MATH 396. THE MORSE LEMMA

1. MOTIVATION

Let V' be a finite-dimensional nonzero R-vector space and let f : U — R be a CP-function with
2 < p < oo. Suppose for vy € U we have df(ug) = 0; that is, ug is a critical point for f. We seek a
convenient, coordinate system on a neighborhood of ug in U that will help us to see how f behaves
near ug. Just as the second derivative helps us to understand the picture near critical points in the
one-variable case (assuming the second derivative doesn’t vanish!), namely that the local behavior
is concave up or concave down, for the general case we should look at the higher-dimensional second
derivative. Recall that for any u € U, the Hessian Hy(u) : V x V — R is the bilinear form that is
just another name for the total second derivative D?f(u) : V — Hom(V,R) = V'V (the derivative
at u € U of the CP~! mapping Df : U — Hom(V, R) sending u € U to D f(u) € Hom(V,R)), and
H¢(u) it is a symmetric bilinear form due to “equality of mixed partials”.

More concretely, if {z;} is a linear coordinate system dual to a choice of basis of V, then the
symmetric bilinear form Hy(u) : V' x V — R is described by the symmetric matrix ((0z,0:; f)(u))
of second-order partials. The associated quadratic form q¢(u) : V' — R defined by gqf(u) : v —
H¢(u)(v,v) is given in coordinates by

[Qf(u)] : (.’L’l, s ,$n) = Z(amzamjf)(u)xlxja

i!j

this is the 2nd-order part of the Taylor expansion of f at w (in x;-coordinates) when u = 0. The
intrinsic quadratic form ¢¢(u) on V has a signature (ry,s,) with r, + s, < n = dimV, so in
suitable linear coordinates that may depend on u it can be written as »_.*; a:? — Zjil xzu 4;- This
quadratic form is non-degenerate (i.e., 7y, + s, = n = dimV) if and only if Hy(u) : V xV — R
is a perfect pairing, which is to say det((9x,0:, f)(u)) # 0. A critical point ug € U for f is non-
degenerate if Hy(ug) is non-degenerate. (In treatments that do not give a coordinate-free definition
of the Hessian as we have done, one has to carry out the extra step of proving “by hand” that
the non-vanishing condition on this determinant is independent of the local coordinates; this is
a calculation with the transformation laws for second-order partials under change of coordinates,
using the hypothesis that the first-order partials all vanish at the point.)

Non-degeneracy at a critical point ug is the generalization of the classical condition of non-
vanishing for the second derivative at a critical point in calculus. It is therefore reasonable to
expect that in the higher-dimensional case when a critical point is non-degenerate we may be able
to describe the local behavior of the function near the critical point. There is a general result, called
the Morse Lemma (named after M. Morse), that shows how this works. It is a pretty application
of the implicit function theorem.

2. MAIN RESULT

The Morse Lemma in the C*° case is this:

Theorem 2.1 (Morse). Let V' be a finite-dimensional vector space and U C 'V an open set. Let
f:U — R be a C* function and suppose f has a non-degenerate critical point at ug € U. For a
suitable C'*° coordinate system

o= (z1,...,2n) : Uy — R"
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on an open Uy C U around ug with p(ug) = 0, the mapping [f] = fo e~ ' : o(Uy) — R that is “f
in the x;-coordinates” is given by

[fl(a, ... an) = Za? - Za72"+j
i1 j=

with (r,s) = (r,n — r) the signature of the quadratic form qf(ug) : V. — R associated to the
symmetric bilinear form Hy(ug) on V.
Remark 2.2. With better technique, one can weaken the assumption of differentiability on f to be
that it is CP with p > 3 (rather than C°°) but the resulting coordinate system (Up, ¢) is merely
cr—2,
Remark 2.3. The equality of (r, s) with the signature of g (uo) is automatic, as follows: since g (uo)
is a coordinate-independent notion, to compute its signature we may use any C'*° coordinate system
we please. Using the one from ¢ gives [f] = YI_; 22 — ijl 2 +; hear the origin, in terms of which
we compute q(7(0) is the quadratic form Y 7_; 27 — > -1 x2 +; Whose signature is obviously (r, s).
As a special case, when gy (ug) is positive-definite (resp. negative-definite) we may use the x;-
coordinate system to see visibly that f has a local minimum (resp. local maximum) at ug, and that
in the indefinite (but still non-degenerate!) case there are specific directions in which the values of
f go up from f(up) and there are specific directions in which the values of f go down from f(up)
(i.e., there is a “saddle point” at wug). Of course, the phenomenon of an indefinite non-degenerate
qf(up) cannot happen in the 1-dimensional case, so it is a strictly higher-dimensional occurrence.
Let us first give two corollaries of the Morse Lemma, the first of which is quite striking.

Corollary 2.4. If ug € U is a non-degenerate critical point of f, then f has no other critical points
near ug.

Proof. Make a local C*° change of coordinates near uy via the coordinatization afforded by the
Morse Lemma. This reduces us to the trivial verification that for r + s = n the function >°_, #7 —

> =1 x2 +; has only 0 as a critical point. [

Rather more special is:

Corollary 2.5. Keep notation and hypotheses as in the Morse Lemma. Suppose dimV = 2 and ug
is a critical point of f such that qr(ug) is neither positive-definite nor negative-definite, which is to
say that it has signature (1,1). In suitable C*° coordinates {x',y'} near ug we have [f](a,b) = ab
for (a,b) near (0,0).

Proof. The Morse Lemma gives local C* coordinates in which the C* function becomes u? — v?.

Pass to the C*° coordinate system {u + v,u — v}. [

We shall deduce the Morse lemma from a more general result that is called “separation of
variables”.

Theorem 2.6. Let U be an open set in a finite-dimensional R-vector space V', and let f : U — R be
a C*® function. Let ug € U be a non-degenerate critical point for f. There exists a C* coordinate
system @ = (x1,...,xy,) : Uy — R™ on an open neighborhood of ug in U with ¢(ug) = 0 such that
[f] = fop ! is given by ex? + F on p(Up) C R™ with F a C* function of xa,...,Ty.

Remark 2.7. For n = 1, this theorem just says that if f is a smooth function near the origin in R
with £(0) = £/(0) = 0 but f”(0) # 0 then f = ck? for ¢ = +1 and some smooth function k near the
origin with £(0) = 0 but &’(0) # 0 (as such an k provides a local C* coordinate near the origin on
the real line). Let us prove this special case directly. Since f(0) = 0 and f is smooth, f(t) = tg(t) for
a smooth function g near the origin. (Recall that we construct g using the Fundamental Theorem of



3

Calculus: for fixed ¢ we define h(y) = f(ty) for y € [0,1] and f(t) = h(1)—h(0) = fol h = tg(t) with
g(t) = fol f'(ty)dy a smooth function of ¢ by the theorem on differentiation through the integral
sign.) Since g(0) = f/(0) = 0 so repeating the process gives f(t) = t2G(t) with G smooth near the
origin. Thus, G(0) = f”(0) # 0, so if this has the same sign as € = £1 then f(t) = et?(¢G)(t) with
G a smooth function that is positive at the origin. Hence, it admits a smooth positive square root,
so we get the result for f.

The Morse Lemma is an inductive consequence of the preceding theorem. Indeed, working in

the z;-coordinates, since the additive decomposition ez? 4+ F of [f] “separates the variables”, the
non-degeneracy of the Hessian of [f] at the origin (which is equivalent to that of f at 0) is equivalent
to the non-degeneracy of the Hessian of F at the origin in R"~!. But the “separation of variables”
also shows that F' must be a critical point at ug since [f] is, and so induction on n permits us to
compose g, ..., T, with a suitable C* change of coordinates on R"~! near the origin to make F
be a difference of sums of squares of separate coordinates. This gives the desired expression for f
in suitable local C*° coordinates near ug.
Remark 2.8. The proof below, if applied to the formulation of separation of variables in the CP
setting, only gives a coordinate change of class CP~!. Hence, if we have finite p then inductively
using such a method to try to prove the Morse lemma only gives the result with a coordinate change
of class CP~" with n = dim V; in particular, for p < n it gives nothing and the constraint p > n
forced by our method of proof is very unnatural when p is finite. It is largely for this reason that
we restrict attention to the C'° case here.

3. PROOF OF SEPARATION OF VARIABLES

By Remark 2.7, we may assume n = dim V' > 1. Additive translation has no effect on derivative
maps, nor on Hessians (which are higher derivatives). Thus, we may suppose ug = 0 in V. Since
the symmetric bilinear form H¢(ug) is nonzero, its associated quadratic form g¢(ug) : V' — R is
nonzero. By the structure theorem for quadratic spaces over R, we may choose linear coordinates
{y1,...,yn} on V such that gs(up) is in standard diagonal form, say ey? + ... with ¢ = £1. In
particular, (651 £)(0) = €. For |y;| small, consider

h(yh' . 'ayn) = (aylf)(yl? cee 7yn)a

s0 Oy, h = 851 f is non-vanishing near the origin (since its value at the origin is € # 0). Since 0 is a
critical point for f, clearly hA(0) = 0. Since also n > 1, the implicit function theorem implies that
for each (y2,...,yy) near the origin there exists a unique g(y2, ..., y,) near 0 satisfying

h(g(y27 7yn)7y2,---7yn) = 07

(so g(0) =0) and g a C* function.

Thus, if we fix ¢ > 0 then by continuity of g we conclude that for |as|,. .., |a,| sufficiently small
(depending on c¢) the function f(yi,as,...,a,) has a unique critical point at y; = g(ag,...,an)
in the interval (—c,c) and the second derivative at this critical point has the same sign as . By
taking ¢ possibly smaller, we can assume that |as],...,|a,| < cis “sufficiently small”. Replacing f
with — f if necessary, we may suppose ¢ = 1, so f(y1,a2,...,a,) on (—c¢,c) has a unique minimum
at y1 = g(ag,...,a,) with positive second derivative there. Thus, for as,...,a, € (—c,c), the
difference

Y1 — f(ylaa27"°7an) *f(g(CLQ,...,(In),CLQ,...,an)
is non-negative with a unique zero at y; = g(aa,...,a,) and a positive second derivative at this
minimum point.



Suppose that we can express the difference

k(yl)"'?yn) = f(yl?""yn) - f(g(y27"'7yn)7y27"‘7yn) Z 0
as the square of a C*° function h near the origin. By defining the C* function F'(y2,...,yn) =

flg(y2, .-, yn), Y2, - - -, yn) near the origin we get f(y1,...,yn) = R2+F(y2,...,Yn), 50 we would be
done as along as {h,y2,...,yn} is a C* coordinate system near the origin. By the inverse function
theorem, this amounts to the condition that J,, h be nonzero at the origin. But such non-vanishing
is clear because for y; near 0 we see that

h(ylaoa'--70)2 - f(y1707"'70) _f(g(oa'--vo)aoa-"70) = f(yl?ow-'ao)
has Taylor expansion yf + ... at the origin (as f(0) = 0, (9, f)(0) = 0, and (97, f)(0) =& = 1), so
the Taylor expansion of h(y1,0,...,0) at the origin must be +y; + . ...

It remains to prove that k(y1,...,y,) is the square of a C° function near the origin. By the
inverse function theorem, yi = y1 — g(y2,---,Yn), Y2, ..., Yn is a C°° coordinate system near the
origin. If we let K denote k expressed in these coordinates, then K (v, y2,...,yn) is a C* function

near the origin that vanishes for y; = 0. By applying the fundamental theorem of calculus to
u(t) = K(tyy, ya, ..., yn) with ¢4, yo, ..., y, all fixed,

1 1
KWy ) = u(l) — u(0) = /0 (du/dt)dt = /0 (K (15, )

with integrand that is C°° in ¢/, ya, . .., y, (by differentiation through the integral sign and the C'*
property of K). Thus, we have made a factorization

(1) k(yi, - yn) = (1 — (Y2, - ) I(W1, - - 4n)

with I a C* function near the origin. Fix yo = ag,...,yn = a, with |a;| < ¢. As we have
seen above, k(y1,az2,...,a,) > 0 has a critical point with positive second derivative at its unique
minimum y; = g(ag, ..., a,) on (—c,c), with k(y1, as, ..., a,) vanishing at this point, so the Taylor
expansion for k(yi,as,...,a,) at g(az,...,a,) begins in degree 2 with positive coefficient. In
particular, by considering Taylor expansions it follows from (1) that I(yi,as,...,a,) vanishes at
y1 = g(ag,...,a,) and has positive derivative at this point. Running through the same integration

trick with the fundamental theorem of calculus again, we get

I(y17y27 v 7yn) = (yl - 9(?]2, s 7yn))J(y17 R 7yn)
with J(g(y2, .- Yn)s Y2, --,Yn) > 0for yi,...,y, near the origin. Feeding this into (1) and working
with ¢}, y2, ..., yn as the C° coordinates near the origin we have
9~
KWi,y2, - yn) =91 J(W1sy2, - Yn)

with J~(0, ...,0) > 0. We may therefore extract a C* positive square root of J near the origin, so
indeed K (and thus k) is a square of a C*° function near the origin.



