
Math 395. Geometric approach to signature
For the amusement of the reader who knows a tiny bit about groups (enough to know the meaning

of a transitive group action on a set), we now provide an alternative geometric approach that gives
an entirely different (and rather more interesting and vivid) proof that the signature of a real
quadratic space is well-defined. (Our initial proof was largely algebraic.) The key geometric input
will be the result on connectivity of GL+(V ), which we proved using a dynamic interpretation of
Gram–Schmidt. The proof is somewhat longer than the algebraic method, but it nicely brings out
the group-theoretic and topological structures that are lying in the shadows.

1. Preliminary steps

Let us fix a positive-definite inner product 〈·, ·〉 on V . Every bilinear form B on V may therefore
be expressed as B(v, v′) = 〈T (v), v′〉 for a unique self-map T : V → V , and symmetry (resp. non-
degeneracy) of B is the condition that T be self-adjoint (resp. an isomorphism). Note that the
formation of T depends on not only B but also on the choice of 〈·, ·〉. Consider the self-adjoint
map TQ : V → V associated to BQ and to the initial choice of inner product 〈·, ·〉 on V . (That
is, BQ(v, v′) = 〈TQ(v), v′〉 for all v, v′ ∈ V .) The condition that a basis e = {ei} diagonalize
Q is exactly the condition that 〈TQ(ei), ej〉 = 0 for all i 6= j. That is, this says that TQ(ei) is
perpendicular to ej for all j 6= i. In particular, if e were an orthogonal (e.g., orthonormal) basis
with respect to 〈·, ·〉 then the diagonalizability condition would say that e is a basis of eigenvectors
for TQ. (Of course, the spectral theorem ensures that the self-adjoint TQ can be diagonalized, but
this is not logically relevant here because we are beginning with the ei’s.) We can now run this
procedure partly in reverse: if we start with a basis e that diagonalizes Q, then we can define an
inner product 〈·, ·〉e by the condition that it makes e orthonormal, and the resulting self-adjoint
TQ,e then has its number of positive (resp. negative) eigenvalues given by re and se when these
numbers of eigenvalues are counted with multiplicity (as roots of the characteristic polynomials of
TQ,e).

We may now exploit the flexibility in the choice of the inner product to restate our problem
in terms of arbitrary inner products on V rather than in terms of diagonalizing bases for Q: for
each positive-definite inner product I = 〈·, ·〉 on V we have BQ = 〈TQ,I(·), ·〉 for a unique map
TQ,I : V → V that is self-adjoint with respect to I, and we let rI and sI denote the respective
number of positive and negative eigenvalues of TQ,I (with multiplicity). Here the spectral theorem
enters: it ensures that for any choice of I, TQ,I does diagonalize over R. Our problem can therefore
be recast as that of proving that rI and sI are independent of I. Roughly speaking, to each I
we have attached a pair of discrete (i.e., Z-valued) parameters rI and sI (using Q), and so if the
“space” of I’s is connected in a reasonable sense then discrete parameters on this space should not
jump. That is, if we can topologize the space of I’s such that rI and sI depend continuously on I
then the connectivity of such a topology will give the desired result.

The existence of an orthonormal basis for any I, coupled with the fact that GL(V ) acts transi-
tively on the set of ordered bases of V (i.e., for any two ordered bases {e1, · · · , en} and {e′1, . . . , e′n}
there exists a (unique) linear automorphism L of V such that L(ei) = e′i for all i), implies that
GL(V ) acts transitively on the set of I’s. That is, if I = 〈·, ·〉 and I ′ = 〈·, ·〉′ are two inner products
on V then there exists L ∈ GL(V ) such that 〈v, v′〉 = 〈L(v), L(v′)〉′. Concretely, L carries an
ordered orthonormal basis with respect to I to one with respect to I ′. This shows slightly more:
at the expense of replacing one of the ONB vectors with its negative we can flip the sign of det L.
Hence, even the connected GL+(V ) acts transitively on the set of all I’s. This leads to:
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Theorem 1.1. Let W be the finite-dimensional vector space of symmetric bilinear forms on V , en-
dowed with its natural topology as a finite-dimensional vector space over R. The subset of elements
that are positive-definite inner products is open and connected.

Proof. We first prove connectedness, and then we prove openness. There is a natural left action
of GL(V ) on W : to L ∈ GL(W ) and B ∈ W , we associate the symmetric bilinear form L.B =
B(L−1(·), L−1(·)). By fixing a basis of V and computing in linear coordinates we see that the
resulting map

GL(V )×W → W

is continuous. In particular, if we fix B0 ∈ W then the map GL(V ) → W defined by L 7→ L.B0

is continuous. Restricting to the connected subgroup GL+(V ), it follows from continuity that the
GL+(V )-orbit of any B0 is connected in W . But if we take B0 to be an inner product then from
the definition of the action we see that L.B0 is an inner product for every L ∈ GL+(V ) (even for
L ∈ GL(V )), and it was explained above that every inner product on V is obtained from a single
B0 by means of some L ∈ GL+(V ). This gives the connectivity.

Now we check openness. This says that the “positive-definiteness” property of a symmetric
bilinear form cannot be lost under small deformation. Fix an inner product 〈·, ·〉0 on V , and let
S0 be the resulting compact unit sphere. For any symmetric bilinear form B on V , it is clear that
B is positive definite if and only if the function QB = B(v, v)/2 restricted to the compact S0 has
positive lower bound. By compactness it is obvious that for any B′ sufficiently close to B in the
sense of the natural topology on the linear space of symmetric bilinear forms, the lower bound for
QB′ |S0 is near to that of QB|S0 , and so indeed B′ is positive-definite for B′ near B. �

2. A local constancy argument

We have now finished the proof of Theorem 1.1, so the space of inner products I on V has been
endowed with a natural connected topology, and it remains to show that the Z-valued functions I 7→
rI and I 7→ sI that count the number of positive (resp. negative) roots of TQ,I (with multiplicity!)
are continuous in I. Put another way, the dependence on I is locally constant: if I ′ is sufficiently
close to I then we claim that rI′ = rI and sI′ = sI . If we let χI denote the characteristic polynomial
of TQ,I , then the number of zeros of χI(z) is independent of I: it is exactly the dimension t = dim V0

of the space of v ∈ V such that BQ(v, ·) = 0. Hence, the polynomials χI(z)/zt ∈ C[z] have all roots
in R×, and our problem is to study the variation in the number rI of positive roots of this latter
polynomial (this determines the number of negative roots, sI = n− t− rI) as we slightly move I.
To proceed, we need to prove a lemma that is usually called “continuity of roots”:

Lemma 2.1. Let f = zn + cn−1z
n−1 + · · ·+ c0 ∈ C[z] be a monic polynomial with positive degree

n, and let {zi} be the set of distinct roots of f in C. For any ε > 0 there exists δ > 0 such that if
g = zn + bn−1z

n−1 + · · ·+ b0 ∈ C[z] is monic of degree n with |bj − cj | < δ for all j < n then each
root ρ of g in C satisfies |ρ− zi| < ε for some i.

Moreover, if ε < mini6=i′ |zi − zi′ |/2 and µi is the multiplicity of zi as a root of f (so
∑

µi = n)
then by taking δ to be sufficiently small there are exactly µi roots ρ of g – counting with multiplicity
– such that |ρ− zi| < δ.

The astute reader will check that the proof of the lemma works if we replace C with R throughout
(which suffices for the intended applications). However, the lemma is rather much weaker when
stated over R, due to the general lack of real roots to polynomials over R.

Proof. We first fix any ε > 0 and prove the existence of δ as in the first assertion in the lemma.
Assume to the contrary that no such δ exists, so let gm = zn + bn−1,mzn−1 + · · · + b0,m satisfy
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bj,m → cj for all j < n such that there exists a root ρm ∈ C of gm such that |ρm − zi| ≥ ε for all
i. By elementary upper bounds on roots of monic polynomials in terms of lower-degree coefficients
(and the degree of the polynomial), since the |bj,m|’s are bounded it follows that the |ρm|’s are
bounded. Hence, by compactness of closed discs in C we may pass to a subsequence of the gm to
arrange that {ρm} has a limit ρ ∈ C, and by passing to the limit |ρ − zi| ≥ ε for all i. However,
bj,m → cj for all j < n, so 0 = gm(ρm) → f(ρ). This contradicts the fact that ρ is distinct from all
of the roots zi of f in C.

Now take ε smaller than half the minimum distance between distinct roots of f , so by taking δ
sufficiently small (in accordance with ε) each root ρ of g satisfies |ρ − zi| < ε for a unique root zi

of f when the coefficients of g satisfy |bj − cj | < δ for all j < n. This uniqueness of zi for each ρ
is due to the smallness of ε. In this way, we have a map from the set of roots of g to the set of
roots of f , assigning to each root ρ of g the unique root of f to which it is closest. We want to
prove that by taking δ sufficiently small, exactly µi roots of g (with multiplicity) are closest (even
within a distance < ε) to the root zi of f . Assuming no such δ exists, since there are only finitely
many zi’s we may use a pigeonhole argument (and relabelling of the zi’s) to make a sequence of
gm’s with bj,m → cj such that the number of roots of gm within a distance < ε from z1 is equal to
a fixed non-negative integer µ 6= µ1. Consider a monic factorization

gm(z) =
n∏

j=1

(z − ρj,m)

with |ρj,m − zi(j)| < ε for a unique i(j) for each m. There are exactly µ values of j such that
i(j) = 1.

By the same compactness argument as above, we can pass to a subsequence of the gm’s so that
{ρj,m}m≥1 has a limit ρj satisfying |ρj − zi(j)| ≤ ε. Due to the smallness of ε, zi(j) is the unique
root of f that is so close to ρj . In particular, there are µ values of j for which ρj is closer to z1

than to any other roots of f , and for all other j the limit ρj is closer to some other root of f than it
is to z1. However, since gm → f coefficient-wise it follows that f(z) =

∏n
j=1(z − ρj). Hence, there

are exactly µ1 values of j such that ρj = z1 and for all other values of j we have that ρj is equal
to zi for some i 6= 1. This contradicts the condition µ 6= µ1. �

By the lemma on continuity of roots (applied with f = χI(z)/zt and g = χI′/zt for I ′ near I),
our problem is reduced to proving that χI′ is coefficient-wise close to χI for I ′ near to I in the
space of inner products on V . Such closeness would follow from TQ,I′ being sufficiently close to
TQ,I in Hom(V, V ), so we are reduced to proving that by taking I ′ sufficiently close to I we make
TQ,I′ as close as we please to TQ,I . If L : V ' V is a linear isomorphism carrying I to I ′ (i.e.,
〈L(v), L(v′)〉 = 〈v, v′〉′) then

〈TQ,I(v), v′〉 = BQ(v, v′) = 〈TQ,I′(v), v′〉′ = 〈L(TQ,I′(v)), L(v′)〉 = 〈(L∗L ◦ TQ,I′)(v), v′〉,

where L∗ is the I-adjoint of L, so TQ,I′ = L∗LTQ,I . Note that the initial condition on L only
determines it up to left-multiplication by an element in the orthogonal group of I, and this ambiguity
cancels out in L∗L. Hence, L∗L is well-defined in terms of I ′ and I. In particular, if we consider I
as fixed and I ′ as varying then L∗L is a GL(V )-valued function of I ′, and our problem is reduced to
proving that for I ′ sufficiently near I we have (L∗L)−1 sufficiently near the identity (as this makes
TQ,I′ = (L∗L)−1TQ,I sufficiently near TQ,I , where “sufficiently near” of course depends on I and
more specifically on TQ,I).

The identity
〈v, v′〉′ = 〈L(v), L(v′)〉 = 〈(L∗L)(v), v′〉
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implies that if we fix a basis v of V and let M and M ′ be the associated invertible symmetric matrices
computing 〈·, ·〉 and 〈·, ·〉′ then M ′ = (L∗L)M and the definition of the topology on the space of
inner products says that M ′−M is very close to zero. Hence, we can restate the problem as proving
that for a fixed invertible matrix M and any matrix M ′ sufficiently close to M (entry by entry, and
so in particular M ′ is invertible as det(M ′) is near det(M) 6= 0), the matrix M(M ′)−1 is near the
identity. Working in the language of sequences (which is to say, arguing by contradiction), we want
to show that if {Ms} is a sequence of invertible matrices with Ms → M then MM−1

s → MM−1 = 1.
This follows from the continuity of both matrix multiplication and Cramer’s formula for the inverse
of a matrix, and so completes the geometric proof of the well-definedness of the signature.

We now use the preceding geometric technique to prove a generalization of Theorem 1.1:

Corollary 2.2. Let W be the finite-dimensional vector space of symmetric bilinear forms on V ,
endowed with its natural topology as a finite-dimensional vector space over R. Let W 0 be the subset
of non-degenerate symmetric bilinear forms. The subset W 0 is open in W and it has finitely many
connected components: its connected components consist of those B’s having a fixed signature (r, s)
with r + s = dim V .

In the positive-definite case, this recovers Theorem 1.1.

Proof. In terms of the “matrix” description of points B ∈ W with respect to a choice of ordered basis
of V , B is non-degenerate if and only if its associated symmetric matrix (aij) has non-vanishing
determinant. In other words, the subset W 0 ⊆ W is the non-vanishing locus of a polynomial
function in linear coordinates and so it is open. We now fix an ordered pair (r, s) of non-negative
integers satisfying r+s = dim V and we let W 0

(r,s) be the subset of points B ∈ W 0 whose associated
quadratic form QB : V → R has signature (r, s). Our goal is to prove that the subsets W 0

(r,s) are
the connected components of W 0. Note that since W 0 is open in a vector space, its connected
components are open subsets.

We have to prove two things: the signature is locally constant on W 0 (and hence is constant
on connected components of W 0), and each W 0

(r,s) is connected. For connectivity, we may use the
exact same argument as in the beginning of the proof of Theorem 1.1 once we prove that any two
quadratic forms q, q′ : V → R with the same signature (r, s) are related by the action of GL+(V )
on V . The quadratic spaces (V, q) and (V, q′) are certainly isomorphic since q and q′ have the
same signature, so there exists T ∈ GL(V ) such that q′ = q ◦ T . The only potential snag is that
det T ∈ R× might be negative. To fix this, we just need to find T0 ∈ GL(V ) such that det T0 < 0
and q = q ◦ T0, as then we could replace T with T0 ◦ T ∈ GL+(V ). To find T0, we argue exactly as
in the positive-definite case: we find an ordered basis e = {e1, . . . , en} of V with respect to which q
is diagonalized, and we let T0 : V ' V be the map that negates e1 but fixes ej for all j > 1. (Check
that indeed q ◦ T0 = q.)

It remains to show that if B ∈ W 0 is a point such that QB has signature (r, s), then for all
B′ ∈ W 0 near B the non-degenerate quadratic form QB′ on V also has signature (r, s). It is
sufficient to track r, since r + s = dim V . (Warning: It is crucial here that we assume B is non-
degenerate. If B ∈ W is a degenerate quadratic form, there are B′ ∈ W that are arbitrarily close
to B and non-degenerate, so such B′ have signature not equal to that of B. For a concrete example
with V = R2, note that for small ε > 0

Bε((x1, x2), (y1, y2)) = x1y1 − εx2y2

in W 0 is very close to the degenerate B0 ∈ W .)
We fix an inner product 〈·, ·〉 on V and write B = 〈T (·), ·〉 for a unique isomorphism T : V ' V

that is self-adjoint with respect to the inner product. The points B′ ∈ W have the form B′ =
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〈T ′(·), ·〉 for unique self-adjoint linear maps T ′ : V ' V , and this identifies W with the subspace
of self-adjoint elements in Hom(V, V ); under this identification, W 0 corresponds to the self-adjoint
automorphisms of V . The condition that B′ be close to B in W is exactly the condition that
T ′ be close to T in Hom(V, V ) (as the linear isomorphism of W onto the subspace of self-adjoint
elements in Hom(V, V ) is certainly a homeomorphism, as is any linear isomorphism between finite-
dimensional R-vector spaces). Hence, our problem may be restated as this: we fix a self-adjoint
isomorphism T : V ' V , and we seek to prove that any self-adjoint isomorphism T ′ : V ' V
sufficiently close to T (in Hom(V, V )) has the same number of positive eigenvalues as T (counting
with multiplicities). Consider the characteristic polynomials χT , χT ′ ∈ R[Λ]. These are monic
polynomials of the same degree n > 0, and each has all complex roots in R (by the spectral
theorem). Making T ′ approach T has the effect of making χT ′ “approach” χT for coefficients in
each fixed degree (from 0 to n − 1). Lemma 2.1 therefore gives the desired result, since χT does
not have zero as a root. �


