Math 396. The topologists' sine curve

We want to present the classic example of a space which is connected but not path-connected. Define

$$
S=\left\{(x, y) \in \mathbf{R}^{2} \mid y=\sin (1 / x)\right\} \cup(\{0\} \times[-1,1]) \subseteq \mathbf{R}^{2},
$$

so S is the union of the graph of $y=\sin (1 / x)$ over $x>0$, along with the interval $[-1,1]$ in the y-axis. Geometrically, the graph of $y=\sin (1 / x)$ is a wiggly path that oscillates more and more frequently (between the lines $y= \pm 1$) as we get near the y-axis (more precisely, over the tiny interval $1 /(2 \pi(n+1)) \leq x \leq 1 /(2 \pi n)$ the function $\sin (1 / x)$ goes through an entire wave).

We'll write S_{+}and S_{0} for these two parts of S (i.e., S_{+}is the graph of $y=\sin (1 / x)$ over $x>0$ and $S_{0}=\{0\} \times[-1,1]$). It is clear that S_{+}is path-connected (and hence connected), as is the graph of any continuous function (we use $t \mapsto(t, \sin (1 / t))$ to define a path from $[a, b]$ to join up $(a, \sin (1 / a))$ and $(b, \sin (1 / b))$ for any $0<a \leq b$, and then reparameterize the source variable to make our domain $[0,1]$). We will show that S is connected but is not path-connected. Intuitively, a path from S_{+}that tries to get onto the y-axis part of S cannot get there in finite time, due to the crazy wiggling of S_{+}. Of course, we have to convert this idea into precise mathematics.

1. Connectedness of S

We begin with a lemma which shows how to recover S from S_{+}. This will enable us to show that S is connected.
Lemma 1.1. The closure of S_{+}in \mathbf{R}^{2} is equal to S.
The point of the lemma is that we'll show the closure of a connected subset of a topological space is always connected, so the connectedness of S_{+}and this lemma then implies the connectedness of S. The fact that S turns out to not be path-connected then shows that forming closure can destroy the property of path connectedness for subsets of a topological space (even a metric space).

Proof. To show that S lies in the closure of S_{+}, we have to express each $p \in S$ as a limit of a sequence of points in S_{+}. If $p \in S_{+}$we use the constant sequence $\{p, p, \ldots\}$. If $p=(0, y)$ with $|y| \leq 1$, we argue as follows. Certainly $y=\sin (\theta)$ for some $\theta \in[-\pi, \pi]$, whence $y=\sin (\theta+2 n \pi)$ for all positive integers n. Thus, for $x_{n}=1 /(\theta+2 n \pi)>0$ we have $\sin \left(1 / x_{n}\right)=y$ for all n. Since $x_{n} \rightarrow 0$ as $n \rightarrow \infty$, we have $\left(x_{n}, \sin \left(1 / x_{n}\right)\right)=\left(x_{n}, y\right) \rightarrow(0, y)$. Geometrically, this is the infinite sequence of points where the horizontal line through y cuts the graph of $\sin (1 / x)$.

Now that we have shown that the set S containing S_{+}lies inside the closure of S_{+}, to show that it is the closure of S_{+}we just have to show that S is closed (as the closure of S_{+}in \mathbf{R}^{2} is the unique minimal closed subset of \mathbf{R}^{2} which contains $\left.S_{+}\right)$. Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a sequence in S with limit $(x, y) \in \mathbf{R}^{2}$. We must prove $(x, y) \in S$. Since $x=\lim x_{n}$ and $y=\lim y_{n}$, we know that $x \geq 0$ and $|y|=\lim \left|y_{n}\right| \leq 1$. If $x=0$, then clearly $(x, y)=(0, y) \in S$ since $|y| \leq 1$. If $x>0$, then upon dropping the first few terms of the sequence we can assume $x_{n}>0$ for all n. Then $\left(x_{n}, y_{n}\right) \in S$ must lie on S_{+}, so $y_{n}=\sin \left(1 / x_{n}\right)$. Since the function $t \mapsto \sin (1 / t)$ on $(0, \infty)$ is continuous, from the condition $x_{n} \rightarrow x$ we conclude

$$
y=\lim y_{n}=\lim \sin \left(1 / x_{n}\right)=\sin (1 / x) .
$$

Thus, $(x, y) \in S_{+} \subseteq S$ once again.
Thanks to the lemma, the connectedness of S is an immediate consequence of the following general fact (applied to the topological space \mathbf{R}^{2} and the connected subset S_{+}):
Theorem 1.2. Let X be a topological space and Y a connected subset. Then the closure \bar{Y} of Y in X is connected.

Proof. Without loss of generality, $Y \neq \emptyset$. Suppose that $\{U, V\}$ is a separation of \bar{Y}. That is, U and V are disjoint opens of \bar{Y} with union equal to \bar{Y}. We want one of them to be empty. The intersections $U^{\prime}=U \cap Y$ and $V^{\prime}=V \cap Y$ give a separation of Y (why?), so by connectedness of Y we have that one of U^{\prime} or V^{\prime} is empty and the other is equal to Y. Without loss of generality, we may suppose $U^{\prime}=Y$ and $V^{\prime}=\emptyset$.

Since U is closed in \bar{Y}, it has the form $U=\bar{Y} \cap Z$ for some closed subset Z in X. But $Y=U^{\prime} \subseteq U \subseteq Z$, so by closedness of Z it follows that $\bar{Y} \subseteq Z$. Then

$$
U=\bar{Y} \cap Z=\bar{Y}
$$

and by disjointness V must then be empty. Hence, \bar{Y} indeed has no non-trivial separations, so it is connected.

2. S IS NOT PATH-CONNECTED

Now that we have proven S to be connected, we prove it is not path-connected. More specifically, we will show that there is no continuous function $f:[0,1] \rightarrow S$ with $f(0) \in S_{+}$and $f(1) \in$ $S_{0}=\{0\} \times[-1,1]$. Assuming such an f exists, we will deduce a contradiction. Thanks to pathconnectedness of S_{0}, we can extend our path to suppose $f(1)=(0,1)$. Choose $\varepsilon=1 / 2>0$. By continuity, for some small $\delta>0$ we have $\|f(t)-(0,1)\|<1 / 2$ whenever $1-\delta \leq t \leq 1$. If you draw the picture, you'll see that the graph of $\sin (1 / x)$ keeps popping out of the disc around $(0,1)$ of radius $1 / 2$, and that will contradict the existence of a continuous path f.

To be precise, consider the image $f([1-\delta, 1])$, which must be connected since f is continuous and $[1-\delta, 1]$ is connected. Let $f(1-\delta)=\left(x_{0}, y_{0}\right)$. Consider the composite of $f:[1-\delta, 1] \rightarrow \mathbf{R}^{2}$ and projection to the x-axis. Both such maps are continuous, hence so is their composite, so the image of the composite map is a connected subset of \mathbf{R} which contains 0 (the x-coordinate of $f(1)$) and x_{0} (the x-coordinate of $f(1-\delta)$). But since connected subsets of \mathbf{R} must be intervals, it follows that the set of x-coordinates of points in $f([1-\delta, 1])$ includes the entire interval $\left[0, x_{0}\right]$. Thus, for all $x_{1} \in\left(0, x_{0}\right]$ there exists $t \in[1-\delta, 1]$ such that $f(t)=\left(x_{1}, \sin \left(1 / x_{1}\right)\right)$.

In particular, if $x_{1}=1 /(2 n \pi-\pi / 2)$ for large n then $0<x_{1}<x_{0}$ yet $\sin \left(1 / x_{1}\right)=\sin (-\pi / 2)=-1$. Thus, the point $(1 /(2 n \pi-\pi / 2),-1)$ has the form $f(t)$ for some $t \in[1-\delta, 1]$, and hence this point lies within a distance of $1 / 2$ from the point $(0,1)$. But that's a contradiction, since the distance from $(1 /(2 n \pi-\pi / 2),-1)$ to $(0,1)$ clearly at least 2 (as is the distance between any point on the line $y=1$ and any other point on the line $y=-1$).

