
Math 396. Stokes’ Theorem on Riemannian manifolds

(or Div, Grad, Curl, and all that)

“While manifolds and differential forms and Stokes’ theorems have meaning outside euclidean
space, classical vector analysis does not.” Munkres, Analysis on Manifolds, p. 356, last line. (This
is false. Vector analysis makes sense on any oriented Riemannian manifold, not just Rn with its
standard flat metric.)

1. Introduction

In standard books on multivariable calculus, as well as in physics, one sees Stokes’ theorem (and
its cousins, due to Green and Gauss) as a theorem involving vector fields, operators called div,
grad, and curl, and certainly no fancy differential forms. To ensure that we have not made a big
cheat by introducing elaborate machinery and naming some other result as “Stokes’ theorem”, we
should show how the modern Stokes’ theorem in fact implies the more classical versions (and in
fact considerably extends their scope of validity, to Riemannian manifolds not necessarily given
as isometrically embedded in R2 or R3). The general Stokes’ Theorem concerns integration of
compactly supported differential forms on arbitrary oriented C∞ manifolds X, so it really is a
theorem concerning the topology of smooth manifolds in the sense that it makes no reference to
Riemannian metrics (which are needed to do any serious geometry with smooth manifolds). When
we do endow X with a Riemannian metric, then we can translate differential forms into the language
of vector fields (since an inner product on tangent spaces sets up a natural isomorphism between
tangent spaces and their duals, which is where differential forms “live”). Moreover, with the help
of the Hodge star operator and volume forms (all of which are defined in terms of the Riemannian
metric), we will express the d-operator within the framework of C∞ vector fields and C∞ functions.
This will enable us to recast the original (or perhaps more accurately, modern) theorem entirely in
the language of vector fields, as was done classically before mathematicians really understood what
was going on.

In the special case of X = R3 with its standard orientation and standard “flat” Riemannian
metric, or for oriented smooth submanifolds of R3 (with their induced Riemannian metric), we
will recover the three big theorems of classical vector calculus: Green’s theorem (for compact 2-
submanifolds with boundary in R2), Gauss’ theorem (for compact 3-folds with boundary in R3),
and Stokes’ theorem (for oriented compact 2-manifolds with boundary in R3). In the 1-dimensional
case we’ll recover the so-called gradient theorem which computes certain line integrals and is really
just a beefed-up version of the Fundamental Theorem of Calculus. It very much clarifies the logical
structure of the proofs to actually work more generally. We will prove a “generalized divergence
theorem” for vector fields on any compact oriented Riemannian manifold (with no restrictions on
the dimension n), out of which Green’s theorem and Gauss’ theorem will drop out as special cases
when n = 2, 3 respectively. In the incredibly special situation of dimension 3 we exploit the magical
identity

1 + 1 = 3− 1
to obtain a “general Stokes’ theorem” for vector fields on oriented compact 2-manifolds with bound-
ary inside of any ambient oriented 3-dimensional Riemannian manifold (not just R3, which is the
classical case).

The moral of the story is that the difficulty with direct proofs of the classical theorems is entirely
caused by the fact that these theorems involve an enormous amount of structures being piled on
top of each other at the same time: the manifold structure, the orientations, the Riemannian
metric, the Hodge star operator, the volume forms, etc. It vastly clarifies our understanding of
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the logic behind these theorems to have approached things in the way we have in this course: we
see that for any oriented manifold with boundary, one has a Stokes’ theorem in the context of
compact supported differential forms. This has nothing to do with vector fields or Riemannian
metric structure of any sort. If one imposes the extra data of a Riemannian metric, then one
can ask for a translation of differential forms into the language of vector fields and functions (via
the tangential inner products and volume form associated to the metric). And it is then almost
just a matter of (careful) mathematical linguistics to translate the differential form version for any
manifold into vector field language via the choice of metric. Roughly speaking, in each of the above
classical situations we just have to prove a few vector identities in order to carry out the translation
so as to obtain the classical results. In particular, we will see that classical vector calculus makes
perfectly good sense in the general setting of (oriented) Riemannian manifolds (with boundary).

After reading this handout, you should take a look at your friends’ multivariable calculus books
and convince yourself that we really have proven the classical theorems, with the added benefit
that our approach to integration avoids the mysticism which surrounds the pseudo-“definitions” of
integration over surfaces and curves with “area elements” and “line elements” as in the big thick
multivariable calculus books. This is not a point to be dismissed lightly: it is crucial that we have
not just created an elaborate machine which spits out theorems that formally look like the classical
results. You must convince yourself that the intuition lying behind the classical approach to (trying
to) define the integrals on both sides of the classical theorems really is accurately captured by our
precise definitions of how to integrate via partitions of unity (keeping in mind that all such sums
are finite in the case of compact manifolds). More specially, when our definition of integration of
differential forms is combined with the vector calculus translation made possible by the Riemannian
metric tensor, then you must convince yourself that the resulting precise definitions of surface
integrals, etc. as in our general vector calculus theorems really does give what one intuitively
wants to be working with in those multivariable calculus books. If you think about the recipes
in those books for actually computing their fancy integrals in terms of local coordinate systems,
you’ll see that it really is just our approach to integration in disguise (except that we don’t have
any of the mathematical imprecision which is inherent in the obscure “definitions” of those books:
such definitions are incapable of providing an adequate foundation to actually prove things in a
convincing manner, and that’s why such books never present proofs for the classical theorems at a
level of rigor that gets beyond a “plausibility argument”).

2. Setup for the generalized divergence theorem

Let (X, ds2) be a smooth Riemannian manifold with boundary and with constant positive di-
mension n. Choose an orientation µ on X. The boundary ∂X is naturally a smooth boundaryless
manifold with constant dimension n−1 (compact when X is), and we give it the induced Riemann-
ian metric. There is a uniquely determined smooth “outward unit normal field” N̂ along ∂X in X,
in accordance with the recipe from class. We recall the basic mechanism here, since it will certainly
be relevant to our proofs: for p ∈ ∂X the 1-dimensional quotient Tp(X)/Tp(∂X) is naturally ori-
ented, namely by the condition that the positive half-line is the one containing ∂xn |p for any local
coordinate system (U, {x1, . . . , xn}) around p carrying an open neighborhood U of p onto an open in
a closed half-space in Rn such that xn|U∩∂X = c with xn ≤ c. Using the inner product, the normal
line Tp(∂X)⊥ in Tp(X) maps isomorphically onto the quotient Tp(X)/Tp(∂X) and so it acquires a
natural orientation (namely, a normal vector is positive when it projects into the positive half-line
of this quotient of Tp(X)). If you think about a disk in R2 (or a nontrivial compact interval in R
or solid ball in R3) with its standard orientation from the ambient Euclidean space, you’ll see that
this notion of “outward unit normal” is exactly in accordance with the classical notion via pictures.
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The boundary ∂X is now realized as an oriented submanifold of an oriented Riemannian manifold
with boundary, via the following orientation. Let {x1, . . . , xn} be a local µ-positive coordinate
system on an open U ⊆ X such that xn is maximized (and constant) along ∂U = U ∩ ∂X. The
resulting coordinate systems {x1|∂U , . . . , xn−1|∂U} form an oriented atlas on ∂X, and this defines
the induced orientation ∂µ on ∂X. We write dVX and dV∂X to denote the resulting volume forms
on X and ∂X respectively. The relationship between ∂µ and N̂ at p ∈ ∂X can be described as
follows: (i) for n > 1, if {v1, . . . , vn−1} is an ordered basis of Tp(∂X) then its sign with respect to
the orientation class (∂µ)(p) is the µ(p)-sign of the ordered basis {N̂(p), v1, . . . , vn−1} of Tp(X), (ii)
for n = 1, the sign (∂µ)(p) is the µ(p)-sign of the ordered basis {N̂(p)} of the line Tp(X).

In order to state the generalized divergence theorem, for any C∞ vector field ~F on X we need to
define a certain C∞ function div(~F ), the divergence of ~F (it depends on the Riemannian metric).
Using the inner product 〈·, ·〉p on each Tp(X) arising from ds2(p), we get a natural isomorphism
between Tp(X) and its dual space T ∗p (X) (assigning to each v ∈ Tp(X) the linear functional 〈v, ·〉p).
Since the coefficients of the metric tensor are smooth, these fibral isomorphisms glue to a C∞

vector bundle isomorphism TX ' T ∗X. (More concretely, if we use Gram-Schmidt to make local
orthonormal frames for TX then the isomorphism from tangent to contangent bundle carries this
frame to its dual frame.) Hence, we may identify smooth vector fields with smooth 1-forms. More
specifically, we make the:
Definition 2.1. Let ~F be a vector field on an open subset U ⊆ X. The 1-form ω~F on U dual to
(or associated to) ~F is the image of ~F under the isomorphism VecX(U) = (TX)(U) ' (T ∗X)(U) =
Ω1
X(U). Pointwise, for each p ∈ U the linear functional ω~F (p) ∈ T ∗p (X) on Tp(X) is 〈~F (p), ·〉p.
It is obvious from the definitions that the assignment ~F 7→ ω~F is additive in ~F , linear with

respect to multiplication by C∞-functions on U , and compatible with shrinking U .
Example 2.2. If X = Rn with the standard flat metric, then we have metric tensor coefficients
gij = δij relative to the standard global coordinates {x1, . . . , xn}. Thus, we clearly get ω∂xi = dxi.
It follows that if ~F =

∑
fj∂xj is a vector field on some open U ⊆ Rn (more classically written

as ~F (p) = (f1(p), . . . , fn(p)) for each p ∈ U), then ω~F =
∑
fjdxj . This natural construction

is determined (in a coordinate-free manner!) by the Riemannian manifold structure on Rn. In
particular, this is not an artificial coordinate-dependent definition that is pulled out of thin air
solely for the purpose of making formulas in terms of 1-forms look like formulas in terms of vector
fields (an approach that is regrettably used in several introductory texts).

Using the Riemannian structure on X, when given any C∞ vector field ~F on an open set U ⊆ X
we get the dual C∞ 1-form ω~F on U . Via the Riemannian structure and orientation, we have a
Hodge star operator that yields ?(ω~F ) ∈ Ωn−1

X (U). More generally, there are natural C∞(U)-linear
isomorphisms

?r : Ωr
X(U)→ Ωn−r

X (U)
respecting shrinking on U and recovering the old Hodge star isomorphisms

?r(p) : ∧r(T ∗p (X)) ' ∧n−r(T ∗p (X))

from linear algebra for every integer r and every p ∈ X; recall that these fibral isomorphisms are
given in terms of the inner product structure and orientation on Tp(X). We usually write ? rather
than ?r, since there seems little risk of confusion and such abuse of notation is standard (as r is
always known from context).

We apply these considerations in the special case r = 1, so when given a C∞ vector field ~F on
U ⊆ X, we obtain an (n− 1)-form ?(ω~F ) in Ωn−1

X (U). If we apply the d-operator to this, we get a
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differential form of top degree, and consequently over U can write this uniquely as a C∞-function
multiple of the nowhere-vanishing top degree volume form dVX made out of the metric tensor and
orientation. This coefficient function multiplier is to be called the divergence of ~F :
Definition 2.3. For ~F ∈ C∞(U) with an open subset U ⊆ X, the function div(~F ) ∈ C∞(U) is
characterized by

d(?(ω~F )) = div(~F ) dVX |U .
Example 2.4. Consider X = Rn and the standard orientation and standard Riemannian metric,
with the standard linear coordinates {x1, . . . , xn}. If ~F =

∑
Fj∂xj is a C∞ vector field on U ⊆ X,

since the volume form determined by this metric and orientation is dx1 ∧ · · · ∧ dxn (why?) we
compute by unwinding the definitions (check!) that

d(?(ω~F )) = d(?(
∑

Fjdxj))

= d(
∑

Fj ? (dxj))

= d(
∑

(−1)j−1Fjdx1 ∧ . . . d̂xj · · · ∧ dxn)

=
∑

(−1)j−1dFj ∧ dx1 ∧ . . . d̂xj · · · ∧ dxn

= (
∑

∂Fj/∂xj)dx1 ∧ · · · ∧ dxn

= (
∑

∂Fj/∂xj)dVX .

Thus, we conclude

div(~F ) =
n∑
j=1

∂Fj
∂xj

.

Of course, this computation works only in the standard coordinate system, since it is an oriented
flat coordinate system (so the metric tensor acquires a particularly simple form in these coordi-
nates). Since our definition of divergence of vector fields was intrinsic to the Riemannian structure
and orientation, one can likewise compute divergence in any orientated coordinate system at all:
once we compute the coefficient functions gij of the metric tensor relative to oriented coordinates,
we can then compute a frame of orthonormal bases across all tangent spaces (by uniformly applying
Gram-Schmidt) and then we can compute the Hodge star operator and volume form. Once this data
is computed, the formula for divergence drops out by the same procedure used above. The crucial
point here is that the only tricky aspect is to compute the gij ’s. Once this is done, you should never
switch to another coordinate system to carry out any other part of the calculation. It is exactly the
power to work entirely within a single coordinate system (once the gij ’s are known) that makes the
coordinate-free language of metric tensors far superior to the more classical coordinate-dependent
presentation of vector calculus (in terms of which one is always making painful switches back and
forth between rectangular and other coordinate systems when trying to compute anything in a
“non-rectangular” coordinate system).

You should compare our treatment of the divergence with that in various introductory texts,
where it is often presented as an artifice of the rectangular coordinate system on Rn instead of
more conceptually in a manner that makes sense for any smooth oriented Riemannian manifold
(with boundary, or even with corners).
Remark 2.5. The divergence can be constructed without requiring orientations! (This is suggested
by the fact that in the classical case in Example 2.4, the formula obtained is insensitive to reordering
of the standard coordinate functions.) Suppose (X, ds2) is a Riemannian manifold with corners,



5

and let U ⊆ X be an open subset. For ~F ∈ VecX(U) we wish to uniquely define div(~F ) ∈ C∞(U)
such that on orientable open subsets U0 of U it agrees with the divergence as defined over such
subsets upon giving each a structure of oriented Riemannian manifold with corners. Since U is
covered by orientable open subsets (e.g., coordinate balls), the uniqueness is immediate and for
existence all we have to check is that the above construction in the oriented case is independent of
the orientation.

It suffices to work over each of the open connected components of such U0 separately, so we may
suppose U0 = U = X is an orientable connected Riemannian manifold with corners and we want to
prove that div(~v) defined via an orientation on X is unaffected by negating the orientation (as this is
the only other orientation, sinceX is now connected). Consider the equation d(?(ω~F )) = div(~F )dVX
via the volume form and Hodge star over the oriented Riemannian manifold with corners X. If
we negate the orientation then ? is negated and dVX is also negated! Hence, div(~F ) is unchanged.
This completes the construction of the divergence in the absence of a global orientation.

3. Generalized divergence theorem and consequences

We can now state the general form of our result, which will then be specialized to recover classical
theorems due to Green and Gauss.

First, here is the basic setup. Let (X, ds2) be a smooth Riemannian manifold with boundary, and
with constant positive dimension n. Fix an orientation µ on X. Give ∂X the induced Riemannian
metric and induced orientation ∂µ. Let N̂ be the C∞ unit outward normal field along ∂X in X;
this has nothing to do with the choice of the orientation µ, but recall that it is nicely related to ∂µ
as we saw at the start of the previous section. Let dVX and dV∂X denote the associated volume
forms on X and ∂X arising from the Riemannian metric and orientations on each.

Let ~F be a compactly supported C∞ vector field on X (an automatic property if X is itself
compact, as in the classical cases). Consider the C∞ functions div(~F ) on X and

〈~F |∂X , N̂〉 : p 7→ 〈~F (p), N̂(p)〉p

on ∂X. This latter function is C∞ because the vector fields ~F |∂X and N̂ are C∞ on the submanifold
∂X and the metric tensor coefficients defining the tangent space inner products are C∞. Make sure
you understand how to justify these C∞ assertions.

The main theorem is:
Theorem 3.1. With the above notation and hypotheses, and with all integrals understood to be
taken with respect to the specified orientations, for any compactly supported ~F as above we have∫

X
div(~F )dVX =

∫
∂X
〈~F |∂X , N̂〉dV∂X .

Remark 3.2. We again stress that if X is compact, then the compactness assumption on the support
of ~F is superfluous.
Remark 3.3. As a “safety check”, let us verify a priori that the two sides of the divergence theorem
exhibit the same sign-dependence on orientations. We may and do assume X is connected (by
breaking up both sides of the proposed identity according to connected components of X); of
course ∂X may be disconnected. Let µ and ∂µ respectively be the chosen orientation on X and the
induced one on ∂µ. Suppose we negate the orientation on X. Since ∂(−µ) = −∂µ, the orientation
on ∂X is negated as well. Since

∫
X,−µ = −

∫
X,µ and

∫
∂X,−∂µ = −

∫
∂X,∂µ, it must be proved that

the “integrands” exhibit the same sign-change behavior. The volume forms are each negated upon
negating the orientations, so we need div(~F ) and 〈~F |∂X , N̂〉 have the same sign-dependence. By
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Remark 2.5, divergence is orientation-independent. The definition of N̂ does not use orientations,
so it is also orientation-independent.

Before proving Theorem 3.1, we record two important consequences: Green’s theorem (for n = 2)
and Gauss’ theorem (for n = 3). We indulge in a bit of classical notation as well.
Theorem 3.4. (Green) Let A ⊂ R2 be a compact 2-submanifold with boundary C = ∂A (we view
A with the standard orientation as from R2). Give C the counterclockwise orientation (which really
is the induced orientation!), and let N̂ denote the outward unit normal field along C relative to A
(which really does coincide with the abstract outward unit normal construction!). Let d` denote the
length form associated to the induced Riemannian metric on the oriented submanifold C of of R2.

For any C∞ vector field ~F in a neighborhood of A,∫
A

div(~F ) =
∫
C
〈~F |C , N̂〉d`,

where the left side is the ordinary integral of a continuous integrand over the bounded rectifiable
domain A ⊆ R2.

Note that the left side has nothing to do with the theory of orientations on manifolds, as it is
a classical integral of a function over a subset of a Euclidean space. On the right side we use the
counterclockwise orientation on C, and we also use the length form d` arising from this orientation
of C (coupled with the induced Riemannian structure on C). If we were to use the clockwise
orientation on C then the length form d` gets negated and so the overall integral on the right side
of Green’s theorem is unaffected. (The choice of N̂ has nothing to do with orientations of the plane,
A, or C; it is a topological construction related to how C sits inside of A.) In practice C could be
disconnected even if A is connected (e.g., take A to be an annulus), and so as an abstract manifold
C may have more orientations than A. However, for Green’s theorem it is crucial that we put on C
an induced orientation from A (which is to say, exactly one among the clockwise or counterclockwise
orientations, at least for each collection of components of C on a common component of A).

Here is the deduction of Green’s theorem from the generalized divergence theorem.

Proof. Note that div(~F )|A = div(~F |A), with the latter divergence computed by viewing A as an
oriented Riemannian manifold with boundary. Indeed, this follows from the fact that the volume
form on R2 restricts to the volume form on A (with its induced Riemannian metric) since A is
an embedded 2-manifold with boundary in R2. Thus, we can now apply generalized divergence
theorem applied to X = A, upon noting that its Riemannian structure is such that the area form is
dx∧dy, and hence the integral of a C∞ function against the area form is a special case of the usual
integral of a continuous function on A viewed as a (rectifiable) subset of R2. Note that A really
is rectifiable because its topological boundary inside of R2 actually coincides with its “manifold
boundary” C (why?), and since C is a compact 1-manifold it is covered the images of finitely many
C∞ maps from coordinate charts in R, all of which have measure zero image inside of R2.

The one technical point which needs to be addressed is why the integral of a C∞ function against
the area form (an integral of a 2-form on a manifold A ⊆ R2) really does agree with its integral
as an ordinary function on a reasonable subset of R2. The subtle aspect is that, strictly speaking,
{x, y} is not a valid coordinate system for computing integrals on A near points of C, as this
coordinate system doesn’t have one of the coordinates vanishing along C. In the handout on
computing integrals, it was explained why the original 2-form integral over the oriented 2-manifold
with boundary A really does agree with a corresponding (continuous) function integral over the
subset A in R2. �

Next, we get Gauss’ theorem for compact 3-folds in R3:
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Theorem 3.5. (Gauss) Let R ⊂ R3 be a compact 3-submanifold with boundary S = ∂R (we view
R with the standard orientation as from R3). Give S the standard outward normal orientation
(which really is the induced orientation!), and let N̂ denote the outward unit normal field along S
relative to R (which really does coincide with the abstract outward unit normal construction!). Let
dA denote the area form associated to the induced Riemannian metric on the submanifold A of R
(or of R3).

For any C∞ vector field ~F in a neighborhood of R,∫
R

div(~F ) =
∫
S
〈~F |S , N̂〉dA,

where the left side is the ordinary integral of a continuous integrand over the bounded rectifiable
domain R ⊆ R3.

As with Green’s theorem, we can see a priori that the integrals on the two sides of Gauss’
theorem are unaffected by passing to the opposite orientation on S.

Proof. This is an immediate consequence of the generalized divergence theorem applied to X = R,
and again we have to refer to the handout on computing integrals in order to relate the function
integral in the theorem with an integral of a differential form (the same technical issue arose in the
proof of Green’s theorem). �

With the classical special consequences having been discussed, let’s now turn to the proof of
Theorem 3.1. As we’ll see, the hard part is the Stokes’ theorem for differential forms, and the
generalized divergence theorem itself will just be a special case when applied to a well-chosen
differential form which is adapted to our choice of vector field.

Proof. (of Theorem 3.1). Let ω = ?(ω~F ) ∈ Ωn−1
X (X), a compactly supported differential form (since

~F is compactly supported). By the very definition of divergence, we have

div(~F ) dVX = dω.

Thus, by Stokes’ theorem (!) we get∫
X

div(~F ) dVX =
∫
X

dω =
∫
∂X

ω|∂X .

Thus, we just have to prove the identity

(3.1) ?(ω~F )|∂X = 〈~F |∂X , N̂〉dV∂X
in Ωn−1

∂X (∂X), with this understood to be an equality of numbers (with dV∂X a sign-valued function
at each point of ∂X) in the case n = 1.

We check this identity at each point of ∂X, so choose p ∈ ∂X, and in some aspects we will need
to treat the case n = 1 separately. At the outset, we allow any n ≥ 1. Let {x1, . . . , xn} be an
oriented coordinate system on an open U around p with xn ≤ c, {xn = c} cutting out ∂U , and (if
n > 1) {x1, . . . , xn−1} restricting to an oriented coordinate system on ∂U . Let {e1, . . . , en} be the
frame of orthonormal bases of the Tq(X)’s for q ∈ U which we get by applying the Gram-Schmidt
algorithm to the frame of ordered bases {∂xi}. Since the ∂/∂xj |q’s for j < n give a basis of Tq(∂X)
for q ∈ ∂U , it follows from the construction of the Gram-Schmidt algorithm (or rather, the property
that it preserves the span of the first j vectors for every j) that the restriction

{e1|∂U , . . . , en−1|∂U}
is a frame of orthonormal bases for the hyperplanes Tq(∂X) = Tq(∂U).
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Now recall (by definition!) that the outward unit normal field N̂ along ∂X satisfies the property

〈N̂ , ∂/∂xn〉 > 0

at each point of ∂U . This crucial positivity property ensures (even for n = 1) that for q ∈ ∂U the
final vector at the end of the Gram-Schmidt process applied to the ordered basis {∂/∂xj |q} is in
fact N̂(q)! Make sure you understand this, as it is the whole reason why the the unit normal field
N̂ as we defined it really is relevant to the theorem at hand. By looking back at how the outward
unit normal field N̂ is defined and at how the induced orientation on ∂X is defined in terms of N̂
and the orientation on X, it follows that for q ∈ ∂U , the ordered basis

(3.2) {N̂(q), e1(q), . . . , en−1(q)}

of Tq(X) is an oriented basis relative to the given orientation on X (even if n = 1). Moreover, this
is an orthonormal basis, so we can therefore compute the volume forms

dVX(q) = N̂(q)∗ ∧ e1(q)∗ ∧ · · · ∧ en−1(q)∗

and (for n > 1)
dV∂X(q) = (e1(q)∗ ∧ · · · ∧ en−1(q)∗)|Tq(∂X)

for q ∈ ∂U , using the associated dual bases. In the case n = 1, the “volume form” dV∂X(q) is the
sign 1.

We may uniquely write our given vector field ~F |U in the orthonormal frame (3.2) as

(3.3) ~F |U = f0N̂ +
n−1∑
j=1

fjej

for suitable C∞ functions fj on U , with the summation understood to not be there in the case
n = 1. Now assume temporarily that n > 1. By (3.3), the above volume form computation gives

?(ω~F )(q) = f0(q)e1(q)∗ ∧ · · · ∧ en−1(q)∗ +
n−1∑
j=1

(−1)jfj(q)N̂(q)∗ ∧ . . .̂ej(q)∗ ∧ · · · ∧ en−1(q)∗

in ∧n−1(T ∗q (X)) for q ∈ ∂U . By mapping this into ∧n−1(T ∗q (∂X)) all terms involving the vector
N̂(q) which is perpendicular to Tq(∂X) are killed (why?), so we get that (?(ω~F ))|∂U ∈ Ωn−1

∂X (∂U) is
given by

(3.4) f0(q) · (e∗1 ∧ · · · ∧ e∗n−1)|Tq(∂X) = f0(q)dV∂X(q)

in fibers at any q ∈ ∂U . This gives a formula for the left side of (3.1) relative to our choice of
local coordinates near p ∈ ∂X for n > 1. The same formula holds for n = 1 in the sense that the
pullback of the function (0-form) ?(ω~F ) to ∂U is the function f0|∂U . To verify this, note that it says
exactly that for all q ∈ ∂U the number ?(ω~F (q)) is equal to f0(q). We can prove this equality holds
by noting that ω~F (q) = f0(q)N̂(q) with N̂(q) a positive basis of the line Tq(U) (so ?(N̂(q)) = 1).

It is obvious that for q ∈ ∂U the inner product 〈~F (q), N̂(q)〉q is just the coefficient f0(q) in the
orthonormal basis expansion (3.3). Hence, by the identity (3.4) that has been verified for all n ≥ 1
we get

(?(ω~F ))|∂X = 〈~F |∂X , N̂〉dV∂X
for all n ≥ 1. More specifically, we have shown that both sides coincide on ∂U and hence at the
initial arbitrary point p ∈ ∂X. �
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Although the proof of Theorem 3.1 may have seemed quite long and involved, if you study
the proof you’ll see that it is really just a glorified but ultimately straightfoward calculation: all
of the hard work went into setting up the machinery to enable us to speak in the geometric
language of Riemannian manifolds with corners (which really does recover the classical geometric
intuition as in the classical context of vector calculus), and the real content of the proof truly
is the differential forms version of Stokes’ theorem (which has nothing to do with vector fields or
Riemannian structures at all). Everything else in the proof was just a matter of correctly translating
differential form constructions into appropriate vector field language in the context of Riemannian
geometry.

4. The gradient theorem

We now prove a 1-dimensional specialization of Stokes’ theorem which is called the gradient
theorem (and is not endowed with anyone’s name because it is really just a glorified version of the
Fundamental Theorem of Calculus, as is Stokes’ theorem in the 1-dimensional case). To give the
setup, we first need to define the gradient of a function. This can be done quite generally, and
doesn’t even require an orientation:
Definition 4.1. Let X be a Riemannian manifold with corners. For an open U ⊆ X and f ∈
C∞(U), the C∞ vector field grad(f) on U is defined by the condition

ωgrad(f) = df

in Ω1
X(U).

In more concrete terms, for each p ∈ X we have

〈grad(f)(p), ·〉p = df(p)

as linear functionals on Tp(X). Note that the gradient has nothing to do with orienations (e.g.,
the definition makes sense even if X is not orientable). As an example, suppose X = Rn with the
standard Riemannian metric and {x1, . . . , xn} are the standard linear coordinates, so

df =
∑

(∂xjf)dxj .

Since the ∂xi ’s give a frame of orthonormal bases relative to the metric tensor at each point, upon
writing grad(f) =

∑
Fj∂xj and pairing this against ∂xi for 1 ≤ i ≤ n we deduce Fj = ∂f/∂xj for

all j, so

grad(f) =
n∑
j=1

∂f

∂xj
∂xj ,

just as in classical vector calculus. Of course, if we had not used standard rectangular (and hence
metric-flat) coordinates then the partials with respect to the coordinate functions would no longer
generally be an orthonormal frame (i.e., the coefficient functions for the metric tensor would be
more complicated) and hence the computation of the gradient would be more complicated (but the
underlying method of computation goes the same way in any coordinate system).

Now fix a Riemannian manifold X without boundary and with constant positive dimension n
(such as R2 or R3 in the classical case). Let C be an oriented embedded submanifold with boundary
inside of X with constant dimension 1, and give C the induced Riemannian metric, so the boundary
∂C is assigned a collection of signs ε(p) ∈ {±1} for each p ∈ ∂C. Let d` denote the length form on
C. We let ~T denote the tangent field on C dual to d`, as in Definition 2.1, so it is a C∞ vector field.
Moreover, the vector field ~T is a field of unit vectors that lie in the half-lines of the tangent lines
as determined by the orientation (i.e., ~T (p) ∈ Tp(C) is the unique unit vector in the “positive” half
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of the tangent line at each p ∈ C). Since ~T points in the direction of the orientation, we see (by
the definition of “induced orientation” from a 1-manifold onto its 0-dimensional boundary) that for
p ∈ ∂C, the sign ε(p) is equal to −1 if and only if ~T (p) is an outward unit normal vector at p to
the oriented Riemannian manifold (with boundary) C.

Here is the gradient theorem in its abstract form (to be followed by its classical formulations):

Theorem 4.2. Let X, C, d`, and ~T be as above. Then for any f ∈ C∞(X) for which f |C ∈ C∞(C)
is compactly supported, the C∞ inner product function 〈grad(f)|C , ~T 〉 is compactly supported on C
and ∫

C
〈grad(f)|C , ~T 〉d` =

∑
p∈∂C

ε(p)f(p).

Note that the sum on the right side is finite, as f is compactly supported. The right side is
negated if we negate the orientation on C (and hence on ∂C). The left side is as well, for if we
negate the orientation on C then

∫
C , the 1-form d`, and the tangent field ~T all get negated.

Before we prove the gradient theorem, we note that this version immediately implies the classical
special case in which X = Rn (usually with n = 2 or n = 3) with its usual Riemannian metric
structure and C is an oriented compact 1-manifold with boundary inside of Rn, given the induced
metric. In such cases the compactness conditions on support are automatically satisfied and the
theorem really just says how to compute a “line integral” of a gradient along a compact curve in
Euclidean space. Of course, if our curve C is connected and we have a parametrization σ : [0, 1]→ C
which is a C∞ isomorphism, then the left side of the gradient theorem just becomes an ordinary
1-variable integral in terms of which we replace d` with

√
gdt where σ∗(ds2) = gdt ⊗ dt is the

pullback of the metric tensor to the parameter line. In the extremely special case with C a line
segment along a coordinate axis in Rn, then the gradient theorem really is just the fundamental
theorem of calculus along that coordinate line.

Here is the proof of the gradient theorem, as usual obtained by stripping away the language to
express it as a special case of the general Stokes’ theorem.

Proof. By the very definition of the induced orientation, the right side of the gradient theorem is
exactly the 0-dimensional integral

∫
∂C f |∂C , and by Stokes’ theorem is this equal to

∫
C d(f |C). It

therefore suffices to prove the general identity

d(f |C) = 〈grad(f)|C , ~T 〉d`
for f ∈ C∞(X) (which will moreover imply that the coefficient function on the right side has
compact support when f |C is compactly supported). By the very definition of gradient we have

〈grad(f)(p), ~T (p)〉p = ((df)(p))(~T (p)) = ((df)(p)|Tp(C))(~T (p))

for p ∈ C, and (df)(p)|Tp(C) = d(f |C)(p) for p ∈ C since d commutes with pullback (such as along
C ↪→ X), so we seek to prove

d(f |C)(p) = (d(f |C)(p))(~T (p)) · d`(p)
in T ∗p (C) for p ∈ C.

In other words, for a 1-dimensional oriented inner product space V over R (such as Tp(C)) and
any φ ∈ V ∨ (such as d(f |C)(p) on Tp(C)), we want to prove

φ = φ(t) · α
where t ∈ V is the unique unit vector in the positive half-line (as determined by the orientation)
and α is the length form. To check the identity it suffices to evaluate both sides on the basis {t}
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of V , and so we just need to prove α(t) = 1. But this follows from the computation of the volume
form α relative to the oriented orthonormal basis {t} of V ! �

5. The classical Stokes’ theorem

We now finally turn our attention to the special case of 2-manifolds with boundary inside of 3-
manifolds (all with Riemannian structure and orientations). In this case a new operator, the curl,
emerges. This gives rise to another special instance of Stokes’ theorem, adapted to the peculiar
features of the curl on 3-manifolds. In fact, this special case is what is called Stokes’ theorem in
classical vector calculus (with the ambient 3-manifold taken to be R3 with its standard flat metric).

In order to state the classical Stokes’ theorem (which for us will be a theorem about 3-dimensional
Riemannian manifolds, though we’ll also record the special case when things happen inside of R3),
we first need to discuss the curl operator on vector fields. It is here that dimension 3 plays a special
role. Let X be an oriented Riemannian manifold with boundary, and assume it has constant
dimension 3. As has been discussed above, we get Hodge star operators between r-forms and
(3 − r)-forms on X (and likewise with 3 replaced by dimX quite generally). The quirk with
dimX = 3 is that for any C∞ vector field ~F on an open set U ⊆ X the dual 1-form ω~F ∈ Ω1

X(U)
satisfies

dω~F ∈ Ω2
X(U) = Ω3−1

X (U)
thanks to the fundamental identity

1 + 1 = 3− 1.
Thus, we can apply the Hodge star operator to get

?(dω~F ) ∈ Ω1
X(U),

another 1-form. This C∞ 1-form must then arise from a unique C∞ vector field on U , and it is
this resulting vector field which we call the curl of ~F :
Definition 5.1. Let ~F be a C∞ vector field on an open subset U ⊆ X. We define curl(~F ) to be
the unique C∞ vector field on U which satisfies

ωcurl(~F ) = ?(d(ω~F )).

Just as with the divergence and gradient, this definition is conceptual and is determined by the
Riemannian metric tensor and orientation (though it only makes sense in the 3-dimensional case).
If we negate the orientation on X then the Hodge star is negated and hence the curl is negated.

In the definition of the curl operator, we have not mentioned any particular (oriented) coordinate
system! Of course, given a specific oriented coordinate system {x1, . . . , xn} around a point, once we
compute the metric tensor coefficients in this coordinate system we can then compute the Hodge
star and hence can compute the curl operator relative to the basis {∂/∂xi|p} of the Tp(X)’s for p
in the domain of the coordinate system.
Example 5.2. If X = R3 with its standard orientation and standard flat Riemannian metric, then
in the standard oriented linear coordinates {x, y, z} the vector curl applied to

~F = F1∂/∂x+ F2∂/∂y + F3∂/∂z

is given by exactly the classical formula from vector calculus books. If you’ve gone through the
example of the divergence which we computed above on Rn, you should have not much difficulty
carrying out the curl calculation, so we leave it as an exercise. But once again, the crucial point is
that the calculation goes the same way in any (oriented) coordinate system once the metric tensor
coefficients are known (though obviously the specific shape of the formula will ultimately depend
on the metric tensor coefficient functions). In particular, to compute the vector curl in spherical
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coordinates on R3 you should not first compute in rectangular and then do change of coordinates.
This is a complete nightmare. It is far more intelligent to just compute the metric tensor coefficients
in spherical coordinates, and then carry out the rest entirely in the spherical coordinate system.

The power of the modern language of differential geometry is that it provides a coordinate-
free way to discuss concepts such as vector fields, curl, etc. in a manner which works the same
way in all coordinate systems. The method of computation is always the same. This represents
a vast improvement on the classical vector calculus language in R3 which lacks an intrinsic (i.e.,
coordinate-free) geometric formulation and hence is welded to the rectangular coordinate system
(thereby making it seem to be a huge mess to compute things in other coordinate systems or to freely
move between different coordinate systems without getting overwhelmed with messy formulas).

With the vector curl under our belts, we can now give the statement of the “classical Stokes’
theorem” in suitably general form. As with the generalized divergence theorem (i.e., Theorem
3.1), we first have to introduce some terminology. Let (X, ds2) be a Riemannian manifold without
boundary and with constant dimension 3, and giveX an orientation. Let Z ↪→ X be a smooth closed
submanifold with boundary and with constant dimension 2, and give Z the induced Riemannian
metric. Also assume that Z is orientable, and choose an orientation on Z (note that Z is not
the boundary of anything, so there is no induced orientation of X on Z, just as the orientation
of R3 does not “induce” an orientation on all surfaces in R3: some surfaces such as the Möbius
strip don’t even admit an orientation!) Let dA denote the resulting “area form” on the oriented
Riemannian manifold (with boundary) Z. We let N̂ denote the outward unit normal field along Z
in X, arising from the orientations on Z and X and from the Riemannian metrics (in accordance
with the universal recipe via outward unit normal fields to oriented hypersurfaces in an oriented
Riemannian manifold).
Remark 5.3. In contrast with the outward normal field along the boundary of a Riemannian man-
ifold with boundary (as in the generalized divergence theorem and its corollaries due to Green and
Gauss), the normal field N̂ just defined along Z in X does depend on some orientations, namely
for both Z and X. (If we negate exactly one of these then N̂ is negated, but if we negate both
then N̂ is unchanged.)

Consider the boundaryless 1-manifold ∂Z, which we give the induced orientation from Z and
the induced metric (from Z or X, it comes to the same). Let d` denote the resulting length form
on the oriented 1-dimensional Riemannian manifold ∂Z. We define the tangent field ~T along ∂Z
to be the smooth vector field dual to the length form d` as in Definition 2.1. Thus, ~T (p) ∈ Tp(∂Z)
satisfoes

(d`(p))(~T (p)) = 1

for all p ∈ ∂Z. Due to the relationship between the length form d` and both the orientation and
Riemannian structure on ∂Z, this tangent field consists entirely of unit vectors (so it is classically
called the unit tangent field in the direction of the orientation on ∂Z, the justification of this
terminilogy being left as an exercise to work out). The vector field ~T and the 1-form d` each
change by a sign if we negate the orientation on Z, and neither has anything to do with the
orientation on X.

With our ambient 3-manifold X, its 2-dimensional submanifold (with boundary) Z, the unit
outward normal field N̂ along Z and tangent field ~T along ∂Z, and area form dA on Z and length
form d` on ∂Z all understood (as determined by the various Riemannian metrics and orientations
which we have specified), we’re now ready to state the original theorem of Stokes.
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Theorem 5.4. (Stokes) With notation as introduced above, let ~F be a C∞ vector field on an open
neighborhood U of Z in X with ~F |Z compactly supported (so ~F |∂Z is compactly supported). Then
the C∞ function 〈curl(~F )|Z , N̂〉 on Z is compactly supported and∫

Z
〈curl(~F )|Z , N̂〉dA =

∫
∂Z
〈~F |∂Z , ~T 〉d`.

Remark 5.5. When Z is compact (so ∂Z is also), then the compact support hypotheses are auto-
matically satisfied. The classical case of this theorem is the special case X = R3 (with standard
orientation and Riemannian metric) and Z a compact 2-manifold with boundary inside of R3. In
this case, the above theorem is literally the theorem called “Stokes’ theorem” in vector calculus
books. Unlike the case of the theorems of Green and Gauss, for which one side of the theorem
was just an ordinary function integral (so we had to do a little bit of work to identify an integral
of a differential form with an integral of a function), in the case of the theorem of Stokes there is
no such interpretation of either side of the equation. However, you should think carefully about
the naive intuition behind surface elements and line elements in classical vector calculus books
to convince yourself that the two sides of Theorem 5.4 really do recover the means by which one
computes the surface and line integrals in classical vector calculus. This matter of comparison with
classical concepts of integration of “surface elements” and “line elements” is explained in detail in
the handout on how to compute integrals.

Thus, our version really does establish the theorem one wants to have in vector calculus, with
the bonus that it has been transported to the generality of an arbitrary oriented 3-dimensional
Riemannian manifold so as to free oneself from the obscure specificity of the standard oriented flat
Riemannian manifold R3 which is really of no relevance at all in the proof of the theorem.
Remark 5.6. The right side of Stokes’ theorem as stated above has nothing to do with the orientation
on X. If we negate the orientation on Z then

∫
∂Z , ~T , and d` are all negated and so the right side

changes by a sign. Hence, we should check a priori that the left side of the proposed identity
is independent of the orienation on X and changes by a sign if we negate the orientation on Z.
It suffices to study what happens when we fix one of the two orientations and negate the other.
Keeping the orientation on Z fixed but negating the one on X causes curl(~F ) to change by a sign
but (by Remark 5.3) also causes N̂ to change by a sign! Hence, there is no overall effect in such
cases (just like for the right side). Keeping the orientation on X fixed but negating the orientation
on Z, we see that

∫
Z and N̂ change by a sign (see Remark 5.3 for the latter) and also the area form

dA on the oriented Riemannian manifold Z changes by a sign. Thus, the overall effect on the left
side is multiplication by −1 in such cases (just like for the right side).

Proof. Let η = ω~F ∈ Ω1
X(U) be dual to ~F via the Riemannian structure on U . Thus, η|Z ∈ Ω1

Z(Z)
is compactly supported (as it vanishes at points where ~F |Z vanishes). By definition of vector curl,
we also have

ωcurl(~F ) = ?(dη).

Since ? ◦ ? = (−1)r(n−r) on r-forms on an n-manifold, for n = 3 and r = 1 we get ? ◦ ? = 1 on
1-forms on U , so

(5.1) dη = ?(ωcurl(~F )).

By the same sort of calculation which proved (3.1), but applied to the vector field curl(~F ) and the
2-manifold Z inside of X (of dimension n = 3), we thereby obtain

〈curl(~F )|Z , N̂〉dA = (dη)|Z
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inside of Ω2
Z(Z). But (dη)|Z = d(η|Z) since d commutes with pullback (in this case, pullback along

the closed embedding of Z into X), and this is compactly supported on Z since η|Z is. In particular,
we see that 〈curl(~F )|Z , N̂〉 is indeed compactly supported on Z.

By Stokes’ theorem applied to the compactly supported 1-form η|Z on the 2-manifold (with
boundary) Z, we get:∫

Z
〈curl(~F )|Z , N̂〉dA =

∫
Z

(dη)|Z =
∫
Z

d(η|Z) =
∫
∂Z
η|∂Z .

Thus, our problem comes down to proving the identity

(5.2) η|∂Z = 〈~F |∂Z , ~T 〉d`

in Ω1
∂Z(∂Z), where we again recall that ~T is the tangent field along ∂Z which is dual to the

nowhere-vanishing length form d`.
Since η = ω~F in Ω1

X(U), where we recall that the construction ~F  ω~F arises from the Rie-
mannian structure on U , it follows from that η|Z = ω~F |Z in Ω1

Z(Z) via the Riemannian structure
on Z. This assertion (i.e., that ω~F |Z = ω~F |Z) is pointwise nothing more than the statement that if
i : W ↪→ V is an inclusion of finite-dimensional inner product spaces over R and w ∈ W is some
vector, with i respecting the inner products (think of the inclusion of Tp(Z) into Tp(X) for p ∈ Z),
then the restriction of 〈i(w), ·〉V to W is just 〈w, ·〉W . Quite generally, this same method shows that
the ~F  ω~F construction commutes with restriction to any submanifold (not just a hypersurface).

Thus, if we rename ~F |Z as ~G, then we want to prove the general identity

〈~G|∂Z , ~T 〉d` = ω ~G|∂Z
for any C∞ vector field ~G on Z. But by the exact same argument as we just went through in the
preceding paragraph, the right side is ω ~G|∂Z . Thus, if we rename ~G|∂Z as ~H, we want to prove

that for any C∞ vector field ~H along ∂Z, 〈 ~H, ~T 〉d` = ω ~H in Ω1
∂Z(∂Z). But quite generally for any

1-dimensional oriented Riemannian manifold C with length form d` and dual tangent field ~T , we
claim that

〈 ~H, ~T 〉d` = ω ~H

for any C∞ vector field ~H on C. Evaluating both sides at a point p ∈ C, this comes down to the
following general assertion concerning a 1-dimensional oriented R-vector space V endowed with an
inner product (such as the tangent line V = Tp(C)): if v ∈ V is any vector, φ ∈ V ∨ is the length
form, and t ∈ V is the vector dual to φ, then

〈v, t〉φ = 〈v, ·〉
in V ∨. It suffices to check this equality when evaluating both sides on the basis {t}, and since
φ(t) = 1 by definition of t this case is clear. �


