MATH 396. ORIENTATIONS
In the theory of manifolds there will be a notion called “orientability” that is required to integrate
top-degree differential forms. Orientations arise from certain notions in linear algebra, applied to
tangent and cotangent spaces of manifolds. The aim of this handout is to develop these relevant
foundations in linear algebra, and the globalization on manifolds will be given later in the course.
All vector spaces are assumed to be finite-dimensional in what follows.

1. DEFINITIONS AND EXAMPLES

Let V be a nonzero R-vector space with dimension d, and let v = {v1,...,v4} be an ordered
basis of V. This gives rise to a nonzero vector

AY) B o A Avg € ANV

in the line A%(V). If v/ is a second ordered basis, then A(v’) is another nonzero vector in the same
line A4(V), so A(Vv') = ¢ A (v) for a unique ¢ € R*. Concretely, if Ty y» : V =~ V is the unique linear
automorphism satisfying v, = T'(v;) for all ¢ (it is the “change of basis matrix” from v’-coordinates
to v-coordinates), then ¢ = det Ty, s and 1/c = det T;‘ll, = det Ty . Hence, ¢ > 0 (or equivalently,

1/c > 0) if and only if A(v) and A(V’) lie in the same connected component of A%(V) — {0}.

Definition 1.1. An orientation p of V is a choice of connected component of A4(V) — {0}, called
the positive component with respect to p. An oriented vector space is a nonzero vector space V
equipped with a choice of orientation pu.

Clearly there are exactly two orientations on V', and if u is one then we write —u to denote the
other (so —(—u) = p). The notion of orientation rests on the fact that the multiplicative group
R* has exactly two connected components, and that the component containing the identity is a
subgroup; since C* is connected, there is no analogous “C-linear” concept of orientation (but in §3
we will see that the theory of orientations is especially pleasant on the R-vector spaces underlying
C-vector spaces).

Here is an equivalent, and perhaps more concrete, formulation of the notion of orientation.
Declare two ordered bases v and v’ to be similarly oriented precisely when the linear automorphism
of V' that relates them (in either direction!) has positive determinant, and otherwise we say that v
and v/ are oppositely-oriented. The property of being similarly oriented is an equivalence relation
on the set of ordered bases of V' (check!), and the assignment v — A(v) € A%(V) sends two ordered
bases into the same connected component if and only if they are similarly oriented. Thus, we
see that there are exactly two equivalence classes and that they correspond to orientations on V
(the correspondence being that if we are given some equivalence class of v’s then the associated
orientation is the common connected component containing all such A(v)’s). The ordered bases v
of V such that A(v) lies in the positive component for p are called positive bases with respect to u
(or p-oriented bases).

Example 1.2. If V. = R% and {e1,...,eq} is the standard ordered basis, the corresponding orien-
tation class (i.e., connected component of A%(V) containing e; A --- A eq) is called the standard
orientation of RY.

Remark 1.3. In order to include 0-dimensional manifolds in the general theory later on, it is con-

venient to use the convention A°(V) = R for all V, including V = 0. This is consistent with the

result that A%(V) is 1-dimensional for d = dim V' when V is nonzero. However, when working with

AL(V) for d = dimV = 0 we cannot interpret orientations of this line in terms of the language of
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bases of V. Largely for this reason, we will ignore the 0 space in this handout; anyway, including
it in various results later on is always either meaningless or a triviality.

Definition 1.4. Let (V,u) and (W, v) be oriented vector spaces with common dimension d > 0.
A linear isomorphism T : V ~ W is orientation-preserving if AY(T) : A4(V) ~ AY(W) carries the
positive component to the positive component. Otherwise T is orientation-reversing.

Note that if W = V and v = p then T : V ~ V is orientation-preserving if and only if
det T > 0 because AY(T) : A4V) ~ A%(V) is multiplication by det T' # 0 and such a multiplication
map preserves a connected component of A4(V) — {0} if and only if detT > 0 (in which case
both components are preserved). It is clear that 7' : V' ~ W is orientation-preserving if and
only if 77! : W ~ V is, and that the property of being orientation-preserving is stable under
composition. In particular, negation on V is orientation preserving if and only if d = dim V is even
(as dety (—1) = (—1)9), and so in general when T is orientation-preserving the same is true for —T
if and only if d is even. As a special case, if e = {e1,...,eq} is p-positive ordered basis of V', then
{—e1,...,—egq} is in the orientation class (—1)du on V; in particular, the opposite orientation class
—pon V is not generally represented by negating all vectors in a p-positive basis (except when d is
odd). If we simply negate one of the basis vectors e;, then we get an ordered basis in the orientation
class —pu. Also, if d > 2 and we swap two of the e;’s then the new ordered basis €' has associated
wedge product A(e’) = — A (e), and so € lies in the class —pu; iterating this, for any permutation
o € Sy, the ordered basis {€,(1), .- -,€s(q)} lies in the orientation class sign(o)pu.

A linear automorphism 7T : V ~ V is orientation-preserving with respect to one orientation p
(on both copies of V) if and only if it is so using —u (on both copies of V'), as each condition is
equivalent to the property “detT” > 0” that has nothing to do with the choice of u. Hence, linear
automorphisms 7' : V ~ V are called orientation-preserving when detT' > 0, as this is equivalent
to T being orientation-preserving in the sense of the general definition above when both copies of
V are endowed with a common orientation on V.

Ezxample 1.5. If L is a 1-dimensional vector space, then an orientation of L is a choice of connected
component of L — {0} (or more concretely, it is a choice of “half-line”). A vector in the chosen
component will be called positive. (We can say in general that orienting a nonzero V' of dimension
d is the same thing as orienting the line A%(V).)

If L' is another 1-dimensional space, and if any two of the three lines L, L', or L ® L' are
oriented, there is a unique orientation on the third such that for nonzero e € L and ¢ € L’ (so
e®e € L® L' is nonzero) if any two of three vectors e, €/, or e ® €’ is positive in their respective
line then so is the third. Such a triple of orientations on L, L', and L ® L’ is called compatible.
Fix an orientation on L. If we orient L’ then for compatibility to hold we must orient L ® L’ by
declaring the positive component of (L ® L) — {0} to be the common one containing e ® €’ for
all positive e € L and ¢’ € L' (why do all such lie in a common component of (L ® L) — {0}7),
and if we orient L ® L’ then we must orient L’ by declaring the positive component of L' — {0} to
consist of those nonzero ¢ € L’ such that e ® ¢’ is positive in L ® L' whenever e is positive in L. In
the same manner, if Li,..., Ly is an ordered collection of lines and each is oriented, then we get
a natural orientation on L1 ® --- ® Ly by declaring the tensor product of positive vectors to be
positive. These simple constructions in the 1-dimensional case have many pleasing “applications”
in the higher-dimensional case, as we shall now see.

Ezample 1.6. Let (V, u) and (V’, 1’) be oriented vector spaces with respective dimensions d and d'.
Select an ordering among V and V', say V first and V' second. There is a natural isomorphism of



lines
(1) NV) @ AT (V) = ATV B V)

by Theorem 2.4 from the handout on tensor algebras. Since the lines A4(V) and A% (V') are
oriented, we thereby get an orientation on /\d+d/(V ® V') via Example 1.5 and hence we get an
orientation on V & V’. More concretely, the positive component of (A“4 (V & V') — {0} is the
one containing e A ¢/ where e € A%(V) and ¢’ € A% (V') are any vectors in the positive components
of the nonzero loci on these lines. In terms of ordered bases, if {v;} is a p-oriented basis of V' and
{v} is a p'-oriented basis of V'’ then {v1,...,v4,v],...,v},} is a positive basis of V' & V’; this rests
on how we defined the isomorphism (1). This orientation of V @& V' is denoted p & p/ and is called
the direct sum orientation (with respect to the chosen ordering among V and V).
Note that if we swap the roles of V' and V' then we are led to use the isomorphism

A (VY @ AV) = AFY (VI @ V) ~ A (V g V)

that multiplies the orientation by a sign of (—l)dd’. Hence, when at least one of V or V' is even-
dimensional over R (such as C-vector spaces!) then the orientation on V & V' is intrinsic, but
otherwise it depends on the choice of ordering among the two factor spaces. Clearly if T : V ~ W
and T" : V' ~ W' are orientation-preserving isomorphisms between oriented R-vector spaces and
we pick compatible orderings (with V and W first and V'’ and W’ second, or the other way around)
then T @ T’ is orientation-preserving for the direct sum orientations; when one of these vector
spaces is even-dimensional then 7" @ T” is orientation-preserving regardless of how we order the
pairs {V,V'} and {W, W'}.

Ezample 1.7. Let (V, ) be an oriented vector space with dimension d and let W C V' be a proper
subspace with dimension dg > 0. By Theorem 2.5 in the handout on tensor algebras, there is a
natural isomorphism

(2) AP (W) @ A9 (V/W) ~ AYV)

(defined in the evident manner in case dy = 0) and the line A%(V') is oriented, so the tensor product
on the left is oriented. Hence, by Example 1.5, orienting one of W or V/W immediately determines
a preferred orientation on the other via this isomorphism relating the top exterior-power lines. By
inspecting the definition of this isomorphism, we get the following translation in terms of oriented
bases when dy > 0 (i.e., W # 0). Let {w;} be an ordered basis of W and let {7;} be an ordered
basis of V//WW. The property of whether or not the ordered basis

{w].? A ’wd07/l)17 A ’Ud_do}
of V' is positive (where v; € V represents v, € V/W) is independent of the v;’s because under (2)
the wedge product
Wi A Awgy Nvr A=+ ANvg—qg, € Ad(V)

corresponds to
(W1 A Awgy) @ (T1A - ATg_gy) € AP(W) @ Ad0 (VW)

and hence is independent of the choices of v; € V lifting 7; € V/W.

To make this more concrete, the condition relating orientations on W and V/W (given the initial
fixed orientation on V') for W # 0 is that upon picking an orientation on one of W or V/W there
is a unique orientation on the other such that when both {w;} and {v;} are positive bases then
{wi, ..., way,v1,...,v4—q,} is a positive basis for V. We call a triple of orientations p on V, v on
W, and @ on V/W compatible when they satisfy the relation just stated. If we first pick v then
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the uniquely determined compatible 1 is called the quotient orientation (with respect to p and
v), whereas if we first pick 7 then the uniquely determined compatible v is called the subspace
orientation (with respect to p and f). Likewise, in case W = 0 the data of an orientation v on W
is just the specification of a sign +1 and for a compatible triple (u, fr,v) the sign is 1 (resp. —1) if
and only if the orientations p and fr on V and V/W =V are the same (resp. opposite).

Ezample 1.8. Let (V,u) be an oriented vector space and let Wi,..., Wy be an ordered set of
mutually transverse proper nonzero subspaces. Let W’ = NW,. Pick orientations v; on each Wj,
so by the preceding example we get quotient orientations fi; on each V/W;. By Theorem 2.6 in the
handout on tensor algebras, there is a canonical isomorphism

(3) AN VIW) @ -+ @ AN (VW) = AY(V/W')

with ¢; = codim(W;) = dim(V/W;) and ¢ = codim(W’) = dim(V/W’). The orientation fz; on
V/W; puts an orientation on the line A% (V/Wj) for all j, so via the above isomorphism we get
an orientation on A°(V/W'). Hence, we get an orientation on V/W’. Since V is oriented, by the
preceding example we thereby obtain a natural orientation on W’!

In terms of ordered bases, if W’ # 0 (resp. if W’ = 0) when is a basis of W’ positive (resp. when
is the orientation sign on W’ = 0 equal to 1 rather than —1)? The transversality condition ensures
(for dimension reasons) that the injective map

(4) VIW — (V/W1) @@ (V/Wy)

is an isomorphism, and so if we pick positive bases of each W; then the positive bases of V/W;
are those whose lifts combine with the positive bases of W} to be a positive bases of V' (using the
ordering that puts the basis vectors from W; first). More specifically, choose an ordered set of
vectors in V' lifting a positive basis of V//W7, followed by a lift of a positive basis of V/Wa, and so
on, so we arrive at an ordered set of ¢ independent vectors {v1,...,v.} in V whose first ¢; members
lift a positive basis of V/Wj, whose next co members lift a positive basis of V//Wa, and so on. This
ordered list of ¢ vectors lifts a basis of V/W’, and if W’ # 0 then a basis {w],...,w/_.} of W' is
positive (resp. if W’ = 0 then its orientation sign is 1 rather than —1) precisely when the ordered
basis
{wh, ... wl_,v1,.. . v}

of V is positive (with respect to the initial orientation given on V). The reason that (4) is related
to (3) for the purposes of computing orientations is because both rest on the same ordering of the
set {V/Wh,...,V/Wn} (namely, first V/W7, then V/Ws, and so on).

Ezxample 1.9. We wish to explain how choosing an orientation p on an R-vector space V determines
an orientation on the R-linear dual VV. We first focus on the 1-dimensional case. If L is 1-
dimensional then the evaluation pairing

LoLY >R

is an isomorphism, and so upon orienting L and using the canonical orientation of R (with the
usual positive half-line as the preferred component of R — {0}) Example 1.5 provides a preferred
orientation on LY. Concretely, if ¢ € L is a basis and e¢* € LV is the dual basis (so e ® e¢* maps
to e*(e) = 1 > 0 under the evaluation pairing) then e* is positive in LY — {0} if and only if e is
positive in L — {0}.

Now we pass to the higher-dimensional case (as the case V = 0 is handled in a similar trivial
manner, left to the reader). Let V' be a nonzero R-vector space with dimension d > 0, and let
1 be an orientation on V. In particular, by definition of “orientation” the line A%(V) is thereby
oriented, and so its dual (A%(V))V has an induced orientation by the preceding paragraph. By
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Corollary 3.2 in the handout on tensor algebras, there is a natural identification between A%(V'V)
and (A%(V))Y, and so we get a preferred orientation on A4(VY). Equivalently, we have a preferred
orientation on VV, denoted p" and called the dual orientation (recovering the procedure in the
preceding paragraph when d = 1). Concretely, if {e;} is a basis of V' with dual basis {e}} then since
e1 A+ Aegq is dual to e} A--- A€l under the duality pairing between the lines A4(V) and A4(V'V) it
follows that {e;} is positive if and only if {e}} is positive. (In the 19th century, the dual orientation
would be defined by this criterion, and it would be checked to be independent of the choice of
positive basis of V' as follows: when changing from one positive basis of V' to another, the resulting
change of basis matrix between dual bases of V'V is the transpose of the change of basis matrix
between the initial positive bases of V' and so has positive determinant. The modern language of
tensor algebra permits us to give definitions that suppress such explicit use of bases.) The basis
criterion shows that —(u") = (—u)Y and that the isomorphism V ~ V'V we have pu = pVV.

Remark 1.10. Since duality interchanges subspaces and quotients, it is natural to ask how the
formation of the dual orientation interacts with subspaces and quotient orientations (as in Example
1.7). The relation is a little tricky. Let W be a nonzero proper subspace of V', and choose compatible
orientations u, v, and @ of V, W, and V/W respectively. We get a triple of respective dual
orientations pV, ¥, and vV on V'V, its nonzero proper subspace (V/W)V, and the associated
nonzero quotient WV. Is this latter triple a compatible one? If V has dimension d and W has
dimension dy, then we claim that this triple of dual orientations is compatible up to a sign of
(—1)do(d=do) (je. it is compatible when do(d — dp) is even and is not when do(d — dp) is odd).

To see what is going on, it is simplest to look at bases. Let {wi,...,wq,} be a v-positive basis
of W and {vi,...,v4-q,} a lift of a G-positive basis of V/W, so {w1,..., w4y, v1,...,Vi—d,} 1S a
u-positive basis of V' due to the hypothesis of compatibility among u, v, and . The ordered dual
basis

{wi,..., wzo,vf, .. 71}2*6[0}
of V'V is therefore p-positive. Re-ordering this basis of V'V by moving each wj pass all d — dy of
the v}’s introduces do(d — dp) minus signs on the orientation class, so the ordered basis

(5) {Ui---vU;—dmwTa---vaO}

of VV is in the orientation class of ey with & = (—1)%(¢=4)  However, W" is a quotient of V'V and
the w’s in V' lift the v¥-positive ordered basis of W dual to the v-positive {w;} , and likewise
(V/W)V is a subspace of V'V that contains the v}’s as an ordered basis dual to the f-positive
ordered basis of v;’s in V/W, so {v}} in (V/W)Y is @¥-positive. (Note that the v}’s as elements
of (V/W)V really do not depend on the choices of liftings v; because the v;’s kill the w;’s and
hence kill W, thereby inducing linear functionals on V/W that one checks are indeed dual to the
v;’s.) To summarize, the orientation e on V'V determined by the ordered basis in (5) satisfies the
condition to be compatible with ¥ and vV, whence the triple of dual orientations p", vV, and 1"
is compatible up to the sign € = (—1)d0(d*d0). The preceding discussion has a trivial analogue in
case W = 0 that we leave to the interested reader.

2. SYMMETRIC BILINEAR PAIRINGS

We now study symmetric bilinear pairings B : V x V' — F for a d-dimensional vector space V'
over a field F', and we will then specialize to the case F' = R. When working with F' = R (which is
not a field of characteristic 2), we will also use the equivalent language of non-degenerate quadratic
spaces. In the algebraic generality, we have seen in §3 in the handout on tensor algebras that if
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B is a perfect pairing, then the induced bilinear pairings B®" and A"(B) on V®" and A"(V) are
perfect, and so is Sym"(B) when n! # 0 in F. These pairings are also symmetric:

Lemma 2.1. If B: V xV — F is symmetric, then so are B®", Sym"™(B), and \"(B) as bilinear
forms on VO Sym™(B), and N"(V). Moreover, if F = R and B is positive-definite then these
pairings are positive-definite.

In general, if F = R and B has mixed signature then the signatures of the induced pairings on
the nth tensor, symmetric, and exterior powers of V' are given by some combinatorial formulas that
we leave to the interested reader to sort out. (We will not require them.)

Proof. If B : W x W — F' is a bilinear form and {w;} is a spanning set of W then to verify
the symmetry identity B(w,w’) = B(w’,w) it suffices to consider w and w’ in the spanning set
{w;}. Thus, the condition of symmetry may be checked in each case by working with elementary
products (of tensor, symmetric, or exterior type), and in these cases we have explicit formulas for
the values of the pairings, namely [[i"; B(vi,v}), > ,es, [Tie1 B(vi,v;(i)), and det(B(v;,v})). It
must be checked that swapping v; and v, for all ¢ does not change the value. This is clear in the first
case because B(v;,v;) = B(vj,v;). In the last case, since B(v;,v;) = B(v},v;) we get the desired
equality because the determinant of a matrix is unaffected by passing to the transpose. In the case
of symmetric powers we use the identity

n n n

H B(vi, v, (z)) = H B(Uafl(i% U;) = H B(%? 11071@))

i=1 i=1 i=1

1'is a permutation of the

to get the desired equality after summing over all o € S, (as 0 — o~
elements of S,,).

Now suppose that FF = R and B is positive-definite. We certainly cannot check positive-
definiteness by merely working with spanning sets; for example, B((x,y), (2/,y")) = x2’ —10xy'+yy’
is not positive-definite (B((1,1),(1,1)) = —8) but for v = (1,0) or v = (0,1) we have B(v,v) = 1.
Hence, we have to use another viewpoint. Recall from the handout on quadratic spaces that for
any non-degenerate symmetric bilinear form over any field, there exists a basis {e;} of V' such that
B(ej,ej) = 0 for all i # j and B(e;,e;) # 0 for all i. The positive-definteness aspect over R is
encoded in precisely the fact that B(e;, e;) > 0 for all i. We fix such a basis on V', and aim to use
it to find analogous such bases (satisfying the positivity condition as well) in the tensor, symmet-
ric, and exterior powers of V. Direct calculation shows that the respective habitual bases of V&"
and A"(V) in terms of the e;’s are a set of pairwise orthogonal vectors for B®™ and A" (V') whose
self-pairings are 1. We now work out the pairings in the case of symmetric powers, and the reader
will see that it is the same argument as in the discussion following Corollary 3.2 in the handout on
tensor algebras. We suppose d = dim V' is positive and we fix a monotone sequence I = {iy,...,i,}
of integers between 1 and d; define ey = ¢;, - --- - €;,. For two monotonically increasing sequences
of n indices I and I we see that [[;'_;{ei, €;,,,) vanishes unless i, = i; for all r (in which case
it equals 1), and the monotonicity property of the i,’s and the i/’s implies that the non-vanishing
holds if and only if I’ = I and for each 1 < j < d the permutation ¢ individually permutes the
set of m;([) indices 7 such that i, = j. There are m;(I)! such permutations of the set of r’s with

ir = j when m;(I) > 0, and so there are H?:l m;(I)! such permutations in S, in total. This shows
that the e;’s are pairwise perpendicular and that the self-pairing of e; is H;lzl m;(I)! > 0. [ |

Remark 2.2. For later purposes, we remind the reader of the conclusion of the study of duality
pairings on symmetric powers in the handout on tensor algebras: over any field F, the duality
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e;kl e e e;!(n — Hm]([)' . (eil e ein)*-
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Since a positive-definite symmetric bilinear form over F' = R is just an inner product by another
name, we conclude that if V' is an inner product space then V" Sym™(V), and A"(V') have natural
structures of inner product space. For applications to general relativity we wish to avoid positive-
definiteness restrictions (since the quadratic form of interest in spacetime is z2 + y? + 22 — ¢%t2,
and this has signature (3,1)). Hence, we shall focus on general non-degenerate quadratic spaces
over R, which is to say V endowed with a non-degenerate symmetric bilinear form (-, -) that may
have mixed signature. Thus, the tensor, symmetric, and exterior powers of V' are likewise non-
degenerate quadratic spaces over R with possibly mixed signature. A vector v € V is a unit vector
if (v,v) = £1, and a basis {e;} of V' is orthonormal if (e;,e;) = 0 for i # j and (e;, ;) = ¢; = %1
for each i; the Gram-Schmidt process produces such bases. Let us record an important and useful
observation that was essentially shown in the preceding proof (up to the tracking of signs):

Corollary 2.3. Let V' be a quadratic space of dimension d > 0 over R, with (-,-) the corresponding
non-degenerate symmetric bilinear form. Let {e;} be an orthonormal basis and €; = (e;, e;) = £1.
The bases

{ei ® - ®ei, bi<ij<d, {€in Ao Aei, f1<ig <o <in<d
of VE™ and A" (V') are orthonormal bases for the induced quadratic structures on these spaces, with
€, ®---®e;, and ey N---Ae; each having self-pairing H?Zl gi; = 1. An orthonormal basis of
Sym"™(V') is given by

eil.....ei

d ) |
[T ms (1) 1<iy < <in<d
for1 <iy <--- <4, <d where for I ={iy,...,i,} we define m;(I) to be the number of 1 <r <n
such that i, = j; the self-pairing of (ejy -+ -e;,)/4 /Hj m;(I)! is H;'L:1 gi; = *1.

Now we focus on the especially interesting case of the exterior powers A"(V') when (V, (-,-)) is a
nonzero non-degenerate quadratic space over R and 1 <r < dim V. Let (-, ), denote the induced
symmetric bilinear form on A"(V), so for vy,...,v,,v],...,v. € V we have

<1}1 Ao A Umvﬁ Ao A U7/">T = det((vi,?}”).

In particular, if v} = v; for all j and our quadratic space is positive-definite then this determinant

must be non-negative (and is positive whenever vy A --- A v, # 0, which is to say that the v;’s
are linearly independent); such a positivity result for det((v;,v;)) can be seen directly without
going through any of the preceding considerations (see the end of the proof of Theorem 2.6). If
lwlr = V[{w,w),| denotes the associated “length” on A"V (which satisfies |cw|, = |¢c||w], but
otherwise violates the norm axioms except when (-, -), is positive-definite or negative-definite) then
we have a simple formula for the “length” of an elementary wedge product:

[or A== Al = /] det(vi, v5))]-

Passing to the case r = d = dim V, for any ordered basis {v1,...,v4} of V' the nonzero v A---Avg
in the 1-dimensional non-degenerate quadratic space A%(V) has length /] det((v;, v;))]. This has
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a very interesting interpretation in the positive-definite case: it is the volume of the parallelotope
P:{Ztimogtigl}gv

“spanned” by vy, ...,v4. For example, if V' is a positive-definite plane then for independent v, w € V
we claim that

[o Awlz = Vollw] = (v, w)?
is the area of the parallelogram “spanned” by v and w.

In order to make sense of this claim concerning volumes, we need to clarify the meaning of volume
in the inner product space V' that has not been coordinatized. If e = {e;} is an ordered orthonormal
basis of V then such a basis defines a linear isomorphism ¢, : V ~ R? (sending e; to the ith standard
basis vector) and ¢ carries the given inner product on V' over to the standard one on R?. If € is a
second ordered orthonormal basis of V then ¢o : V ~ R% is another linear isomorphism carrying the
given inner product over to the standard one. Hence, the linear automorphism T = ¢ 0 ¢3! of RY
preserves the standard inner product and so is represented by an orthogonal matrix; in particular,
|det T'| = 1. Since ¢ = T' 0 ¢e, it follows that for any subset S C V we have ¢e/(S) = T'(¢pe(.5)).
By the linear case of the Change of Variables formula, we conclude that the property of ¢e(S)
being rectifiable and (in such cases) the value of its volume (perhaps infinite) is independent of the
choice of e. In this sense we can speak of volume intrinsically for subsets of an inner product space
without choosing linear coordinates (or rather, we use an arbitrary system of linear orthonormal
coordinates, the choice of which does not matter). Now we can prove:

Theorem 2.4. If {vy,...,vq} is an ordered basis of an inner product space (V,(-,-)) then the
parallelotope P spanned by the v;’s has volume |vi A --- Avgla = v/det({v;, v;)).

Proof. Let {e;} be an orthonormal basis, so if T': V ~ V is the linear map carrying e; to v; then
VA Avg=T(e)) A ANT(eq) = AYT)(er A -+ Neg) =det(T) - (e1 A+ Aeg),

and hence

loi A ANvglla=|detT||er A--- ANegllag = | det T|
since det((e;, e;)) = det(idg) = 1. The parallelotope P is exactly T(C') where C is the parallelotope
spanned by the e;’s, so by using {e;} to identify V with R? (respecting inner products) we carry
C over to [0,1]? and so the Change of Variables formula tells us that the volume of T'(C) is | det 7|
times the volume of C, which is to say that P = T'(C) has volume |det T'|. [

We next consider the dual situation, as this will be essential in pseudo-Riemannian geometry.
The bilinear form on V induces a natural “dual bilinear form” on VV: we have an isomorphism
V ~VVviav (v,) = (-,v), and so for £, € VV we define

(0, 0y L (v, ')

with ¢ = (v,-) and ¢ = (v/,-) for unique v,v" € V; the reader should check that (-,-)" is indeed
bilinear, symmetric, and non-degenerate on V'V, and when repeating the process to make a bilinear
form on VYV we recover the initial bilinear form on V via the natural isomorphism V ~ VvV, To
make this concrete, note that if {e;} is an orthonormal basis of V' then its dual basis {e}} is an
orthonormal basis of V' because orthonormality of {e;} implies that
e; = (e i) - (e, ) = (i€, ")

with g; = (e;,e;) = %1 (so moreover £f = (ef,el)V is equal to e7(e;, e;) = €3 = ¢&;, and hence the
quadratic space V' has the same signature as V). By iterating the procedure from V" to VVV ~ V,
we likewise see the converse: if {v;} is a basis of V whose dual basis is an orthonormal basis of V"
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then {v;} is an orthonormal basis of V. In words, a basis of a non-degenerate quadratic space is
orthonormal if and only if its dual basis is orthonormal with respect to the dual symmetric bilinear
form on the dual space.

The dual bilinear form on VY induces non-degenerate symmetric bilinear forms on (VV)®",
Sym"(VV), and A"(VV) for all n, by Lemma 2.1 applied to V¥ and B = (-,-)V. There now arises
a very important compatibility question, due to the fact that there is an entirely different natural
method to get quadratic structures on these spaces: we have non-degenerate symmetric bilinear
forms on V& Sym"(V), and A"(V) via Lemma 2.1 for V and B = (-,-), and so the recipe just
given for dualizing general non-degenerate quadratic spaces may be applied to each of these spaces
to endow their duals (V™)V, (Sym"(V))V, and (A"(V))Y with non-degenerate symmetric bilinear
forms — but in §3 in the handout on tensor algebras we saw that these duals are naturally identified
with (VV)®" Sym™(VV), and A"(V) respectively! Consequently, we obtain a second method for
constructing quadratic structures on these latter spaces. Does it agree with what we get by passing
to tensor, symmetric, and exterior powers on the dual bilinear form made on VV? We now briefly
digress to solve this problem in the affirmative before going further.

Theorem 2.5. The two methods for putting non-degenerate symmetric bilinear forms on tensor,
symmetric, and exterior powers of V' coincide. That is, the natural isomorphisms

(V)& = (VE)Y, Sym™(VY) = (Sym™(V))", A"(VY) = (A"(V)"

carry the tensor, symmetric, and exterior powers of the symmetric bilinear form on V" over to the
dual of the tensor, symmetric, and exterior powers of the symmetric bilinear form on V.

Proof. This is a problem of chasing orthonormal bases, and the case of symmetric powers will
require a little care due to the annoying factors m;(I)!. Take {e;} to be an orthonormal basis of V/,
so the tensor and wedge products of the e;’s give orthonormal bases of tensor and exterior powers
of V. The dual basis {e}} is an orthonormal basis of V'V with ef = (e}, ef)" equal to &; = (e;, ;) for
all i, so the tensor and wedge products of the e’s give orthonormal bases of (V¥)®" and A"(V')
and under the natural isomorphisms with (V®")V and (A"(V))V these bases are dual to the tensor
and wedge products of the e;’s (by Corollary 2.3). Since a basis of a non-degenerate quadratic
space is orthonormal if and only if its dual basis is orthonormal with respect to the dual symmetric
bilinear form on the dual space, and moreover €] = ¢; for all ¢, we obtain the desired agreement
in the case of tensor and exterior powers (as two symmetric bilinear forms agree if they share a
common orthogonal basis with the same self-pairings on the basis vectors).
For the case of nth symmetric powers, we let I = {i1,...,4,} be a monotone sequence of integers
between 1 and d, define m(I) = H;l:l m;(I)!, and define
er =€ i, e =€l el
We write {e}} for the dual basis to {es} in (Sym™(V'))". The isomorphism Sym" (V") ~ (Sym"(V))¥
carries ey« to m(I)ej, by Remark 2.2. We also know that the e;-’s are pairwise orthogonal (as the
ef’s are so in V) and the e}’s are pairwise orthogonal (as they are dual to the pairwise orthogonal
vectors ey in Sym”™(V)). Thus, the problem is to compare lengths and signs of self-pairings: we
want the length of e« to be m(I) times the length of e} and the sign of the self-pairings of e« and
e7 to coincide. The latter aspect follows from Corollary 2.3, so the problem is one of lengths. By
Corollary 2.3, ey has length y/m(I) (as er//m(I) is a unit vector), and since {e;} is an orthonor-
mal basis of V'V we likewise conclude that ey« also has length y/m(I). Thus, we want the dual-basis
vector e} to have length 1/y/m(I), or equivalently to have absolute self-pairing 1/m(I). Since e;
has absolute self-pairing m(I) and the e;’s are pairwise orthogonal, our problem is a special case
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of the general claim that if W is a vector space endowed with a non-degenerate symmetric bilinear
form and {w;} is an orthogonal basis then the dual basis {w}} of W" is orthogonal with

bt

(wj,wj)

If we let ¢; = (wj;, w;) # 0 then orthogonality of the basis of W implies w} = (w;/c;,-). Hence, by
definition of (-,-)" we have

(wj )" =

(Wi, wi)" = (wj/cj, w/cx) =
and this vanishes if j # k but equals 1/c; if j = k. |

Now that we are assured that there is no ambiguity concerning the natural quadratic structure on
tensor, symmetric, and exterior powers of V'V, we turn to an item that will be of much importance
in the theory of volume on pseudo-Riemannian manifolds, and that is the study of A%(V") with
d=dimV > 0.

Theorem 2.6. Let (V,(-,-)) be a nonzero non-degenerate quadratic space and let v = {v;} be an
ordered basis of V' with corresponding dual basis {vi} in V. The vector

wy = /| det((vi, v))|v] A--- Avy € /\d(VV)

is a unit vector for the natural quadratic structure on the line AY(VV), and if v' is a second ordered
basis of V then wy = ewy with € = £1 equal to the sign of det Ty v where Ty, v+ : V >~V is the map
satisfying v; — v}.

Concretely, this theorem associates a unit vector in the line A%(V") to any ordered basis of V,
and two ordered bases get assigned to the same unit vector if and only if the linear automorphism of
V' (or “change of basis matrix”) relating them (in either direction!) has positive determinant. The
element wy is generally called the volume form associated to v, for reasons that will become clear
in the applications to differential geometry, and we see that if the quadratic space V is oriented
then the orientation u picks out a preferred volume form, namely the unique one in the positive
half-line for the dual orientation (i.e., it is wy for any u-positive ordered basis v).

Proof. Let us first prove the unit-vector claim by pure thought, rather than by reducing it to a
calculation in the case of an orthonormal basis. We know that /| det((v;,v;))| is the length of the
vector v1 A -+ Avg in A%(V), and so the unit-vector assertion is the statement that the vectors

vi A Avg € AUV, vE A A e AY(VY)

have reciprocal lengths. We have already seen that the natural isomorphism A%(VY) ~ (A4(V))Y
carries the exterior power of (-, )Y on V'V over to the dual of the exterior power of (-,-) on V. This
isomorphism also carries vi A---Av} to the linear functional on AL(V) dual to the basis v1 A - - - Avg
of the line A%(V). Hence, our problem is in the theory of 1-dimensional quadratic spaces over R: if
(L, q) is a 1-dimensional non-degenerate quadratic space with basis vector v € L then with respect
to the dual quadratic structure ¢ on V'V (corresponding to the dual symmetric bilinear form) the
length /|¢Y(v*)| of the dual vector v* € LY determined by the condition v*(v) = 1 is reciprocal

to the length \/|¢(v)| of v. Even better, we have a reciprocal relationship without absolute values
and square roots: q(v)q"(v*) = 1. This was seen at the end of the proof of Theorem 2.5.
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It remains to work out the dependence of wy on v. If v/ = {v/} is another ordered basis and
vl = T(v;) for all i then the dual bases are related by v.* = (TV)7(v}) = (T71)V(v}) because

(T ()W) = v} (T (v7)) = v} (v))
vanishes when ¢ # j and equals 1 when i = j. Thus,
v A At = det(TY) o A Avg = det(T) Top A A, (07, 05)) = [T]((vi, 07)) [T
with [T] = y[T]y the change of basis matrix for T' (from v’-coordinates to v-coordinates). By
passing to determinants and using that transpose does not affect determinant, we get

. . | det(T)|?
wyr = (/| det (W], )" A Al = mwv = Ewy

with e equal to the sign of det(T). [ ]

3. ORIENTATIONS OF C-VECTOR SPACES

We now turn to an example that is very important in the theory of complex manifolds, and con-
tains a few subtle points. Considering C as an R-vector space, we can identify the two orientations
with the two choices of square root of —1 in C. Indeed, if i denotes such a square root (so —i is
the other one) then the two R-bases {1,:} and {1, —i} of C are related by an automorphism whose
determinant is —1 (concretely, 1A (—i) = —(1Ad) in A% (C)), so these represent the two equivalence
classes of R-bases. We write p; to denote the orientation of C (as an R-vector space) determined
by the ordered R-basis {1,i} (i.e., it is the connected component of A% (C) — {0} containing 1 A4).
Of course, neither of these two orientations u+; is “better” than the other since there is no natural
square root of —1 in C.

Another way to think about the situation is as follows. The field C over R has a unique non-
trivial field automorphism o : z — Z fixing R. (To see the uniqueness, observe that the set of
solutions to X2 4+ 1 = 0 must get permuted by such an automorphism, yet knowing the action of
such an automorphism on this set of roots determines it uniquely because of the description of C
from high school.) By viewing this field automorphism as an R-linear automorphism of C, we see
that the points fixed by ¢ form a line L™ C C (namely, LT = R) and the points negated by o form
a line L= C C (namely, the “imaginary axis”). We have C = L™ @ L~ as R-vector spaces, and
LT = R is canonically oriented using the R-basis 1. However, L~ is not canonically oriented, and
we may distinguish the two components of L~ — {0} by the unique square root of —1 in each. Thus,
choosing v/—1 € C gives an orientation to L~ (by declaring the positive component of L~ — {0} to
be the one containing the choice of v/—1) and u /=T 18 the resulting direct sum orientation on C

when the lines L™ and L~ are considered as an ordered pair via the rule “L™ first, L™ second”.

Lemma 3.1. Let T : V ~V be a C-linear automorphism of a nonzero C-vector space, and let Tr
be the R-linear automorphism of the underlying R-vector space VR. Then det Tr = |detT'|? > 0.

Proof. We wish to induct on dim¢ V. First suppose dim¢ V' = 1, so T is multiplication by some
A € CX. We want det Tg = |A|?> = A\. This is clear if A € R, so suppose otherwise. Hence, {1, \}
is an R-basis of C and X is a root of

(X = N(X = )\)=X?—aX +becR[X]
with @ = A+ X and b = A\. Using the R-basis e = {1, A} of C, TR has matrix

rle= (] 7).
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so det Tr, = b = A\. (Alternatively, since det T is the scaling effect of A?(TR) on A% (C) and 1A\
is nonzero in this line, we compute the multiplier via the equalities

A(TR)(IAN) =TR(1) ATRA) = AAN = XA (—aX —b) = —aAAX—DAAT =Db(1AN),

sodetTr = b= A\.)

Now assume dimg V' > 1 and that the result is known in smaller dimensions. Suppose that W
is a nonzero proper subspace of V that is T-stable, and let Ty : W — W and T : V/W — V/W be
induced by T'; one such W is a line spanned by an eigenvector of T' (which exists, by the Fundamental
Theorem of Algebra). Since dimg W, dime V/W < dimc V, by induction the result is known for
C-linear self-maps of W and V/W. We have det T = det Ty det T. Clearly Tr preserves Wgr and
it restricts to (Ty)r on Wg and induces Tr on (V/W)g via the obvious identification of (V/W)gr
with VR /Wgr. Thus, det Tr = det(Ty)r det Tr = | det Ty |?| det T|? = | det T|?, as desired. [

Let us now exploit this positivity result. Fix an orientation p = p /=1 on C once and for all.
By Example 1.6, for all n > 1 we get an n-fold direct sum orientation u®" = pu @ --- @ u on
(C")mr ~ (Cr)"™. For any nonzero complex vector space V, there exists a C-linear isomorphism
T :V ~ C" and so by using the underlying R-linear isomorphism Tg we may transfer the
orientation pu®" on (C™)R to an orientation 7 on Vr. The miracle is:

Theorem 3.2. The orientation pur on VR is independent of the choice of C-linear isomorphism
T:V ~ C". Writing py to denote the resulting orientation on Vg (that depends only on u = =1
and the given C-structure on VR provided by V'), if L : V ~ V' is a C-linear isomorphism then Ly
is orientation-preserving with respect to the orientations py and pyr on Vg and Vi respectively.

We call the orientation py on Vi the canonical orientation (arising from the initial choice of u
on C and the given C-linear structure on Vg provided by V).

Proof. Any C-linear isomorphisms 7' : V ~ C"™ and 7" : V ~ C" satisfy 7" = T o ¢ for a C-linear
automorphism ¢ = T~ 1oT" of V, and by the lemma det ¢g > 0. Hence, ¢g is orientation-preserving
on Vg with respect to any fixed orientation of Vg, yet the identity T = Tr o ¢r implies that ¢gr
interchanges pur and pps. Thus, ur = ppr.

If L:V ~V’is a C-linear isomorphism between nonzero C-vector spaces, then for a C-linear
isomorphism 7" : V ~ C" we have a C-linear isomorphism 7" o L : V ~ C", so by definition pu7 is
carried to pugior, by Lr. That is, Lr respects pys and py . |

This is a remarkable state of affairs: simply by choosing v/—1 € C all nonzero C-vector spaces
are endowed with a canonical orientation (on their underlying R-vector spaces) that is respected by
all C-linear isomorphisms (viewed as R-linear isomorphisms). One typically sees this fact described
by the phrase that “all C-vector spaces are canonically oriented”, with the dependence on the initial
choice of v/—1 € C suppressed. Since most mathematicians (including some Fields medalists) have
the mistaken belief that there is a preferred square root of —1 in C (they’re wrong), most believe
that there is a God-given orientation on the R-vector space underlying any C-vector space (though
depending on the C-linear structure). This is slightly incorrect: we first have to pick v/—1 € C,
and then everything else is canonically determined. To be completely explicit, if {vi,...,v4} is a
C-basis of V, then uy is the orientation class of the R-basis

{Ul,\/—l U1,y ... ,’Ud,\/—l . Ud}

of Vr. (Be sure you see why this really is an R-basis, and that this description is what comes out
of the preceding considerations.)
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Ezample 3.3. Let V and V' be nonzero C-vector spaces, so Vg and V§ are even-dimensional over
R. There is a canonical isomorphism (V & V')r ~ Vg @ VR, and it is easy to check that under
this isomorphism py gy goes over to the direct sum orientation uy @ py+ (which does not depend
on the ordering of the set {Vr,VR} since these spaces are even-dimensional). In this sense, the
canonical orientation (for a fixed choice of v/—1 € C is compatible with the formation of direct
sums.

Example 3.4. Let V be a nonzero C-vector space and W C V a nonzero proper subspace. The
three nonzero C-vector spaces V', W, and V/W has corresponding canonical orientations uy, pw,
and f1y/y, and via the evident inclusion of Wg into Vg and the isomorphism Vg /Wr =~ (V/W)r
it makes sense to ask if yy/, iy, and py /- are compatible (in the sense of Example 1.7). They are,
and the proof is a matter of basis-chasing that we leave to the reader (keeping in mind how py is
defined by using a C-basis of V and the choice of v/—1 € C).

Ezample 3.5. Let V be a nonzero C-vector space and let W1,..., Wy C V be proper nonzero
subspaces that are mutually transverse (either in the R-linear or C-linear sense — why are these
equivalent concepts?), and assume W’ = NWj is nonzero. Clearly W§; = N(W;)r, so the canonical
orientations on Vg and the (W;)r’s determine a preferred orientation on the transverse intersection
Wk in accordance with Example 1.8. Does this agree with the canonical orientation py/? Indeed
it does, and this again is left as an exercise in basis-chasing.

Let us conclude our investigation of the C-linear case by working out the “dual” of the canonical
orientation, as this presents a mild surprise. Let V' be a C-vector space, and let V'V be its C-linear
dual; the underlying R-vector space of V'V is not literally the R-linear dual of VR, as elements of
the former are C-linear functionals on V' and elements of the latter are R-linear functions on Vg
(with values in R, not C). However, these two duals can be identified:

Lemma 3.6. Let t : C — R be the R-linear “trace” defined by z — z +Zz. The R-linear map
(V)R — (VR)Y defined by £ — t o (R is an isomorphism.

Proof. The map in question is certainly R-linear, and both sides have the same R-dimension
(namely, twice the C-dimension of V'), and hence it suffices to check injectivity. That is, if tofg = 0
then we want £ = 0. If tolg = 0 then /R takes values in the imaginary axis. However, £ : V — C is
a C-linear map and so if it is not zero then it is surjective and hence cannot have image contained
in the imaginary axis. This only leaves the option ¢ = 0. |

Fixing an orientation u = p =1 on C, we get canonical orientations py and pyv on Vg and
(VV)Rr for any nonzero C-vector space V. The lemma permits us to identify (VV)gr with (Vr)V,
so it makes sense to ask how pyv and py, are related. The answer turns out to be not what one
might expect:

Theorem 3.7. Let V' be a finite-dimensional nonzero C-vector space with N = dimg V' > 0. Via
the natural isomorphism between (VY )r and (VR)V, pyv goes over to (—1)N puy..

The moral is that for even-dimensional C-vector spaces there is no confusion concerning the
meaning of “dual orientation”, but in the odd-dimensional case one has to make clear whether one
is R-dualizing py or one is working with the canonical orientation associated to the C-linear dual.

Proof. One checks that the isomorphism (VV)gr =~ (Vg)" is naturally compatible with direct sums
in the C-vector space V, and likewise for an ordered pair of oriented R-vector spaces (W, v) and
(W',1/) we have v¥ @1/ = (v@®v')V via the natural isomorphism WY @& W'Y ~ (W @ W')V. Also,
for an ordered m-tuple of oriented R-vector spaces (Wj,v;), on the direct sum @W; the orientation



14

®(—v;j) is off by a sign of (—1)" from @v;. Hence, by additivity of C-dimension on direct sums we
conclude that the problem is compatible with formation of direct sums in V' and that it is unaffected
by passing to a C-linearly isomorphic space. Since V is C-linearly isomorphic to a direct sum of
copies of C, we may therefore reduce to the case V= C. In this case, a positive basis of Vg is
{1,4/—1}, and so the positive dual basis of (VR)" is {z,y} with the R-linear maps =,y : C = R
computing real and imaginary parts: A = z(\) - 1 +y(\)y/—1 for A € C.

Meanwhile, the C-linear dual CV admits as a singleton C-basis the identity map 1 : C — C,
and so the resulting C-linear isomorphism CY ~ C (associating A € C to A -1 € CV) gives the
canonical orientation on (CV)g as {1-1,1/—1-1} = {1,4/—1-1}. The isomorphism (CV)gr ~ (Cr)"
is composition with the trace ¢t : C — R, and so it carries {1,y/—1- 1} to {¢,t(v/—1(-))}. Hence,
our problem is to show that the ordered R-bases {z,y} and {t,t(v/—1(:))} of Homgr(C,R) are
oppositely oriented. For A\ = a + by/—1 with a,b € R we compute t(\) = XA + A = 2a and
t(v/—1-A) = t(=b+ ay/—1) = —2b, so t = 2z and t(/—1(-)) = —2y. The change of basis matrix
going between {x,y} and {2z, —2y} is the diagonal matrix with diagonal entries 2 and —2, so its
determinant is —4 < 0. This gives the required sign discrepancy. |

Now let V' be a nonzero C-vector space with dimc V' = d. Using our initial choice of v/—1, any
C-linear functional ¢ : V' — C can be uniquely decomposed into real and imaginary parts, which is
to say that we can uniquely write £ = £, + ¢_\/—1 with R-linear functionals £,,/_ : Vg = R. (In
particular, if we negate /—1 then the “imaginary part” ¢_ of £ is negated but the “real part” £
of ¢ is unchanged.) The C-linearity condition on ¢ imposes a link between ¢4 and ¢_ through the
identity

Cy(V=1-0) +L_(V=1-0)V=1=l(=1-v) =V=1-L(v) = —L_(v) + L. (v)V—-1,
or equivalently ¢_(v) = —f, (v/=1-v). Both £, and /_ may be viewed as R-linear functionals on
V, which is to say that they are elements of (Vg)V.

Fix an ordered C-basis {vi,...,vg} of V, and let {z1,...,24} be the resulting ordered C-dual
basis of the C-linear dual VV. Let z; = z; + yj\/j be the decomposition of the C-dual basis
elements z; with z;,y; € (Vr)Y. The proof of Theorem 3.7 shows that the R-dual orientation
on (Vr)Y (dual to the canonical orientation py on Vg arising from the C-structure on V' and the
initial choice of \/—1) is represented by the ordered basis {z1,y1, ..., Zq,yq}, whereas the canonical
orientation arising from the C-structure on VV and the trace-isomorphism (VV)g ~ (Vg)V is
represented by {x1, —y1,...,%q, —ya}. This explicitly exhibits the sign discrepancy of (—1)¢, and
so for odd d one needs to be very careful to set down one’s convention for “dual orientation” in the
setting of C-vector spaces.

Remark 3.8. If V' is a nonzero C-vector space with dimc V' = d, how does the canonical orientation
py change when we change the initial choice of /=1 € C*? Changing this choice carries the ordered
R-basis {1,1/—1} of C to the ordered R-basis {1, —+/—1} that is in the opposite orientation class,
and so pc is replaced with —uc. Since py is obtained from ugd for any C-linear isomorphism
V ~ C% the identity (—uc)®? = (—l)dugd shows that py is changed by a sign of (—1)% when we
change the initial choice of v/—1. Hence, for even-dimensional C-vector spaces V there truly is a
canonical orientation of Vg that depends on the given C-linear structure on V but is otherwise
independent of all choices. We have likewise seen above that the notion of “dual orientation” in the
C-linear setting is especially well-behaved in the even-dimensional (over C) case. Thus, for even-
dimensional C-vector spaces there is an particularly pleasant theory of orientations, whereas for
odd-dimensional C-vector spaces there is a rather good theory but one does need to pay attention
to the choice of v/—1 and any intervention of dualities.



