
Math 396. The Möbius strip in R3

1. Introduction

In the handout on quotients by group actions, the Möbius stripMa (with height 2a) was defined as
an abstract smooth manifold made as a quotient of (−a, a)×S1 by a free and properly discontinuous
action by the group of order 2. Our purpose here is to work out some tangent space calculations
to verify that the explicit “definition” of the Möbius strip via trigonometric parameterization as
given in the course text (on page 10) is really a smooth embedding of our abstract Möbius strip of
height 2a into R3.

Using the C∞ isomorphism between R/2πZ and the circle S1 ⊆ R2 via θ 7→ (cos θ, sin θ) (which
carries θ 7→ π + θ over to w 7→ −w on S1), we consider the standard parameter θ ∈ R as a local
coordinate on S1. For finite a > 0, consider the C∞ map f : (−a, a)× S1 → R3 defined by

(t, θ) 7→ (2a cos 2θ + t cos θ cos 2θ, 2a sin 2θ + t cos θ sin 2θ, t sin θ).

Since f(−t, π + θ) = f(t, θ) by inspection, it follows from the universal property of the quotient
map (−a, a)× S1 →Ma that f unique factors through this via a C∞ map f : Ma → R3. Our goal
is to prove that f is an embedding and to use this viewpoint to understand some basic properties
of the Möbius strip.

2. Embedding

Theorem 2.1. The map f is an immersion.
Note that we do not yet claim f is an embedding (i.e., also injective and even a homeomorphism

onto its image).

Proof. We first reduce the problem to working with f , as f is given by a simple explicit formula
across its entire domain (Ma does not have global coordinates). Of course, working locally for f is
“the same” as working locally for f , so the reduction step to working with f isn’t really necessary
if one says things a little differently. However, it seems a bit cleaner to just make the reduction
right away and so to thereby work with the map f that feels a bit more concrete than the map
f at the global level). Let p : (−a, a) × S1 → Ma be the natural quotient map. Each point in
Ma has the form p(ξ0) for some ξ0 and the Chain Rule gives that the injection df(ξ0) factors as
df(p(ξ0)) ◦ dp(ξ0) with dp(ξ0) an isomorphism (as p is a local C∞ isomorphism, via the theory
of quotients by free and properly discontinuous group actions). Hence, the tangent map for f is
injective at p(ξ0) if and only if the tangent map for f is injective at ξ0. It is therefore enough (even
equivalent!) to prove that f is an immersion.

For ξ0 = (t0, θ0), df(ξ0) sends the basis vectors ∂t|ξ0 and ∂θ|ξ0 of Tξ0((−a, a) × S1) to the
following respective vectors in Tf(ξ0)(R3) ' R3 (using the ordered basis {∂x|f(ξ0), ∂y|f(ξ0), ∂z|f(ξ0)}
of Tf(ξ0)(R3)):

(cos θ0 cos 2θ0, cos θ0 sin 2θ0, sin θ0),
and

(−4a sin 2θ0 + t0(− sin θ0 cos 2θ0−2 cos θ0 sin 2θ0), 4a cos 2θ0 + t0(− sin θ0 sin 2θ0 +2 cos θ0 cos 2θ0), t0 cos θ0).

A direct calculation shows that these two vectors in R3 are perpendicular with respective squared
lengths 1 and 4a+2t0 cos θ0. Thus, df(ξ0) sends a basis of Tξ0((−a, a)×S1) to a pair of independent
vectors in Tf(ξ0)(R3), so f is an immersion. �

Theorem 2.2. The map f is an embedding.
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Proof. To prove that f is injective, it suffices to prove that f(t, θ) = f(t′, θ′) if and only if (t′, θ′) =
(t, θ) or (t′, θ′) = (−t, π + θ). By direct calculation, if f1, f2, f3 are the component functions of f
then f2

1 + f2
2 = (2a + t cos θ)2, and so since 2a + t cos θ > 0 (as |t| < a) we have 2a + t cos θ =√

f2
1 + f2

2 . Hence, f(t, θ) = f(t′, θ′) implies t cos θ = t′ cos θ′. Using the third component function,
t sin θ = t′ sin θ′. Squaring and adding, t2 = t′2, so t′ = ±t. From the definition of f , if t = t′ = 0
then cos 2θ = cos 2θ′ and sin 2θ = sin 2θ′, so 2θ − 2θ′ ∈ 2πZ. Hence, in such cases θ − θ′ ∈ πZ,
which is to say θ′ = θ or θ′ = θ + π (as the angular coordinate only matters up to adding 2πZ). If
instead t and t′ are both nonzero then t′ = εt for a unique sign ε = ±1, and cancelling the nonzero
t gives cos θ′ = ε cos θ and sin θ′ = ε sin θ. In the case ε = 1 (i.e., t′ = t) this gives θ′ = θ, and in
the case ε = −1 (i.e., t′ = −t) this gives θ′ = θ + π. This verifies the injectivity of f .

To prove that the injective immersion f is an embedding, we have to prove that it is a home-
omorphism onto its image. We may use the sequential criterion for continuity of the inverse (as
our spaces are second countable and Hausdorff), so we have to prove that if f(tn, θn) → f(t, θ) in
R3 then the images of the (tn, θn)’s in Ma converge to the image of (t, θ) in Ma. By changing the
choices of representatives in (−a, a)× S1, we may assume tn ≥ 0 for all n and t ≥ 0. We shall first
prove (tn, θn)→ (t, θ) in (−a, a)× S1 if t > 0. Since

t2n = (tn cos θn)2 + (tn sin θn)2 = (
√
f1(tn, θn)2 + f2(tn, θn)2 − 2a)2 + f3(tn, θn)2,

we have t2n → t2, so tn = |tn| → |t| = t. Also, we likewise get tn cos θn → t cos θ and tn sin θn →
t sin θ. So far this works if t ≥ 0. If t 6= 0 then tn/t → 1, so cos θn → cos θ and sin θn → sin θ. By
trigonometry, this forces θn → θ in S1. If t = 0 then by the same method as above we can still
infer tn → 0, and so the product sntn tends to 0 for any bounded sequence {sn}. Thus, from the
definition of f we may infer from the convergence

f(tn, θn)→ f(t, θ) = f(0, θ) = (2a cos 2θ, 2a sin 2θ, 0)

and the condition tn → 0 that 2a cos 2θn → 2a cos 2θ and 2a sin 2θn → 2a sin 2θ. Since 2a 6= 0, it
follows via trigonometry that 2θn → 2θ in S1, whence for large n each θn−θ ∈ R/2πZ is very close
to either 0 mod 2πZ or π mod 2πZ. We may change each θn by an arbitrary integral multiple of
π (at the expense of perhaps negating tn, which does not affect the condition tn → 0), so we get
θn − θ → 0 in R/2πZ. Thus, θn → θ in S1 after making this modification in our initial choices of
representatives in (−a, a)× S1 for the chosen sequence in Ma. �

3. A bit of topology

As an application of our knowledge that the “explicit” Möbius strip in R3 (via the parameteric
formulas for the common images of f and f , coupled with the picture from page 10 in the text
that shows this really is the Möbius strip from real life), let’s see how to explain the elementary
observation that cutting a paper model of a Möbius strip along its central line does not cause the
piece of paper to fall into two pieces (as one might initially expect). We would like to understand
mathematically what is going on.

The C∞ inclusion S1 → (−a, a)× S1 via θ 7→ (0, θ) is compatible with the antipodal map on S1

and with the map (t, θ) 7→ (−t, π+ θ) on (−a, a)× S1, so we get an induced C∞ map on quotients
that is a closed C∞ submanifold (by the general good behavior of “nice” group-action quotients
and closed submanifolds, as explained in the handout on quotients by group actions). Near the end
of the handout on quotients by group actions, it was shown that the squaring map w 7→ w2 from S1

to S1 gives a C∞ isomorphism of S1 with the quotient of S1 by the antipodal map w 7→ −w. Thus,
we get a quotient circle C as a C∞ closed submanifold in Ma (the image of {0}×S1 ⊆ (−a, a)×S1).
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Inside of the “real world” model f(Ma), the central circle is f(C) (why?), and so the assertion
of interest is that f(Ma) − f(C) is connected. Since f is a homeomorphism onto its image, it is
equivalent to say that the abstract complement Ma − C is connected. Note that it is crucial we
worked with f and not f , since C = f({0} × S1) yet

(−a, a)× S1 − {0} × S1 = ((−a, a)− {0})× S1

is disconnected. (There is no inconsistency here, since f is not even injective, let alone an em-
bedding, so it could well carry a disconnected subset of its source onto a connected subset of its
image.)

To see the geometry of Ma − C, we look at the map

((−a, a)− {0})× S1 →Ma − C.
This map is the quotient by (t, θ) 7→ (−t, θ + π), so the formation of this quotient simply involved
identifying (−a, 0)×S1 with (0, a)×S1 via (−t, θ)↔ (t, π+ θ) for 0 < t < a. More specifically, the
connected component (0, a)× S1 maps onto Ma −C via a bijective C∞ local isomorphism, so this
map is necessarily a C∞ isomorphism. Thus, Ma−C is connected since (0, a)×S1 is connected. Note
that the subset f(Ma)−f(C) is exactly f((0, a)×S1), with the map f : (0, a)×S1 → f(Ma)−f(C)
a homeomorphism (and even a C∞ isomorphism).


