
Math 396. Bundle pullback and transition matrices

1. Motivation

Let f : X ′ → X be a Cp mapping between Cp premanifolds with corners (X,O) and (X ′,O ′),
0 ≤ p ≤ ∞. Let π : E → X and π′ : E′ → X ′ be Cp vector bundles. Consider a Cp bundle
morphism

E′
T //

π′

��

E

π

��
X ′

f
// X

so for each x′ ∈ X ′ we get R-linear maps T |x′ : E′(x) → E(f(x′)). A basic example is the case
when X, X ′, and f are of class Cp+1 and T = df : TX ′ → TX is the induced total derivative
mapping that is the old tangent map df(x) : Tx′(X ′)→ Tf(x′)(X) on fibers.

For each x′ ∈ X ′ we may use E and f to obtain a vector space E(f(x′)) determined by f and
E, and it is natural to ask if these can be “glued” together to be the fibers of some Cp vector
bundle f∗(E) → X ′ equipped with a bundle morphism f̃ : f∗E → E over f : X ′ → X that is
the identity map (f∗E)(x′) = E(f(x′))→ E(f(x′)) on fibers. (Strictly speaking, the notation f̃ is
abusive since it depends on E and not just f ; hopefully this will not cause confusion.) Such a pair
(f∗E → X ′, f̃) will be called a pullback bundle when it satisfies the universal property that for any
Cp bundle morphism T : E′ → E over f : X ′ → X there is a unique Cp vector bundle morphism
T ′ : E′ → f∗E over X ′ giving a factorization

E′
T ′

//

π′

��

T

((
f∗E

��

f̃

// E

π

��
X ′ X ′

f
// X

so T ′|x′ : E′(x′) → (f∗E)(x′) = E(f(x′)) is exactly the map T |x′ . (The content is that the set-
theoretic mapping T ′ is a Cp mapping.) In other words, the pullback bundle should promote bundle
morphisms T between bundles over different base spaces to bundle morphisms T ′ between bundles
over a common base space.

Note that it does not make sense to go in the reverse direction: if we are given a vector bundle
on X ′ then most points in X are either not hit by any point of X ′ or are hit by more than one
point (or perhaps infinitely many points) of X ′, so there is no reasonable way to use f to associate
vector spaces to points of X by means of a vector bundle on X ′. Our first aim in this handout is to
develop the “pullback” construction, and to give some examples. The second aim of this handout
is to provide a very classical description of Cp vector bundles of constant rank in terms of what
are called “transition matrices”. This is used quite a lot in the more advanced study of vector
bundles, and is conveniefnt for explicitly describing many “linear algebra” bundle constructions via
operations on matrices.

2. Pullback of bundles

Let f : X ′ → X be a Cp mapping between Cp premanifolds with corners, 0 ≤ p ≤ ∞. Let
π : E → X be a Cp vector bundle. We want to construct a Cp vector bundle f∗(π) : f∗E → X ′
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equipped with a Cp vector bundle morphism

f∗E

f∗(π)
��

f̃ // E

π

��
X ′

f
// X

that is universal in the following sense: for any Cp vector bundle π′ : E′ → X ′ and any bundle
morphism T : E′ → E over f : X ′ → X there is a unique way to fill in a commutative diagram

E′
T ′

//

π′

��

T

((
f∗E

f∗(π)
��

f̃

// E

π

��
X ′ X ′

f
// X

with T ′ a Cp bundle morphism over X ′.
We define f∗E to be the disjoint union of sets

f∗E =
∐
x′∈X′

E(f(x′))).

A typical point in f∗E is denoted (x′, v) with v ∈ E(f(x′)). There may be many points x′ ∈ X ′
with the same image x ∈ X, and the associated vector space E(f(x′)) sitting in f∗E is abstractly
“the same” for all such x′ ∈ f−1(x). For this reason, we must keep track of the indexing parameter
x′ ∈ X ′ and not just the “bare” vector space E(f(x′)) when describing operations on points in
f∗E. We define the map f∗(π) : f∗E → X ′ by (x′, v) 7→ x′ ∈ X ′.

We need to topologize f∗E and give it a Cp-structure such that (i) f∗(π) : f∗E → X ′ is a Cp

map, (ii) the linear structure on the fibers (f∗(π))−1(x′) = E(f(x′)) satisfies the local triviality
condition to make f∗E a Cp bundle over X ′, and (iii) the proposed universal property holds. Our
procedure will be very similar to the method used in an earlier handout to define the vector bundle
VM associated to a locally free finite-rank O-module M (by putting a suitable topology and Cp-
structure on the disjoint union

∐
x∈X M (x)). Before we get into the details, we wish to emphasize

that the local picture will be quite simple: if {Ui} is an open covering of X for which there are
Cp bundle isomorphisms E|Ui ' Ui × Rni corresponding to a trivializing frame {s(i)

k } in E(Ui),
then for the opens U ′i = f−1(Ui) that cover X ′ the restriction (f∗E)|U ′i has a Cp trivialization

given by the sections u′i 7→ s
(i)
k (f(u′i)) ∈ E(f(u′i)) = (f∗E)(u′i) to f∗(π) : f∗E → X ′ over U ′i ⊆ X ′.

Roughly speaking, the “only” problem is to cleanly build the right bundle f∗E over X ′ giving
rise to such local trivializations on fibers over f−1(Ui)’s. This construction problem can be solved
in several ways (all of which give answers that are uniquely isomorphic in accordance with the
universal property), and in what follows we have chosen the construction that seems most elegant
(in terms of minimizing non-canonical choices and the intervention of matrices) in view of our
present knowledge.

To define the topology on f∗E we will use the method of gluing topologies. Consider pairs
(φ,U) where U ⊆ X is a non-empty open set and φ : E|U ' U × Rn is a Cp isomorphism of
bundles. (Of course, n may depend on U .) For the open set U ′ = f−1(U) in X ′ we get a bijection
φ′ : (f∗(π))−1(U ′) ' U ′×Rn over U ′ by using the linear isomorphism (f∗(π))−1(u′) = (f∗E)(u′) =
E(f(u′)) ' Rn defined by φ|f(u′) over each u′ ∈ U ′. We wish to use φ′ to transfer the topology
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of the product U ′ ×Rn to a topology on (f∗(π))−1(U ′), and to glue these topologies to topologize
f∗E. Note that as we vary (φ,U) the opens U do cover X and hence the open preimages U ′ do
cover X ′.

To glue, as usual we have to verify two properties: for any (φ1, U1) and (φ2, U2) such that U1∩U2

is non-empty, we must prove (i) the overlap (f∗(π))−1(U ′1)∩ (f∗(π))−1(U ′2) = (f∗(π))−1(U ′1∩U ′2) is
open in each of (f∗(π))−1(U ′1) and (f∗(π))−1(U ′2), and (ii) this overlap inherits the same subspace
topology from both. (Note that if U1 ∩U2 is empty then so is its preimage U ′1 ∩U ′2 under f .) Since
U1 meets U2, the constant ranks for E on U1 and U2 are equal, say n. The open subset property
(i) just says that φ′i carries the overlap to an open subset of U ′i × Rn, and indeed it carries the
overlap to the subset (U ′1∩U ′2)×Rn in U ′i ×Rn that is obviously open. The agreement of subspace
topologies in (ii) is equivalent to the assertion that the transition mapping

φ′2 ◦ (φ′1)−1 : (U ′1 ∩ U ′2)×Rn → (U ′1 ∩ U ′2)×Rn

is a homeomorphism. Explicitly, the map is given by (u′, v) 7→ (u′, (φ2 ◦ φ−1
1 )|f(u′)(v)) where

φ2 ◦ φ−1
1 : (U1 ∩ U2)×Rn ' E|U1∩U2 ' (U1 ∩ U2)×Rn

is the transition isomorphism over U1 ∩U2 for E. For u ∈ U this latter map is given on u-fibers by
a matrix L(u) ∈ GLn(R) such that L : U → GLn(R) is a Cp mapping (this encodes that φ2 ◦ φ−1

1
is a Cp mapping). Thus,

(1) φ′2 ◦ (φ′1)−1 : (u′, v) 7→ (u′, ((L ◦ f)(u′))(v)).

Since L is a continuous mapping and f is continuous, so is L◦f . Thus, the formula for evaluation of
a matrix on a vector implies (via (1)) that the self-map φ′2 ◦(φ′1)−1 of (U ′1∩U ′2)×Rn has continuous
component functions and so is continuous; of course, the same argument applies to the inverse map
(swap the roles of (φ1, U1) and (φ2, U2)), so we get the homeomorphism result.

We have put a topology on f∗E such that for each local trivialization φ : E|U ' U × Rn as
above, with n the constant rank for E over U , the subset (f∗(π))−1(U ′) ⊆ f∗E is open and the
bijection φ′ : (f∗(π))−1(U ′)→ U ′ ×Rn over U ′ induced by the linear fibral isomorphism

(f∗E)(u′) = E(f(u′))
φ|f(u′)→ Rn

for all u′ ∈ U ′ is a homeomorphism. It follows that the projection f∗(π) : f∗E → X ′ is continuous
since for each of the (U, φ)’s the part of f∗E over the open U ′ ⊆ X ′ is homeomorphic to U ′ ×Rn

(via φ′) in a manner that carries the restriction of f∗(π) over to the continuous standard projection
U ′×Rn → U ′. Thus, we have given f∗E a structure of topological vector bundle over X ′ because the
φ′’s are homeomorphisms that are linear on fibers (i.e., they provide local topological trivializations).

Note that when U1 ∩ U2 is non-empty (so the constant ranks for E on U1 and U2 are equal, say
n), the transition isomorphism φ′2 ◦ (φ′1)−1 is Cp (since by (1) it is given in terms of the composite
L ◦ f : U ′1∩U ′2 → GLn(R), with f : U ′ → U a Cp map and the matrix-valued function L describing
the transition mapping φ2◦φ−1

1 also Cp on U1∩U2). Hence, the hypotheses for gluing Cp-structures
(as in Lemma 1.2 in the handout on the equivalence between bundles and O-modules) are satisfied
for the topological space f∗E with its open cover by the (f∗(π))−1(U ′)’s and the homeomorphisms
given by the φ′’s. We thereby get a unique Cp structure on f∗E with respect to which the maps
φ′ : (f∗E)|U ′ → U ′ × RnU are Cp isomorphisms for each Cp trivialization φ : E|U ' U × RnU .
It follows (by working over the opens U ′ in X ′) that f∗(π) : f∗E → X ′ is a Cp mapping and the
linear structures on the fibers (f∗E)(x′) make the φ′’s be Cp trivializations that ensure f∗E is a
Cp vector bundle over X ′. This completes the construction of the Cp vector bundle structure on
f∗(π) : f∗(E)→ X ′.
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Remark 2.1. By construction, if U ⊆ X is any open subset (not necessarily with E|U trivial) and
U ′ ⊆ f−1(U) is any open subset (not necessarily all of f−1(U)), we have (f∗E)|U ′ = f∗U ′,U (E|U )
with fU ′,U : U ′ → U the Cp restriction of f . In this sense, the formation of f∗E is local on X and
X ′.
Lemma 2.2. The set-theoretic mapping f̃ : f∗E → E over f : X ′ → X given on fibers by the
linear identity map (f∗E)(x′) = E(f(x′))→ E(f(x′)) is a Cp mapping.

Proof. This problem is local over X and over X ′, so by Remark 2.1 we may assume that E is trivial.
Let φ : E ' X ×Rn be a choice of trivialization. By the construction of the Cp-structure on f∗E,
the bijection φ′ : f∗E → X ′ ×Rn given on fibers over x′ ∈ X ′ by

(f∗E)(x′) = E(f(x′))
φ|f(x′)
' Rn

is a Cp trivialization over X ′. Calculating on fibers shows that the Cp composite

f∗E ' X ′ ×Rn f×1→ X ×Rn ' E

over f : X ′ → X is exactly the map f̃ , so indeed f̃ is Cp. �

Example 2.3. Before we verify that the pair (f∗E → X, f̃) satisfies the desired universal mapping
property, we give two trivial examples. If E → X is a Cp vector bundle and x ∈ X is a point, for
the inclusion mapping i : {x} → X the pullback i∗E is the vector bundle over the 1-point space
{x} given by the vector space E(x), with ĩ : i∗E → E the inclusion onto the fiber at x. If U ⊆ X
is an open subset and i : U → X is the inclusion map, then the vector bundle i∗E → U is the
restriction E|U → U (and ĩ : i∗E → E is the inclusion onto E|U ).

To give interesting examples with minimal mess, we verify the universal mapping property:
Theorem 2.4. Let f : X ′ → X be a Cp mapping. Let E → X be a Cp vector bundle, and let
E′ → X ′ be a Cp vector bundle. If T : E′ → E is a Cp bundle morphism over f : X ′ → X then
there is a unique Cp bundle morphism T ′ : E′ → f∗E over X ′ such that f̃ ◦ T ′ = T .

Set-theoretically, since f̃ on x′-fibers induces the identity map on E(f(x′)) there is only one
possibility for the fibral map T ′ : E′(x′)→ (f∗E)(x′) = E(f(x′)), namely T |x′ . Hence, the content
of the theorem is that this T ′ is a Cp mapping.

Proof. The Cp problem is local on X ′, so by Remark 2.1 we may work locally on X ′ and X. Hence,
the problem is reduced to the case when E and E′ are trivial. Choose trivializations φ : E ' X×Rn

and φ′ : E′ ' X ′×Rn′ over X and X ′ respectively. As we saw in the proof of Lemma 2.2, we get a Cp

trivialization f∗(φ) : f∗(E) ' X ′×Rn over X ′ that is the map φ|f(x′) : (f∗E)(x′) = E(f(x′)) ' Rn

on x′-fibers for each x′ ∈ X ′.
The Cp composite mapping

X ′ ×Rn′ φ
′−1

' E′
T→ E

φ
' X ×Rn

is given by (x′, v′) 7→ (f(x′), (T (x′))(v′)) for a linear map T (x′) : Rn′ → Rn, say given by a matrix
(aij(x′)). The Cp property of this mapping is exactly the property that the matrix-valued mapping

[T ] : X ′ → Matn×n′(R)

given by x′ 7→ (aij(x′)) is Cp (i.e., the matrix-entries aij : X ′ → R are Cp functions). Indeed,
sufficiency follows from the Cp property of f and the formula for evaluating a matrix on a vector
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in Euclidean space, and necessity follows from chasing (x′, e′j) for standard basis vectors e′j ∈ Rn′ .
Define the Cp mapping T ′ : E′ → f∗E to be the composite

E′
φ′

' X ′ ×Rn′ → X ′ ×Rn f∗(φ)−1

' f∗E

with middle map given by (x′, v′) 7→ (x′, (aij(x′))(v′)). This is a Cp map (over X ′) because each
aij : X ′ → R is Cp, and on fibers it gives the map E′(x′) → (f∗E)(x′) = E(f(x′)) that is exactly
T |x′ . Hence, we have built the desired Cp mapping. �

An important feature of bundle pullback is that it is well-behaved with respect to bundle mor-
phisms over the initial base space X:
Corollary 2.5. Let f : X ′ → X be a Cp mapping and let T : E1 → E2 be a Cp bundle morphism
over X. There is a unique map f∗(T ) : f∗(E1)→ f∗(E2) between Cp bundles over X ′ such that on
fibers over each x′ ∈ X it is the R-linear map

(f∗(E1))(x′) = E1(f(x′))
T |f(x′)→ E2(f(x′)) = (f∗(E2))(x′).

(In particular, if E2 = E1 and T is the identity then f∗(T ) is the identity.) The formation of f∗(T )
behaves well with respect to composition of Cp bundle morphisms in the sense that if T̃ : E2 → E3

is another Cp bundle map, then f∗(T̃ ◦ T ) = f∗(T̃ ) ◦ f∗(T ) as maps from f∗(E1) to f∗(E3) over
X ′.

Proof. The uniqueness of f∗(T ) is clear on the set-theoretic level, and calculating on fibers also
verifies the compatibility with composition in T . The only real problem is to prove that the map
f∗(T ) defined set-theoretically to be T |f(x′) on x′-fibers is in fact a mapping of Cp bundles over X ′.
But it is easy to directly construct f∗(T ) as a Cp bundle mapping by using the universal property
of pullback bundles: consider the composite diagram of Cp bundle maps

f∗E1
f̃ //

��

E1
T //

��

E2

��
X ′

f
// X X

By the universal property of the pullback bundle f∗E2, this composite map uniquely factors through
a Cp vector bundle morphism f∗E1 → f∗E2 over X ′, and checking on fibers shows that this
morphism is f∗(T ). �

3. Examples

Let f : X ′ → X be a Cp mapping between Cp premanifolds with corners, 0 ≤ p ≤ ∞, and let
π : E → X be a Cp vector bundle.
Example 3.1. We identify Cp-sections s ∈ E(X) with Cp vector bundle morphisms [s] : X×R→ E
over X (given by 1 7→ s(x) on x-fibers). By the universal property, the composite bundle morphism

X ′ ×R
f×1→ X ×R

[s]→ E

over f uniquely factors through a bundle morphism X ′ × R → f∗E over X ′. This latter map
corresponds to a Cp-section in (f∗E)(X ′) that we denote f∗(s) and call the pullback section.

Concretely, on fibers we have (f∗(s))(x′) ∈ (f∗E)(x′) = E(f(x′)) is s(f(x′)). This fibral cal-
culation shows that the resulting map f∗ : E(X) → (f∗E)(X ′) is R-linear, and even linear over
the R-algebra map O(X) → O ′(X ′) given by composition with f . (That is, for h ∈ O(X),
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f∗(h · s) = (h ◦ f) · f∗(s).) In the special case E = X × R we have f∗E = X ′ × R and via the
equalities E = O and f∗E = O ′ the map f∗ : O(X) = E(X)→ (f∗E)(X ′) = O ′(X ′) is h 7→ h ◦ f .
In general, f∗ : E(X) → (f∗E)(X ′) is neither injective nor surjective (even for E = X × R, let
alone for more interesting examples such as E = TX).

For any open U ⊆ X we have (f∗E)|f−1U = f∗U (E|U ) with fU : f−1(U) → U the Cp restriction
of f (Remark 2.1), so we may apply the same construction to fU instead of f to define f∗(s) ∈
(f∗E)(f−1U) for any s ∈ E(U). Calculating on fibers shows that the formation of f∗(s) is local:
for open U0 ⊆ U and s ∈ E(U), (f∗s)|f−1(U0) = f∗(s|U0) in (f∗E)(f−1(U0)).

Example 3.2. Fiber calculations show that in the setup of Example 3.1, if {sj} is a trivializing frame
for E|U then {f∗(sj)} is a trivializing frame for (f∗E)(f−1(U)). That is, the vectors (f∗(sj))(x′) =
sj(f(x′)) ∈ (f∗E)(x′) = E(f(x′)) give a basis for each x′ ∈ f−1(U) when the vectors sj(x) ∈ E(x)
give a basis for each x ∈ U .

The next two (rather lengthy) examples rest on the theory of the tangent bundle, to be developed
in a few lectures. Postpone reading these examples until that time; skip ahead to Example 3.5.
Example 3.3. Assume 1 ≤ p ≤ ∞, and consider the total derivative mapping df : TX ′ → TX of
Cp−1 bundles (over f : X ′ → X). By the universal property of pullback, we arrive at a unique
Cp−1 bundle morphism TX ′ → f∗(TX) over X ′ whose restriction to fibers over x′ ∈ X ′ is the old
tangent map

df(x′) : Tx′(X ′) ' (TX ′)(x′)→ (f∗(TX))(x′) = (TX)(f(x′)) ' Tf(x′)(X).

Hence, we may consider the Cp−1 bundle morphism TX ′ → f∗(TX) over X ′ as merely another
global repackaging of the collection of tangent mappings arising from f : X ′ → X. In certain
settings (but not all!) it is more convenient to work with this map instead of the Cp−1 bundle
morphism df : TX ′ → TX over f : X ′ → X. As an important example, when f is an immersion
then the mapping TX ′ → f∗(TX) of bundles over X ′ has fiber map Tx′(X ′) ↪→ Tf(x′)(X) over
x′ ∈ X ′, so this bundle map over X ′ encodes how the tangent spaces to X ′ “move” inside of the
tangent spaces of X. This example will be a partial motivation for the notion of subbundle that we
shall find to be very useful later on.

We must warn the reader of a common source of confusion. Passing to X ′-sections, df gives
a mapping (TX ′)(X ′) → (f∗(TX))(X ′) that associates to any Cp−1 vector field ~v′ on X ′ the
X ′-section f∗(~v′) of f∗(TX) whose value in each fiber (f∗(TX))(x′) = TX(f(x′)) = Tf(x′)(X) is
df(x′)(~v′(x′)). This pullback section f∗(~v′) is just a repackaging of the data of the df(x′)(~v′(x′))’s
in the tangent spaces Tf(x′)(X) for varying x′ ∈ X ′ and it has nothing to do with any global vector
field on X. More specifically, although we have two maps

(TX ′)(X ′)→ (f∗(TX))(X ′), (TX)(X)→ (f∗(TX))(X ′)

to the same target, these have nothing to do with each other: the first encodes the tangent mapping
arising from f (and so it is a special construction adapted to the fact that our vector bundles are
tangent bundles) whereas the second is a “general nonsense” mapping that makes sense with TX
replaced by any Cp−1 vector bundle on X (it does not encode any information related to tangent
maps, for example). We remind the reader again that Cp−1 vector fields on X (resp. X ′) do not
“give rise” to Cp−1 vector fields on X ′ (resp. X); the pullback bundle f∗(TX) on X ′ is an abstract
thing whose general X ′-sections have no interpretation via vector fields on either X or X ′ (cf. the
comments on f∗ generally being neither injective nor surjective in Example 3.1).
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Example 3.4. Just as the tangent bundle globalizes pointwise tangent spaces, we can use the concept
of pullback to globalize the pointwise linear isomorphism

(2) T(x1,x2)(X1 ×X2) ' Tx1(X1)⊕ Tx2(X2)

for tangent spaces on products of Cp premanifolds with corners X1 and X2 (1 ≤ p ≤ ∞). Let
πj : X1 ×X2 → Xj be the standard Cp projection map. We have Cp−1 bundle diagrams

T (X1 ×X2)
dπj //

��

T (Xj)

��
X1 ×X2 πj

// Xj

and so by the universal property of pullback we get Cp−1 bundle morphisms T (πj) : T (X1×X2)→
π∗j (T (Xj)) over X1 × X2. As is worked out in the handout on direct sums for vector bundles,
these behave with respect to bundle morphisms exactly as direct sums of vector spaces behave with
respect to linear maps. Thus, we get a Cp−1 bundle morphism

T (π1)⊕ T (π2) : T (X1 ×X2)→ π∗1(T (X1))⊕ π∗2(T (X2))

over X1 ×X2. On fibers over (x1, x2) ∈ X1 ×X2 this recovers the pointwise map

dπ1(x1, x2)⊕ dπ2(x1, x2) : T(x1,x2)(X1 ×X2)→ Tx1(X1)⊕ Tx2(X2)

that is exactly the standard isomorphism (2). Hence, T (π1) ⊕ T (π2) is a Cp−1 bundle morphism
that is an isomorphism on fibers, and so it is a Cp−1 bundle isomorphism.

Concretely, if Uj ⊆ Xj is an open set over which we have Cp coordinates {x(j)
1 , . . . , x

(j)
nj }, then

T (Xj)|Uj has the trivializing frame {∂
x

(j)
i

}1≤i≤nj , and so its pullback π∗j (T (Xj))|U1×U2 has the

trivializing frame given by the sections π∗j (∂x(j)
i

)’s for 1 ≤ i ≤ nj (Example 3.2). By looking in

fibers over U1×U2 and using Example 3.3 for πj , the inverse of the isomorphism T (π1)⊕T (π2) on
U1 × U2-sections carries (π∗j (∂x(j)

i

), 0) to ∂
x

(j)
i ◦πj

, where the n1 + n2 functions

(3) x
(1)
1 ◦ π1, . . . , x

(1)
n1
◦ π1, x

(2)
1 ◦ π2, . . . , x

(2)
n2
◦ π2 : U1 × U2 → R

are the induced Cp coordinates on U1 × U2. These n1 + n2 pullback sections give a trivializing
frame for π∗1(T (X1)) ⊕ π∗2(T (X2)), and so via (2) we thereby recover the trivializing frame for
T (X1 ×X2)|U1×U2 given by the partials with respect to the Cp coordinate system (3) on U1 × U2.
Example 3.5. Suppose that Γ is a group equipped with right Cp-actions on X and on E that are free
and properly discontinuous, and assume that π is Γ-equivariant in the sense that π(v.γ) = π(v).γ
for all v ∈ E and γ ∈ Γ. Assume also that the action of γ ∈ Γ induces the fibral bijection
E(x) → E(x.γ) that is a linear isomorphism for all x ∈ X. By the homework we know that
the map of Cp quotients π : E = E/Γ → X/Γ = X is a Cp vector bundle. There is a natural
commutative diagram

E
ηE //

π

��

E

π
��

X ηX
// X

where the horizontal maps are the natural local Cp isomorphisms onto the Γ-quotients. On fibers
over x ∈ X and its image x = ηX(x) the induced map E(x)→ E(x) is clearly linear, and even an
isomorphism. In particular, by the universal property of pullback bundles we see that ηE uniquely
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factors through a bundle morphism E → η∗X(E) over X, and this latter morphism must be an
isomorphism since it is an isomorphism on fibers over X (due to the fibral isomorphism property
for ηE). To summarize: the pullback of E/Γ → X/Γ by the quotient map X → X/Γ recovers the
original bundle E → X.

An especially interesting case is that of the Möbius strip with infinite height. Let f : S1 → C be
the quotient by the antipodal map and let M∞ → C be the Möbius strip with infinite height, so
M∞ is the quotient of the trivial bundle R× S1 → S1 via the involution (t, θ) 7→ (−t, θ + π) that
lies over the antipodal map θ 7→ θ + π on S1. We have seen that M∞ is a C∞ line bundle over
C that is not topologically trivial. However, its pullback f∗(M∞) → S1 is the trivial line bundle
R×S1 → S1. Thus, a C∞ bundle with positive rank and no non-vanishing continuous sections may
become a trivial C∞ bundle after a very mild pullback (such as the “double covering” S1 → C).

Another property of bundle pullback that is very useful in practice is that it is well-behaved with
respect to composition in the map along which we are forming the pullback:
Corollary 3.6. Let g : X ′′ → X ′ and f : X ′ → X be Cp mappings between Cp premanifolds with
corners, 0 ≤ p ≤ ∞, and let E be a Cp vector bundle on X. There is a unique isomorphism of Cp

vector bundles cg,f,E : (f ◦ g)∗(E) ' g∗(f∗(E)) over X ′′ given on fibers over each x′′ ∈ X ′′ by the
composite linear isomorphism

(4) ((f ◦ g)∗(E))(x′′) ' E((f ◦ g)(x′′)) = E(f(g(x′′))) ' (f∗(E))(g(x′′)) ' (g∗(f∗E))(x′′).

(As an example, for opens U ⊆ X and s ∈ E(U) this carries (f ◦ g)∗(s) to g∗(f∗(s)) on the level of
sections over (f ◦ g)−1(U) = g−1(f−1(U)).)

Moreover, these isomorphisms are transitive in the sense that if h : X ′′′ → X ′′ is a third Cp

mapping then the two composite isomorphisms

(f ◦ g ◦ h)∗E ' h∗((f ◦ g)∗E) ' h∗g∗f∗E, (f ◦ g ◦ h)∗E ' (g ◦ h)∗f∗E ' h∗g∗f∗E
coincide. That is, h∗(cg,f,E) ◦ ch,f◦g,E = ch,g,f∗(E) ◦ cg◦h,f,E as isomorphisms from (f ◦ g ◦h)∗(E) to
h∗(g∗(f∗(E))).

Proof. The transitivity condition may be checked on fibers, where it is just the associativity of
composition for maps of sets. Also, the uniqueness of cg,f,E is immediate because its effect on fibers
is specified. The problem is therefore to prove that the set-theoretic map cg,f,E that is linear on
fibers over X ′′ is a Cp mapping. Once again, we use the universal property of bundle pullback
to recreate cg,f,E as a Cp mapping: the composite bundle morphism g∗(f∗E) → f∗E → E over
f ◦ g : X ′′ → X uniquely factors through a bundle morphism g∗(f∗E) → (f ◦ g)∗(E) over X ′′.
Checking on x′′-fibers gives the linear isomorphism inverse to (4), so we have built a Cp vector
bundle isomorphism whose Cp inverse is cg,f,E . �

4. Transition matrices

Fix a positive integer n. Perhaps the most concrete (and classical) way to describe a rank-n Cp

vector bundle on X is through what are called transition matrices. This is a vector-bundle analogue
of local Cp charts on Cp premanifolds with corners; the purpose of the intervention of matrices is
to encode the linear structure on the fibers of vector bundles over the base space X.

Let π : E → X be a rank-n vector bundle of class Cp, 0 ≤ p ≤ ∞, and let {Ui} be a trivializing
cover for E. Pick Cp isomorphisms of Cp vector bundles φi : E|Ui ' Ui × Rn over Ui. Over
Uij = Ui ∩ Uj we have two trivializing isomorphisms via the restrictions of φi and φj . That is, we
have two Cp bundle isomorphisms

φi : E|Uij ' Uij ×Rn, φj : E|Uij ' Uij ×Rn.
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We thereby get a “transition isomorphism” of Cp bundles

φji = φj ◦ φ−1
i : Uij ×Rn ' E|Uij ' Uij ×Rn.

This induces linear fibral isomorphisms Tji(x) : Rn ' Rn over each x ∈ Uij , so we have

φj ◦ φ−1
i : (x, v) 7→ (x, Tji(x)(v))

with Tji(x) ∈ GLn(R).
Lemma 4.1. Fix i and j. The map of sets Tji : Uij → GLn(R) given by x 7→ Tji(x) is a Cp

mapping.

Proof. Writing Tji(x) = (ars(x))1≤r,s≤n for functions ars : Uij → R, we have to prove that these
functions are Cp on Uij . Consider the inclusion ιs : R→ Rn onto the sth coordinate axis and the
standard projection πr : Rn → R onto the rth coordinate axis. The composite Cp mapping

Uij ×R 1×ιs→ Uij ×Rn
φji' Uij ×Rn 1×πr→ Uij ×R

is exactly (x, c) 7→ (x, ars(x)c), so using the Cp mapping x 7→ (x, 1) from Uij to Uij×R we get that
the map x 7→ (x, ars(x)) from Uij to Uij ×R is a Cp mapping. Composing with the Cp projection
Uij ×R→ R gives that the function ars : Uij → R is Cp. �

To summarize, using the trivializing open cover {Ui} and the choices of Cp isomorphisms of
bundles φi : E|Ui ' Ui ×Rn we have built a collection of Cp mappings

Tji : Ui ∩ Uj → GLn(R)

that we call the “transition matrices” for the trivialization of the E|Ui ’s via the φi’s. Note that this
has nothing to do with local Cp-charts on the base space X. These collections of matrix-valued Cp

mappings Tji are not unrelated to each other: they satisfy the triple overlap condition

Tij · Tjk = Tik

as matrix-valued mappings Ui ∩ Uj ∩ Uk → GLn(R). Indeed, this comes down to the elementary
associativity calculation

(φi ◦ φ−1
j ) ◦ (φj ◦ φ−1

k ) = φi ◦ φ−1
k

on (Ui∩Uj ∩Uk)×Rn and the fact that matrix multiplication encodes composition of linear maps.
The next result shows that this procedure can be reversed:

Theorem 4.2. Let {Ui} be an open covering of X, and let Tji : Ui∩Uj → GLn(R) be Cp mappings
that satisfy the triple overlap condition Tij(x) ·Tjk(x) = Tik(x) for all x ∈ Ui∩Uj ∩Uk for all i, j, k.

There exists a rank-n Cp vector bundle π : E → X with trivializations φi : E|Ui ' Ui × Rn

satisfying φj ◦ φ−1
i = Tji on (Ui ∩Uj)×Rn for all i and j. Moreover, the data consisting of E and

the φi’s is unique in the following sense: if π′ : E′ → X with trivializations φ′i : E′|Ui ' Ui ×Rn is
another such structure likewise giving rise to the Tji’s, then there is a unique Cp bundle isomorphism
f : E′ ' E over X such that φi ◦ f |Ui = φ′i as Cp bundle isomorphisms from E′|Ui to Ui ×Rn for
all i.

Before we prove the theorem, we make some remarks. A real nuisance in this theorem is that the
trivializing covering {Ui} and the specific trivializing isomorphisms φi play such a prominent role
even though it is the vector bundle that is the primary focus of interest. A full treatment of the
approach to vector bundles through the language of transition matrices requires the characterization
of exactly which changes in the Ui’s and the φi’s do not “change” (at least up to isomorphism) the
bundle we construct from the data of the transition matrices. Moreover, to actually work with this
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viewpoint one has to certainly do more, such as express the notion of bundle morphism (and many
operations with vector bundles) in terms of transition matrices.

This is a long story, and so we will not delve into it any further here. Our point here is to simply
record that the viewpoint of transition matrices satisfying a triple overlap condition is adequate
to construct all vector bundles with constant rank and it is very widely used in practice and in
important computations with vector bundles.

Proof. Let us first prove uniqueness. Suppose that π : E → X and π′ : E′ → X with respective
Cp trivializations φi : E|Ui ' Ui ×Rni and φ′i : E′|Ui ' Ui ' Rni over each Ui are both solutions
to our existence problem. We want to find the asserted unique Cp bundle isomorphism f : E′ ' E
over X satsifying φi ◦ f |Ui = φ′i over Ui for each i. The restriction fi : E′|Ui ' E|Ui of f over Ui has
no choice but to be φ−1

i ◦φ′i, so each fi is uniquely determined and hence f is uniquely determined.
To actually build f , we define the bundle isomorphism fi : E′|Ui ' E|Ui over Ui to be φ−1

i ◦ φ′i and
we seek to glue the fi’s over X. Over Ui ∩ Uj , we claim that the restrictions of fi and fj to Cp

maps
E′|Ui∩Uj → E|Ui∩Uj ⊆ E

do coincide. This says that φ−1
i ◦ φ′i = φ−1

j ◦ φ′j as maps from E′|Ui∩Uj to E|Ui∩Uj , or equivalently
that φ′i ◦ (φ′j)

−1 = φi ◦φ−1
j as self-maps of (Ui ∩Uj)×Rn. By hypothesis on the data (E, {φi}) and

(E′, {φ′i}), both of these latter two self-maps are equal to (x, v) 7→ (x, (Tji(x))(v)). Hence, we can
indeed (uniquely) glue the Cp bundle maps fi over Ui to a Cp mapping f : E′ → E over X that is
a bundle morphism (linearity may be checked on fibers over each x ∈ X, since each x lies in some
Ui). The same procedure applies to the inverses f−1

i and so gives a bundle map f ′ : E → E′ of
class Cp that is an inverse to f (as may be checked on fibers over X).

Having settled the uniqueness aspect of the problem, we now turn to existence. There is a general
procedure called “gluing of topological spaces” that we have to use. In essence, what we want to
do is to glue Ui ×Rn to Uj ×Rn by pasting the open set (Ui ∩Uj)×Rn ⊆ Ui ∩Rn onto the open
set (Ui ∩ Uj)×Rn ⊆ Uj ×Rn via the fibrally linear homeomorphism (x, v) 7→ (x, (Tji(x))(v)) over
Ui ∩ Uj for all i and j. To make this precise, we need to introduce a big topological space with an
equivalence relation.

Let S =
∐
i(Ui × Rn) be the disjoint union of the topological spaces Ui × Rn. We declare a

subset of S to be open when it meets each Ui ×Rn in an open set. This is obviously a topology
on S. We define an equivalence relation on S as follows: for two points s = (ui, vi) ∈ Ui × Rn

and s′ = (uj , vj) ∈ Uj ×Rn in S, we say s ∼ s′ if and only if ui and uj are equal to a common
point x ∈ Ui ∩ Uj and vj = (Tji(x))(vi) in Rn. Let us check that this is an equivalence relation on
S. Certainly s ∼ s since Tii(x) is the identity matrix for all x ∈ Ui (this follows from the triple
overlap condition Tii(x) · Tii(x) = Tii(x) and the invertibility of Tii(x)), and likewise if s ∼ s′ then
s′ ∼ s because for all x ∈ Ui ∩ Uj we have that Tji(x) and Tij(x) are inverse to each other (their
product is Tii(x), the identity matrix). Finally, suppose s = (ui, vi), s′ = (uj , vj), and s′′ = (uk, vk)
satisfy s ∼ s′ and s′ ∼ s′′. The points ui and uj coincide in Ui ∩ Uj and the points uj and uk
coincide in Uj ∩Uk, so all three points are equal to a common point x ∈ Ui∩Uj ∩Uk. By hypothesis
vj = (Tji(x))(vi) and vk = (Tkj(x))(vj) in Rn, so the triple overlap condition gives

vk = (Tkj(x) · Tji(x))(vi) = (Tki(x))(vi)

in Rn. This gives s ∼ s′′ as desired. We therefore have an equivalence relation on S.
Let E denote the set of ∼-equivalence classes in S. The projections πi : Ui×Rn → Ui ⊆ X have

the property that if s = (ui, vi) and s′ = (uj , vj) are points in S with s ∼ s′ then πi(s) = πj(s′) in
X. Hence, we get a well-defined map of sets π : E → X that sends a ∼-equivalence class to the
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common point πi(s) ∈ X for any representative point s ∈ Ui × Rn ⊆ S in the equivalence class
for any i. For x ∈ X, consider the fiber π−1(x) in E. We claim that this has a natural structure
of R-vector space. The representatives for the equivalence classes in π−1(x) ⊆ E are points of
the form (x, v) ∈ Ui × Rn with Ui containing x. Since two points (x, v), (x, v′) ∈ Ui × Rn are
∼-equivalent if and only if v = v′ in Rn (as Tii(x) is the identity matrix), we conclude that for each
Ui containing x, every point e ∈ π−1(x) has a unique representative of the form (x, vi(e)) ∈ Ui×Rn

with vi(e) ∈ Rn.
For any two points e, e′ ∈ π−1(x) and c, c′ ∈ R, we wish to define ce + c′e′ ∈ π−1(x) to be the

∼-equivalence in E class represented by (x, cvi(e) + c′vi(e′)) ∈ Ui ×Rn ⊆ S for any Ui containing
x. The crucial issue is to show that this definition does not depend on the choice of such Ui. If Uj
also contains x then we have the relations vj(e) = (Tji(x))(vi(e)) and vj(e′) = (Tji(x))(vi(e′)) by
the definition of the equivalence relation ∼, so by R-linearity of Tji(x) : Rn ' Rn we get

(Tji(x))(cvi(e) + c′vi(e′)) = c · (Tji(x))(vi(e)) + c′ · (Tji(x))(vi(e′)) = cvj(e) + c′vj(e′),

whence
(x, cvi(e) + c′vi(e′)) ∼ (x, cvj(e) + c′vj(e′))

in S. This confirms that our proposed definition of ce + c′e′ ∈ π−1(x) ⊆ E is well-posed, and
calculation with representatives (say using a fixed Ui containing x) shows that it defines a structure
of n-dimensional R-vector space on π−1(x).

So far we have constructed a map of sets π : E → X and we have put a structure of n-dimensional
R-vector space on the fibers of π. Consider the composite mapping of sets

Ui ×Rn ↪→ S � E.

By the definition of π (and of the equivalence relation ∼), this composite map is a bijection from
Ui ×Rn onto π−1(Ui). Moreover, the resulting bijection

ψi : Ui ×Rn ' π−1(Ui)

carries the standard projection Ui×Rn → Ui over to the restriction πi : π−1(Ui)→ Ui of π : E → X,
and the induced bijection Rn ' π−1(x) of fibers over any x ∈ Ui is an R-linear isomorphism. This
linearity is due to how the R-vector space structure on π−1(x) was defined.

We topologize E as follows: a subset Σ ⊆ E is open if and only if its preimage in S =
∐
i(Ui×Rn)

is open. This is clearly a topology on E.

Lemma 4.3. The subsets π−1(Ui) ⊆ E are open and the maps ψi are homemorphisms.

Proof. The preimage of π−1(Ui) in S meets each Uj × Rn in the subset (Ui ∩ Uj) × Rn that is
certainly open. Hence, all π−1(Ui)’s are open in E. To prove that ψi is a homemorphism, we have
to prove that a subset Σ ⊆ Ui ×Rn is open if and only if ψi(Σ) ⊆ π−1(Ui) is open, which is to say
that ψi(Σ) ⊆ E has preimage in S that meets each Uj ×Rn in an open subset. In view of how ∼
and ψi are defined, the preimage of ψi(Σ) in Uj ∩Rn is the image of Σ ∩ ((Ui ∩ Uj) ×Rn) under
the mapping

(Ui ∩ Uj)×Rn ' (Ui ∩ Uj)×Rn

defined by (x, v) 7→ (x, (Tji(x))(v)). This mapping is a homeomorphism, and even a Cp isomor-
phism, because it is obviously Cp and using Tij(x) instead of Tji(x) gives a Cp inverse. Hence,
since a subset of (Ui ∩ Uj) ×Rn is open in this product if and only if it is open in Uj ∩Rn, our
problem is equivalent to the obvious assertion that a subset Σ ⊆ Ui ×Rn is open if and only if Σ
meets (Ui ∩ Uj)×Rn ⊆ Ui ∩Rn in an open subset for every j (including j = i!). �
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We have given E a topology such that the bijections ψi : Ui × Rn → π−1(Ui) over Ui are
homeomorphisms that are R-linear isomorphisms on fibers over all points in Ui for all i. In fact, E
also has a structure of topological vector bundle (with π as its structure map to the base X). To
see that π : E → X is continuous, we note that the Ui’s are an open cover of X with π−1(Ui) ⊆ E
an open set, so the π−1(Ui)’s cover E and so by the local nature of continuity it suffices to prove
continuity for the restrictions πi : π−1(Ui) → Ui of π. Since the bijection ψi : Ui ×Rn → π−1(Ui)
is a homeomorphism (with the source given its product topology), it is equivalent to show that
πi ◦ ψi : Ui × Rn → Rn is continuous. By the definition of ψi and πi, this map is the standard
projection that is certainly continuous. With π now shown to be continuous, we likewise see that
the ψi’s provide local topological trivializations, so π : E → X is indeed a topological vector bundle.

The transition mapping ψ−1
j ◦ ψi as a self-map of (Ui ∩ Uj) × Rn is exactly the map (x, v) 7→

(x, (Tji(x))(v)). Hence, if we can promote E to a Cp vector bundle over X such that the ψi’s are
Cp trivializations then we will have solved the existence problem because the transition matrices
linking these trivializations ψi and ψj over Ui∩Uj are given by the map Tji : Ui∩Uj → GLn(R) for
all i and j. (We take φi = ψ−1

i in the statement of the existence problem.) To give the topological
vector bundle E over X a structure of Cp bundle making the ψi’s local Cp trivializations, we first
note that (as has already been observed) the transition mappings ψ−1

j ◦ ψi are Cp automorphisms
of (Ui ∩ Uj)×Rn that are linear on fibers, and more explicitly are given by the mapping (x, v) 7→
(x, (Tji(x))(v)) with Tji : Ui ∩Uj → GLn(R) a Cp mapping (i.e., its matrix-entry functions are Cp

functions). The same applies to the inverse transition mapping, so we conclude that the transition
mappings are Cp isomorphisms. Hence, by the gluing lemma for Cp-structures (from Lemma 1.2
in the handout on equivalence between bundles and O-modules) there is a unique Cp-structure
on E with respect to which the fibrally linear ψi’s are Cp isomorphisms. Using this Cp-structure,
it remains to check that π : E → X is a Cp map. This goes exactly as in the proof that π is
continuous (working over the Ui’s and now using that the ψi’s are Cp isomorphisms and that each
standard projection Ui ×Rn → Ui is Cp). �


