
Math 396. The Morse Lemma

1. Motivation

Let V be a finite-dimensional nonzero R-vector space and let f : U → R be a Cp-function with
2 ≤ p ≤ ∞. Suppose for u0 ∈ U we have df(u0) = 0; that is, u0 is a critical point for f . We seek a
convenient coordinate system on a neighborhood of u0 in U that will help us to see how f behaves
near u0. Just as the second derivative helps us to understand the picture near critical points in the
one-variable case (assuming the second derivative doesn’t vanish!), namely that the local behavior
is concave up or concave down, for the general case we should look at the higher-dimensional second
derivative. Recall that for any u ∈ U , the Hessian Hf (u) : V × V → R is the bilinear form that is
just another name for the total second derivative D2f(u) : V → Hom(V,R) = V ∨ (the derivative
at u ∈ U of the Cp−1 mapping Df : U → Hom(V,R) sending u ∈ U to Df(u) ∈ Hom(V,R)), and
Hf (u) it is a symmetric bilinear form due to “equality of mixed partials”.

More concretely, if {xi} is a linear coordinate system dual to a choice of basis of V , then the
symmetric bilinear form Hf (u) : V × V → R is described by the symmetric matrix ((∂xi∂xjf)(u))
of second-order partials. The associated quadratic form qf (u) : V → R defined by qf (u) : v 7→
Hf (u)(v, v) is given in coordinates by

[qf (u)] : (x1, . . . , xn) 7→
∑
i,j

(∂xi∂xjf)(u)xixj ;

this is the 2nd-order part of the Taylor expansion of f at u (in xi-coordinates) when u = 0. The
intrinsic quadratic form qf (u) on V has a signature (ru, su) with ru + su ≤ n = dimV , so in
suitable linear coordinates that may depend on u it can be written as

∑ru
i=1 x

2
i −

∑su
j=1 x

2
ru+j . This

quadratic form is non-degenerate (i.e., ru + su = n = dimV ) if and only if Hf (u) : V × V → R
is a perfect pairing, which is to say det((∂xi∂xjf)(u)) 6= 0. A critical point u0 ∈ U for f is non-
degenerate if Hf (u0) is non-degenerate. (In treatments that do not give a coordinate-free definition
of the Hessian as we have done, one has to carry out the extra step of proving “by hand” that
the non-vanishing condition on this determinant is independent of the local coordinates; this is
a calculation with the transformation laws for second-order partials under change of coordinates,
using the hypothesis that the first-order partials all vanish at the point.)

Non-degeneracy at a critical point u0 is the generalization of the classical condition of non-
vanishing for the second derivative at a critical point in calculus. It is therefore reasonable to
expect that in the higher-dimensional case when a critical point is non-degenerate we may be able
to describe the local behavior of the function near the critical point. There is a general result, called
the Morse Lemma (named after M. Morse), that shows how this works. It is a pretty application
of the implicit function theorem.

2. Main result

The Morse Lemma in the C∞ case is this:

Theorem 2.1 (Morse). Let V be a finite-dimensional vector space and U ⊆ V an open set. Let
f : U → R be a C∞ function and suppose f has a non-degenerate critical point at u0 ∈ U . For a
suitable C∞ coordinate system

ϕ = (x1, . . . , xn) : U0 → Rn
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on an open U0 ⊆ U around u0 with ϕ(u0) = 0, the mapping [f ] = f ◦ ϕ−1 : ϕ(U0) → R that is “f
in the xi-coordinates” is given by

[f ](a1, . . . , an) =
r∑
i=1

a2
i −

s∑
j=1

a2
r+j

with (r, s) = (r, n − r) the signature of the quadratic form qf (u0) : V → R associated to the
symmetric bilinear form Hf (u0) on V .
Remark 2.2. With better technique, one can weaken the assumption of differentiability on f to be
that it is Cp with p ≥ 3 (rather than C∞) but the resulting coordinate system (U0, ϕ) is merely
Cp−2.
Remark 2.3. The equality of (r, s) with the signature of qf (u0) is automatic, as follows: since qf (u0)
is a coordinate-independent notion, to compute its signature we may use any C∞ coordinate system
we please. Using the one from ϕ gives [f ] =

∑r
i=1 x

2
i −
∑s

j=1 x
2
r+j near the origin, in terms of which

we compute q[f ](0) is the quadratic form
∑r

i=1 x
2
i −

∑s
j=1 x

2
r+j whose signature is obviously (r, s).

As a special case, when qf (u0) is positive-definite (resp. negative-definite) we may use the xi-
coordinate system to see visibly that f has a local minimum (resp. local maximum) at u0, and that
in the indefinite (but still non-degenerate!) case there are specific directions in which the values of
f go up from f(u0) and there are specific directions in which the values of f go down from f(u0)
(i.e., there is a “saddle point” at u0). Of course, the phenomenon of an indefinite non-degenerate
qf (u0) cannot happen in the 1-dimensional case, so it is a strictly higher-dimensional occurrence.

Let us first give two corollaries of the Morse Lemma, the first of which is quite striking.
Corollary 2.4. If u0 ∈ U is a non-degenerate critical point of f , then f has no other critical points
near u0.

Proof. Make a local C∞ change of coordinates near u0 via the coordinatization afforded by the
Morse Lemma. This reduces us to the trivial verification that for r+ s = n the function

∑r
i=1 x

2
i −∑s

j=1 x
2
r+j has only 0 as a critical point. �

Rather more special is:
Corollary 2.5. Keep notation and hypotheses as in the Morse Lemma. Suppose dimV = 2 and u0

is a critical point of f such that qf (u0) is neither positive-definite nor negative-definite, which is to
say that it has signature (1, 1). In suitable C∞ coordinates {x′, y′} near u0 we have [f ](a, b) = ab
for (a, b) near (0, 0).

Proof. The Morse Lemma gives local C∞ coordinates in which the C∞ function becomes u2 − v2.
Pass to the C∞ coordinate system {u+ v, u− v}. �

We shall deduce the Morse lemma from a more general result that is called “separation of
variables”.
Theorem 2.6. Let U be an open set in a finite-dimensional R-vector space V , and let f : U → R be
a C∞ function. Let u0 ∈ U be a non-degenerate critical point for f . There exists a C∞ coordinate
system ϕ = (x1, . . . , xn) : U0 → Rn on an open neighborhood of u0 in U with ϕ(u0) = 0 such that
[f ] = f ◦ ϕ−1 is given by εx2

1 + F on ϕ(U0) ⊆ Rn with F a C∞ function of x2, . . . , xn.
Remark 2.7. For n = 1, this theorem just says that if f is a smooth function near the origin in R
with f(0) = f ′(0) = 0 but f ′′(0) 6= 0 then f = εk2 for ε = ±1 and some smooth function k near the
origin with k(0) = 0 but k′(0) 6= 0 (as such an k provides a local C∞ coordinate near the origin on
the real line). Let us prove this special case directly. Since f(0) = 0 and f is smooth, f(t) = tg(t) for
a smooth function g near the origin. (Recall that we construct g using the Fundamental Theorem of
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Calculus: for fixed t we define h(y) = f(ty) for y ∈ [0, 1] and f(t) = h(1)−h(0) =
∫ 1

0 h
′ = tg(t) with

g(t) =
∫ 1

0 f
′(ty)dy a smooth function of t by the theorem on differentiation through the integral

sign.) Since g(0) = f ′(0) = 0 so repeating the process gives f(t) = t2G(t) with G smooth near the
origin. Thus, G(0) = f ′′(0) 6= 0, so if this has the same sign as ε = ±1 then f(t) = εt2(εG)(t) with
εG a smooth function that is positive at the origin. Hence, it admits a smooth positive square root,
so we get the result for f .

The Morse Lemma is an inductive consequence of the preceding theorem. Indeed, working in
the xi-coordinates, since the additive decomposition εx2

1 + F of [f ] “separates the variables”, the
non-degeneracy of the Hessian of [f ] at the origin (which is equivalent to that of f at 0) is equivalent
to the non-degeneracy of the Hessian of F at the origin in Rn−1. But the “separation of variables”
also shows that F must be a critical point at u0 since [f ] is, and so induction on n permits us to
compose x2, . . . , xn with a suitable C∞ change of coordinates on Rn−1 near the origin to make F
be a difference of sums of squares of separate coordinates. This gives the desired expression for f
in suitable local C∞ coordinates near u0.
Remark 2.8. The proof below, if applied to the formulation of separation of variables in the Cp

setting, only gives a coordinate change of class Cp−1. Hence, if we have finite p then inductively
using such a method to try to prove the Morse lemma only gives the result with a coordinate change
of class Cp−n with n = dimV ; in particular, for p < n it gives nothing and the constraint p ≥ n
forced by our method of proof is very unnatural when p is finite. It is largely for this reason that
we restrict attention to the C∞ case here.

3. Proof of separation of variables

By Remark 2.7, we may assume n = dimV > 1. Additive translation has no effect on derivative
maps, nor on Hessians (which are higher derivatives). Thus, we may suppose u0 = 0 in V . Since
the symmetric bilinear form Hf (u0) is nonzero, its associated quadratic form qf (u0) : V → R is
nonzero. By the structure theorem for quadratic spaces over R, we may choose linear coordinates
{y1, . . . , yn} on V such that qf (u0) is in standard diagonal form, say εy2

1 + . . . with ε = ±1. In
particular, (∂2

y1
f)(0) = ε. For |yi| small, consider

h(y1, . . . , yn) = (∂y1f)(y1, . . . , yn),

so ∂y1h = ∂2
y1
f is non-vanishing near the origin (since its value at the origin is ε 6= 0). Since 0 is a

critical point for f , clearly h(0) = 0. Since also n > 1, the implicit function theorem implies that
for each (y2, . . . , yn) near the origin there exists a unique g(y2, . . . , yn) near 0 satisfying

h(g(y2, . . . , yn), y2, . . . , yn) = 0,

(so g(0) = 0) and g a C∞ function.
Thus, if we fix c > 0 then by continuity of g we conclude that for |a2|, . . . , |an| sufficiently small

(depending on c) the function f(y1, a2, . . . , an) has a unique critical point at y1 = g(a2, . . . , an)
in the interval (−c, c) and the second derivative at this critical point has the same sign as ε. By
taking c possibly smaller, we can assume that |a2|, . . . , |an| < c is “sufficiently small”. Replacing f
with −f if necessary, we may suppose ε = 1, so f(y1, a2, . . . , an) on (−c, c) has a unique minimum
at y1 = g(a2, . . . , an) with positive second derivative there. Thus, for a2, . . . , an ∈ (−c, c), the
difference

y1 7→ f(y1, a2, . . . , an)− f(g(a2, . . . , an), a2, . . . , an)

is non-negative with a unique zero at y1 = g(a2, . . . , an) and a positive second derivative at this
minimum point.



4

Suppose that we can express the difference

k(y1, . . . , yn) = f(y1, . . . , yn)− f(g(y2, . . . , yn), y2, . . . , yn) ≥ 0

as the square of a C∞ function h near the origin. By defining the C∞ function F (y2, . . . , yn) =
f(g(y2, . . . , yn), y2, . . . , yn) near the origin we get f(y1, . . . , yn) = h2 +F (y2, . . . , yn), so we would be
done as along as {h, y2, . . . , yn} is a C∞ coordinate system near the origin. By the inverse function
theorem, this amounts to the condition that ∂y1h be nonzero at the origin. But such non-vanishing
is clear because for y1 near 0 we see that

h(y1, 0, . . . , 0)2 = f(y1, 0, . . . , 0)− f(g(0, . . . , 0), 0, . . . , 0) = f(y1, 0, . . . , 0)

has Taylor expansion y2
1 + . . . at the origin (as f(0) = 0, (∂y1f)(0) = 0, and (∂2

y1
f)(0) = ε = 1), so

the Taylor expansion of h(y1, 0, . . . , 0) at the origin must be ±y1 + . . . .
It remains to prove that k(y1, . . . , yn) is the square of a C∞ function near the origin. By the

inverse function theorem, y′1 = y1 − g(y2, . . . , yn), y2, . . . , yn is a C∞ coordinate system near the
origin. If we let K denote k expressed in these coordinates, then K(y′1, y2, . . . , yn) is a C∞ function
near the origin that vanishes for y′1 = 0. By applying the fundamental theorem of calculus to
u(t) = K(ty′1, y2, . . . , yn) with y′1, y2, . . . , yn all fixed,

K(y′1, y2, . . . , yn) = u(1)− u(0) =
∫ 1

0
(du/dt)dt = y′1

∫ 1

0
(∂1K)(ty′1, y2, . . . , yn) dt

with integrand that is C∞ in y′1, y2, . . . , yn (by differentiation through the integral sign and the C∞

property of K). Thus, we have made a factorization

(1) k(y1, . . . , yn) = (y1 − g(y2, . . . , yn))I(y1, . . . , yn)

with I a C∞ function near the origin. Fix y2 = a2, . . . , yn = an with |ai| < c. As we have
seen above, k(y1, a2, . . . , an) ≥ 0 has a critical point with positive second derivative at its unique
minimum y1 = g(a2, . . . , an) on (−c, c), with k(y1, a2, . . . , an) vanishing at this point, so the Taylor
expansion for k(y1, a2, . . . , an) at g(a2, . . . , an) begins in degree 2 with positive coefficient. In
particular, by considering Taylor expansions it follows from (1) that I(y1, a2, . . . , an) vanishes at
y1 = g(a2, . . . , an) and has positive derivative at this point. Running through the same integration
trick with the fundamental theorem of calculus again, we get

I(y1, y2, . . . , yn) = (y1 − g(y2, . . . , yn))J(y1, . . . , yn)

with J(g(y2, . . . , yn), y2, . . . , yn) > 0 for y1, . . . , yn near the origin. Feeding this into (1) and working
with y′1, y2, . . . , yn as the C∞ coordinates near the origin we have

K(y′1, y2, . . . , yn) = y′1
2
J̃(y′1, y2, . . . , yn)

with J̃(0, . . . , 0) > 0. We may therefore extract a C∞ positive square root of J̃ near the origin, so
indeed K (and thus k) is a square of a C∞ function near the origin.


