
Math 396. Hodge-star operator
In the theory of pseudo-Riemannian manifolds there will be an important operator (on differential

forms) called the Hodge star; this operator will be an essential ingredient in the formulation of
Stokes’ theorem as a theorem concerning integration and vector fields on oriented Riemannian
manifolds (the viewpoint of Math 216) as opposed to just integration of differential forms on
oriented manifolds (which is the perspective through which the theorem is really proved). The
Hodge star operator also arises in the coordinate-free formulation of Maxwell’s equations in flat
spacetime (viewed as a pseudo-Riemannian manifold with signature (3, 1)).

As with orientations, the Hodge star arises from certain notions in linear algebra, applied to
tangent and cotangent spaces of manifolds. The aim of this handout is to develop the relevant
foundations in linear algebra, and the globalization on manifolds will be given later in the course.
The final calculation in this handout shows that the theory of the vector cross product on R3 is
best understood through the perspective of the Hodge star operator.

All vector spaces are assumed to be finite-dimensional in what follows.

1. Definitions

Let (V, 〈·, ·〉, µ) be an oriented non-degenerate quadratic space over R with dimension d > 0. In
the positive half-line of ∧d(V ) there is a unique unit vector, also called the volume form determined
by µ. We denote it Volµ ∈ ∧d(V ), so Volµ∨ in ∧d(V ∨) is what was called the volume form in ∧d(V ∨)
below Theorem 2.6 in the handout on orientations. (The notation Volµ is slightly abusive since Volµ
depends on not just the orientation µ but also on the quadratic form.) For any 1 ≤ r ≤ d we write
〈·, ·〉r to denote the non-degenerate symmetric bilinear form induced on ∧r(V ), so for elementary
wedge products we have

〈v1 ∧ · · · ∧ vr, v
′
1 ∧ · · · ∧ v′r〉r = det(〈vi, v

′
j〉).

This symmetric bilinear form induces a canonical isomorphism ∧r(V ) ' (∧rV )∨ via η 7→ 〈η, ·〉r =
〈·, η〉r. However, there is a completely different and largely algebraic way to compute (∧rV )∨ in
terms of V :

Lemma 1.1. Let V be a nonzero finite-dimensional vector space over a field F , with d = dim V .
For 1 ≤ r < d, the unique bilinear pairing

∧r(V )× ∧d−r(V ) ∧→ ∧d(V )

satisfying
(v1 ∧ · · · ∧ vr, vr+1 ∧ · · · ∧ vd) 7→ v1 ∧ · · · ∧ vr ∧ vr+1 ∧ · · · ∧ vd

is a perfect pairing with values in the 1-dimensional space ∧d(V ).

Proof. The existence and uniqueness of such a bilinear pairing (ignoring the perfectness aspects)
was carried out in the handout on tensor algebra. For the perfectness, we work with bases. Letting
{ei} be an ordered basis of V , we consider the basis of ∧r(V ) given by elementary wedge products
eI = ei1 ∧ · · · ∧ eir for I = {i1, . . . , ir} a strictly increasing sequence of r integers between 1 and d.
Likewise, ∧d−r(V ) has a basis given by the elementary wedge products eI′ for strictly increasing
sequences I ′ consisting of n− r integers between 1 and d. Let θ = e1 ∧ · · · ∧ ed, so this is a basis of
∧d(V ). For any two I and I ′ as above, eI ∧ eI′ ∈ ∧d(V ) vanishes if I and I ′ are not complementary
(as otherwise this d-fold elementary wedge product has ei appearing twice for i ∈ I ∩ I ′) whereas
eI ∧eI′ = ±θ in the complementary case. Hence, upon identifying ∧d(V ) with F via the basis θ the
given pairing makes the basis {eI} of ∧r(V ) dual to the basis {eI′} of ∧d−r(V ) up to some signs.
In particular, we get perfectness. �
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In our situation, the orientation µ and the non-degenerate symmetric bilinear form on V provide
a canonical basis vector for ∧d(V ), namely the positive unit vector Volµ, and so for 1 ≤ r < d the
perfect pairing

∧r(V )× ∧d−r(V ) ∧→ ∧d(V ) = RVolµ ' R

sets up a natural isomorphism ∧d−r(V ) ' (∧r(V ))∨; concretely, for η ∈ ∧d−r(V ) the associated
functional `η on ∧r(V ) is given by

(1) η′ ∧ η = `η(η′)Volµ

in ∧d(V ) for η′ ∈ ∧r(V ). In the special cases r = d and r = 0 we make the same construction via
the pairings

∧0(V )× ∧d(V ) → ∧d(V ), ∧d(V )× ∧0(V ) → ∧d(V )
defined by scalar multiplication against ∧0(V ) = R (on which we take 〈·, ·〉0 to be the standard
inner product 〈x, y〉0 = xy). Thus, `η satisfies (1) even in these special cases.

Definition 1.2. For an oriented non-degenerate quadratic space V over R with dimension d > 0
and for any 0 ≤ r ≤ d, the rth Hodge star operator

?r : ∧r(V ) ' ∧d−r(V )

is defined as the composite of the isomorphisms ∧r(V ) ' (∧r(V ))∨ ' ∧d−r(V ) constructed above.
Equivalently, for any ω, η ∈ ∧r(V ),

ω ∧ (?rη) = 〈ω, η〉rVolµ

in ∧d(V ).

2. Calculations

Lest the definition look like a mouthful of complications, we shall now show that in an orthonor-
mal oriented frame the calculation of ?r is largely a matter of being careful with signs. First we
treat two silly cases, r = 0 and r = d.

Example 2.1. We claim that ?0(1) = Volµ but ?d(Volµ) = (−1)d−a in ∧0(V ) = R if 〈·, ·〉 on V has
signature (a, d− a). For the calculation of ?0(1) ∈ ∧d(V ), since 1 ∧ ω = ω in ∧n(V ) for any n ≥ 0
and any ω ∈ ∧n(V ) (viewing 1 ∈ R = ∧0(V )) we have the identity

?0(1) = 1 ∧ ?0(1) = 〈1, 1〉0Volµ = Volµ.

Taking ω = η = Volµ in the formula characterizing the Hodge star, we see that ?d(Volµ) ∈ R is
equal to 〈Volµ,Volµ〉d. If {ei} is an orthonormal positive basis of V with εi = 〈ei, ei〉 = ±1 then
Volµ = e1 ∧ · · · ∧ ed has self-pairing

∏
εi = (−1)d−a, so indeed ?d(Volµ) = (−1)d−a. In particular,

in the positive-definite case we have d− a = 0 and hence ?d(Volµ) = 1 in such cases.

We wish to push this calculation further by computing ?r on elementary wedge products of r of
the ei’s for 1 ≤ r ≤ d− 1 as well:

Example 2.2. Let {e1, . . . , ed} be a positively oriented orthonormal basis of V , with εi = 〈ei, ei〉 =
±1 and 〈ei, ej〉 = 0 for i 6= j. In particular, Volµ = e1 ∧ · · · ∧ ed. Fix 0 ≤ r ≤ d and an
ordered set I pairwise distinct (not necessarily strictly increasing) indices 1 ≤ i1, . . . , ir ≤ d. Let
I ′ = {j1, . . . , jd−r} be an enumeration of the complementary set in {1, . . . , d} (not necessarily in
strictly increasing order), and let εI,I′ denote the sign such that

ei1 ∧ · · · ∧ eir ∧ ej1 ∧ · · · ∧ ejd−r
= εI,I′e1 ∧ · · · ∧ ed = εI,I′Volµ.
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For example, if 1 ≤ r ≤ d − 2 then we can always permute the set I ′ to arrange that εI,I′ = 1;
however, if r = d−1 then there is nothing to permute non-trivially and we may not be able to force
εI,I′ to equal 1 without modifying the original enumeration I (which in practice is convenient to
leave unchanged). Moreover, even if εI,I′ = 1 it may happen that εI′,I 6= 1: it is a simple exercise
with wedge products, given shortly, to deduce that εI,I′εI′,I = (−1)r(d−r). (Concretely, we have
εI,I′ = 1 precisely when the jt’s are ordered so that {i1, . . . , ir, j1, . . . , jd−r} is an even permutation
of {1, . . . , d}. Of course, it could then clearly happen that such evenness is destroyed upon moving
the ik’s to the end of the sequence, and so εI′,I may fail to equal 1 even when εI,I′ = 1.) For such
ik’s and jh’s we claim that there is an identity

(2) ?r(ei1 ∧ · · · ∧ eir) = εI,I′ · (εi1 · · · εir) · ej1 ∧ · · · ∧ ejd−r

where empty products (in case r = 0 or r = d) are understood to be 1 and εk = 〈ek, ek〉 = ±1. As
a special case of (2), when 〈·, ·〉 is positive-definite (so εi = 1 for all i) then

?r(ei1 ∧ · · · ∧ eir) = εI,I′ej1 ∧ · · · ∧ ejd−r
.

We also claim that in general ?d−r◦?r is multiplication by (−1)r(d−r)+(d−a), where 〈·, ·〉 has signature
(a, d − a). (In practice one usually neglects to mention the subscript r and merely writes ? with
r understood from context, so one says ?? = (−1)r(d−r)+(d−a), with the two ?’s not literally the
same thing unless 2r = d.) In particular, when 〈·, ·〉 is positive-definite (so d − a = 0) then
?d−r ◦ ?r = (−1)r(d−r).

The special cases r = 0 and r = d were treated in the preceding example, so we can assume
r, d−r > 0. By Corollary 2.3 in the handout on orientations, the r-fold wedge products ei1∧· · ·∧eir

are an orthonormal basis of ∧r(V ). By definition of the Hodge star,

(3) ω ∧ ?r(ei1 ∧ · · · ∧ eir) = 〈ω, ei1 ∧ · · · ∧ eir〉re1 ∧ · · · ∧ ed

for all ω ∈ ∧r(V ). We have

?r(ei1 ∧ · · · ∧ eir) =
∑

1≤k1<···<kd−r≤d

ak1,...,kd−r
ek1 ∧ · · · ∧ ekd−r

for coefficients to be determined. For each such strictly increasing sequence {k1, . . . , kd−r}, taking
ω to be a wedge product of ei’s over all i 6∈ K makes the left side of (3) equal ±ak1,...,kd−r

yet the
right side vanishes when K is not the complement of {i1, . . . , ir} (since the coefficient multiplier
is zero for such an ω). Hence, the only surviving term is the one corresponding to the sequence
{k1, . . . , kd−r} complementary to {i1, . . . , ir}, and so

?r(ei1 ∧ · · · ∧ eir) = cej1 ∧ · · · ∧ ejd−r

for some c to be determined. By taking ω = ei1 ∧ · · · ∧ eir in (3) we get

cei1 ∧ · · · ∧ eir ∧ ej1 ∧ · · · ∧ ejd−r
= det(〈eia , eib〉)εI,I′e1 ∧ · · · ∧ ed = εI,I′ · (εi1 · · · εir) · e1 ∧ · · · ∧ ed

due to orthonormality of {e1, . . . , ed} and how we defined εI,I′ in terms of the chosen enumeration
{j1, . . . , jd−r} of the set complementary to {i1, . . . , ir}. Hence, c = εI,I′εi1 · · · εir , as desired.

Now we compute ?d−r ◦ ?r. For any η ∈ ∧i(V ) and θ ∈ ∧j(V ) we have η ∧ θ = (−1)ijθ ∧ η, as
one checks by using bilinearity to reduce to the case of elementary wedge products. Thus, we have

ej1 ∧ · · · ∧ ejd−r
∧ ei1 ∧ · · · ∧ eir = (−1)r(d−r)ei1 ∧ · · · ∧ eir ∧ ej1 ∧ · · · ∧ ejd−r

= (−1)r(d−r)εI,I′e1 ∧ · · · ∧ ed.
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This implies εI′,I = (−1)r(d−r)εI,I′ . When we compute ?d−r on ej1 ∧ · · · ∧ ejd−r
we apply the

preceding paragraph with r and {i1, . . . , ir} replaced by d− r and {j1, . . . , jd−r}, so

(?d−r ◦ ?r)(ei1 ∧ · · · ∧ eir) = εI,I′ · (εi1 · · · εir) · ?d−r(ej1 ∧ · · · ∧ ejd−r
)

= εI,I′ · (εi1 . . . εir) · εI′,I(εj1 · · · εjd−r
)(ei1 ∧ · · · ∧ eir)

= (−1)r(d−r) ·
d∏

t=1

εt · ei1 ∧ · · · ∧ eir .

This gives the desired result because
∏d

t=1 εt = (−1)d−a due to the orthonormality of the ei’s with
respect to 〈·, ·〉 and the definition of the signature of a quadratic form over R.

Example 2.3. Let V = R4 with the standard ordered basis {e1, . . . , e4}, giving the standard orien-
tation represented by e1 ∧ e2 ∧ e3 ∧ e4. We pick c > 0 and give V the so-called Lorentz quadratic
form x2

1 + x2
2 + x2

3 − c2x2
4, so the ei’s are pairwise orthogonal with e1, e2, e3 unit vectors having

self-pairing 1 whereas 〈e4, e4〉 = −c2. In this case, d = 4 and the signature (a, d− a) is (3, 1). Since
c > 0, for e′4 = e4/c the basis {e1, e2, e3, e

′
4} is a positive orthonormal basis. Therefore the volume

form is e1 ∧ e2 ∧ e3 ∧ e′4.
We wish to compute ?r for 1 ≤ r ≤ 3. Since ?d−r ◦ ?r = (−1)r(d−r)+(d−a) = (−1)r+1, we can

restrict attention to r = 1, 2. Using the general calculations above, we get

?1(e1) = e2 ∧ e3 ∧ e′4, ?1(e2) = −e1 ∧ e3 ∧ e′4, ?1(e3) = e1 ∧ e2 ∧ e′4, ?1(e4) = ce1 ∧ e2 ∧ e3

in ∧3(V ). Likewise,

?2(e1 ∧ e2) = e3 ∧ e′4, ?2(e1 ∧ e3) = −e2 ∧ e′4, ?2(e1 ∧ e4) = −ce2 ∧ e3,

?2(e2 ∧ e3) = e1 ∧ e′4, ?2(e2 ∧ e4) = ce1 ∧ e3, ?2(e3 ∧ e4) = −ce1 ∧ e2

in ∧2(V ). By direct calculation we see ?2
2 = −1 = (−1)2+1, in accordance with the general theory.

Example 2.4. Let (V, µ, 〈·, ·〉) be an oriented non-degenerate quadratic space with dimension d = 3.
The special feature of this case is that d − 1 = 1 + 1, so for v, v′ ∈ V = ∧1(V ) we have v ∧ v′ ∈
∧2(V ) = ∧d−1(V ), so ?d−1(v ∧ v′) ∈ ∧1(V ) = V . We define the cross product

v × v′ = ?2(v ∧ v′) ∈ V.

This is an R-bilinear alternating pairing V × V → V since ?2 is R-linear and (v, v′) 7→ v ∧ v′ is R-
bilinear and alternating. In the special case that 〈·, ·〉 is positive-definite, for a positive orthonormal
basis {i, j,k} Example 2.2 gives

i× j = ?2(i ∧ j) = k, j× k = ?2(j ∧ k) = i, k× i = ?2(k ∧ i) = j

because k ∧ i ∧ j = i ∧ j ∧ k = j ∧ k ∧ i = Volµ in ∧3(V ).
Returning to the general case (i.e., without positive-definiteness restrictions), let us verify a

property of the R-bilinear pairing [v, v′] = v × v′: though it deserves to be called a “product”
because it is distributive over addition in each variable (more specifically, it is R-bilinear), it is
not an associative composition law on V . Instead, it satisfies a higher-order relation, the (cyclic)
Jacobi identity from the theory of Lie algebras:

[v, [v′, v′′]] + [v′, [v′′, v]] + [v′′, [v, v′]] = 0

in V . To prove this we can apply the isomorphism ?1 without harm, so since ?1 ◦ ?2 = 1 it is
equivalent to say

v ∧ ?2(v′ ∧ v′′) + v′ ∧ ?2(v′′ ∧ v) + v′′ ∧ ?2(v ∧ v′) = 0
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in ∧2(V ). To verify this vanishing, note that trilinearity reduces us to the case when v, v′, v′′ lie in
a fixed basis. The case when two of them coincide is trivial (as one term vanishes and the other
two are negatives of each other), so it suffices to work with {v, v′, v′′} a single fixed basis. Pick an
orthogonal basis, so since v ∧ v′ ∧ v′′ is a nonzero multiple of the volume form it follows from the
orthogonality and the definition of ?2 that ?2(v′ ∧ v′′) is a multiple of v, whence v ∧ ?2(v′ ∧ v′′) = 0.
The same argument applied to the ordered triple {v′, v′′, v} and {v′′, v, v′}, so all three terms vanish
for such special bases.


