gives what we need.
Remark 3.2. It is natural to ask if a bundle surjection f : E′ → E induces a surjection E′(U) →
E(U) for all opens U ⊆ X. A moment’s reflection shows that this is not obvious, but in fact the
answer is affirmative for manifolds with corners. The proof requires partitions of unity, as we shall
see in Theorem 3.6. (Beware, however, that such surjectivity on U -sections is generally false when
working in the complex-analytic case.)

The first order of business is to prove that bundle surjections satisfy some of the nice mapping
properties of linear surjections in linear algebra. Let f : E′ → E be a Cp bundle surjection. By
Example 2.8, there is a well-defined subbundle E′0 = ker f inside of E′, and since f |x is surjective it
induces a linear isomorphism E′(x)/E′0(x) ' E(x) for all x ∈ X. In view of the universal mapping
property of quotients in linear algebra, the follows result is appealing:
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Theorem 3.3. For a Cp vector bundle surjection f : E′ → E, if h : E′ → E′′ is a Cp bundle
mapping such that h kills the subbundle ker f (or equivalently, h|x : E′(x)→ E′′(x) kills ker(f |x) ⊆
E′(x) for all x ∈ X) then h uniquely factors through f via a Cp bundle mapping h : E → E′′.

Proof. Set-theoretically (working on fibers over X) we get the map h over X and it is linear on
fibers. The problem is to prove that it is Cp, so we can work locally on X. By Theorem 2.2, we may
therefore suppose (by working locally over X) that the subbundle E′0 = ker f is a direct summand
of E′. That is, we may assume there is a Cp bundle isomorphism g : E′0 ⊕ E′1 ' E′ identifying the
subbundle inclusion E′0 → E′ with the standard inclusion of E′0 into E′0 ⊕ E′1. It is harmless to
replace h with h ◦ g, so we may suppose E′ = E′0 ⊕ E′1 with f : E′0 → E′ the standard inclusion.

Using the standard Cp inclusion E′1 → E′0⊕E′1 = E′, the composite map φ : E′1 → E′
f→ E induces

an isomorphism on fibers (since E′0(x) = ker(f |x), and f |x is surjective for all x ∈ X), whence it is
a Cp bundle isomorphism.

Define h to be the composite Cp bundle map

E
φ−1

' E′1 → E′0 ⊕ E′1 = E′
h→ E′′.

Passing to fibers over X, this is seen to work: h ◦ f = h. �

The method of proof of Theorem 3.3 shows that bundle surjections have a nice characterization
in terms of local frames, generalizing the fact from linear algebra that a basis of a quotient V/W
lifts to part of a basis of V :
Theorem 3.4. A Cp bundle map f : E′ → E is a bundle surjection if and only if X is covered
by opens on which E admits a local frame that lifts to part of a local frame of E′. In such cases,
for any direct sum decomposition E′|U ' (ker f)|U ⊕E′′ as Cp vector bundles over an open U ⊆ X
(extending the inclusion of (ker f)|U into E′|U ) the composite

E′′
(0,id)→ (ker f)|U ⊕ E′′ ' E′|U → E|U

is an isomorphism of Cp vector bundles, and so any local frame of E locally lifts to part of a local
frame of E′.

When f in Theorem 3.4 is a bundle surjection, we get the subbundle ker f in E′. Thus, in such
cases Theorem 2.2 ensures that the base space X admits a covering by opens U over which there
exist direct summand decompositions as considered in the statement of the theorem.

Proof. If a local frame for E|U lifts to part of one for E′|U then since local frames give a basis on
fibers over their domain it follows that f |x must be surjective for all x ∈ U . Thus, if such U ’s exist
that cover X then f |x is surjective for all x ∈ X (i.e., f is a bundle surjection). Conversely, assume
f is a bundle surjection, so we do have a Cp subbundle ker f in E′. By Theorem 2.2, there exists an
open covering {Ui} of X and Cp vector bundles E′′i on Ui fitting in to direct sum decompositions
E′|Ui ' (ker f)|Ui ⊕ E′′i as Cp vector bundles (extending the inclusion of (ker f)|Ui into E′|Ui).
The claim that the composite Cp bundle map E′′i → E|Ui is an isomorphism may be checked on
fibers over Ui, where it is obvious because (ker f)(x) = ker(f |x) inside of E′(x) for all x ∈ X since
E′′(x) ⊆ E′(x) is a complement to the kernel of the linear surjection f |x : E′(x)→ E(x). �

Theorem 3.3 gives a precise sense in which for a bundle surjection f : E′ → E, the data of E and
the mapping f from E′ to E are uniquely determined by E′ and the subbundle ker f in E′: those
Cp bundle maps E′ → E′′ that factor through f are exactly the ones that vanish on ker f , in which
case they uniquely factor through f . In other words, f : E′ → E is the “simplest” Cp bundle map
that kills the subbundle ker f in the sense that all others uniquely factors through it. This suggests
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we try to reverse the procedure: given a Cp subbundle E′0 in a Cp vector bundle E′, does there exist
a Cp bundle surjection f : E′ → E whose kernel subbundle ker f is equal to E′0? (Analogue in linear
algebra: for a subspace V ′0 in a finite-dimensional vector space V ′, does there exist a linear surjection
V ′ → V with kernel V ′0? Answer: V = V ′/V ′0 with the natural projection to it from V ′.) If so,
we would be justified in calling the pair (E, f : E′ → E) the quotient of E′ modulo the subbundle
E′0, and denoting it E′/E′0 (equipped with the bundle surjection E′ → E′/E′0). The discussion
preceding Theorem 3.3 shows that in such a situation, the natural map E′(x)/E′0(x)→ (E′/E′0)(x)
must be an isomorphism. Does such a quotient by a subbundle always exist?
Theorem 3.5. Let E′0 be a Cp subbundle of a Cp vector bundle E′. The quotient E′/E′0 exists.

Proof. The idea is to use bundle duality to convert problems for quotients into problems for sub-
bundles, and to use double duality to return to the original setup. Let i : E′0 → E′ be the subbundle
inclusion, so the dual map i∨ : E′∨ → E′∨0 is a bundle surjection. Hence, it has a subbundle kernel
ker(i∨). Let j : ker(i∨) → E′∨ be the natural inclusion map. Consider the dual vector bundle
E′′ = (ker i∨)∨ equipped with the mapping

h : E′ ' E′∨∨ j∨→ E′′.

By passing to fibers (which commutes with the kernel and duality operations we have used) and
using the double duality theorem from linear algebra, it is seen that for all x ∈ X the map
h|x : E′(x) → E′′(x) is surjective with kernel E′0(x). Since h is a bundle surjection, we get a
subbundle kerh inside of E′ with x-fiber E′0(x) for all x ∈ X. By Corollary 2.3 the subbundle
inclusions of kerh and E′0 into E′ each factor uniquely through each other (as they do so on
all fibers over X), and the resulting Cp bundle maps kerh → E′0 and E′0 → kerh are inverse
isomorphisms because they are so on all fibers over X. In other words, the given subbundle E′0
in E′ is kerh. The pair (E′′, h) therefore satisfies the requirements to be a quotient of E′ modulo
E′0. �

The next theorem address the question of surjectivity on U -sections for a bundle surjection:
Theorem 3.6. Assuming that X is a Cp manifold with corners, if f : E′ → E is a bundle surjection
of Cp vector bundles then E′(U)→ E(U) is surjective for all opens U in X.

Note that we do impose the mild topological conditions thatX be Hausdorff and second countable
(though paracompactness would suffice in place of second countability), since we use partitions of
unity in the proof.

Proof. We may rename U as X, so we pick s ∈ E(X) and we want to lift it to s′ ∈ E′(X). By
Theorem 3.4, we may cover X by opens Ui such that E′|Ui contains a subbundle E′′i mapping
isomorphically to E|Ui . In particular, there exists s′i ∈ E′′i (Ui) ⊆ E′(Ui) that lifts s|Ui ∈ E(Ui).

Let {φα} be a Cp partition of unity subordinate to the covering {Ui} of X, so the compact
support Kα of φα in X is contained in some Ui(α). The product φαs′i(α) ∈ E(Ui(α)) is supported in
the compact subset Kα and so its extension by zero to all of X is an element s′α ∈ E(X) vanishing
in fibers outside of Kα. Since the collection of Kα’s is locally finite, the sum s′ =

∑
s′α is locally

finite and hence makes sense as an element in E(X). Its image in E′(X) is equal to the locally finite
sum of sections φαs ∈ E′(X) because φα vanishes outside of Ui(α) and inside of Ui(α) the product
φαs equals φαs|Ui(α)

. Hence, the locally finite sum
∑

α φαs in E′(X) is (
∑
φα)s = 1 · s = s. �

Example 3.7. We conclude with an example that ties together subbundle kernels and quotients, and
provides the only reasonable generality in which there are good vector-bundle notions of “image”
and “cokernel” for a map of bundles that is not assumed to be a bundle surjection. Briefly, we
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have to require that the fiber-ranks are constant (a reasonable condition if we are to try to realize
the fibral images as the fibers of a subbundle of the target bundle).

Let f : E′ → E be a Cp map of Cp vector bundles over X, and assume that x 7→ rank(f |x) is
locally constant on X. Under this assumption,

dim ker(f |x) = dimE′(x)− rank(f |x)

is a difference of locally constant functions and thus is locally constant. (Conversely, if dim ker(f |x)
is locally constant in x then so is rank(f |x).) It follows from Theorem 2.6 that there is a kernel
subbundle ker f in E′ whose x-fiber is ker(f |x) ⊆ E′(x) for all x ∈ X. Since the map f : E′ → E
kills the subbundle ker f ⊆ E′, it uniquely factors through a Cp bundle mapping E′/(ker f) → E
that is injective on fibers (as on x-fibers it is the map E′(x)/ ker(f |x)→ E(x) induced by the fiber
map f |x : E′(x) → E(x)) and hence is a subbundle. We call the quotient of E by the subbundle
E′/ ker f the cokernel of f (it does induce the cokernel quotient of E(x) on fibers over x ∈ X).
The interested reader can check that the dual map f∨ has kernel of locally constant rank (since on
fibers it is the dual space to the fiber of the bundle coker f that has locally constant rank), and
the dual mapping (coker f)∨ → E∨ is a subbundle that is killed by f∨ with the resulting bundle
map (coker f)∨ → ker(f∨) an isomorphism (as may be checked on fibers). In other words, for a
bundle map with locally constant rank the dual of its cokernel bundle “is” the kernel of its dual
map, exactly as in linear algebra.


