
Math 396. Product topology

The aim of this handout is to address two points: metrizability of finite products of metric
spaces, and the abstract characterization of the product topology in terms of universal mapping
properties among topological spaces. This latter issue is related to explaining why the definition of
the product topology is not merely ad hoc but in a sense the “right” definition. In particular, when
you study topology more systematically and encounter the problem of topologizing infinite products
of topological spaces, if you think in terms of the universal property to be discussed below then
you will inexorably be led to the right definition of the product topology for a product of infinitely
many topological spaces (it is not what one would naively expect it to be, based on experience with
the case of finite products).

1. Metrics on finite products

Let X1, . . . , Xd be metrizable topological spaces. The product set

X = X1 × · · · ×Xd

admits a natural product topology, as discussed in class. It is natural to ask if, upon choosing
metrics ρj inducing the given topology on each Xj , we can define a metric ρ on X in terms of
the ρj ’s such that ρ induces the product topology on X. The basic idea is to find a metric which
describes the idea of “coordinate-wise closeness”, but several natural candidates leap out, none of
which are evidently better than any others:

ρmax((x1, . . . , xd), (x′1, . . . , x
′
d)) = max

1≤j≤d
ρj(xj , x′j)

ρEuc((x1, . . . , xd), (x′1, . . . , x
′
d)) =

√√√√ d∑
j=1

ρj(xj , x′j)2

ρ1((x1, . . . , xd), (x′1, . . . , x
′
d)) =

d∑
j=1

ρj(xj , x′j)

ρp((x1, . . . , xd), (x′1, . . . , x
′
d)) =

 d∑
j=1

ρj(xj , x′j)
p

1/p

, p ≥ 1

When Xj = R for all j, with ρj the usual absolute value metric, these recover the various concrete
norms we’ve seen on X = Rd. Our first aim will be to show that all of these rather different-looking
metrics are at least bounded above and below by a positive multiple of each other (which is the best
we can expect, since they sure aren’t literally the same), and so in particular they all define the
same topology. In fact, we will see that the common topology they define is the product topology.

We first axiomatize the preceding examples. Let N : Rd → R be any norm which satisfies the
property that on the orthant [0,∞)d with non-negative coordinates it is a monotonically increasing
function in each individual coordinate when all others are held fixed. Examples of such N ’s include
our old friends

‖ · ‖max, ‖ · ‖Euc, ‖ · ‖1, ‖ · ‖p (for p ≥ 1)

where we recall that

‖(a1, . . . , an)‖p =

 d∑
j=1

|aj |p
1/p

.
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Here is the general theorem which shows that many metrics (including all those mentioned above)
on a product space are bounded above and below by a positive multiple of each other and hence
determine the same theory of open sets, closed sets, and convergence of sequences.
Theorem 1.1. Let N : Rd → R be any norm as considered above. Then for metric spaces (Xj , ρj)
for 1 ≤ j ≤ d, with product space X = X1 × · · · ×Xd, the function ρN : X ×X → R defined by

ρN ((x1, . . . , xd), (x′1, . . . , x
′
d)) = N(ρ1(x1, x

′
1), . . . , ρd(xd, x′d))

is a metric on X, and all such ρN ’s are bounded above and below by a positive multiple of each
other.

Proof. Let’s first check that each ρN really is a metric. Since N is a non-negative function, clearly
ρN is always non-negative. Also, if

ρN ((x1, . . . , xd), (x′1, . . . , x
′
d)) = 0

then by the very definition of ρN and the fact that N : Rd → R only vanishes on the zero vector
(as N is a norm), it follows that the d-tuple

(ρ1(x1, x
′
1), . . . , ρd(xd, x′d)) ∈ Rd

must be the zero vector. Thus, each ρj(xj , x′j) = 0, whence xj = x′j for all j (since each ρj is a
metric). That is, if ρN (x, x′) = 0 for x, x′ ∈ X, then x and x′ have the same “coordinates” xj and
x′j for each 1 ≤ j ≤ d, and hence x = x′. This shows that ρN satisfies the first basic requirement to
be a metric (it is “positive definite”). The symmetry property ρN (x, x′) = ρN (x′, x) for x, x′ ∈ X is
immediate from the definition of ρN and the fact that each ρj is a symmetric function on Xj ×Xj

(as ρj is a metric).
Now (as always) we come to the midly interesting part, which is the verification of the triangle

inequality. It is here that we need the hypothesis that N on

[0,∞)d ⊆ Rd

is monotonically increasing in each individual variable with all others held fixed. If x, x′, x′′ ∈ X
are three points, we want

ρN (x, x′′) ≤ ρN (x, x′) + ρN (x′, x′′).

Since each ρj is a metric, so

ρj(xj , x′′j ) ≤ ρj(xj , x′j) + ρj(x′j , x
′′
j )

for all 1 ≤ j ≤ d, we deduce from our hypothesis on N that

N(ρ1(x1, x
′′
1), . . . , ρd(xd, x′′d)) ≤ N(ρ1(x1, x

′
1) + ρ1(x′1, x

′′
1), . . . , ρd(xd, x′d) + ρd(x′d, x

′′
d)).

Thus, we compute

ρN (x, x′′) = N(ρ1(x1, x
′′
1), . . . , ρd(xd, x′′d))

≤ N(ρ1(x1, x
′
1) + ρ1(x′1, x

′′
1), . . . , ρd(xd, x′d) + ρd(x′d, x

′′
d))

= N((ρ1(x1, x
′
1), . . . , ρd(xd, x′d)) + (ρ1(x′1, x

′′
1), . . . , ρd(x′d, x

′′
d)))

≤ N(ρ1(x1, x
′
1), . . . , ρd(xd, x′d)) +N(ρ1(x′1, x

′′
1), . . . , ρd(x′d, x

′′
d))

= ρN (x, x′) + ρN (x′, x′′)

where the second inequality uses the triangle inequality for the norm N applied the the vectors

(ρ1(x1, x
′
1), . . . , ρd(xd, x′d)), (ρ1(x′1, x

′′
1), . . . , ρd(x′d, x

′′
d)) ∈ Rd.
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This completes the proof that ρN is a metric for any norm N on Rd satisfying our monotoicity
hypothesis on [0,∞)d.

It remains to show that ifN andN ′ are any two norms on Rd which satisfy our basic monotonicity
hypothesis then ρN and ρN ′ are each bounded above and below by a positive multiple of the other.
But all norms on Rd are equivalent! Thus, there is an inequality

aN ≤ N ′ ≤ AN
as functions on Rd for some a,A > 0 (depending on the particular N and N ′), and so we immedi-
ately deduce from evaluation on a vector

(ρ1(x1, x
′
1), . . . , ρd(xd, x′d)) ∈ Rd

that
aρN (x, x′) ≤ ρN ′(x, x′) ≤ AρN (x, x′)

for all x, x′ ∈ X. This gives the desired boundedness result. �

A consequence of this theorem is:
Corollary 1.2. With notation as in the theorem, the common topology induced on X by any of the
ρN ’s is the product topology. Moreover, a sequence {ξ1, ξ2, . . . } in X given by

ξm = (ξm,1, . . . , ξm,d)

is convergent with limit
` = (`1, . . . , `d) ∈ X = X1 × · · · ×Xd

if and only if
lim
m→∞

ξm,j → `j

for all 1 ≤ j ≤ d.

Proof. It suffices to pick one N of the type we’re considering and to show for that N that ρN
defines the product topology and induced a theory of convergence for sequences which is exactly
“coordinate-wise convergence”.

We consider N : Rd → R to be the max norm. We claim that for the result metric, which is just
ρmax as at the top of this handout, we have ξm → ` ∈ X relative to ρmax if and only if ξm,j → `j
in Xj relative to ρj for all 1 ≤ j ≤ d. That is, we must show that

ρmax(ξm, `)→ 0

if and only if
ρj(ξm,j , `j)→ 0

for all 1 ≤ j ≤ d (all limits as m→∞). If we have ρmax-convergence, then since

ρj(ξm,j , `j) ≤ ρmax(ξm, `)

for each j (by definition of ρmax), we get ρj(ξm,j , `j) → 0 as m → ∞ (for each j) by a squeezing
argument. Conversely, if for each 1 ≤ j ≤ d we have ρj(ξm,j , `j)→ 0 as m→∞, then for any ε > 0
we have ρj(ξm,j , `j) < ε for m > Mε,j , whence for

m > Mε
def= max

1≤j≤d
Mε,j

we get ρj(ξm,j , `j) < ε for all j and hence

ρmax(ξm, `) < ε

for any m > Mε. This says exactly that ξm → ` in X relative to the metric ρmax.
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We now check that the topology induced by ρmax on X is the product topology. First let
Uj ⊆ Xj be open (and hence ρj-open), and we want to prove that

∏
Uj ⊆ X is ρmax-open. For

u = (u1, . . . , ud) ∈
∏
Uj there exists εj > 0 such that Bεj (uj) ⊆ Uj . Hence, for ε = min εj > 0 we

have that the open ρmax-ball of radius ε centered at u is contained in U ; this establishes that U
is ρmax-open, and so by definition of the product topology we conclude that every open set in X
for the product topology is ρmax-open. Conversely, for a subset W ⊆ X that is ρmax-open we want
to prove that W is open for the product topology. We choose w = (w1, . . . , wd) ∈ W and we see
to find open subsets Wj ⊆ Xj around wj such that

∏
Wj ⊆ W . By definition, for some ε > 0 the

ρmax-ball Bε(w) ⊆ X is contained in W . Let Wj be the ρj-ball Bε(wj) ⊆ Xj that is open in Xj .
By definition of ρmax we have

∏
Wj ⊆ Bε(w), so

∏
Wj ⊆W as desired. �

The metric ρmax is usually called the box metric on X, due to the picture of hypercubes when
we apply this construction for Xj = R for all j (with the usual metric on each factor). Clearly we
have enormous flexibility in the choice of metric to describe the product topology on X, and so it is
important to recognize that the fundamental structure is the product topology and not the specific
metric used to encode it; of course, it is also important to recognize that a finite product of metric
spaces has a product topology that is metrizable via many different choices of metric. Depending
on the particular situation, one of these “product metrics” may be more convenient than others.

2. Universal property of the product topology

Here is a basic lemma concerning product spaces.
Lemma 2.1. Let X1, . . . , Xd be finitely many topological spaces, and let X denote the product
space, equipped with the product topology. The projection maps πj : X → Xj are continuous.

Proof. Fix 1 ≤ j ≤ d and choose an open set V in Xj . We must show that π−1
j (V ) is an open set

in the product space X. By the definition of πj , clearly

π−1
j (V ) = X1 × · · · × V × · · · ×Xd

where V is in the jth slot and for all i 6= j we have the whole space Xi in the ith slot. But this is
a product of opens in each factor space (as Xi is trivially open in Xi for all i 6= j and V is open in
Xj by hypothesis), so by definition of the product topology this is an open set in X. �

We can now give the following fundamental theorem.
Theorem 2.2. Let X1, . . . , Xd, Y be topological spaces, and let f : Y → X = X1 × · · · ×Xd be a
set-theoretic map, described by

f(x) = (f1(x), . . . , fd(x))
for all x ∈ X, with fj = πj ◦ f : Y → Xj the “coordinate maps”. For any point y0 ∈ Y , the map
f : Y → X is continuous at y0 if and only if fj : Y → Xj is continuous at y0 for all 1 ≤ j ≤ d. In
particular, f : Y → X is continuous if and only if fj : Y → Xj is continuous for all 1 ≤ j ≤ d.

Proof. The statement at the end concerning continuity of maps on spaces is immediate from the
pointwise version (if we just vary y0 over all of Y ). Thus, we just have to prove the pointwise
version for a fixed point y0 ∈ Y . Also, when f is continuous at y0 then it is immediate that fj is
continuous at y0 for all j because fj = πj ◦ f with πj the projection

πj : X1 × · · · ×Xd → Xd

which is continuous (by Lemma 2.1). Thus, we just have to show that when fj is continuous at y0

for all j, then f is continuous at y0.
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Let N be a neighborhood of f(y0) = (x1, . . . , xd) ∈ X. We must show that f−1(N) is a neigh-
borhood of y0 to deduce that f is continuous at y0. From the definition of “neighborhood” and the
definition of the product topology, N contains a subset of the form N1 × · · · ×Nd with Nj ⊆ Xj a
neighborhood of xj (the Nj ’s may even be chosen to be open in Xj for every j). Since

f−1(N) ⊇ f−1(N1 × · · · ×Nd) =
d⋂
j=1

f−1
j (Nj)

(since f(x) ∈ N1 × · · · × Nd is equivalent to fj(x) ∈ Nj for all 1 ≤ j ≤ d) and f−1
j (Nj) is

a neighborhood of y0 for every j (since each fj is continuous at y0!), we conclude that f−1(N)
contains a finite intersection of neighborhoods f−1

j (Nj). But a finite intersection of neighborhoods
is again a neighborhood, and a superset of a neighborhood is a neighborhood. Thus, f−1(N) is
a neighborhood of y0, as desired. (The reader is urged to come up with alternative proofs of this
theorem in the case of metrizable Xj ’s and the associated box metric on X by using ε’s and δ’s,
and by using sequences.) �

We conclude with a reformulation of the theorem in terms of what is called a “universal property”.
The crux is the recognition that we should not think of the product X =

∏
Xj as a bare topological

space, but rather as equipped with the continuous maps πj : X → Xj . Here is the interest in this
viewpoint:
Corollary 2.3. The maps πj : X → Xj are continuous, and for any collection of continuous maps
fj : Y → Xj from a topological space Y there exists a unique continuous map f : Y → X such that
fj = πj ◦ f for all j.

Proof. From the description of X and the πj ’s on the set-theoretic level, it is clear that f is uniquely
determined set-theoretically as the map y 7→ (f1(y), . . . , fd(y)), and so the only issue is whether or
not this map f is continuous. Since the fj ’s are continuous, the continuity of f follows from the
preceding theorem. �

Observe that the statement of the corollary does not mention points, nor even the specific nature
of the underlying set of X. We claim that the property of the data (X,πj : X → Xj) as given
in this corollary characterizes it up to unique isomorphism. To make this precise, let us make a
temporary definition:
Definition 2.4. An abstract product of the Xj ’s in the category of topological spaces is the data
consisting of a topological space P equipped with continuous maps pj : P → Xj such that the
following universal mapping property holds: for any topological space Y equipped with continuous
maps fj : Y → Xj , there exists a unique continuous map f : Y → P such that pj ◦ f = fj for all j.

Note that in this definition we do not require that the underlying set of P be
∏
Xj ; as far as

the definition is concerned, P is unknown. By Corollary 2.3, one example of an abstract product
is X =

∏
Xj with its product topology and its evident continuous projections πj : X → Xj .

The remarkable fact is that this is the “only” example up to “unique” isomorphism. That is, if
(P, {pj}) and (P ′, {p′j}) are two abstract products of the Xj ’s then we claim that there exist unique
continuous maps f : P → P ′ and f ′ : P ′ → P satisfying pj = p′j ◦ f for all j and p′j = pj ◦ f ′ for all
j, and that moreover f and f ′ are inverse to each other! Indeed, the existence and uniqueness of
the continuous f satisfying pj = p′j ◦ f for all j follows from the fact that (P ′, {p′j}) is an abstract
product (and P is simply a topological space), and similarly the existence and uniqueness of the
continuous f ′ satisfying p′j = pj ◦ f ′ for all j follows from the fact that (P, {pj}) is an abstract
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product (and P ′ is simply a topological space). Now for the beautiful part: since f ′ ◦ f : P → P
satisfies

pj ◦ (f ′ ◦ f) = (pj ◦ f ′) ◦ f = p′j ◦ f = pj

for all j and clearly pj ◦ idP = pj for all j, by the uniqueness aspect of the property of (P, {pj})
it follows that f ′ ◦ f = idP ! Likewise, with the roles reversed we get f ◦ f ′ = idP ′ since (P ′, {p′j})
have an analogous uniqueness aspect in its nature as an abstract product. This makes precise the
sense in which the entire structure of an abstract product, (P, {pj}) (and not the bare space P ) is
unique up to unique isomorphism within the category of topological spaces.
Remark 2.5. The exact same argument works in the framework of sets, and shows that if one
considers the product set equipped with its projection maps then the resulting structure is unique
up to unique isomorphism in the category of sets (where “isomorphism” means “bijection”). More
remarkably, note that the above “abstract nonsense” argument does not use that there are only
finitely many Xj ’s! Indeed, it proves that for an arbitrary collection of Xj ’s there is (up to unique
isomorphism) at most one abstract product. What the argument does not do is show that the
theory is non-vacuous: it does not construct an abstract product. It is the existence aspect of the
story for which we have to exhibit a specific model, and in the case of infinitely many Xj ’s we have
not done so. You may wish to see if you can make one on your own. (or look in a topology book
to see what to do)

The preceding argument is of a very formal type that will come up again in other contexts
later; whereas the product topology is rather concrete and can be “understood” and thought about
by using its definition, there are other constructions in mathematics (such as tensor products)
which become thoroughly confusing if one tries to think in terms of their explicit constructions.
The viewpoint of characterizing mathematical structures up to unique isomorphism by means of
mapping properties and not explicit definitions and constructions is one of the most important
ideas in 20th century mathematics.

We conclude with an amusing calculation. Since we have shown that up to unique isomorphism
there is only one abstract product of the Xj ’s, and yet we have exhibited an explicit model with
extra features (such as its underlying set being the product set, which is not information that is
part of the definition of an abstract product of topological spaces), it is natural to ask if we can
derive these features of the explicit model from the universal mapping property alone. Indeed we
can show that if an abstract product (P, {pj}) exists, then the underlying set of P must (in a
natural way) be identified with

∏
Xj . To see how this works, we first note that the only way to

get our hands on P is via its universal property, and so we need to encode the underlying set of a
topological space in terms of the data of continuous maps.

Let Z be the one-point topological space with its unique topology. Observe that for any topo-
logical space Y , the “underlying set” |Y | of Y is naturally identified with the set Hom(Z, Y ) of
continuous maps from Z to Y . Aha, so our problem of determining |P | is the same as that of
determining Hom(Z,P ). Here is where the defining property of (P, {pj}) enters: the data of a
continuous map f : Z → P is the same as the data of continuous maps fj : Z → Xj for all j!
Hence, by the nature of products in the category of sets, we have natural set-theoretic bijections

|P | = Hom(Z,P ) =
∏
j

Hom(Z,Xj) =
∏
|Xj |,

showing that indeed the underlying set of P is naturally identified with the product of the underlying
sets of the Xj ’s. We leave it as an exercise to check that this set-theoretic identification is exactly
what is obtained from the unique homeomorphism P '

∏
Xj via the “abstract product” structure

on both sides.


