MATH 396. OPERATIONS WITH PSEUDO-RIEMANNIAN METRICS

We begin with some preliminary motivation. Let (V, (:,-)) be a finite-dimensional vector space
endowed with a non-degenerate symmetric bilinear form (perhaps not positive-definite). In linear
algebra, we have seen how to carry out several operations in the presence of this structure. For
example, if V' is a subspace of V' then we can form its orthogonal complement V' L (the subspace of
v € V such that (v,v') = 0 for all v’ € V'), and this is also a complementary subspace: VeVt s v
is an isomorphism. We have also seen in §2 of the old handout on orientations how to endow V",
Sym™(V), and A"(V) with non-degenerate symmetric bilinear forms, as well as V"V (the “dual”
bilinear form), and that using the one on V' likewise gave rise to non-degenerate symmetric bilinear
forms on (VV)®" Sym™(VV), and A"(V") such that the natural isomorphisms

(VV)or = (VEM)Y, Sym™(VY) = (Sym™V)Y, A"(VY) =~ (A"V)Y
are compatible with the bilinear forms built on the left via the dual form on VV and the bilinear
forms on the right that are dual to the ones built above on the tensor, symmetric, and exterior
powers of V.

Rather concretely, on V®" Sym"™(V), and A"V the induced symmetric bilinear forms were
characterized uniquely by the conditions
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and on V'V the dual bilinear form was defined by (¢, ¢')yv = (v,v") where £ = (v,-) and ¢ = (v/, ).
For example, if {v;} is a basis of V then the element of (A"V)¥ @ A"(V)V ~ A"(VV)@ A" (V) that
corresponds to (-, *) n(yy 18
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because of two facts: (i) det((vj,,vj)) = (vj; A ... vj,, 050 A= Avj)anyy, and (ii) under the
isomorphism (A"V)Y =~ A™(V) the basis of A"(V) given by wedge products of v}’s is the dual
basis to the basis of A”(V') given by wedge products of v;’s.

In Corollary 2.3 of the orientation handout, we saw explicitly how to use an orthonormal basis
{e;} of V' (i.e., (ej,ej) =0 for i # j and (e;, e;) = £1 for all i) to build orthonormal bases of all of
these auxiliary spaces, and so in particular when (-, ) is positive-definite it follows that the induced
bilinear forms on all of these auxiliary spaces are also positive-definite. That is, if V' is an inner
product space then all of the spaces

VE Sym™(V), A"(V), VY, (V)™ Sym™ (VY), A"(VY)

are naturally inner product spaces, and from an orthonormal basis of V' we can build orthonormal
bases on all of these other spaces. For example, the dual basis to an orthonormal basis is orthonor-
mal, and tensor and wedge products of members of an orthonormal basis are orthonormal. Recall
that for symmetric powers there were certain factorials that intervened in the formation of an or-
thonormal basis from one for V', ultimately due to the intervention of factorials in the description
of the duality between Sym” (V) and Sym™(V") in terms of a basis of V and its dual basis in V.

Our aim here is to show how all of these matters can be carried out for vector bundles endowed
with a pseudo-Riemannian metric. In a sense, the real work all took place in linear algebra: all we
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have to do here is chase some “universal” fibral formulas. The universal nature of the constructions
in linear algebra is “why” everything will carry over to vector bundles.

The most important case of all (for geometric applications) is to use a Riemannian metric on the
tangent bundle £ = T'M to a Riemannian manifold with corners M to build Riemannian metrics on
the bundles A"(EY) = Q% of smooth differential forms, especially the line bundle det(7T™* M) of top-
degree differential forms. Indeed, with respect to the induced Riemannian metric on this line bundle
and an “orientation” on the manifold M (to be discussed later), there will be a distinguished top-
degree form that is just the “volume form” on fibers, as defined in the old handout on orientations.
The reason for the name volume form in that old handout was exactly this application, where they
glue together to give a special top-degree differential form on an oriented Riemannian manifold.
In terms of the theory of integration to be developed for top-degree differential forms on arbitrary
oriented manifolds, integration of this volume form will provide the definition for volume of open
subsets of an oriented Riemannian manifold. Applied in the case of surfaces in R? given the induced
metric tensor (from the flat one on R?), this procedure will recover all of the classical formulas
for surface area of open subsets of various classes of (oriented) surfaces with boundary (such as
surfaces of revolution, or the parametric “z = f(x,y)” sort, etc.). In particular, we will arrive at
the striking fact that the induced metric tensor on an embedded surface in R? is all we need to
determine a satisfactory (and physically reasonable) theory of area on the surface.

Even though all that follows will largely be used in this course only for the tangent bundle and
bundles derived from it by the standard tensor operations and duality, in any deeper study of
differential geometry one quickly finds it necessary to consider many other kinds of vector bundles
and so both practical applications as well as conceptual clarity inspire the decision to develop the
rest of this handout for arbitrary vector bundles with pseudo-Riemannian metric, and not just for
the tangent bundle (where it may be too tempting to phrase everything in the language of vector
fields and differential forms, which is rather irrelevant to the “vector bundle linear algebra” being
carried out).

1. BASIC CONSTRUCTION AND EXAMPLES

Recall that a finite-dimensional quadratic space (V, ¢) over R is called non-degenerate when the
associated symmetric bilinear form By(v,v") = ¢(v +v') — q(v) — q(v") sets up a perfect pairing
between V and itself: v — Bgy(v,-) = By(+,v) is a linear isomorphism from V to VV. If dimV = n,
recall that we classified all such pairs (V,¢) up to isomorphism by means of the signature (r,s),
where 7, s > 0 and in some system of linear coordinates ¢ = Y /_; 27 — > -1 2 +j (sor+s=mn); we
showed that such a pair (7, s) is independent of the choice of linear coordinates that “diagonalizes” g.
We also proved that the signature is the unique discrete invariant in the sense that in the topological
space Quad,4(V) of all non-degenerate quadratic forms on V' (viewed as an open subset of the finite-
dimensional vector space Quad (V') of all quadratic forms on V') the connected components consist of
precisely those non-degenerate ¢ on V with a common signature. In the case of pseudo-Riemannian
metric tensors on rank-n vector bundles, which is to say a “continuously varying family” of non-
degenerate quadratic spaces of a fixed dimension n, the signature may not be the same on all fibers
but it is locally constant (and hence the same on all fibers over a fixed connected component of the
base space):

Lemma 1.1. Let M be a CP manifold with corners, 0 < p < oo, and let E — M be a CP vector
bundle with constant rank n > 0. Let (-,-) be a pseudo-Riemannian metric tensor on E — M. For
the ordered pairs of non-negative integers (ny,n_) such that ny +n_ = n, the pairwise disjoint



subsets
{m € M | signature((-, ) = (ns,n_)}

in M are all open, so each is also closed and hence is a union of connected components of M.

Proof. The problem is local on M, so by working locally we may assume that £ admits a trivializing
frame, say {e;}. Thus, the metric tensor (a global section of EY ® EY) can be uniquely written
in the form ), ; gije; ® e} where g;; € CP(M), gji = gij, and det(g;;) is nowhere vanishing on
M. The natural map ¢ : M — Quad(R"™) to the space of quadratic forms on R" defined by
m — Z” 9ij(m)X;X; is visibly continuous and lands in the open subset Quad,4(R"™) of non-
degenerate quadratic forms on R™. But we already know from an earlier handout on quadratic
spaces (and we recalled above) that signature is locally constant on this latter space, whence by
continuity of ¢ the signature of the metric tensor on any fiber E(myg) is the same as that on E(m)
for all m € M near mg. This gives the desired openness result. |

In the study of vector bundles one usually restricts attention to studying those with a constant
rank n (an automatic condition when the base space is connected), and likewise in view of the
preceding lemma it is traditional in the theory of pseudo-Riemannian metric tensors on vector
bundles with constant rank n to restrict attention to those with constant signature (i.e., the same
signature on all fibers). This restriction is not a restriction at all when the base space is connected,
as we have already seen. (Even when the base space is disconnected, this restriction is so mild as to
be essentially irrelevant.) Of course, the two most important examples of constant signature metric
tensors are the positive-definite ones (Riemannian metrics) and the ones with signature (n —1,1)
(Lorentzian metrics, with n > 1, whose importance is due to their ubiquity in General Relativity).

It is natural to wonder if a rank-n vector bundle E over a manifold with corners M, all of class
CP with 0 < p < oo, admits a CP pseudo-Riemannian metric tensor with any desired signature
(r,s) where r,s > 0 are non-negative integers satisfying r + s = n. For example, does every E
admit a Riemannian metric, as well as a Lorentzian one? In fact, the answer is very subtle: there
are genuine obstructions to the existence of metric tensors with mixed signature (r,s > 0). For
example, for M = S?? and E = T'M, there is no Lorentzian metric (even of class C?, let alone C™)
on E! The issue of this obstruction, and the worked case of tangent bundles to even-dimensional
spheres, is addressed in the handout “Why the universe cannot be S*”. Fortunately, in the most
important case of definite signature there is no obstruction:

Theorem 1.2. Every CP wvector bundle E — M over a CP manifold with corners, 0 < p < 00,
admits a Riemannian metric. In particular, every smooth manifold with corners admits a structure
of Riemannian manifold with corners.

The main tool in the proof will be CP partitions of unity, so it is amazing that Morrey and
Grauert proved that every real-analytic vector bundle over a real-analytic manifold admits a real-
analytic Riemannian metric tensor. The real-analytic case rests on serious input from the theory
of several complex variables in order to circumvent the lack of real-analytic partitions of unity.

Proof. Let {U;} be a locally finite trivializing cover of E, say E|y, ~ U; x R™. Using the flat metric
tensor on this trivial bundle (i.e., declaring the choice of trivializing frame over U; to be pointwise
orthonormal), we get a Riemannian metric (-,-); on E|y,. Let {¢o} be a subordinate CP partition
of unity with compact supports, say supp(¢a) C Us(a), 50 @af'; )i(a) may be “extended by zero” to
a symmetric bilinear form (-,-)7 on E that is pointwise positive semi-definite, vanishing on fibers
away from supp(¢,), and positive-definite on the locus {¢, > 0}. This is a CP global section of
EY® EY. The sum Y (-,-)a is a locally finite sum (as the supports of the ¢,’s are a locally finite
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collection of subsets of M), whence it makes sense as a C? global section of EV ® EY and it is
pointwise positive-definite (as it is pointwise a sum of finitely many positive semi-definite forms, at
least one of which is positive-definite since at each m € M some ¢, is positive). Thus, this gives
the desired Riemannian metric tensor on £ — M. |

Let us now discuss the very important notion of pullback for metric tensors. There are two ways
this arises: with abstract vector bundles and with tangent bundles. In the setting of abstract vector
bundles, pullback means the following. We give ourselves a C? vector bundle £ — M over a CP
manifold with corners M, as well as a pseudo-Riemannian metric tensor B on E (of class CP, as
always) and a C? map f : M’ — M from another C? manifold with corners. Viewing B as a section
in (EVY ® EV)(M), we get a pullback section B’ = f*(B) that is a global section over M’ of the
pullback bundle f*(EY ® EY) ~ (f*E)" @ (f*E)Y. On the fiber over m’ € M’, the bilinear form
B'(m/) on (f*E)(m') = E(f(m’)) is exactly the non-degenerate symmetric bilinear form B(f(m’))
precisely because of the old observation from tensor algebra that if T : V/ — V is a map between
finite-dimensional vector spaces over a field and B : V x V — F'is a bilinear form then the induced
bilinear form B’ = B o (T x T) on V' corresponds to the element in V'V @ V'V that is the image
under TV @ TV of the element in VV ® V'V corresponding to B. In particular, back in our vector
bundle setting, we see that if B has some constant signature then so does B’ = f*(B).

In the case of tangent bundles, there is another notion of pullback metric tensor as follows. We
consider f : M’ — M that is an immersion between CP manifolds with corners (i.e., the tangent
maps are injective), so T'(M’) is naturally a subbundle of f*(T'M) via the map df : T(M') — TM
over the map f : M’ — M. We suppose T'M is endowed with a choice of Riemannian metric tensor
ds?. In this case f*(ds?) is a Riemannian metric tensor on f*(TM). In general a non-degenerate
quadratic form on a finite-dimensional vector space need not have non-degenerate restriction to a
subspace (e.g., 2 — y? on R? is non-degenerate but it restricts to 0 on the line z = y). However,
in the positive-definite setting the restriction to a subspace is certainly positive-definite and hence
necessarily non-degenerate. Thus, whereas a pseudo-Riemannian metric tensor on a vector bundle
need not induce one on a subbundle (working on fibers by restriction of the bilinear form to the
subspace arising from the subbundle), due to possible loss of non-degeneracy, for Riemannian
metric tensors there is no such problem. Thus, restricting f*(ds?) on f*(T'M) to the fibers of the
subbundle T'(M’) puts an inner product on each of the fibers T,/ (M’).

It is important to work out this fibral restriction in local coordinates, both to see that it is not just
a set-theoretic section to T*(M’)®? — M’ but even CP, and for general computational purposes.
(The resulting Riemannian metric tensor ds’? on T(M’) is called the induced metric tensor on M’
via the immersion f : M’ — M; by abuse of notation it may also be denoted f*(ds?)!) Consider
local CP coordinates {x;} on an open U C M with ds?|y = 3" gijdz; ® dz; (for g;; € CP(U)
satisfying g;; = g;; and det(g;j) nowhere vanishing on U), and let U’ C f~1(U) be an open with
local CP coordinates {«}}. To compute ds’ 2(u') for w' € U’, the key point is that, as noted above,
restriction of bilinear forms can be computed tensorially via the dual map. More since specifically,
the dual map to the inclusion df(u’) : Ty (M) — Ty (M) is the “pullback” map on cotangent
spaces f* : T}(U,)(M ) — Tw(M') (corresponding to pointwise evaluation of pullback of 1-forms),
by working across all of U’ at once we have

ds?|yr =Y 7)1 (dwi) @ f7(day) = Y (gsj 0 [)dfs @ df
12
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where fr = xp o f are the component functions of f : U’ — U with respect to the choice of local
coordinates on the target U. Since df; =, (9fi/0x,)dz; and df; = Y (0f;/0x),)dx,, we get

2 ofi 0f; dfi of;

dz;, ® da’,.

In particular, the metric tensor coefficients g,., := (0, , 0,1 )" for ds’ ?| with respect to the coordi-
nate system {z} } are given by the explicit formula

Gs = of (gijo f) 0f;.
(2]

/ ) /
-« Ox!. ox’,

(In the special case when f is the identity map, U’ = U, and we are simply choosing two different
coordinate systems on the open U, this formula is just the old transformation formula for the
“matrix” of a symmetric bilinear form with respect to a change of basis, as f; = x; in this case
and (0z;/0z) is the change of basis matrix between the trivializing frames {0, } and {8$9} for the

tangent bundle over U.)

Ezample 1.3. On M = R™ the standard flat metric tensor ds® is >, d:/vl@. Consider the circle
C = {22+ y* = 72} in R? for some 79 > 0. We have the usual global trivialization of T'C via
the vector field 9y given at each m € C by 9plm = —y(m)I|m + 2(M)dy|m in T (C) C T, (R?).
Computing with the orthonormal frame {0y, 9y|m} in Ty (R?), clearly for each m € C we have
(Ol Oglm)ym = (—y(m))? +x(m)? = 13, so the induced metric tensor is r3d9®2. In particular, the
metric tensor written in terms of the local angle coordinate has constant coefficients, so the circle
is “flat” from the viewpoint of Riemannian geometry. (In contrast, S? equipped with its induced
metric tensor from R? is not flat: we will prove later that around any point of S? there is no local
coordinate system with respect to which the metric tensor has constant coefficients.)

Ezample 1.4. The case of the metric tensor on smooth hypersurfaces S = {z = f(x,%)} in R3
(using global coordinates ' = z|g and y' = y|g) is worked out in detail in the handout on hyper-
surface metric tensors, where even the general case of hypersurface graphs in R"*! and surfaces of
revolution in R3 are treated. Here, let us treat the interesting case of the torus 7' = S* x S' — R3
with inner radius a —r and outer radius a+1r for 0 < r < a; this is the compact smooth submanifold
given in Homework 4, Exercise 2. Using angle coordinates # and 1 on the respective factors in
St x S1, we get a global trivializing frame {9y, 0, } for the tangent bundle of 7. In the solution to
Homework 4, Exercise 2(ii) we saw that these two vector fields are pointwise orthogonal (working
with the inner product on the ambient tangent bundle of R? pulled back to T'), and the respective
self inner products are (9glm,d|m)m = 2 and (Oy|m,Oyp|m)m = (a + rcosf(m))?. Hence, the
induced metric tensor on 7' from the one on R? is r2d§%? + (a + r cos §)2dy®2.

2. ORTHOGONAL BUNDLES

Let E be a CP vector bundle with pseudo-Riemannian metric (-,-) over a CP manifold with
corners M (0 < p < o0). Let E’ be a subbundle of E. For each m € M, we get a (-, -),,-orthogonal
complement E'(m)* of E'(m) in E(m). I claim that these fit together to be the fibers of a unique
C? subbundle E/* in E. Such a subbundle is unique since we are specifying its fibers (see Lemma
2.1 in the handout on subbundles and quotient bundles), so the only problem is existence. To proof
existence, we “just” need an artful way to describe the construction of the orthogonal complement
in linear algebra without mentioning bases. There are a couple of ways to do this. For our purposes,
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the simplest method is this: if (V, (-, -)) is a finite-dimensional vector space (over R) endowed with
a non-degenerate symmetric bilinear form, and ¢ : V/ < V is the inclusion map for a subspace,
then we get a dual surjection ¥ : V¥V — V'Y and composing this with the natural isomorphism
V ~ VV defined by v (v,-) gives a linear surjection V — V" defined by v + (v,-)|y». Hence,
the kernel is V/*. This works for bundles:

Theorem 2.1. With notation as above, there exists a CP subbundle E'" in E whose m-fiber is
E'(m)t C E(m) for allm € M, and E' ® E'~ — E is an isomorphism.

Proof. The first step is to uniquely promote the fibral duality mappings E(m) ~ E(m)" given by
v +— (v, )y, to a bundle isomorphism E ~ EV. This can be done in two ways: computation with
local frames or using the equivalence between bundles and ¢-modules. For the sake of concreteness,
we’ll just compute with local frames (and we again recall that the “reason” all such things work is
that at the fibral level they involve no choices and so are always described by “universal formulas” in
terms of bases). If we chose a local trivializing frame {s;} for E|;; and let {s}} be the dual trivializing
frame for EV|;; then the metric tensor over U has the form }° gijs; ® s} with g;; € C*°(U) satisfying
gij = g;i and det(g;;) € C*°(U) non-vanishing. Thus, the bundle mapping E|y — EV|y given in
the trivializing frames by the matrix (g;;) does the job on fibers over U (i.e., it recovers the natural
isomorphism v — (v, -),, on fibers, and so in particular is an isomorphism of vector bundles).
Thus, the pseudo-Riemannian metric defines a bundle isomorphism E ~ EV giving the usual
duality E(m) ~ E(m)" on fibers, and if i : E/ — E is the subbundle inclusion then the dual map
iV : BV — E" is a bundle surjection. Hence, we get a composite bundle surjection E ~ EY — EY,
whence (by Theorem 2.6 in the handout on subbundles and quotient bundles) there is a kernel
CP subbundle E" C E whose fibers E”(m) C E(m) are the kernels of the fibral maps E(m) ~
E(m)Y — E'(m)Y. But inspecting the definition of this fibral map shows that the kernel is ezactly
the orthogonal complement E'(m)* with respect to (-, -),,. Hence, the subbundle E” in E has the
desired fibers (which determines it uniquely), and by linear algebra on the fibers we know that the
natural bundle map E' @ E” — E is an isomorphism on fibers and hence is an isomorphism. W

An interesting consequence of this theorem is a result whose statement does not mention pseudo-
Riemannian metrics:

Corollary 2.2. Any CP subbundle E' of a CP vector bundle E over a CP manifold with corners
M admits a “complementary” subbundle (i.e., there exists a CP subbundle E" in E such that
E' ® E" — FE is an isomorphism,).

Proof. As we saw in class, we can construct a Riemannian metric on E (the construction works in
the CP setting). Pick such a metric. Now just take E” to be E'*! (Of course, if we change the
Riemannian metric then we get a different complementary subbundle in general.) |

3. TENSORS AND PAIRINGS

Let E — M be a CP vector bundle over a CP manifold with corners, 0 < p < oo, and we
suppose FE is endowed with a pseudo-Riemannian metric (-,-). As we reviewed in the motivational
discussion, for each m € M the vector spaces

E(m)®", Sym™(E(m)), A"(E(m)), E(m)", (E(m)*)*", Sym™ (E(m)"), A" (E(m)")

are naturally endowed with induced non-degenerate symmetric bilinear forms via (-, ),, on E(m).
These are all positive-definite if (-, ), is positive-definite. It is natural to ask if these constructions
are the fibers of pseudo-Riemmannian metrics on the vector bundles E®", Sym™(E), A"(E), EV,
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(EV)®", Sym(EY), and A"(EY) respectively (and so all are Riemannian metrics if the one given on
E is Riemannian). Of course the answer is yes:

Theorem 3.1. The above fibral constructions on the dual/tensor operations for the E(m)’s arise
as the fibral bilinear forms for unique pseudo-Riemannian metrics on the vector bundles E®",
Sym™(E), A"(E), EY, (EV)®", Sym(E"), and N"(E") respectively.

Proof. The uniqueness is clear since we are specifying the construction on fibers. Thus, the only
problem is to actually compute the fibral “metric tensors” (for suitably trivializations) and make
sure that they vary smoothly in m. In fact, they can all be given by “universal formulas” in the
metric-tensor coefficients of E (for local trivializing frames), whence the smoothness drops out.
Let us make this precise. Since the induced forms on the fibers of the tensor operations of EV are
given by the dual pairings to the ones on the fibers of the tensor operations of F, it suffices to just
treat the cases of the dual bundle and the tensor operations on E (because this fibral statement is
something we know from linear algebra, as we recalled in §1 above). The problem is local on M, so
we can assume F admits a trivializing frame {s;}. Let {s¥} be the dual trivializing frame for EV.
Hence, the metric tensor is }_ g;js; ®sj with smooth functions g;; (and {s; ®s}} a trivializing frame
for EY @ EV). Using the unique bundle isomorphisms (E®™)Y ~ (EY)®" Sym"(F)Y ~ Sym"(E"),
and (A"E)Y ~ A"(E") inducing the natural isomorphisms on fibers, we get trivializing frames of
these three bundles using tensor/symmetric/exterior products of members of the dual frame {s}.
Thus, the problem is reduced to showing that the coefficients of the fibral metric tensors with
respect to these trivializing frames are smooth in the base parameter. These coefficients are just

the “universal formulas”
n

H<Sjr(m)7sj,’«(m)>m7 Z H<Sjr(m)73j(’j(r)(m)>mv det(<si(m)78j(m)>m)

r=1 oeSy, r=1
on m-fibers, or in other words

rl_IIer,j{«(m)v > ngr,j;(r)(m)7 det(gi;(m)).

ocesS, r=1
These are all smooth in m since the g;;’s are smooth functions on the base. |

We conclude our discussion with one other bundle generalization of a construction from linear
algebra: the Gram-Schmidt algorithm. In linear algebra, recall that Gram-Schmidt took as input an
inner product space (V, (-, -)) and an ordered basis {vy,...,v,} of V, and it spit out an orthonormal
basis {e1,...,e,} characterized uniquely by the property that {ej,...,e;} has the same span as
{v1,...,v} for 1 <i < n and (e;,v;) > 0 for all i. The procedure does not really require positive-
definiteness: it works for any non-degenerate symmetric bilinear form (-, -) on V. The only difference
in the general case is that when we’re given a non-zero vector v € V', we pass to the scaled vector
v =wv/y/|[{v,v)| to get a “unit vector” in the sense (v,v) = +1.

This carries over to vector bundles £ — M equipped with a pseudo-Riemannian metric. We
call a local trivialization of E' over an open subset U orthonormal if it is fibrally orthonormal: the
fibral vectors from the frame are pairwise orthogonal and have self-pairings that are locally equal
to £1 (and so equal to such a sign on each connected component of U).

Theorem 3.2. Let E — M be a CP vector bundle endowed with a pseudo-Riemannian metric, with
M a CP manifold with corners, 0 < p < oo. Let {s1,...,sn} be a trivializing frame over an open
subset U C M. There exists a unique orthonormal frame {e1, ... ey} for E|y such that {e1,...,e;}
spans the same subbundle as {s1,...,s;} for 1 <i <n and such that the smooth function {(e;, s;)u
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on U is positive. On fibers over m € U, {e;(m)} is the orthonormal basis of E(m) associated to
the ordered basis {si(m)} by the Gram-Schmidt algorithm.

Applying this to the tangent bundle of a Riemannian (smooth!) manifold with corners, the
theorem says that locally orthonormal frames of smooth vector fields always exist on a Riemannian
manifold with corners. But such frames will usually not be of the form {9,,} for a local coordinate
system {z;}, so such frames do not relate to whether or not the Riemannian metric tensor is flat.
As long as we are not too attached to working with the special local trivializing frames {0y, } for
the tangent bundle (which were the only ones considered in the 19th century), we can still make
convenient use of orthonormal frames as we do in linear algebra. This is an example of E. Cartan’s
influential philosophy of “moving frames”: one should always choose the trivializing frame adapted
to the local problem at hand, and not just restrict attention to special trivializations arising from
coordinate systems (which often have no geometric significance).

Proof. By the unique characterization of the output of the fibral Gram-Schmidt algorithm, such an
orthonormal frame for the bundle over U must induce the Gram-Schmidt output on fibers. Hence,
we get uniqueness. The problem is therefore one of existence. We just use the Gram-Schimidt
process on the level of F(U)! For example, the function (s1,s1) is smooth and non-vanishing, so
it is locally of a fixed sign (U might be disconnected). Hence, its absolute value |(si,s1)| is a
smooth positive function on U, whence its square root is a smooth positive function on U. Thus,
e1 = s1/+/|(s1,s1)| is a smooth section of E over U and

_ ({s1,81)
ten,en) = [(s1,51)]

is locally constant, equal to +1 on each connected component of U (depending on the local sign of
the non-vanishing function (s1, s1)).

Now we define s, = s; — (sj,e1)e; € E(U) for 2 < i < n, recovering the next step of the Gram-
Schmidt process on fibers over U. In particular, {e1,s),...,s),} is a fiberwise basis and so is a
trivializing frame for E|y. We repeat the game again (replacing s with a suitably scaled ey, and
so on). This is inducing the Gram-Schmidt process on fibers, and so it goes through to the end,

given an orthonormal frame for E|y7, with {ej(u),...,e;(u)} and {s1(u),...,s;(u)} having the same
span in E(u) for all uw € U. Hence, the fiberwise independent sections {ej,...,e;} and {s1,...,s;}
span subbundles of E|y that coincide (inside each E(u)) on fibers over U and hence coincide as
subbundles of E|y. [

Ezxample 3.3. Let M be a Riemannian manifold. Taking E¥ = T'M in the preceding discussions, we
see in particular that Q%, = A"(E") is endowed with a natural Riemannian structure for all n. In
particular, the line bundle det(7™ M) of top-degree differential forms is endowed with a Riemannian
metric.



