Math 396. Topology on projective space

Let V be a finite-dimensional vector space over \mathbf{R} with dimension $n+1 \geq 2$. Let $\mathbf{P}(V)$ denote the set of hyperplanes in V (or lines in V^{\vee}). In class we saw how to put a topology on this set upon choosing an ordered basis $\mathbf{e}=\left\{e_{0}, \ldots, e_{n}\right\}$ of V : we covered $\mathbf{P}(V)$ by the subsets $U_{i, \mathbf{e}}$ (consisting of hyperplanes not containing e_{i}) equipped with bijections $\phi_{i, \mathbf{e}}: U_{i, \mathbf{e}} \rightarrow \mathbf{R}^{n}$, and we checked that when using these bijections to topologize the $U_{i, \mathbf{e}}$'s the criterion from the handout on gluing topologies is satisfied. It may appear, however, that this topology might depend on \mathbf{e} and so is not intrinsic to V. We want to give two alternative descriptions of the topology that avoid the mention of the basis, and so ensure that the topology is independent of the basis. The second of our two descriptions below will recover the topologists' method for constructing projective spaces. (The method used in class is the algebraic geometer's method, and it is better in certain respects because it generalizes to other topological fields in the role of \mathbf{R} whereas the topologists' method only works for \mathbf{R}; of course, the topologists' method is important for the study of the topology of $\mathbf{P}^{n}(\mathbf{R})$!)

1. A DUAL-SPACE DESCRIPTION

Consider the map of sets $\pi: V^{\vee}-\{0\} \rightarrow \mathbf{P}(V)$ that sends a nonzero linear functional $\ell \in V^{\vee}$ to its hyperplane kernel ker ℓ considered as a point in $\mathbf{P}(V)$. This is a surjective map: for any hyperplane H in V, we may choose a basis of the 1-dimensional space V / H and so we get a linear functional $\ell: V \rightarrow V / H \simeq \mathbf{R}$ whose kernel is H. Note that the definition of π is intrinsic to V and does not mention bases. Thus, the following result shows that the topology we put on $\mathbf{P}(V)$ via a choice of ordered basis \mathbf{e} of V is in fact independent of that choice:

Theorem 1.1. Let \mathbf{e} be an ordered basis of V, and give $\mathbf{P}(V)$ the resulting topology from the $U_{i, \mathbf{e}}$'s and $\phi_{i, \mathbf{e}}$'s as in class. A subset $S \subseteq \mathbf{P}(V)$ is open for this topology if and only if its preimage $\pi^{-1}(S) \subseteq V^{\vee}-\{0\}$ is an open subset of V^{\vee} with respect to the usual topology on the finitedimensional \mathbf{R}-vector space V^{\vee}.

Of course, we recall that finite-dimensional vector spaces over \mathbf{R} have a topology that is independent of bases, given by using any norm or any choice of linear isomorphism with a Euclidean space over \mathbf{R}.
Proof. Since $S=\pi\left(\pi^{-1}(S)\right)$ for any subset $S \subseteq \mathbf{P}(V)$ (due to surjectivity of π), the theorem says exactly that π is a continuous open mapping. By definition, $U_{i, \mathbf{e}}$ is the set of hyperplanes H not containing e_{i}, so the preimage $\widetilde{U}_{i, \mathbf{e}}=\pi^{-1}\left(U_{i, \mathbf{e}}\right)$ consists of those nonzero functionals $\ell \in V^{\vee}$ such that e_{i} is not contained in the hyperplane $\pi(\ell)=\operatorname{ker} \ell$, which is to say $\ell\left(e_{i}\right) \neq 0$. Note that the set of such ℓ 's in V^{\vee} is open: using dual basis coordinates $\left\{e_{j}^{*}\right\}$ to identify V^{\vee} with a Euclidean space \mathbf{R}^{n+1}, a functional $\ell=\sum a_{j} e_{j}^{*}$ is given Euclidean coordinates $\left(a_{0}, \ldots, a_{n}\right)$ and $\ell\left(e_{i}\right) \neq 0$ says exactly $a_{i} \neq 0$.

We now make a brief topological digression on the local nature of continuity and openness. Rather generally, if $f: X \rightarrow Y$ is a set-theoretic map between two topological spaces and if Y is covered by open subsets Y_{i} such that $X_{i}=f^{-1}\left(Y_{i}\right)$ is open in X for all i then f is continuous if and only if the restricted maps $f_{i}: X_{i} \rightarrow Y_{i}$ are continuous for all i, and (assuming continuity) likewise for the property of being an open map. Indeed, if f is continuous then certainly all maps f_{i} are continuous, and conversely if each f_{i} is continuous and $U \subseteq Y$ is an open set then $f^{-1}(U) \cap X_{i}=f_{i}^{-1}\left(U \cap Y_{i}\right)$ is open in X_{i} for all i - and hence open in X, as each X_{i} is assumed to be open in X - so the union $f^{-1}(U)$ of the open subsets $f^{-1}(U) \cap X_{i}$ in X is also open in X. This takes care of the continuity aspect, and for openness if f is open then for any open set $U \subseteq X_{i}$ we see that $f_{i}(U)=f(U)$ is open in Y since U must be open in $X\left(\right.$ as X_{i} is open in $\left.X\right)$ and so $f_{i}(U)$ is also open in Y_{i}. Conversely,
if all maps f_{i} are open then for each open set U in X the overlap $f(U) \cap Y_{i}=f_{i}\left(U \cap X_{i}\right)$ is open in Y_{i} for all i and hence is open in Y for all i, so the union $f(U)$ of the $f(U) \cap Y_{i}$'s is open.

For the map $\pi: V^{\vee}-\{0\} \rightarrow \mathbf{P}(V)$ and the open covering of $\mathbf{P}(V)$ by the $U_{i, \text { e }}$'s we have checked above that $\widetilde{U}_{i, \mathbf{e}}=\pi^{-1}\left(U_{i, \mathbf{e}}\right)$ is an open subset $V^{\vee}-\{0\}$ (or equivalently, in V^{\vee}) for all i. Thus, we may apply the preceding paragraph to conclude that continuity and openness for π is equivalent to continuity and openness for the restricted maps $\pi_{i}: \widetilde{U}_{i, \mathbf{e}} \rightarrow U_{i, \mathbf{e}}$ for all i. We shall show that there is a natural homeomorphism $h_{i}: \widetilde{U}_{i, \mathbf{e}} \simeq U_{i, \mathbf{e}} \times \mathbf{R}^{\times}$carrying π_{i} over to the standard projection $p_{i}: U_{i, \mathbf{e}} \times \mathbf{R}^{\times} \rightarrow U_{i, \mathbf{e}}$ (i.e., $\pi_{i} \circ h_{i}^{-1}=p_{i}$), so continuity and openness for π_{i} follow from continuity and openness for the projection map p_{i}.

How do we topologically relate the open set $\widetilde{U}_{i, \mathbf{e}} \subseteq V^{\vee}$ consisting of linear functionals ℓ satisfying $\ell\left(e_{i}\right) \neq 0$ and the product space $U_{i, \mathbf{e}} \times \mathbf{R}^{\times}$consisting of pairs (H, c) where H is a hyperplane not containing e_{i} and c is a nonzero real number? Set-theoretically, we proceed as follows: since $e_{i} \notin H$ we can find a unique linear form $\sum a_{j} e_{j}^{*}$ with kernel H and $a_{i}=1$, but likewise for any nonzero $c \in \mathbf{R}$ we can uniquely scale to find a linear form $\ell_{H, c}=\sum b_{j} e_{j}^{*}$ such that $b_{i}=c$ (i.e., $\left.\ell_{H, c}\left(e_{i}\right)=c\right)$ and $\operatorname{ker} \ell_{H, c}=H$. Conversely, if ℓ is a linear form on V satisfying $\ell\left(e_{i}\right) \neq 0$, then from ℓ we get both a hyperplane $H=\operatorname{ker} \ell$ and a nonzero number $c=\ell(H)$. These two procedures are inverse to each other: given H and c we make $\ell_{H, c}$ that is rigged to have kernel H and to satisfy $\ell_{H, c}\left(e_{i}\right)=c$, and given ℓ we make $H=\operatorname{ker} \ell$ and $c=\ell\left(e_{i}\right) \neq 0$ so that ℓ satisfies the two properties that uniquely characterize $\ell_{H, c}$ (its kernel is H and its value on e_{i} is c).

This gives a bijection $\xi_{i}: \widetilde{U}_{i, \mathbf{e}} \rightarrow U_{i, \mathbf{e}} \times \mathbf{R}^{\times}$, and we now describe it more concretely so that the topological aspects of the bijection may be seen. The dual basis $\left\{e_{j}^{*}\right\}$ on V^{\vee} linearly (and topologically!) identifies V^{\vee} with a Euclidean space \mathbf{R}^{n+1} such that $\widetilde{U}_{i, \text { e }}$ goes over to the open subset of points $\left(a_{0}, \ldots, a_{n}\right)$ such that $a_{i} \neq 0$. By construction, $U_{i, \mathbf{e}}$ is topologized by means of the bijection $\phi_{i, \mathbf{e}}: U_{i, \mathbf{e}} \simeq \mathbf{R}^{n}$ that assigns to each hyperplane H not containing e_{i} the coefficients (aside from the i th) of the unique linear form $\sum a_{j} e_{j}^{*}$ with kernel H and $a_{i}=1$. More specifically, the topology on $U_{i, \mathbf{e}}$ is rigged to make $\phi_{i, \mathbf{e}}$ a homeomorphism (though we still had to compute "transition maps" to check agreement of topologies on overlaps $U_{i, \mathbf{e}} \cap U_{i^{\prime}, \mathbf{e}}$ in order that these "local" topologies all arose from a unique global topology on $\mathbf{P}(V)$). Composing with homeomorphisms has no impact on whether or not a set-theoretic map between topological spaces is a homeomorphism, so the homeomorphism problem for our bijection $\widetilde{U}_{i, \mathbf{e}} \rightarrow U_{i, \mathbf{e}} \times \mathbf{R}^{\times}$is equivalent to that for the composite

$$
\left\{\left(a_{0}, \ldots, a_{n}\right) \in \mathbf{R}^{n+1} \mid a_{i} \neq 0\right\} \simeq \widetilde{U}_{i, \mathbf{e}} \rightarrow U_{i, \mathbf{e}} \times \mathbf{R}^{\times} \simeq \mathbf{R}^{n} \times \mathbf{R}^{\times}
$$

This composite map is rather concrete:

$$
\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(\left(a_{j} / a_{i}\right)_{j \neq i}, a_{i}\right)
$$

because the linear form $\ell=\sum a_{j} e_{j}^{*}$ has the same kernel as $e_{i}^{*}+\sum_{j \neq i}\left(a_{j} / a_{i}\right) e_{j}^{*}$ and it satisfies $\ell\left(e_{i}\right)=a_{i}$. This composite map is obviously continuous by inspection, and its inverse is also continuous by inspection: it is given by the formula

$$
\left(\left(\alpha_{j}\right)_{j \neq i}, c\right) \mapsto\left(c \alpha_{0}, \ldots c \alpha_{i-1}, c, c \alpha_{i+1}, \ldots, c \alpha_{n}\right)
$$

2. A SPHERE DESCRIPTION

Fix a positive-definite inner product on V. Let $S \subseteq V-\{0\}$ be the unit sphere, so using the identification $V \simeq V^{\vee}$ via the inner product gives a continuous open map

$$
V-\{0\} \simeq V^{\vee}-\{0\} \xrightarrow{\pi} \mathbf{P}(V)
$$

via $v \mapsto \operatorname{ker}(\langle v, \cdot\rangle)$.
Theorem 2.1. The composite map $S \rightarrow \mathbf{P}(V)$ is a continuous open surjection that is a local homeomorphism (i.e., for $x \in S$ a sufficiently small open $U \subseteq S$ around x maps isomorphically onto an open set in $\mathbf{P}(V)$) and its fibers consist of pairs of antipodal points on S.

This theorem expresses $\mathbf{P}(V)$ as the set obtained by "identifying" antipodal points on the sphere S, using a topology that "locally" comes from that on the sphere. This is exactly the way projective space is usually constructed by topologists, usually in the presence of coordinates: $V=\mathbf{R}^{n+1}$ with the standard inner product, so $S=S^{n}$ is the standard unit sphere.) In terms of homogenous coordinates $\left[a_{0}, \ldots, a_{n}\right]$ for a point x in projective space $\mathbf{P}^{n}(\mathbf{R})=\mathbf{P}\left(\mathbf{R}^{n+1}\right)$, the set-theoretic picture is as follows. We scale through by $1 / \sqrt{\sum a_{j}^{2}}$ to arrive at homogenous coordinates $\left[b_{0}, \ldots, b_{n}\right]$ for the same point x but with $\sum b_{j}^{2}=1$. The only remaining scaling that preserves this condition is scaling by c satisfying $c^{2}=1$, which is to say that the point $\left(b_{0}, \ldots, b_{n}\right) \in S^{n}$ is well-defined (in terms of x) up to negation. This gives a bijection between the set $\mathbf{P}^{n}(\mathbf{R})$ and the "quotient set" of S^{n} modulo identification of antipodal points, and the real issue is to make sure that this procedure is topologically well-behaved (with respect to both the topology that we already have on projective space and the topology on the sphere as a compact subset of \mathbf{R}^{n+1}).

Proof. Pick an orthonormal basis $\left\{e_{0}, \ldots, e_{n}\right\}$ of V and for each i let $U_{i} \subseteq \mathbf{P}(V)$ be the subset of hyperplanes H not containing e_{i}. Such an H admits a unique linear equation of the form

$$
e_{i}^{*}+\sum_{j \neq i} c_{j} e_{j}^{*}=0
$$

and the topology of $\mathbf{P}(V)$ makes U_{i} an open set that is homeomorphically identified with \mathbf{R}^{n} via $H \mapsto \phi_{i}(H)=\left(c_{j}\right)_{j \neq i} \in \mathbf{R}^{n}$. Since continuity is a local property, if we let $\widetilde{U}_{i} \subseteq V^{\vee}-\{0\}$ be the open preimage of U_{i} then for the local homeomorphism aspect of the theorem it suffices to show that $S \cap \widetilde{U}_{i} \rightarrow U_{i}$ is a local homeomorphism for each i (where we embed S into V^{\vee} via $v \mapsto\langle v, \cdot\rangle$). By relabelling, we may restrict attention to the case $i=0$.

We saw in the previous proof that \widetilde{U}_{0} consists of nonzero linear functionals ℓ on V whose dual basis expansion has nonzero e_{0}^{*}-coefficient, say $\ell=\sum a_{j} e_{j}^{*}$ with $a_{0} \neq 0$. We also saw that the map $\widetilde{U}_{0} \rightarrow U_{0}$ is identified with the natural map $\mathbf{R}^{n} \times \mathbf{R}^{\times} \rightarrow \mathbf{R}^{n}$ using $\phi_{0}: U_{0} \simeq \mathbf{R}^{n}$ and the isomorphism $\xi_{0}: \widetilde{U}_{0} \simeq \mathbf{R}^{n} \times \mathbf{R}^{\times}$given by $\ell=\sum a_{j} e_{j}^{*} \mapsto\left(a_{1} / a_{0}, \ldots, a_{n} / a_{0} ; a_{0}\right)$. The real problem is to describe $S \cap \widetilde{U}_{0}$ in terms of this coordinatized description of \widetilde{U}_{0}. Since we are using an orthonormal basis of V, in terms of e_{j}^{*}-coordinates S goes over to the set of points $\sum a_{j} e_{j}^{*}$ with $\sum a_{j}^{2}=1$.

It follows that in $\widetilde{U}_{0}=\mathbf{R}^{n} \times \mathbf{R}^{\times}$the points from S are those points $\left(b_{1}, \ldots, b_{n} ; b\right)$ such that $b^{2}+\left(b b_{1}\right)^{2}+\cdots+\left(b b_{n}\right)^{2}=1$ (as we see by setting $a_{0}=b$ and $a_{j}=a_{0} b_{j}$ and computing $\sum a_{j}^{2}$ in terms of the b 's). In other words, the projection $S \cap \widetilde{U}_{0} \rightarrow U_{0}$ is identified with the projection

$$
\left\{\left(b_{1}, \ldots, b_{n}, b\right) \in \mathbf{R}^{n+1} \mid b^{2}\left(1+\sum_{j} b_{j}^{2}\right)=1\right\} \rightarrow \mathbf{R}^{n}
$$

defined by $\left(b_{1}, \ldots, b_{n}, b\right) \mapsto\left(b_{1}, \ldots, b_{n}\right)$ (with the source having the subspace topology in \mathbf{R}^{n+1} because the product $\mathbf{R}^{n} \times \mathbf{R}^{\times}$has topology agreeing with its subspace topology from \mathbf{R}^{n+1}). Fixing a point $x=\left(b_{1}, \ldots, b_{n}, b\right)$ in the source, there is a unique $\operatorname{sign} \varepsilon= \pm 1$ such that $b=\varepsilon / \sqrt{1+\sum_{j} b_{j}^{2}}$, and for all $x^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}, b^{\prime}\right)$ near x in the source we must have that the sign of $b^{\prime} \neq 0$ is the same
as that of b, and hence $b^{\prime}=\varepsilon / \sqrt{1+\sum_{j} b_{j}^{\prime 2}}$. In other words, the maps

$$
\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right) \mapsto\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}, \varepsilon / \sqrt{1+\sum_{j} b_{j}^{\prime 2}}\right), \quad\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}, b^{\prime}\right) \mapsto\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)
$$

are mutually inverse continuous maps between an open neighborhood of $x \in \widetilde{U}_{0}$ and an open neighborhood of its image in U_{0}. This calculation also shows that there are exactly two points over $\left(b_{1}, \ldots, b_{n}\right) \in U_{0}$ in $S \cap \widetilde{U}_{0}$, having the form $\left(b_{1}, \ldots, b_{n} ; \pm b\right)$ with $b=1 / \sqrt{1+\sum b_{j}^{2}}$. For $a_{0}= \pm b$ and $a_{j}=a_{0} b_{j}$ the two resulting points $\sum a_{j} e_{j}^{*} \in V^{\vee}-\{0\}$ lie in S and are negative to each other (i.e., antipodal).

