MATH 396. ORIENTATIONS ON BUNDLES AND MANIFOLDS

1. ORIENTATION ATLASES AND ORIENTATION FORMS

Recall that an oriented trivializing atlas for E — M is a trivializing atlas
{(Uiy i : Ely, ~U; x R™)}

such that whenever U; N U; is non-empty (so n; = n;) the ordered bases of E(m) induced by ¢;
and ¢; for each m € U; N U; lie in the same orientation class (i.e., the change of basis matrix for
the m-fiber has positive determinant). In other words, a trivializing atlas is oriented if it gives a
well-defined orientation on each fiber E(m) (a non-trivial condition only for those m in a double
overlap U; N Uj for i # j). Thus, when given an oriented trivializing atlas we get an orientation
on every E(m). (Note that this would not make sense if we allowed E(m) = 0.) We say that two
oriented trivializing atlases are equivalent if, for each m € M, they put the same orientation on
the fiber E(m). As we saw in class, this really is an equivalence relation, and in each equivalence
class there is a unique maximal element (in the sense of containing all trivializing frames from all
oriented atlases in the equivalence class). These maximal elements are called orientation atlases
for E — M. Thus, two orientation atlases are equal if and only if they define the same orientation
on each fiber E(m) (as equivalence is the same as equality for the maximal elements).

We define an orientation form on E — M to be a nowhere-vanishing global section w of det E,
which is to say a trivializing section of the line bundle det . The reason for the name is that
for each m € M the nonzero fiber value w(m) € det(E(m)) specifies a connected component of
det(E(m)) — {0} and so puts an orientation on the vector space E(m). Two orientation forms w
and w’ on E — M are non-vanishing C? sections of the same line bundle det(FE), and so w = fu'
for a unique non-vanishing C? function f on M. We say w and '’ are equivalent (denoted w ~ ')
if f is everywhere positive. This says exactly that the orientations on E(m) specified by w(m) and
w'(m) coincide for every m € M. Tt is clear that ~ is an equivalence relation, and the orientation
forms in a common ~-equivalence class put the same orientation on each fiber E(m).

We wish to set up a natural bijection between ~_-equivalence classes of orientation forms on
E — M and orientation atlases on £ — M. The comparison will be via the orientations induced
on the fibers E(m) from each piece of data.

Theorem 1.1. Pick an orientation atlas on E — M, and let pn, be the resulting orientation on
E(m) for each m € M. There is a unique ~4-equivalence class of orientation forms that induce
the orientation p, on E(m) for allm € M.

Pick a ~4-equivalence class of orientation forms on E — M, and let ul, be the resulting orien-
tation on E(m) for each m € M. There is a unique orientation atlas on E — M that induces the
orientation p,, on E(m) for allm € M.

These procedures define inverse bijections between the set of orientation atlases and the set of
~ 4 -equivalence classes of orientation forms on EE — M

Proof. Since equality of orientation atlases and ~-equivalence of orientation forms may be checked
by considering orientations on fibers of £ — M, the final part of the theorem (concerning inverse
bijections) follows from the rest. Similarly, the uniqueness aspects in the first two claims in the
theorem are clear; the only real issue is that of existence.

Pick an orientation form w € (det E)(M), and let pu,, be the resulting orientation on E(m) for
each m € M. (This orientation of E(m) only depends on w up to ~_-equivalence.) We seek
to find an oriented trivializing atlas for £ — M that also induces the orientation p,, on E(m)

for each m € M. Consider connected open sets U C M over which E is trivial; such opens do
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cover M. Let {U;} be a collection of such opens that cover M. For each i, let {s1;,...,sp,} in
E(U;) be a trivialization of E|y,, so s1; A -+ A sp, ; is a non-vanishing section of (det £)(U;). Thus,
51 A -+ A Sp, i = fiw|y, for a non-vanishing C? function f; on U;. But Uj is connected, so f; has
constant sign. Replacing s1; with —sy; if necessary, we can arrange that f; > 0 on U;, so we have
built a trivializing frame over U; that induces the orientation p,, on E(m) for each m € U;. Let
¢i : Ely, ~ U; x R™ be the trivialization of E|y, that we have just built.

I claim that the data {(U;,¢; : E|ly, ~ U; x R™)} defined by the above trivializations is an
oriented trivializing atlas that induces the orientation p,, on E(m) for each m € M (and so the
associated orientation atlas gives what we need). Since two ordered bases of a vector space have
change-of-basis matrix with positive determinant if and only if they give rise to the same orientation,
the trivializing atlas is oriented if for each U; and m € U;, the orientation put on E(m) by the
trivialization ¢; over U; depends only on m and not on the particular ¢ such that U; contains m
(so if m € U; NUj then the ith and jth trivializations put the same orientation on E(m)). We can
do better, as is required: the ith trivialization puts the orientation u,, on E(m) for all m € Uj;.
This follows from how we built the trivialization of E|y, above. This completes the passage from
equivalence classes of orientation forms to orientation atlases.

To go in the reverse direction, we pick an orientation atlas on F — M, say putting orientation
tm on E(m) for each m € M, and we seek to build a trivializing section w € (det E')(M) such that
w(m) € det(E(m)) — {0} lies in the component distinguished by p,, for each m € M. We first
consider the local version of the problem, and then we will globalize using a CP partition of unity
(hence the need to assume M is second countable and Hausdorff, not merely a premanifold with
corners). Let {U;} be the opens in the chosen orientation atlas, so they are an open covering of
M and we have trivializations E|y, ~ U; x R™ giving rise to the orientation p,, on E(m) for each
m € U;. Passing to the top exterior power, we get a trivialization (det E)|y, ~ U; x A™ (R™) such
that for each m € U; the induced isomorphism on m fibers is det(E(m)) ~ A" (R™) with the -
component on the left going over to the “standard” component on the right (for e; A--- Aep,, with
{e;} the standard basis of R™). Thus, the constant section e; A---Ae,. goes over to a trivializing
section w; of (det E)|y, such that on each fiber over m € U; the vector w;(m) € det(E(m)) — {0}
lies in the component for ji,. In particular, wi|v,nv; = fijwjlv,nu; with fi; > 0 for all 4, j.

It now suffices to find w € (det E')(M) such that for each i and each m € U; the point w(m) €
det(E(m)) is a positive multiple of w;(m) (as then w(m) is nonzero, and is in the component for
tm, for every m € M). We certainly cannot expect the w;’s to extend to global sections of the line
bundle det E — M, but we can use a C? partition of unity to get enough for our purposes. More
generally, consider the following problem. Let L — M be a CP line bundle and let {U;} be an
open covering for which there exist trivializing sections s; € L(U;) such that for each m € U; N U;
the nonzero points s;(m) and s;(m) in the line L(m) lie in the same half-line; that is, the unique
Cp function f;; : U; NU; — R satisfying silu,nu; = fij - sjluinu; s positive on the (possibly
disconnected!) overlap U; N U; for all 4,5. We claim that there exists s € L(M) such that for all
i and all m € U;, the nonzero elements s(m), s;(m) € L(m) are positive multiples of each other.
Applying such a result to L = det E and the w;’s would complete the proof.

To build such an s, we shall use a C? partition of unity. More specifically, let {¢,} be such a
partition of unity subordinate to the cover {U;}, so the supports K, of the ¢,’s are compact and
form a locally finite collection in M with K, C Uy, for some i(a) for each . In particular, the
CP section ¢q8;(q) on Uj(q) has support in the compact (hence closed!) subset K, in M, whence
we may glue it with the 0-section over the open M — K, to build an element in L(M) that we also
suggestively denote ¢,5;(). (In other words, we “extend by zero”.) The sum s = ) daSi(q) is
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locally finite over M (since the collection of K, ’s is locally finite in M), so it makes sense and gives
an element in L(M). I claim that this does the job.

Pick any i and m € U;. Since ) ¢o(m) = 1, some ¢q,(m) is positive and hence m € Ko, C Uj(qg)-
Thus, m € U; NUj(q), so in L(m) the elements s;(m) and s;(,,)(m) are in the same half-line. Hence,
to show s(m) is a positive multiple of s;(m) in L(m) it is equivalent to show that s(m) is a positive
multiple of s;(4,)(m). We may therefore instead pick any ag and m € Uj(q,) such that ¢q,(m) > 0,
and it suffices to prove that s(m) is a positive multiple of s;(,y)(m). (In particular, s(m) # 0!)
By definition, s(m) is a sum of the finitely many nonzero elements ¢q(m)s;(4)(m) with ¢q(m) # 0
(so m € Ko C Uj) and hence s;)(m) makes sense). Each such ¢,(m) is positive, and since
m € Uja) N Uj(ay) it follows that s;q)(m), si(a)(m) € L(m) — {0} lie in the same half-line. In
particular, s;q)(m) is a positive multiple of s;(,)(m). Thus, each of the finitely many nonzero
terms in the sum defining s(m) are positive multiples of s;(4,)(m), whence their sum s(m) in L(m)
is also a positive multiple of s;(4,)(m) as desired. |

2. ORIENTATION ON MANIFOLDS WITH CORNERS

Let M be a CP manifold with corners, 1 < p < oo. In class we defined an orientation on M
to be the specification of a ~-equivalence of orientation forms on the CP~! tangent bundle (a
certain equivalence class of nonvanishing global sections of det(T'M)). Over connected components
M; of dimension 0 (i.e., isolated points), we have det(T'M;) = M; x R by definition and hence an
orientation form is just a non-vanishing function up to everywhere-positive multiplier. But M; is
just an isolated point, so we see that on 0-dimensional components the data of an orientation is just
the data of a sign: positive or negative. This is important in order that the general Stokes’ Theorem
in the context of curves with boundary will recover the Fundamental Theorem of Calculus.

By the preceding work, we see that on positive-dimensional components of M, the data of an
orientation is “the same” as the data of an orientation atlas on T'M, or equivalently an oriented
trivializing atlas for TM taken up to equivalence (respecting the orientations on the fibers T, (M)).
This is all “general nonsense” that makes sense for arbitrary vector bundles (not just TM) over
manifolds with corners. But the tangent bundle is special: on positive-dimensional components
we can use local coordinates on the manifold to define special kinds of local trivializations of the
bundle: when given a CP chart {z;} on an open subset U C M, we get a trivialization of the CP~!
vector bundle T'M |y via the ordered frame {J,,}. Hence, it is natural (and very useful!) in the
special case of the tangent bundle to find a translation of the notion of orientation in terms of
certain kinds of CP atlases on the base manifold M (at least ignoring isolated points). We shall
now carry out this translation.

We consider a C? manifold with corners M with constant positive dimension n, and p > 1 (what
follows may be applied separately on the positive-dimensional connected components of a general
M). We consider C? atlases ./ for M. We call such an atlas oriented if for any two members
(U,{z;}) and (U’,{z}}) in & the transition matrix ((995;:@) :UNU" — GL,(R) has everywhere-

positive determinant on the (possibly disconnected!) overlap UNU’. A CP atlas o = {(U,, {:Ufa)})}
of M gives rise to a trivializing atlas for the CP~! vector bundle TM via the trivializing frame {0 @}

on T'M |y, for all . We call this the trivializing atlas the one associated to o7, and its transition

matrix over Us N Ug is (0 () (wga))) Thus, 7 is an oriented atlas if and only if its associated
J

trivializing atlas for TM — M is oriented.
If & and A are two oriented CP-atlases on M, we call them equivalent if for any two members
(U,{xi}) of & and (V,{y;}) of A, over the (possibly disconnected) overlap UNV the non-vanishing
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determinant det(9,;z;) is everywhere positive. This is an equivalence relation, as it is exactly the
property that the associated oriented trivializing atlases for TM — M are equivalent. In particular,
we see that if &7 and % are oriented atlases then to check if they are equivalent it suffices to check
positivity on overlaps from collections of charts in each of &/ and % that cover M. Moreover,
when equivalence holds then the combined atlas &7 U 4 is oriented as well. Likewise, if we take the
union of all oriented C? atlases in a fixed equivalence class, we arrive at another oriented atlas in
the same class. Thus, each equivalence class of oriented CP? atlases has a unique maximal member
(analogous to the notion of maximal atlas on a manifold, except that we are imposing an extra
positivity condition on the overlaps of the charts). In this way, by passing from an oriented C?
chart to the associated oriented trivializing atlas for the CP~! vector bundle TM — M, we get an
injection from the set of maximal oriented C? atlases of M to the set of orientation atlases on the
tangent bundle TM — M. The CP~! vector bundle TM admits many trivializing atlases aside from
those that come from CP-charts on M, does every equivalence class of oriented trivializing atlases
for TM (i.e., local trivializations whose transition matrices on double overlaps have everywhere-
positive determinant) contain one that comes from a CP chart? Yes:

Theorem 2.1. Each oriented trivializing atlas {(U;, ¢; : TM|y, ~ U; x R™)} for the CP~1 vector
bundle TM — M is equivalent to one coming from an oriented CP atlas of M.

Proof. Let p,, be the orientation on T,,(M) arising from the chosen oriented trivializing atlas for
TM — M. We seek to build an oriented C? atlas {(U/, {xga)})} on M such that for all « the
ordered basis 8:5(9) lm of Ty, (M) is in the orientation class p,, for each m € U,. Pick a CP-chart

(U,{x;}) with U ’a connected open subset of some U;; such U’s cover M. We have two trivializations
for the CP~! vector bundle TM over U C U;, namely {8%.} and ¢;|ly : TM|y ~ U x R™. The
transition matrix relating the two trivializations has non-vanishing determinant on the open set
U, and so by connectivity of U it follows that this determinant has constant sign across U. By
replacing x; with —z; if necessary we can arrange that this sign is positive. Hence, for each m € U
the ordered basis {9y, |m } of Ty, (M) is in the same orientation class as the ordered basis determined
by the isomorphism ;| : Tp(M) ~ R™. By definition, this latter orientation class is p,, and
hence the CP chart (U, {z;}) is “compatible” with the p,,’s for m € U.

Such CP charts cover M, and so give an atlas &7 such that the associated trivializing atlas for the
CP~! vector bundle TM — M has each trivialization defining the orientation ,, on every point
m in its domain, whence this trivializing atlas is oriented. Hence, «/ is an oriented C? atlas of M,
and its associated oriented trivializing atlas for TM — M is clearly equivalent to the one chosen
at the outset (inducing g, on the fiber T,,(M) for each m € M). [

We conclude that in the case of a CP manifold with corners M without isolated points, 1 < p < oo,
the notion of orientation for M can be described in two ways: in the language of oriented CP charts
on M and the language of oriented CP~! trivializating atlases for TM — M.

Remark 2.2. Tt is a perhaps surprising fact that orientability of a CP manifold in fact only depends
on the underlying topological manifold and not on the differentiable structure. Of course, if the
manifold is not at least C'' then there is no tangent bundle, and so in such cases the approach to
orientation of manifolds through tangent bundles does not make sense. Using certain techniques in
algebraic topology, it is possible to give a definition of “orientation” for topological manifolds that
is equivalent to the definition above when a CP structure is given. It is beyond the level of this
course to discuss this topic any further.

It turns out that although there are non-orientable manifolds (such as the Mo6bius strip), mani-
folds that arise as tangent bundles are always orientable in a canonical manner:
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Theorem 2.3. Let M be a CP manifold with corners, p > 2. The CP~' manifold with corners TM
1s orientable, and in fact has a canonical orientation.

Before we give the proof, it is instructive to conbsider a simple example. Take M =V to be a
positive-dimensional vector space, so T'M is naturally isomorphic to V &V as a smooth manifold.

Such a manifold has a canonical orientation: if v .= {vy,...,v,} is an ordered basis of V, then
we consider the ordered basis {(v1,0),..., (v,,0),(0,v1),...,(0,v,)} of V& V as providing global
linear coordinates. If w = {wy,...,w,} is another ordered basis of V', then we get an analogous

ordered basis of V® V. What is the transition matrix relating these? It is the 2n x 2n block matrix
whose upper-left and lower-right n x n blocks are the transition matrix 7" from v to w coordinates,
and whose off-diagonal n x n blocks vanish. Hence, its determinant is (det 7')2 > 0. Thus, all such
linear coordinates on V @ V built in this way define the same orientation class on V @& V', whence
V @V is canonically oriented as a smooth manifold.

Proof. We may assume M is connected, or more generally has constant dimension n. If n = 0 then
TM is the zero-bundle over M and so det(T'M) = M x R. This is canonically oriented: we just the
sign + at each point. Now we shall assume n > 0. Let (U, {z;}) be a CP chart on M, so the open
set TM|y in TM gets a CP~! chart given by the associated trivialization TM|y ~ U x R™ using
the 0.,’s. The standard ordered system of linear coordinates on R™ and the z-coordinates on U
thereby give a 2n-tuple of coordinates on T'M|y. By the very construction of 7'M, this is a CP~!
chart for T'M; the coordinates are suggestively denoted {z1,..., %y, Oz, ..., 0x, }. Namely, for any
point £ € T M|y over u € U corresponding to a vector ¥ € T, (M), the associated coordinates of £
are the x;(u)’s followed by the ordered list of coefficients in the linear expansion of ¢’ with respect
to the ordered basis of d;|,’s in Ty (M).

As we vary (U, {z;}) through all CP charts on M, this procedure gives a CP~! atlas for TM (not
generally maximal). It is a canonical CP~! atlas on the manifold with corners TM, and we claim
it is oriented as such (and so gives a canonical orientation). If (U, {z;}) and (U’, {2}}) are two C?
coordinate charts on M, then we get CP~! coordinate charts on T M|y and T M|y via the above
recipe, so on the overlap T M|y there is a Jacobian transition matrix relating the restrictions of
the two CP~! coordinate systems. One calculates, much like in the example considered above this
proof, that the transition matrix (in the appropriate direction) is a 2n x 2n matrix whose upper-left
and lower-right n x n blocks are the same matrix, (ax; (x;)), and whose other two off-diagonal n x n

blocks vanish. Hence, the determinant is det(az; z;)? > 0. Thus, the canonical CP~! atlas we have
built on T'M is an oriented atlas. n

3. ORIENTATION ON A TORUS

We now take up a concrete example by studying orientations on the torus S' x S! viewed as a
smooth submanifold 7" in R? via the trigonometric embedding

(0,¢) — ((a+1rcosf)cost, (a+rcosf)sin, rsiny)

with 0 < |a| < r for fixed a and r. In R3, the surface T is centered at (0,0,0) and parallel to the
xy-plane with axis of symmetry given by the z-axis; the inner radius is  — |a| and the outer radius
is 7 + |a|. The parameter 6 is the angle measure for the circles of radius r that wrap around T
from the “inner” circle to the “outer” circle and back again, whereas the parameter 1) measures
the angle for the projection of the point onto the xy-plane.

We give St = R/27Z its “counterclockwise” orientation corresponding to the trivializing section
0y of T(S1) = det(T(S')), so on the product S* x S! we get a product orientation associated to
the trivializing frame of vector fields {0y, 0y }. There is also another orientation, namely {Jy, 0y},
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that is opposite the first one. Since T is connected, these give the two distinct orientations on 7'
The chosen embedding into R? distinguishes the two factors, and with the embedding as we have
chosen it we want to work out which of the two orientations “corresponds” to the outward-normal
orientation (via the recipe from class for relating orientations on a hypersurface in an oriented
Riemannian manifold and unit normal fields on the hypersurface).

We shall relate the orientation {9y, 5} on S' x ST ~ T to a “unit normal field” along 7" in R?,
and it will turn out to be the “outward” one. Using the above formula for embedding S! x S' into
R3, we compute that at each point of T in the associated tangent space of R? we have

Op = —rsinf-cos 0, —rsinf-sindy+rcos 0., 0y = —(a+rcosb)sind, + (a+r cosf) cosd,.
Hence, at each point £ € T we use the inner product (-, )¢ on T¢(R?) ~ R3 to compute
(D9, 09) = 1%, (D9, By) = 0, (D, Dy) = (a+1cosh)?.

(The middle equality reflects the fact that the integral curves for the vector fields dy and 9, meet
orthogonally in the surface T C R3, or rather that their velocity vectors at a crossing point are
orthogonal in the tangent plane to T' viewed inside of the tangent space to R? at that point.) The
associated metric tensor on T is therefore given by

ds? = r2d0 ® d6 + (a + r cos 0)*dy ® dip.

Note that pullback along the rotation (6,1) — (6,1 +1y) preserves the metric tensor, but pullback
along the rotation (0,v) — (6+ 6y, 1) generally distorts it. This reflects the geometry of how T sits
in R? (or rather, the geometric meaning of the map from S! x S! into R?), namely that rotation
in the t-direction is really rotation about the axis of symmetry (z-axis) of 7' and rotation in the
f-direction moves circular curves (integral curves for 9p) on the “inner part” of T' to the “outer
part” and vice-versa, certainly distorting lengths in the process.

For £ € T, the vector cross product dyle x dple in T¢(R3) ~ R? is readily computed to be

r(a + 7 cosB) cos ¢ cos Y0, + r(a + r cos #) cos §sin 0y + rsinb - (a + rcosb)0,.

This has length r(a 4 r cosf), so the associated “unit normal vector” N (&) is

N(€) = cos B(€) cos 1h(€) | + cos B(E) sinh(€)dy|e + sin (€D e.

By the “right-hand rule” for vector cross-products, the ordered basis {9y ¢, Ogle, N (&)} is a positive
basis of T¢(R?) ~ R3 with respect to the standard orientation {9y, 9,9} on R? (or, if we prefer
to make mathematics be independent of how many hands we have, we may simply compute the
determinant of the 3 x 3 transition matrix between these bases of T¢(R?) to be r(a+ rcos6) > 0).
We conclude that the ordered frame {N(¢), Oyle, Ogle} of Te(R3) is also positive for each & € T
Hence, under the recipe for passing between orientation on a hypersurface and a unit normal
field (when working in an oriented Riemannian manifold), we conclude that the unit normal field N
along T in R? is the one that “corresponds” to the orientation {0y, 09} on S 1% S with coordinates
(6,%) via the identification S! x S' ~ T chosen at the outset. Is this the outward unit normal
field or the inward one? At the right-most point £ = (a + r,0,0) on the z-axis (corresponding to
(0,7) = (0,0), which is to say the point (1,1) € S! x S! when S! is viewed in C* in the usual
manner), we have N (€) = Ogle. This is visibly the outward direction at £ on 7', and so we have built

the orientation corresponding to the outward unit normal on 7' (via the chosen parameterization
of T by S' x Sh).



4. THE MANIFOLD UNDERLYING A BUNDLE

We conclude our general tour through orientability by addressing the following natural question:
if E — M is a vector bundle, then how does orientability for £ as a vector bundle over M relate
to orientability of the manifold with corners underlying E? That is, if we view E separately as
a vector bundle or as an abstract manifold with corners then do we get different answers to the
(different!) questions “is it orientable”? In the case when the base manifold M is orientable (which
is to say, has orientable tangent bundle T'M, or more concretely admits an oriented coordinate
atlas) then there is no ambiguity:

Theorem 4.1. Let M be an orientable smooth manifold with corners, and E — M a C° wvector
bundle. Then E is orientable in the vector-bundle sense if and only if its underlying smooth manifold
with corners is orientable in the sense of abstract smooth manifolds with corners.

Proof. We may assume that E has everywhere positive rank, as there is nothing to do over the
connected components on which E has rank 0.

First assume that F is orientable as a vector bundle, and fix an orientation as such. We choose
an oriented coordinate atlas on M, taking the coordinate domains U; C M to be sufficiently small
(as we may) so that each E|y, admits a trivialization compatible with the chosen orientation on
the bundle £ — M. On each E|y, we now have a coordinate system: the concatenation of the
oriented coordinates on U; and followed by the dual linear coordinates in the “vertical” direction
via the oriented trivialization of the bundle E|y,. These two coordinate systems (in the horizontal
and vertical directions) have nothing to do with each other, so the transition matrices (on the open
overlaps E|y,nv; = (Ely;) N (Ely;) in E) are block matrices whose off-diagonal blocks vanish and
whose two diagonal blocks are the transition matrices for the individual coordinate systems. That
is, the relevant determinant is the product of the Jacobian determinant for change of coordinates
on U; NU; and the determinant of the matric of functions that expresses the transformation of one
bundle trivialization into another from our oriented bundle atlas on £ — M over the U;’s. Both
such determinants are positive, so their product is positive. Hence, we have found an oriented
coordinate atlas on E as an abstract manifold with corners, so it is orientable as such.

Now we go in the reverse direction, assume E is oriented as an abstract manifold with corners.
We need to construct an oriented trivialization for the bundle £ — M. Fix an orientation y on
E as an abstract manifold with corners, so all open subsets of E are likewise oriented. We fix an
oriented coordinate atlas for M whose open coordinate domains U; are so small that each E|y, is
trivial. We want to find a trivialization of each such E|y, — U; so that the transition matrices
between bundle trivialization over the possibly disconnected overlap U; NU; is everywhere positive.
But note that the manifold with corners E|y, is connected because it is isomorphic to a product of
the connected U; with a vector space. We have a specified orientation p; on this abstract manifold
with corners, since it is open in the abstract manifold with corners F on which we have already
chosen an orientation p. Hence, there are exactly two orientations on |y, considered as a manifold
with corners. If we choose a trivialization for the bundle E|y, — U; then together with the chosen
coordinate system on U; we get a global coordinate system on the connected E|y, (following the
concatenation recipe as in the first part of the proof) and this puts an orientation on E|y,. It is
either p; or —p;. Since E has everywhere positive rank, we may negate the first member of the
trivialization to negate the orientation if necessary to that it recovers u;.

I claim that the trivialization we have chosen for the bundles E|y, — U; are an oriented trivi-
alizing atlas for E — M, whence this is oriented as a vector bundle (as desired). Let us see what
is happening on E|y,ny;. We have picked two trivializations of each fiber E(m) for m € U; N Uj
and we must prove that the transition matrix relating these has positive determinant. Consider
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the product of this determinant with the determinant of the Jacobian matrix at m relating the two
coordinate systems on M chosen over U; and U;. This Jacobian determinant is positive since our
choice of coordinate atlas on M is oriented. Hence, multiplying against this Jacobian determinant
does not affect the sign we are seeking to determine. But this product calculates a determinant o
for a transition matrix between a coordinate system on E|y, that induces the orientation y; and
a coordinate system on El|y, that induces the orientation j;. Since y; and u; are induced by the
global orientation y on the manifold with corners F| it follows that 4 is a determinant for a Jacobian
transition matrix between two coordinate charts on F that are compatible with u, so 6 > 0. |

Ezxample 4.2. Consider the Mobius strip My, with infinite height. It is a line bundle over the circle
St and as such it has no non-trivial global section (by Homework 5, Exercise 3(ii)). Thus, it is
non-orientable as a line bundle. But the base manifold S! is orientable, so by the preceding theorem
it follows that M, is not orientable as a manifold. For any finite a > 0, the Mo6bius strip M, with
height 2a is naturally an open submanifold of M., and it is even C'*° isomorphic to M,. Indeed,
we have an isomorphism (—a,a) x S' ~ R x S! via (t,z) ~ (tan(2t/ma), z) that is compatible
with negation on both R and (—a,a). Hence, this isomorphism respect the involutions on both
sides whose quotients are the respective Mdbius strips, so we get an induced isomorphism on such
quotients. It follows that M, is a non-orientable manifold for any a > 0.

This non-orientability can be also seen in a more direct way that uses the geometry underlying
the construction of Md&bius strips and so bypasses the above weirdness of having to invoke the
function tan(z) from trigonometry. The argument goes as follows. On M, and M, there is an
evident direct sum decomposition of the tangent bundle into a direct sum of “horizontal” and
“vertical” line subbundles, with the “horizontal” subbundle given by pullback of the trivial line
bundle T'(S') over the circle (trivialized by 0y). See Example 2.2 in the handout on integral
manifolds for more rigor on this fact. But for a pair of line bundles L, L’ over a manifold with
corners, det(L @ L") ~ L ® L'. Hence, if L is trivial then det(L ® L') ~ L’. Tt follows that the
determinant of the tangent bundle for M, (resp. for M) is isomorphic to the line bundle of
“vertical” vector fields, and it was shown in Example 2.2 in the handout on integral manifolds that
this line bundle is not trivial.

Remark 4.3. If we make no orientability hypothesis on the base space M but we assume that the
vector bundle £ — M is orientable as both a vector bundle and as a manifold with corners, then
it can be deduced that M must be orientable. This is shown by a method similar to the arguments
used in the proof of Theorem 4.1. We leave this as an exercise for the interested reader.

5. TIME ORIENTATION

There is a variant on the notion of orientation that is very important in General Relativity,
to determine a globally consistent local sense of future and past in the 4-dimensional Lorenztian
spacetime manifold U. The point is that time in General Relativity (unlike in Newtonian mechanics)
is not determined globally, but rather it is determined by every object locally depending on how in
moves through spacetime; nonetheless, we need a global consistency to the sense of direction of time.
More precisely, each tangent space T,,(U) is endowed with a Lorentz metric having signature (3, 1),
and the “velocity” (or rather, energy-momentum) vector v € T,,(U) arising from the trajectory of
a particle through spacetime is required to satisfy two conditions: (v, 7), < 0 (this is related to the
classical-sounding statement that speed of motion cannot exceed the speed of light; equality here
is only for massless particles) and ¥ must be a nonzero vector “pointing to the future”. What does
this latter condition mean? Well, consider the so-called local time cone at u:

{v e T,(U) | (v,v), < 0}.
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As you may perhaps convince yourself by drawing the loci 22 < y? in R? and 2% + 3% — 22 < 0
in R?, this should have two connected components (which are interchanged by negation). Perhaps
you should be cautious in beleiving this in the 4-dimensional case, since in contrast that the
positive locus 22 + 4% — 22 > 0 in R? is connected! Granting such disconnectedness for a moment,
distinguishing one of the two negative components and requiring the nonzero energy-momentum
vector to lie in its closure is the device by which the physical theory forces everyone’s sense of time
to always point in the same direction, up to the fact that this choice of component in the time cone
in the tangent space must be done in a “continuous” manner as we vary across spacetime. The
concept of time orientation is the mathematical notion that makes this idea precise. Before we give
a mathematical definition, we first give a basic lemma:

Lemma 5.1. Let (V,q) be a non-degenerate quadratic space of finite dimension over R, and assume
that the signature is (r,s) with s > 0. The open subset T = {v € V | q(v) < 0} is connected if s > 1,
and it has two connected components if s = 1. Moreover, if s = 1 and q(v1),q(ve) < 0, then the
orthogonal projection of V' onto R - vy with respect to the associated non-degenerate bilinear form
By(v,v") = q(v+v") —q(v) —q(v') carries v to cvg for some ¢ # 0 and vy lies in the same connected
component as vy if and only if ¢ > 0. In particular, negation in V carries T to itself and swaps the
connected components.

Note that even though ¢ is indefinite, since it is non-degenerate if v € V' is any nonzero vector
then H, = (R-v)t = ker B,(v,) is indeed a hyperplane, and if ¢(v) # 0 then R-v® H, =V by
dimension reasons (since v ¢ H,). Hence we do have a good notion of orthogonal projection from
V onto the line R - v if g(v) # 0. (Explicitly, By(v,v) = 2¢(v) # 0 and the projection operator is
By(v,-)v/Bg(v,v).) In contrast, if ¢(v) = 0 then v € H, and there is no good notion of orthogonal
projection onto R.-v. Also, by switching to 7 in the role of s we see that this lemma then works the
same way if we replace “< 0” with “> 0” throughout (e.g., just replace ¢ with —¢g). We formulate
the lemma in terms of negative-definite vectors because this is the case that is of greater interest
in General Relativity (if one follows the mathematician’s convention that the Lorentz metric has
signature (3,1); for some reason I do not understand it seems more typical among physicists to
make the signature in relativity theory be (1, 3)).

Proof. By Gramm—Schmidt, we can find a basis {e;} of V' with respect to which ¢ has the coordi-
natized form

q(or,. o an) = (@ + o+ a) = (@7 + o).
Hence, the locus T' of interest is certainly non-empty and is obvious open (by continuity of g on
V). Consider a point u € T'. Clearly the path

t— (1=t)x1(u),...,(1 =)z, (u),zr41(w),. .., zn(u))

in V liesin T for all ¢ € [0, 1], so to track the connected components of 7" it suffices to consider points
u € U whose first r coordinates are 0. We must have x;(u) # 0 for some r+1 < j < n, so if we now
similarly deform all coordinates other than the jth linearly to 0, and then scale the remaining jth
coordinate linearly to its sign, we never leave T" and so we conclude that each connected component
of U contains *e; for some r +1 < j < n. If s > 1, then for any two such distinct indices j and
j' and any sign € = +1, the path t — te; + (1 — t)eejs is contained entirely within 7', whence e;
and eej lie in the same connected component. Thus, e;, e;/, and —e;: all lie in the same connected
component for any r+ 1 < j # j' < n. Letting j and j’ vary in this way, all +e; must therefore be
in the same connected component if s > 1. This gives that T is connected if s > 1.

Now suppose s = 1, so there are just the two basis vectors +e, to play with. This at least
shows that there are at most two connected components. The problem is to prove that 7' really is
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disconnected. We need a continuous function to “separate” the components. Consider the function
f = By(en, ) : V. — R. In coordinates,

By(z,y) = q(z +y) — q(x) — q(y) =2 Z%‘yi - 2Zxr+iyr+z"
i=1 i=1

Thus, f(y) = —2y,. Clearly f(en) < 0 < f(—ep) and f is continuous. Also, f is non-vanishing
on T because since s = 1 the only way ¢(y) < 0 can happen is if y, # 0 (though this necessary
condition is far from sufficient). Hence, by the intermediate value theorem, 7" cannot be connected.
(Explicitly, TN {f < 0} and T'N{f > 0} is a non-trivial separation, and so these must be the two
connected components.)

Finally, suppose vi,v2 € T and the orthogonal projection of vy into R - vy is cvs. To prove
¢ # 0, consider the hyperplane H,, = (R - v2)" = ker B,(v, ). By negative-definiteness of v and
non-degeneracy of ¢ it follows from the orthogonal decomposition V' = Ruvs @& H,, that ¢ must
have non-degenerate restriction to H,,. Hence, by well-definedness of signature and the negativity
of g(v2), the restriction of ¢ to H,, has to be positive-definite (as s = 1). The negative-definite
vector vy therefore cannot lie in H,,, which says exactly that ¢ # 0. It remains to show that v;
is in the same connected component of T" as vs if and only if ¢ > 0. To see this, it seems simplest
to bring in coordinates. Choose an orthonormal basis for ¢ as above, with e, = vo. We therefore
have v1 = ajeq1 + -+ + ap—1€n—1 + ce,. The deformation argument as above (i.e., linearly scale the
a;’s to 0) shows that v; is in the same connected component of T' as is ce,. But we can likewise
linearly scale ¢ to e = sign(c) without leaving T, so our problem is to show that ee,, is in the same
connected component as e, if and only if € = 1. This was seen already. |

We now focus our attention on the case of signature (n — 1,1) with n > 1. For such an n-
dimensional quadratic space (V,q), we call the disconnected open locus T of v € V' with ¢(v) < 0
the time cone, and its two connected components are called half-cones. A time orientation of (V, q)
is a choice of one of these two half-cones. The chosen half-cone is called the future half-cone, and its
negative is called the past half-cone. Clearly each such (V, ¢) admits exactly two time orientations,
and these are swapped by negation.

In the definition of a spacetime, we need more than just a (connected) 4-dimensional smooth
Lorentzian manifold. We need to equip it with a continuously varying orientation and time orien-
tation on each tangent space. The first of these two notions just means that the manifold should be
oriented. (That is, we fix an orientation on the tangent bundle.) To make the second idea precise,
we study the general problem of vector bundles endowed with a Lorentzian metric tensor. The key
is the following theorem:

Theorem 5.2. Let M be a non-empty CP manifold with corners, 0 <p < oo, and let m: £ — M
be a CP vector bundle with rank n > 0 that is equipped with a CP metric tensor in (EY @ EY)(M)
having signature (n — 1,1) on fibers. The subset

Tp = {U S E‘ <U7v>77(1}) < 0}

1s open in E and if M is connected then it has at most two connected components. If M is connected
and Tg has two connected components, then these are swapped by negation and each of its connected
components meets the time cone of each fiber in one of the connected components of the fiber.

We call Tk the time cone of the Lorentzian bundle F/. As an open subset it has a natural structure
of CP manifold with corners; of course, it depends on the choice of metric tensor on E. There is
an analogous result in case of signature (r,s) with s > 1, saying that the corresponding locus of
interest is open in F and is connected when M is connected. However, this is rather uninteresting
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in practice and goes by pretty much the same method of proof, so we leave it to the imagination
of the interested reader.

Proof. We may and do assume that M is connected. The case dim M = 0, which is to say M is
a point, is exactly the case treated in the preceding lemma. To bootstrap this, we first invoke a
non-trivial result (Theorem 1.1) from the handout on why the universe cannot be S*: by using
an auxiliary C? Riemannian metric on F, there exists a (non-canonical) C? bundle decomposition
E = E* @ E~ such that the Lorentzian metric tensor has Riemannian restriction to E+ and
negative-definite restriction to E~. Here, E* is a subbundle necessarily of rank n —1 and £~ must
be a line subbundle.

Let us now first prove the result locally over M. More precisely, let U C M be a connected
open over which Et and E~ are each trivial. Upon picking trivializing frames and applying the
bundle version of Gramm-Schmidt, we get orthonormal frames for each. Hence, we get a global
frame {e1,...,e,} such that (e;, e;) vanishes for ¢ # j and is equal to 1 (resp. —1) when i <n —1
(resp. i = n). It follows that under the trivialization isomorphism E|y ~ U x R™ (considered as an
isomorphism of C? manifolds with corners), the subset T, goes over to U x T where ' C R" is
the open time cone for the standard Lorentzian quadratic form on R". Since T is open in R™ and
has two connected components and these are swapped by negation, the same goes for the product
UxT in UxR" (via negation on fibers over U). Hence, the same holds for T, in E|y, which is the
part of Tg lying over U. This gives the resulting over small connected opens in M. In particular,
Tg is open in E. Since F is a topological manifold with corners, it is locally path-connected. The
same therefore holds for the open subset Tg, so the connected components of Tr are open. Hence,
the connected components of Tr are open and closed.

Let us fix a choice of connected component C C Tgr. Let U C M be a small connected open
subset as considered above, so T, has exactly two connected components. Since C' is open and
closed in Tg, the part Cy of C' that lies over U is open and closed in Tf,,. Thus, Cy is either
empty, equal to a connected component of Tp|,, or equal to all of Tg,,. In particular, for each
m € U, the “structure” of the fiber C(m) C Tr(m) is independent of m: it is either empty, equal to
a half-cone, or equal to the entire time cone in E(m). This shows that the following three subsets
of M are open: the locus My of m € M for which C(m) is empty, the locus M; of m € M for which
C(m) is a connected component of Tz(m), and the locus My of m € M for which C(m) = Tg(m).
But these three open sets are pairwise disjoint, so they are also all closed in M. Since M is non-
empty and connected, we cannot have M = M since some fiber of C' over M is non-empty (as C'
is non-empty). Thus, either M = M; or M = Ms. The case M = Mj is the case C' = T, which is
to say that T is connected.

We may now assume M = M;, which is to say that C' meets each fiber of Tp over M in one
of its two half-cones. Negation on the bundle E induces a C? involution of E and hence of the
open subset Tg. Thus, it carries C to a connected component of Tr that we shall denote —C', and
fiberwise over M we see that C' and —C never meet. Hence, —C' # C. But obvious C' U —C fills up
all fibers of T over M, so we conclude that these two connected components of T are the only
ones. |

This theorem finally permits us to make a definition:

Definition 5.3. Let M be a CP manifold with corners, 0 < p < oo, and let £ — M be a CP vector
bundle endowed with a CP Lorentzian metric tensor. Let Tr C F be the time cone, and assume
that over each connected component of M the restriction of T has two connected components.
A time orientation of E is a choice of one of these two components over each of the connected
components of M.
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If p > 1 and T'M is endowed with a CP~! Lorentz structure, then a time orientation on the CP~!
Lorentzian manifold with corners M is a time orientation of the Lorentzian bundle TM — M in
the above sense.

Ezxample 5.4. We conclude by giving an example of a smooth connected manifold with two different
Lorentzian metrics, one giving rise to a connected time cone and the other a disconnected time
cone. Hence, this shows that whether or not the time connected is connected (given that the base
manifold is connected) is not at all determined by the underlying vector bundle alone.

Let M = (R/27Z) x R be an infinite cylinder with “coordinates” (6,t). The metric tensor
df®? — dt®? is visibly Lorentzian and the time cone is disconnected: T'M is trivial with the frame
{8y, 0;}, under which the resulting isomorphism TM ~ M x R? carries the time cone of the tangent
bundle over to the product M x {|z| < |y|} that is disconnected. Another Lorentzian metric tensor
is given by

cos 0§ dA®? + sin (dt @ df + df @ dt) — cos  dt®2.

The associated 2 x 2 symmetric matrix (g;;) has determinant —1, so this is indeed a Lorentzian
metric tensor. How can we prove that the time cone in this case is connected? Consider the vector
field 7(z) = —sinz 0y|(z2) + (1 + cosx) Ot|(z,) Where T = x mod 27Z for x € R. This is nonzero
away from x € 7+ 27Z, and has self-pairing —2(1 + cos z) that is negative away from = € 7+ 27Z.
Thus, taking —m < x < 7 gives a path in the time cone of the tangent bundle. Let C' be the
connected component containing this path. By the method of proof of the preceding theorem, over
any connected base a proper component of the time cone of the bundle meets exactly one half-cone
in each fiber. In particular, if we work over a small connected open in the base over which the time
cone does split into two connected pieces then if C' meets both pieces we conclude that C' must be
the entire time cone of the metrized tangent bundle: that is, the time cone of the metrized tangent
bundle is connected.

We wish to study how the C interacts with time cone over a small neighborhood around p = (7, )
in the cylinder over which the time cone splits into two components. Actually, C' is “abstract”,
so it is really the above 1-parameter vector field of timelike vectors (which is a path in C) that
we will study. Consider the local vector field v9 = 0y near p, so (ve,ve) = cosf is approximately
cosm = —1 and so is in the time cone. Applying Gramm-Schmidt gives an orthogonal vector field:

<at7 U2>
(v2,v2)

We compute (v1,v1) = —sec . Thus, near p we see that {v1/1/[sec],va/+/| cosf]} is an orthonor-
mal basis with the second one in the time cone. Hence, membership in connected components on
fibers is determined by the sign of the coefficient for the projection onto the line spanned by the
second basis vector in the fiber. That is, orthogonal projection on the fiber-line spanned by vy
distinguishes the half-cones in fibers.

When orthogonally projecting ¥(x) onto the line spanned by ve(x) for x near 7, the coefficient

of va(x) is
(0(x), va(x))
(v2(2), v2())
and for x slightly less than 7 this is negative whereas for x slightly more than 7 this is positive.
Hence, we conclude that over a small open around p = (m,7) our connected component C' does
indeed meet both connected components of the time cone of the local tangent bundle, so we are
done.

v = O — v9 = Of — tan 6 9.

= tan(z),



