
Math 396. Modules and derivations

1. Preliminaries

Let R be a commutative ring. (This is the notion obtained by removing the multiplicative-inverse
axiom in the definition of a field.) A module M over R is defined exactly like a vector space over a
field except that we use R in the role of the field. (The lack of multiplicative inverses implies that
if rm = 0 for some m ∈ M and r ∈ R then it need not happen that r = 0 or m = 0. Consider
R = Z and M the integers modulo 10, with r = 5 and m = 2 mod 10. The structure theory of
modules over commutative rings is an enormous active branch of modern mathematics.) A slightly
peculiar example of a ring is the zero ring 0; this is the only ring in which 0 = 1 (since if 0 = 1
in a commutative ring then for any element r we have r = r · 1 = r · 0 and this vanishes by the
usual argument with axiomatics for addition and multiplication). When we consider M = R as
an R-module, it is understood that we do so by using multiplication and addition from the ring
structure of R (just as we consider a field as a vector space over itself).

The notions of R-linear map, direct sum (of finitely many R-modules), R-submodule, and quotient
of an R-module by an R-submodule are defined exactly as in the case of vector spaces over fields
(though we no longer have bases, so matrices play no role in general and there is no concept of
dimension!); direct sums and quotients have the same mapping properties as for vector spaces
(with the same proofs). The aim of this handout is to explore the algebraic side of modules and
derivations, to put in perspective some of our later considerations with vector bundles (especially
the tangent bundle).

2. Modules

An ideal J in R is an R-submodule of R (i.e., J is an additive subgroup of R and am ∈ J for all
a ∈ R and m ∈ J).
Example 2.1. It is easy to check that J = 10Z is an ideal inside of R = Z. For the local ring Ox at a
point x on a Cp premanifold with corners (X,O), the kernel mx of the evaluation map ex : Ox → R
is an ideal.

If M is an R-module and J is an ideal in R, we define JM ⊆ M to be the set of finite sums∑
rimi with mi ∈ M and ri ∈ J . This is not the set of multiples rm with r ∈ J and m ∈ M , as

this set is usually not preserved under addition. For example, if R = R[x, y], M = R⊕R, and J is
the set of polynomials with vanishing constant term, then J is an ideal in R (check!) and the set
of multiples rm ∈M with r ∈ J and m ∈M contains elements such as (x, 0), (0, y) ∈M , but their
sum (x, 0) + (0, y) = x.(1, 0) + y.(0, 1) is not of the form rm with r ∈ J and m ∈ M . Indeed, if
m = (f, g) then rm = (rf, rg) and hence we would have rf = x and rg = y for some polynomials
r, f, g ∈ R[x, y] with r(0) = 0. But consideration of least-degree terms in r, f , and g readily gives
a contradiction.
Lemma 2.2. For an ideal J in R, JM is an R-submodule of M . Moreover, R/J admits a natural
structure of commutative ring making R → R/J a ring homomorphism, and M/JM is thereby
naturally a module over R/J .

Proof. The stability of JM ⊆ M under addition follows from the definition of JM as a collection
of certain finite sums, and for r ∈ R and

∑
rimi ∈ JM with ri ∈ J and mi ∈ M we have

r · (
∑
rimi) =

∑
(rri)mi with rri ∈ J because J is an ideal of R.

We make R/J into a ring by using addition and multiplication of representatives. This must be
proved to be well-defined (and then the ring axioms are inherited from R). The case of addition
goes exactly as in the case of quotient vector spaces, and for multiplication we have to check that
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if r, r′ ∈ R and x, x′ ∈ J then (r + x)(r′ + x′) − rr′ ∈ J . This difference is rx′ + xr′ + xx′, with
each term in J since x, x′ ∈ J and J is an ideal. We make M/JM an R/J -module by using the
R-module structure on representatives, and the well-definedness goes in the same way as for the
ring structure on R/J . �

We now apply the notion of quotient M/JM of a R-module M modulo an ideal J of R in order to
show how linear algebra is a helpful device in the study of modules over general commutative rings.
A nonzero module M over R is finite free of rank n > 0 over R if there exists a finite R-basis of size
n; that is, elements m1, . . . ,mn ∈M such that every m ∈M has a unique expression m =

∑
rimi

with ri ∈ R. It is a fact of life (that makes commutative algebra interesting) that most modules
are not free:
Example 2.3. Let R = R[x, y] and J be the ideal of polynomials with vanishing constant term.
This is “finitely generated” in the sense that x, y ∈ J and J is the set of R-linear combinations of x
and y: each r ∈ J has the form fx+ gy for f, g ∈ R (such f, g are rather non-unique; for example,
xy + yx2 − y = (y + yx)x+ (−1)y = (y)x+ (x2 − 1)y and so on). But it can be proved with a tiny
bit of knowledge of commutative algebra (or by hand, if you try) that J does not have an R-basis.

There are some very important theorems that provide criteria to ensure that certain kinds of
nonzero modules do have R-bases, and such freeness results are extremely powerful. A natural
question on the theme of modules with R-bases is this: if a nonzero M has R-bases with sizes n
and n′, does n necessarily equal n′? We now show how to give an affirmative answer by reducing
the question to the known case when R is a field (i.e., the theory of dimension in linear algebra)!
Lemma 2.4. If M is a nonzero R-module that is finite free of rank n > 0 over R then M/JM is
finite free of rank n over R/J for every ideal J ⊆ R with J 6= R.

Proof. Assume that M is R-free with a basis of mi’s. Let mi ∈ M/JM be the image of mi, so
we need to prove that there are an R/J -basis of M/JM . Each element m ∈ M/JM is the image
of some m ∈ M , so m =

∑
aimi and hence (by the definition of the R/J -module structure on

M/JM) we have m =
∑
aimi with ai ∈ R/J the image of ai. This gives the spanning property,

and for uniqueness we must prove that if ai ∈ R/J with
∑
aimi = 0 in M/JM then ai = 0 for all

i. If we pick ai ∈ R lifting ai, then the vanishing hypothesis says
∑
aimi ∈ M lies in JM . Thus,

by the basis property of the mi’s, to infer ai ∈ J for all i (and hence ai = 0 in R/J for all i) we just
need to prove that every element of JM has its unique basis expansion

∑
bimi with all bi ∈ J . By

definition, elements of JM as finite sums
∑
rkµk with rk ∈ J and µk ∈M . Writing µk =

∑
cikmi

with cik ∈ R, we get
∑

k rkµk =
∑

i(
∑

k cikrk)mi, and
∑

k cikrk ∈ J for all i because rk ∈ J for all
k and J is an ideal. This completes the proof that M/JM is R-free on the set of mi’s. �

Now we suppose M is R-free and nonzero with ranks n and n′, and we want to prove that
necessarily n = n′. Suppose for a moment that there exists an ideal J in R such that R/J is a
field. (e.g., R = Ox and J = mx, with R/J ' R for a Cp premanifold (X,O) and a point x ∈ X).
Thus, M/JM is a vector space over this field, so it a well-defined notion of dimension, which is to
say that all of its bases have the same size. The preceding lemma shows that there are bases of
sizes n and n′, so indeed n = n′. But why does such an ideal J exist?

The cases of relevance to us are local rings R = Ox at points on premanifolds with corners, so
there is no problem there (take J = mx). For most rings that arise “in nature” it turns out to not
be too difficult to prove the existence of such so-called “maximal ideals” (the rings I have in mind
are noetherian rings, for which there is a very well-developed theory). By using Zorn’s Lemma, one
can prove by the magic of far-out logic that such an ideal J exists in any nonzero ring R. But if M
is a nonzero module over a ring R then R has to be nonzero (since if 0 = 1 in R then for all m ∈M
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we have m = 1 ·m = 0 ·m and this vanishes by the usual axiomatics as in the case of vector spaces
over a field). Hence, we are done.

3. Derivations over a ring

A derivation from R into an R-module M is an additive mapping D : R → M that satisfies
D(rr′) = rD(r) + r′D(r′) for all r, r′ ∈ R.
Lemma 3.1. For any derivation D : R → M to an R-module, D(1) = 0 and if D,D′ : R ⇒ M
are two derivations then so is aD + a′D′ : R→M for any a, a′ ∈ R.

Proof. Since D(1) = D(1 · 1) = 1 ·D(1) + 1 ·D(1) = D(1) +D(1) in M , we have D(1) = 0. It is a
trivial calculation to check that R-linear combinations of derivations are derivations. �

Example 3.2. Taking M = R and R = R[x1, . . . , xn], the standard partials ∂xj : R → R are
R-linear derivations. This amounts to the Leibnitz rule. Thus, for any fj ∈ R[x1, . . . , xn], the
operator D =

∑
fj∂xj carrying h to

∑
fj(∂h/∂xj) is an R-linear derivation (and such fj ’s are

uniquely determined: D(xj) = fj for all j). Somewhat more amusingly, this gives all R-linear
derivations of R[x1, . . . , xn] viewed as an R[x1, . . . , xn] in the natural way. More specifically, if D
is an R-linear self-derivation of R[x1, . . . , xn], then we claim D −

∑
D(xj)∂xj = 0.

Let ∂ denote this difference, so it is an R-linear self-derivation. Since ∂ is R-linear we have
∂(c) = ∂(c · 1) = c · ∂(1) = 0 for all c ∈ R. Also, by construction ∂(xj) = 0 for all j. Thus, by
R-linearity, ∂ kills all polynomials with top degree at most 1. Now we argue by induction to show
it kills all polynomials f with top degree at most n for n ≥ 2. By expressing f as an R-linear
combination of monomials, it suffices to prove that the R-linear ∂ kills all monomials with degree
at most n. Any such monomial has the form xih with h of degree at most n− 1, and

∂(xih) = h∂(xi) + xi∂(h) = xi∂(h)

since ∂(xi) = 0. But by induction ∂(h) = 0. Hence, we conclude ∂ = 0. This establishes the desired
expression for D.

Theorem 3.3. If D,D′ : R ⇒ M are two derivations, the Lie bracket [D,D′]
def
= D ◦D′ −D′ ◦D

is also a derivation of R into M , and the (cyclic) Jacobi identity

[D, [D′, D′′]] + [D′, [D′′, D]] + [D′′, [D,D′]] = 0

holds for any three derivations from R into M . Moreover,

[rD, r′D′] = rr′[D,D′] + rD(r′)D′ − r′D′(r)D
for all r, r′ ∈ R.

Proof. The additivity of [D,D′] is clear, and for the Leibnitz identity we just compute:

[D,D′](rr′) = D(D′(rr′))−D′D(rr′) = D(rD′(r′) + r′D′(r))−D′(rD(r′) + r′D(r)),

and this is

D(r)D′(r′) + rDD′(r′) +D(r′)D′(r)r′DD′(r)−D′(r)D(r′) + rD′D(r′) +D′(r′)D(r) + r′D′D(r).

Cancellation leaves us with r[D,D′](r′) + r′[D,D′](r). The Jacobi identity is a direct calculation
with the associative law and cancellations (no need to even evaluate on specific elements), and the
proposed formula for [rD, r′D′] is given by evaluation of both sides on an arbitrary r′′ ∈ R. �


