
Math 396. From integral curves to integral manifolds

1. Integral manifolds for trivial line bundles

Let M be a C∞ manifold (without corners) and let E ⊆ TM be a subbundle of the tangent
bundle. In class we discussed the notion of integral manifolds for E in M (as well as maximal
ones), essentially as a generalization of the theory of integral curves for vector fields. Roughly
speaking, in the special case that E is a trivial line bundle we are in the setup of integral curves for
(non-vanishing) vector fields but with a fundamental difference: we do not specify the trivialization.
What is the impact of this?

To motivate what is to follow, we shall now undertake a close study of the effect of changing
the trivialization. Say ~v and ~w are two trivializations for a line subbundle L in TM , which is to
say that these are non-vanishing smooth vector fields which are pointwise proportional, so we have
~w = f~v for a necessarily non-vanishing smooth function f on M . We shall prove that the associated
maximal integral curves are “the same” up to a unique reparameterization in time that fixes t = 0:

Theorem 1.1. The respective maximal integral curves c : I → M and c̃ : J → M for ~v and ~w
through m0 at time 0 satisfy c̃ = c ◦ F for a unique C∞ isomorphism F : J ' I preserving 0. In
particular, c(I) = c̃(J) as subsets of M .

If you visualize the meaning of this theorem in terms of motion of two particles (parameterized
by time), the assertion becomes “physically obvious”. The rigorous proof thereby illustrates the
difference between physics and mathematics. Keep the visualization in mind when reading the
proof, since it both motivates the entire strategy of proof and makings it easy to understand.

Proof. By definition, c′(t) = ~v(c(t)) for all t ∈ I with c(0) = m0, and I is the unique maximal open
interval in R with this property (it contains all others). Since f ◦ c is a non-vanishing continuous
function on the open interval I, it has constant sign. If f is negative then we can replace ~v with −~v,
I with −I, and t 7→ c(t) on I with t 7→ c(−t) on −I without changing the image of c but bringing
us to the case f > 0. Hence, we now suppose f > 0. Consider the I-valued initial-value problem
F ′ = (f ◦ c) ◦ F with initial condition F (0) = 0 ∈ int(I) for smooth maps F : J ′ → I on intervals
J ′ around 0. This is a non-linear ODE, and the local existence theorem ensures that there exists
such a solution on some interval J ′ around 0. Since f is positive, so is F ′, and hence F is a strictly
increasing function. Thus, F is a C∞ order-preserving isomorphism of J ′ onto F (J ′).

The old arguments via uniqueness of solutions to ODE’s provide a maximal open interval J ′ on
which there is a solution (satisfying F (J ′) ⊆ I!), and it is unique. Taking J ′ to be maximal, we
must have F (J ′) = I: if not then the strictly increasing F is bounded away from endpoints of I as
t appoaches some endpoint of J ′ yet the smooth f ◦ c persists across all of I and so by Corollary
2.5 in the handout on ODE’s (!) the interval J ′ would not be maximal after all. The smooth map
c ◦ F : J ′ → M carries 0 to m0 and satisfies

(c ◦F )′(t) = F ′(t) · c′(F (t)) = (f ◦ c)(F (t)) ·~v(c(F (t))) = f((c ◦F )(t)) ·~v((c ◦F )(t)) = ~w((c ◦F )(t)).

This says that c ◦ F : J ′ → M is an integral curve for ~w through m0 at time 0. In particular, J ′

is contained in the open interval of definition J for the maximal integral curve c̃ : J → M for ~w
passing through m0 at time 0.

Note that ~w = (1/f) · ~v. By the formula for the derivative of an inverse function in 1-variable
calculus, the smooth strictly increasing map F−1 : I ' J ′ ⊆ J sending 0 to 0 solves the ODE
y′ = ((1/f) ◦ c̃) ◦ y for J-valued y on I because c̃|J ′ = c ◦ F . By the argument given above, if we
consider the solution H : Ĩ → J to this initial-value problem on a maximal open interval of definition
around 0 (so I ⊆ Ĩ and H|eI = F−1) then H(Ĩ) = J and c̃ ◦H : Ĩ → M is an integral curve for ~v

1



2

through m0 at time 0. This forces Ĩ ⊆ I, so in fact Ĩ = I and J = H(Ĩ) = H(I) = F−1(I) = J ′.
We have therefore proved that J ′ = J , so F is a strictly increasing C∞ isomorphism between the
maximal intervals of definition for the integral curves of ~v and ~w = f~v through m0 at time 0, and
composition with F carries the maximal integral curve for ~v to the maximal integral curve for ~w.

It remains to check that F is the unique solution to our problem: if H : J ' I is a C∞

isomorphism fixing the origin such that c̃ = c ◦H, then H = F . By differentiating and using the
“integral curve” properties of c and c̃,

f(c̃(t)) · ~v(c̃(t)) = ~w(c̃(t)) = H ′(t) · ~v(c(H(t))) = H ′(t) · ~v(c̃(t)).

Since ~v(c̃(t)) 6= 0 for all t, we get H ′(t) = f(c̃(t)) = (f ◦ c)(H(t)). Hence H : J → I is a solution
to the same initial-value problem as F (i.e., y′(t) = (f ◦ c)(y(t)) for I-valued y on an open interval
around 0, with y(0) = 0). This forces H = F . �

We have just shown that if we replace a non-vanishing vector field ~v on M with the line subbundle
L ⊆ TM that it generates (this is just the C∞ subbundle inclusion M × R → TM given by
(m,a) 7→ a~v(m)), then since L only “knows” ~v up to multiplication by a non-vanishing smooth
function it only “knows” the maximal integral curve c~v,m0

: I~v,m0
→ M up to (possibly order-

reversing) composition with some C∞ isomorphism F : J ' I~v,m0
for an open subinterval J of R

around 0. In particular, the image subset c~v,m0
(I~v,m0

) and the property of whether or not c~v,m0

is injective depend only on m0 and not on the choice of trivialization ~v for L. Let us write Nm0

for this image subset. In the non-injective case, we know from Example 5.7 in the handout on
integral curves that Nm0 is a smoothly embedded circle in M . As we have seen long ago for general
embedded submanifolds of a manifold, this is the unique possible C∞ submanifold structure on the
subset Nm0 in M in such cases. In the injective case, the non-vanishing of the vector field implies
that c~v,m0

: I~v,m0
→ M is an injective immersion, though this may not be an embedding (think

of the line densely wrapping the torus). We thereby get a (possibly non-embedded) submanifold
structure on the subset Nm0 ⊆ M by using the bijection c~v,m0

and the C∞ manifold structure
on I~v,m0

to put both the topology and differentiable structure on Nm0 . If we change ~v to some
other ~w trivializing L then the preceding arguments show that there is a (unique) C∞ isomorphism
F : I~w,m0

' I~v,m0
such that c~w,m0

= c~v,m0
◦ F , and so in particular the C∞ submanifold structure

put on Nm0 is independent of the choice of trivializing section of L ⊆ TM .
We have done the hard part in the proof of:

Theorem 1.2. Let M be a smooth manifold and let L be a trivial line subbundle of the tangent
bundle. Let m0 ∈ M be a point. There exists a unique maximal integral submanifold Nm0 for L
through m0. Upon choosing a trivialization L we get a C∞-isomorphism of Nm0 with an embedded
circle when Nm0 is compact and with an open interval in R otherwise.

Proof. The uniqueness goes by the usual kind of argument: if i : N ↪→ M and i′ : N ′ → M are two
maximal integral submanifolds for L and both pass through m0 then by the property of maximal
integral submanifolds each of i and i′ must smoothly factor through the other. It follows for set-
theoretic reasons (due to i and i′ being injective) that these two factorizations must be inverse
C∞ isomorphisms between N and N ′, so both (N, i) and (N ′, i′) “coincide” as submanifolds of M .
(That is, they put the same topology and differentiable structure on the same subset of M .)

Now we turn to existence. That is, we have to prove that the submanifold Nm0 as constructed
above really is a maximal integral submanifold for L. It is built as the image of an integral curve
mapping for a vector field trivializing L, so it is certainly an integral submanifold (i.e., it is connected
and its tangent space at each point is the fiber-line of L inside the tangent space to M at that
point). Is it maximal? Let i : N ↪→ M be a connected submanifold that is an integral curve for L,
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so N is 1-dimensional. We assume i(N) meets Nm0 and we seek to prove that i factors (necessarily
uniquely) through a C∞ map from N to Nm0 .

The preimage i−1(Nm0) is closed and non-empty in the connected manifold N , so to prove it
equals N it suffices to prove openness. This is a local problem near each point of i−1(Nm0). Also,
once this problem is settled, the problem of proving that the unique set-theoretic map N → Nm0

through which i factors is a C∞ map is a local problem on N . Hence, for our purposes the entire
problem is local near points of i−1(Nm0). Pick a point n0 ∈ i−1(Nm0). Since the submanifold Nm0

is “unaffected” by replacing m0 with any other point in Nm0 (as this corresponds to just making
a time translation in the setup with integral curves for vector fields), we may rename i(n0) as
m0. Thus, we can assume m0 ∈ i(N) and that N is an arbitrarily short embedded open interval
in M through m0, and we just have to prove that it lies in Nm0 set-theoretically and in fact as
a submanifold of M . In particular, we may assume that N is an open interval in R around 0
with i(0) = m0, and the integral manifold condition implies that the velocity vector field i′(t) is a
non-vanishing smooth multiple of ~v ◦ i (with ~v a trivialization of L). Negating time if necessary, we
can assume that the non-vanishing multiplier function is positive.

Smooth functions along an embedded submanifold locally lift to smooth functions on the ambient
manifold (by the immersion theorem), and the property of positivity is inherited locally by such
liftings, so with the help of a smooth function on M that equals 1 away from a small neighborhood
of m0 and equals the lift of this smooth positive multiplier function near m0 we may modify the
choice of ~v so that ~v ◦ i = i′. Hence, i : N → M is an integral curve for ~v passing through m0

at time 0. By the existence theorem for maximal integral curves of vector fields, the interval N
equipped with its mapping i to M is a subinterval of the interval I~v,m0

equipped with its canonical
mapping to M . Thus, the embedding i : N → M factors smoothly through Nm0 . �

2. Examples with circles and the Möbius strip

Theory of integral curves is a “coordinatized” version of the theory of integral manifolds for
trivial line subbundles of the tangent bundle. Upon choosing a trivialization (a non-vanishing
vector field) we get the maximal integral curves that are precisely maximal integral manifolds
with a “preferred” (possibly non-injective) parameterization dictated by the choice of vector field.
Changing the choice changes the parameterization but leaves the image submanifold (image subset
endowed with suitable topology and differentiable structure) unaffected. This is the content of
Theorem 1.2.

Example 2.1. Consider the counterclockwise circular vector field (say with constant speed a) in
R2 − {0}. The integral curves for this vector field are the mappings c : R → R2 − {0} given by

c(t) = (r cos((at/r) + b), r sin((at/r) + b))

with r and b depending on the initial position. In contrast, the integral manifolds for the associated
line subbundle L in T (R2 − {0}) are just the “bare” circles of radius r centered at the origin
(without any parameterization data) viewed as embedded submanifolds of the punctured plane. In
particular, when taking the viewpoint of integral manifolds for L the “wrapping around” aspect from
the trigonometric mapping c is forgotten because the time parameterization has been eliminated
from consideration by the abandonment of velocity vector data.

Observe likewise that whereas in the theory of integral curves it was meaningful to ask if the
curve “returns to itself” in the sense of the parameterization map c being non-injective (and in
Example 5.7 in the handout on integral curves we saw that there was a very satisfying description of
non-injective situations), there is no such meaningful question in the context of integral manifolds
for subbundles of the tangent bundles: you either have an integral manifold or you don’t (and it
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may or may not be maximal), but it is just “there” and is not parameterized by anything so it
is not meaningful to ask if it “returns to itself”. (Of course, you can imagine moving along some
trajectories within the submanifold and asking how that parameterized trajectory behaves as time
evolves, but this is a different issue.) Perhaps a convenient way to summarize the dichotomy is
to say that the theory of integral curves for vector fields is manifestly dynamic but the theory of
integral manifolds for subbundles of the tangent bundle is essentially static (the proof of existence
of such integral manifolds in the general case has certain dynamic aspects much as does the proof
of Theorem 1.2, but once the proof is over, that’s it for the dynamics).

For a nontrivial line subbundle of the tangent bundle, the “integral curve” viewpoint only makes
good sense on opens over which we can find trivializations. If we pick such trivializations locally
then by (Example 5.7 from the integral curves handout and) uniqueness aspects in the theory
of integral curves these do patch up as mere submanifolds (without parameterization!) when we
move from one trivializing domain to another but we cannot expect the actual parameterizations
to patch up in a manner that is well-behaved with respect to changing the initial position (as
otherwise we’d be able to define globally consistent nonzero velocity vectors at all points and so
we’d get a non-vanishing global section to our nontrivial line subbundle, a contradiction).

Example 2.2. We now illustrate how the framework of integral manifolds for line bundles allows us
to consider global problems that simply cannot be formulated in terms of the language of integral
curves for vector fields. Consider trying to make a non-vanishing vector field on the Möbius strip
M such that the vectors lie in the vertical direction at all points (i.e., lie on the tangent lines
perpendicular to the right/left motion relative to the usual visualization of M). I claim no such
vector field exists. Viewing M as a quotient of (−a, a) × S1, such a vector field must descend a
vector field ~v of the form h∂t on (−a, a)× S1 for some h ∈ C∞((−a, a)× S1). But we know from
Exercise 2(iv) in Homework 5 that ~v must be invariant by the action of the order-2 group that
defines the quotient M , and so by Exercise 2(ii) in Homework 5 (replace R there with (−a, a))
it follows that h has to vanish somewhere (even somewhere along the central circle). This is a
contradiction.

Now suppose we abandon the desire to specify the non-vanishing vector field and we only care
about the (vertical) line it spans in the tangent plane at each point on M . This is much better,
because the negation problem from the group action that forced the vanishing of h at some point
(by Intermediate Value Theorem) is eliminated: lines are stable under negation (whereas nonzero
vectors are not). If you stare at a picture of the Möbius strip, you can see that there is a globally
consistent sense of verticalness even though there is no globally consistent sense of up or down. The
resulting family of lines based at each point is a line subbundle L0 of TM that has no non-vanishing
global section due to the preceding paragraph.

[Let us justify the last sentence rigorously. On the product (−a, a) × S1 the tangent bundle is
the direct sum of two line bundles, namely the pullbacks of the tangent bundles of the factors,
and the pullback L of the tangent bundle of (−a, a) (tangent lines along the (−a, a)-factor) is
stable under the group action on the tangent planes to (−a, a) × S1 (check!). By Exercise 3 in
Homework 5, this line bundle must therefore descend to a line bundle L0 on M . In fact, by the
naturality of the construction in that exercise, since TM descends T ((−a, a) × S1) the bundle
inclusion L → T ((−a, a) × S1) descends to a bundle mapping L0 → TM over M that is injective
on fibers and hence is a subbundle. On fibers, it is exactly the line we want. This completes the
verification.]

By inspection, integral manifolds for this line bundle L0 are the vertical lines along the Mobius
strip M . Since L0 is non-trivial there is no global vector field for which these are the (images of)
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integral curves, as such a vector field would be a non-vanishing global section of L0. If we remove a
single vertical segment from M then we can trivialize L0 and so we return to the setting of integral
curves. But if we wish to work across the entire manifold at once then we’re sunk if we try to use
the framework of integral curves. The intervention of non-trivial vector bundles is a fundamental
dichotomy between local and global aspects of geometry and topology on manifolds.

3. Some definitions

In some introductory books on differential geometry, a lot of definitions are too global. (The
reason is that the existence of bump functions causes the theory of sheaves to not play a significant
role in differential geometry, as it does in algebraic and complex-analytic geometry.) Here is the
definition that one often finds for integrability of a subbundle of the tangent bundle, but we modify
the terminology to avoid conflict with our terminology:

Definition 3.1. A subbundle E in TM is globally integrable if [X, Y ] ∈ E(M) for all X, Y ∈ E(M).

Remark 3.2. The phrase of “subbundle of TM” is avoided in many books; the classical terminology
for a rank-r subbundle of TM is C∞ distribution of r-planes over M . This latter concept is
classically defined to be a choice of r-dimensional subspace Wm ⊆ Tm(M) for each m ∈ M such
that there exist local collections of r independent smooth vector fields spanning the Wm’s on fibers.
This is exactly one of our criteria for defining a C∞ subbundle of a C∞ vector bundle, applied with
vector bundle TM .

The difference between Definition 3.1 and our definition of integrability is that we require
[X, Y ]U ∈ E(U) for all X, Y ∈ E(U) for all open U ⊆ M . We shall now use the crutch of
bump functions to prove that the much weaker condition of being globally integrable implies the
condition that we have defined as integrability (and it is our definition that must be used in the
real-analytic and complex-analytic cases).

Theorem 3.3. If a subbundle E in TM is globally integrable, then it is integrable.

Proof. We pick an open set U ⊆ M and X, Y ∈ E(U), and we want to prove [X, Y ]U ∈ E(U).
That is, for each u ∈ U we want [X, Y ](u) ∈ E(u). Choose u0 ∈ U . Let φ ∈ C∞(M) be a function
equal to 1 near u0 and supported inside of a compact subset K ⊆ U . Thus, φX, φY ∈ E(U) are
compactly supported inside of U and so “extend by zero” to elements of E(M) that vanish on the
open set M −K. We write X ′ and Y ′ denote these elements of E(M). By the hypothesis of global
integrability, [X ′, Y ′] ∈ E(M), so [X ′, Y ′](u0) ∈ E(u0). But the formation of the Lie bracket on
vector fields is compatible with shrinking the open domain, so in particular [X ′, Y ′]|U ∈ E(U) is
equal to [X ′|U , Y ′|U ]U = [φX, φY ]U . The function φ is equal to 1 on some open subset U0 ⊆ U
around u0, so shrinking to U0 gives [X|U0 , Y |U0 ]U0 = [X ′, Y ′]|U0 ∈ E(U0). Passing to u0-fibers
therefore gives [X, Y ](u0) ∈ E(u0). �

The reason for the terminology of “integrability” for the stability of a subbundle under the
bracket operation is that it is closely related to the existence of lots of integral submanifolds to the
subbundle:

Theorem 3.4. Let E be a subbundle of TM and assume that for all m ∈ M there exists an integral
submanifold i : N ↪→ M to E with m ∈ i(N). The subbundle E is integrable: for all open U ⊆ M
and vector fields X, Y ∈ E(U) ⊆ (TM)(U) = VecM (U), the bracket vector field [X, Y ]U ∈ VecM (U)
lies in E(U).
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Proof. Without loss of generality we may assume U = M , so X and Y are global smooth vector fields
on M . Fix m0 ∈ M , and we wish to prove that the tangent vector [X, Y ](m0) ∈ Tm0(M) lies in the
subspace E(m0). Let i : N → M be an integral submanifold to E with m0 = i(n0) for a (necessarily
unique) point n0 ∈ N . In particular, the subspace E(m0) ⊆ Tm0(M) is the image of the injective
linear map di(n0) : Tn0(N) → Tm0(M). By shrinking N around n0 we can assume that the injective
immersion i is an embedding (immersion theorem!). Hence, by Exercise 3 in Homework 6 the total
tangent mapping di : TN → TM over i : N → M is also an embedding of smooth manifolds. For all
n ∈ N we have that E(i(n)) = di(n)(Tn(N)) by the integral submanifold property of N with respect
to E, so the vector X(i(n)) ∈ E(i(n)) has the form X(i(n)) = di(n)(X̃(n)) for a unique tangent
vector X̃(n) ∈ Tn(N). Likewise we have Y (i(n)) = di(n)(Ỹ (n)) for a unique Ỹ (n) ∈ Tn(N) for all
n ∈ N . The first key point is that the set-theoretic vector fields X̃ : n 7→ X̃(n) and Ỹ : n 7→ Ỹ (n)
on N are actually smooth vector fields on N ; that is, the two maps X̃, Ỹ : N ⇒ TN (sections to
the natural projection TN → N) are smooth maps of smooth manifolds. Indeed, by their very
definition the composite maps di ◦ X̃,di ◦ Ỹ : N ⇒ TM are smooth because these are respectively
equal to the maps X ◦ i and Y ◦ i that are visibly smooth (since i : N → M is smooth and both
sections X, Y : M ⇒ TM are smooth), and so since di is a C∞-embedding it follows that X̃ and Ỹ
are smooth. (Here we use the fact that if j : M1 → M2 is a Cp-embedding of Cp premanifolds and
f : M ′ → M1 is a set-theoretic map from a third Cp premanifold such that j ◦ f is a Cp map then
f is a Cp map: by our long-ago discussion of mapping properties submanifolds the Cp property of
f only requires checking f is continuous, given that j is an injective immersion, and this purely
topological property of f is immediate from the hypothesis that j is even an embedding.)

By the very construction of the smooth vector fields X̃ and Ỹ on N , we have that X ◦ i = di ◦ X̃

and Y ◦ i = di ◦ Ỹ . In other words, X is i-related to X̃ and Y is i-related to Ỹ . Hence, by the good
behavior of the bracket of vector fields with respect to the property of “ϕ-relatedness” for smooth
maps ϕ between smooth manifolds (as discussed already in class), the bracket vector fields [X̃, Ỹ ]
on N and [X, Y ] on M are i-related. That is, for each n ∈ N we have

[X, Y ](i(n)) = di(n)([X̃, Ỹ ](n)) ∈ di(n)(Tn(N)) = E(i(n))

for all n ∈ N . Taking n = n0 (with i(n0) = m0) gives the desired result: [X, Y ](m0) ∈ E(m0) with
m0 ∈ M our initial arbitrary choice of point. �

On the theme of comparing our definitions with the “too global” definitions in various books,
the rest of this handout is devoted to showing how to use bump functions to verify some more
equivalences among competing definitions. The arguments all go pretty much the same way, though
it is sometimes a bit tedious to write out the mechanical details; such reading is best left for a rainy
day, since the details are not especially interesting (but the technique is definitely a very important
one for making global constructions in differential geometry, so it is worthwhile to read a couple
such proofs to see how the procedure goes). None of what follows will ever be used in this course,
but for ease of communication with other people later in life you may wish to read some or all of
it.

Theorem 3.1 in the old handout on construction of vector fields gave the equivalence between
our definition of smooth vector field on a smooth manifold with corners and the “global” definition
found in many books. A related method works for comparing definitions of differential forms and
tensor fields of type (r, s). We begin with the case of type (0, 1), which is to say global differential
1-forms.
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Theorem 3.5. Let M be a smooth manifold with corners. Any C∞(M)-linear mapping T :
VecM (M) → C∞(M) has the form ~v 7→ ω(~v) for a unique ω ∈ Ω1

M (M), where ω(~v) is the smooth
function m 7→ ω(m)(~v(m)).

In many books, such global mappings T are the definition of Ω1
M (M)! Naturally this makes the

passage from Ω1
M (M) to Ω1

M (U) = Ω1
U (U) an arduous task, since there is no natural map from

VecM (U) = VecU (U) to VecM (M). In effect, one has to create a recipe with lots of bump functions,
and this is tantamount to running through the proof of the present theorem without actually saying
so (since our natural and easily localizable notion of the O-module Ω1

M is not introduced a priori
in such treatments, but is only built a posteriori through the muck of bump functions and a bad
global definition).

Proof. This theorem has nothing at all do with vector fields and differential forms: more generally,
for any C∞ vector bundles E and E′ on M and C∞(M)-linear map T : E(M) → E′(M), we
claim that there exists ` ∈ HomM (E,E′) such that T is the effect of ` on global sections. (Taking
E = VecM (M) and E′ = M ×R then gives the lemma as a special case.)

We first show uniqueness, which is to say if ` : E → E′ is a bundle mapping such that `(s) = 0
for all s ∈ E(M) then ` = 0 (i.e., ` is the 0-map on fibers). Choose m ∈ M , so we want to show
`(m) ∈ Hom(E(m), E′(m)) vanishes. Clearly any s0 ∈ E(m) is the m-fiber of a smooth section
sU ∈ E(U) for some open U around m. Multiplying sU by some smooth bump function equal to
1 near m and compactly supported in U allows us to then “extend by zero” to build s ∈ E(M)
that equals sU near m and so s(m) = s0. Thus, (`(m))(s0) = (`(s))(m) = 0 in E′(m). This settles
uniqueness.

With uniqueness proved, we turn to existence. The first step is to “localize” the problem. Let
{φi} be a smooth partition of unity with each φi compactly supported inside of an open subset
domain Ui in M , with {Ui} a locally finite collection of open sets in M that are so small that E
and E′ are trivial over each Ui. Let Ti = φiT , so T =

∑
Ti; this is a locally finite sum and hence

is well-posed. Suppose we can find `i solving the problem for Ti. The preceding argument with
bump functions shows that since elements in the image of Ti restrict to 0 outside of the compact
support of φi, `i vanishes on fibers away from this support. Thus, the sum

∑
`i is locally finite and

so makes sense. Taking this to be ` then gives a solution to our problem for T .
In this way, it suffices to solve the problem for each of the Ti’s, and so we may assume elements

in the image of T vanish outside of a compact set K contained in an open set U over which E and
E′ have trivial restriction. Let U0 ⊆ U be an open neighborhood of K with compact closure. I next
claim that for any s ∈ E(M), T (s) only depends on s|U0 : if s1, s2 ∈ E(M) satisfy s1(m) = s2(m)
for all m ∈ U0 then T (s1) = T (s2). Passing to s1 − s2, we have to show that if s(m) = 0 for all
m ∈ U0 then T (s) = 0. By hypothesis on T we know T (s) ∈ E′(M) vanishes on all fibers outside of
K ⊆ U0, so we just have to show vanishing on fibers over K. Let φ be a smooth function equal to 1
on K and compactly supported inside of U0, so φ ·T = T since elements in the image of T in E′(M)
vanish on fibers away from the locus K over which φ is equal to 1. Hence, T (s) = φT (s) = T (φ · s)
since T is C∞(M)-linear. But s vanishes on U0 and φ vanishes outside of a compact subset of
V ⊆ U0, so for all m ∈ M either s(m) ∈ E(m) vanishes or φ(m) ∈ R vanishes. Hence, φ ·s ∈ E(M)
vanishes on all fibers and so is 0. This forces T (φ · s) = 0, so T (s) = 0 as desired. This completes
the proof that T (s) only depends on s|U0 for an open subset U0 ⊆ U containing K and having
compact closure.

Now we use the triviality of E|U and E′|U . Choose s1, . . . , sn ∈ E(U) trivializing E|U and
s′1, . . . , s

′
n′ ∈ E′(U) trivializing E′|U . Fix a choice of U0 as above, and choose φ ∈ C∞(M) equal

to 1 on U0 and compactly supported inside of U . Thus, for all s ∈ E(U) the section φs ∈ E(U)
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is compactly supported inside of U and so “extends by zero” to give a global section s̃ ∈ E(M)
that is equal to s on U0. In particular, we get elements s̃1, . . . , s̃n ∈ E(M) with U0-restrictions in
E(U0) agreeing with s1|U0 , . . . , sn|U0 . We therefore get elements T (s̃j) ∈ E′(M) and by hypothesis
on T these elements are supported inside of K. We may uniquely write T (s̃j)|U ∈ E′(U) as∑

aijs
′
i. Since the s′i’s are a trivializing frame and T (s) vanishes on fibers away from K for

all s ∈ E(M), it follows that all aij ’s are supported inside of K. Motivated by this, we define
`U ∈ Hom(E,E′)(U) = HomU (E|U , E′|U ) by the condition sj 7→

∑
aijs

′
i. (That is, over an open

subset U ′ ⊆ U , we send
∑

cjsj |U ′ to
∑

i(
∑

j aij |U ′cj)s′i|U ′ .)
By definition, `U vanishes on fibers away from K. Thus, we may “extend by zero” to ` ∈

Hom(E,E′) that vanishes on fiberwise outside of K. In particular, for s ∈ E(M) vanishing over
K, `(s) = 0. Hence, `(s) only depends on s|K . We claim `(s) = T (s) in E′(M) for all s ∈ E(M)
(thereby solving our problem). We know that both sides vanish on fibers outside of K, so problem
is to compare values on fibers of E′ over K ⊆ U0. We also know that `(s) and T (s) only depend on
s|U0 , so it suffices to check the equality after replacing s with some other element of E(M) having
the same U0-restriction. But U0 is contained in U and E|U is trivialized by s1, . . . , sn, so s|U is a
C∞(U)-linear combination of the sj ’s. Multiplying the coefficient functions by the bump function φ
that is compactly supported in U and equal to 1 on U0, we see that φs is a linear combination of the
s̃j ’s. Since s and φs agree over U0, we are therefore reduced to the case when s is a C∞(M)-linear
combination of the s̃j ’s. By C∞(M)-linearity of T , we are thereby reduced to the special case
s = s̃j for some j. In this case T (s̃j)|K = `(s̃j)|K due to how ` was defined. This gives equality on
fibers over K, which is all we needed to show. �

Now we can handle arbitrary tensor fields, differential forms, etc.

Theorem 3.6. Let M be a smooth manifold with corners. Any C∞(M)-mutlilinear mapping

T : VecM (M)×s → C∞(M)

has the form
(~v1, . . . , ~vs) 7→ t(~v1 ⊗ · · · ⊗ ~vs)

for a unique global section t of (T ∗M)⊗s ' ((TM)⊗s)∨.

In some books, the collection of T ’s as in this theorem is taken as the definition of the C∞(M)-
module of global tensor fields of type (0, s) on M . This leads to the same unplesantness as was
discussed following the statement of the previous theorem.

Proof. Once again, this has nothing at all do with vector fields. Rather generally, we claim that if
E1, . . . , En, E′ are vector bundles on M and

T : E1(M)× · · · × En(M) → E′(M)

is a C∞(M)-multilinear map then there exists a unique t ∈ HomM (E1 ⊗ · · · ⊗ En, E′) such that

T (s1, . . . , sn) = t(s1 ⊗ · · · ⊗ sn) ∈ E′(M)

for all sj ∈ Ej(M). The proof goes exactly like the proof of the preceding theorem (which was the
case n = 1) except that we work with multilinear mappings and have to trivialize all Ei’s and E′

over the open sets U . We leave it to the reader to check that the method does carry over with
essentially no changes. �

Theorem 3.7. Let M be a smooth manifold with corners. Any alternating C∞(M)-multilinear
mapping

T : VecM (M)×k → C∞(M)
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has the form (~v1, . . . , ~vk) 7→ ω(~v1 ∧ · · · ∧ ~vk) for a unique ω ∈ Ωk
M (M), where ω(~v1 ∧ · · · ∧ ~vk) is the

function whose value at m ∈ M is the evaluation of the alternating functional ω(m) ∈ ∧k(T ∗m(M)) '
(∧k(Tm(M)))∨ on the vector (~v1 ∧ · · · ∧ ~vk)(m) = ~v1(m) ∧ · · · ∧ ~vk(m) in ∧k(Tm(M)).

In some books the C∞(M)-module of T ’s as in this theorem is given as the definition of the
module of smooth global differential k-forms on M . The variant for symmetric tensor fields goes
similarly.

Proof. The proof is identical to the preceding proof, except we track the alternating property
throughout. �

We conclude with a comment on the case of Riemannian manifolds. Later in the course when
we study Riemannian geometry, there will be an extra structure put on the manifold (in effect,
a smoothly varying inner product on the fibers) that provides a preferred identification of the
tangent and cotangent bundles. Once we permit ourselves to thereby identify TM with T ∗M , we
can identify (TM)⊗r ⊗ (T ∗M)⊗s with (T ∗M)⊗(r+s). By Theorem 3.6, global sections of the latter
may be identified with C∞(M)-multilinear maps VecM (M)×(r+s) → C∞(M). Provided we keep
track of the naturalities in the first r and last s factors (using tangent mappings on the first r and
adjoints of tangent mappings on the last s), this latter monstrosity is sometimes presented as the
definition of a tensor field of type (r, s) on a Riemannian manifold. In some other treatments of
more classical nature, the definition of such global tensor fields is given locally in terms of swarms
of indices (upper and lower, according to some convention that I can never keep straight).


