
Math 396. How to compute integrals
In the homework, you developed the theory of absolute integrability for top-degree differential

forms on smooth manifolds M with constant positive dimension n > 0, in both the oriented and
non-oriented cases (though the integration operator

∫
M |ω| in the non-oriented case is not linear

in ω). You also proved that in the oriented case, if ω is such an absolutely integrable form then
|
∫
M,µ ω| ≤

∫
M |ω|. These definitions are well-suited to theoretical considerations but not to actual

computation, since nobody can (or wants to) write down partitions of unity. In this handout, we
wish to take up a few refinements to the theory, essentially to make the task of actually computing
such integrals be much like the case of integration for functions on Euclidean space (and even reduce
to such calculations when we understand the geometry of our domain sufficiently well).

For example, we certainly want to say that for n > 0 and an n-form ω on the sphere Sn (with a
chosen orientation),

∫
Sn ω =

∫
H+ ω|H+ +

∫
H− ω|H− where H± are a pair of “complementary” hemi-

spheres viewed as closed smooth submanifolds with boundary in Sn (sharing a common manifold-
boundary). Ignoring the equator, these hemispheres are parameterized by open unit n-balls, so our
integration problems should shift to old-fashioned function integrals on such n-balls.

Also, it should surely be the case that for any top-degree form ω ∈ Ωn
M (M) on a manifold with

corners M , if ω′ = ω|M−∂M denotes the restriction of ω over the open submanifold complementary
to the singular locus then absolute integrability for ω over M and for ω′ over M−∂M are equivalent,
and moreover that the resulting integrals agree (in both the non-oriented and oriented senses). Lest
one dismiss this as “obvious”, it does require a bit of thought because (in view of how we defined
integration of differential forms) if {φi} is a C∞ partition of unity with compact supports (contained
in coordinate domains) on M then {φi|M−∂M} is a C∞ partition of unity on M−∂M with a locally
finite collection of supports but these supports are generally non-compact! Hence, strictly speaking,
this latter collection of functions is not the sort used in the definition of integration over M − ∂M .

Briefly put, to handle these and other related matters in a straightforward manner we need to
revisit how partitions of unity are used in the calculation of integrals. More specifically, since we at
least now have a general concept of integration of differential forms on M (in addition to the theory
for functions on Euclidean space), we are now in position to try to use a wider class of partitions
of unity than were permitted in the initial definition of such integrals. Once we develop some more
efficient computational techniques, we will be able to prove everything that we expect to hold for
any reasonable theory of integration.

1. Partitions of unity

Let M be a smooth manifold with corners and constant dimension n > 0. Let {φi} be a
collection of non-negative smooth functions on M whose supports are locally finite and such that∑
φi = 1. We do not assume that the φi’s have compact support and we do not assume that their

supports lie in coordinate domains. It is reasonable to expect that for any n-form ω on M , ω is
absolutely integrable if and only if two conditions hold: (i) the φiω’s are absolutely integrable and
(ii)

∑
i

∫
M |φiω| is finite. In such cases, we expect

∫
M |ω| =

∑
i

∫
M |φiω|. If moreover M is oriented,

the sum
∑

i

∫
M φiω is absolutely convergent (as it is termwise bounded above in absolute value by

the terms of the convergent sum
∑

i

∫
M |φiω|) and we expect that this sum should equal

∫
M ω. (We

shall generally suppress explicit mention of the choice of orientation in our integration “without
absolute values”.)

Note that the preceding desired properties do not just repeat the definition of integration of
differential forms, since we are specifically avoiding two key assumptions on the φi’s that were used
in the definition of such integrals (via partitions of unity), namely we allow that φi’s may have
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non-compact support and we allow that these supports may fail to lie in coordinate domains. In
the introductory discussion we saw why it was desired to allow for non-compact supports.

Theorem 1.1. Let {φi} be a collection of non-negative smooth functions on M whose closed sup-
ports form a locally finite collection of closed sets in M , and assume

∑
φi = 1. For any top-degree

differential form ω on M , ω is absolutely integrable if and only if all φiω’s are absolutely integrable
and

∑
i

∫
M |φiω| is finite, in which case this sum is equal to

∫
M |ω|.

If M is oriented and ω is absolutely integrable then
∑

i

∫
M φiω is absolutely convergent and equal

to
∫
M ω.

This theorem says that the “recipe” used to initially define integration of differential forms is a
posteriori applicable for the widest class of partitions of unity {φi} that one could hope for. We
couldn’t state a result such as this prior to the initial definition of global integration of differential
forms because to make sense of

∫
M φiω for φi’s as general as in this theorem requires defining a

concept of absolute integrability for general differential forms in the first place! (The point being
that φiω is possibly not supported inside of a coordinate domain.)

Proof. Let {ψj} be a smooth partition of unity with locally finite and compact supports contained
in coordinate domains. First we assume that ω is absolutely integrable and we seek to show that the
φiω’s are absolutely integrable and

∑
i

∫
M |φiω| =

∫
M |ω| (in particular, this summation is finite).

Since ω is absolutely integrable,
∫
M |ω| =

∑
j

∫
M |ψjω| by definition. Since each ψj is compactly

supported with support contained in a coordinate domain, ψjφiω = 0 for all but finitely many i
(depending on j) and

∫
M |ψjω| =

∑
i

∫
M |ψjφiω| due to finite additivity for integration of functions

on opens in sectors in Euclidean space (here we also use that
∑
φi = 1 and all φi ≥ 0). Hence,

the double sum
∑

j

∑
i

∫
M |ψjφiω| is convergent and equal to

∫
M |ω|. We may rearrange it to get∑

i

∑
j

∫
M |ψjφiω| =

∫
M |ω|. In particular, for each i the inner summation over j is convergent, but

(due to the choice of the ψj ’s) this is exactly the definition of
∫
M |φiω|. Hence, we conclude that

each φiω is absolutely integrable and that
∑

i

∫
M |φiω| is convergent and equal to

∫
M |ω|.

Now suppose that each φiω is absolutely integrable with
∑

i

∫
M |φiω| convergent. We wish to

deduce that ω is absolutely integrable. By definition,
∫
M |φiω| =

∑
j

∫
M |ψjφiω| in the sense

that the right side is convergent (due to the hypothesis on φiω) and equal to the left side (by
definition, given the convergence). Hence, the sum

∑
i

∑
j

∫
M |ψjφiω| is convergent. Rearranging,∑

j

∑
i

∫
M |ψjφiω| is convergent. We want to prove that ω is absolutely integrable, which is to say

that
∑

j

∫
M |ψjω| is convergent. Hence, it suffices to show that the inner sum

∑
i

∫
M |ψjφiω| is

equal to
∫
M |ψjω| for all j. Since each ψjω is compactly supported inside of a coordinate domain,

the problem reduces to the identity
∑

i

∫
U fih =

∫
U h for a compactly supported smooth function

h on an open set U in a sector in Rn and a collection {fi} of non-negative smooth functions on U
whose supports are locally finite in U and which satisfy

∑
fi = 1. Since h is compactly supported,

fih = 0 for all but finitely many h and
∑
fih = h as a finite sum. Thus, finite additivity for

integration of compactly supported continuous functions in a sector in Rn does the job.
Finally, assume that M is oriented and ω is absolutely integrable. By the above, it follows that

each φiω is absolutely integrable and that
∑

i

∫
M φiω is absolutely convergent (as it is bounded

above termwise in absolute value by the sum
∑

i

∫
M |φiω| that we know to be finite and in fact

equal to
∫
M |ω|). We want to prove that

∑
i

∫
M φiω is equal to

∫
M ω. By definition,

∫
M φiω =∑

j

∫
M ψjφiω for all i, with this sum absolutely convergent (even bounded termwise in absolute

value by
∑

j

∫
M |ψjφiω|). Hence,

∑
i

∫
M φiω =

∑
i

∑
j

∫
M ψjφiω and this double sum is absolutely

convergent because
∑

i

∑
j

∫
M |ψjφiω| is finite (and equal to

∫
M |ω|) by the assumption that ω
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is absolutely integrable. We can therefore rearrange to get that this double sum without abso-
lute values is equal to

∑
j

∑
i

∫
M ψjφiω. But

∫
M ω =

∑
j

∫
M ψjω, so we are reduced to proving∑

i

∫
M ψjφiω =

∫
M ψjω for each j.

Renaming ψjω as η, we have to prove that if η is compactly supported inside of a coordinate
domain then

∑
i

∫
M φiη is absolutely convergent and equal to

∫
M η. Note that φiη = 0 for all but

finitely many i because the collection of supp(φi)’s is locally finite and η is compactly supported.
Passing into the coordinate domain containing the support of η, our problem is again reduced to
the general identity “

∫
U h =

∑
i

∫
U fih” on opens in sectors in Euclidean space as shown earlier in

this proof. �

Corollary 1.2. Let M0 = M − ∂M as an open smooth submanifold of M . Let ω be an n-form on
M and let ω0 = ω|M0. We have that ω is absolutely integrable on M if and only if ω0 is absolutely
integrable on M0, in which case

∫
M |ω| =

∫
M0 |ω0|. If M is oriented and we give M0 the induced

orientation, then for such ω we also have
∫
M ω =

∫
M0 ω

0.

Proof. Let {φi} be a locally finite C∞ partition of unity on M with compact supports contained in
coordinate domains. Let φ0

i = φi|M0 , so {φ0
i } is a locally finite C∞ partition of unity on M0 whose

supports are contained in coordinate domains but are generally non-compact.
By definition, ω is absolutely integrable if and only if

∑
i

∫
M |φiω| is finite, in which case this

sum is equal to
∫
M |ω| and the sum

∑
i

∫
M φiω is absolutely convergent and equal to

∫
M ω. By the

preceding theorem, we can make the same assertion over M0 using ω0 and the φ0
i ’s (even though

these φ0
i ’s generally have non-compact support in M0). Hence, if we can prove that each φ0

iω is
absolutely integrable onM0 with

∫
M0 |φ0

iω| =
∫
M |φiω| and (in the oriented case)

∫
M0 φ

0
iω =

∫
M φiω

then we will be done.
We may now pick i and rename φiω as ω, so we are reduced to the special case when ω is

compactly supported on M with support contained in an open coordinate domain U in M . In this
case, we wish to prove that ω0 is absolutely integrable over M0 with

∫
M |ω| =

∫
M0 |ω0| and (if

M is oriented in a manner compatible with the coordinates on U)
∫
M ω =

∫
M0 ω

0. Let K be the
compact support of ω, so {U,M −K} is an open cover of M . Let {ψj} be a smooth partition of
unity on M subordinate to this cover, with ψj ’s having locally finite and compact supports. Since
each ψj is either supported in U or M −K, and ω vanishes over M −K, clearly ψjω = 0 except
for those j such that ψj is supported in U . Any coordinate chart for M meets M0 = M − ∂M and
U in coordinate charts for M0 and U respectively, so it follows from the definition of integration of
differential forms that:

(1) The problems of computing
∫
M |ω| and

∫
M ω using {ψj} are the same as the problems

of computing
∫
U |ω| and

∫
U ω using {ψj |U} (dropping those ψj |U ’s that equal 0). More

specifically,
∫
U |ω| =

∫
M |ω| and (in the oriented case)

∫
U ω =

∫
M ω in the sense that ω is

absolutely integrable over M if and only if it is so over U , in which case both equalities
hold.

(2) The same goes over M0 using ω0 and U ∩M0.

It follows that we can replace M with U , and so we are reduced to the case when M has global
coordinates and is oriented by these coordinates. Thus, M0 also has global coordinates and may
be oriented by these coordinates. By the compatibility at the end of Exercise 4(iv) in Homework
9, our problem may therefore be translated into the classical setting of integration for compactly
supported smooth functions on opens in sectors in Euclidean space. That is, if Σ is a sector in Rn,
U ⊆ Σ is an open subset, and h : U → R is a compactly supported smooth function, then we seek
to prove that h is absolutely integrable on U0 = U − ∂Σ with

∫
U0 h =

∫
U h. We can use Change
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of variables to reduce to the case when Σ is a “standard” sector [0,∞)r × Rn−r, and since h is
compactly supported in U we can cover the support of h by a union Q of finitely many rectangles in
U with sides parallel to the coordinate axes. By the theory of integration on Euclidean space, our
integrals may be computed over Q and since Q has boundary with measure 0 it follows immediately
that h is absolutely integrable over Q0 = Q− (Q ∩ ∂Σ) with integral equal to

∫
Q h. �

We can now give a very important application that is easy to overlook if one does not think
carefully about how everything has been defined.

Let M be an n-manifold with corners that is embedded in Rn; an example is the closed unit ball
in Rn (considered as a manifold with boundary). The inclusion i : M → Rn induces a pullback
isomorphism TM ' i∗(T (Rn)). Passing to top exterior powers of duals, we get that dt1 ∧ · · · ∧ dtn
on Rn pulls back under i to a global generator for the line bundle of top-degree differential forms
on M . Thus, any ω ∈ Ωn

M (M) may be unique written ω = f · i∗(dt1 ∧ · · · ∧ dtn), or more classically
ω = f · (dt1 ∧ · · · ∧ dtn)|M , for some f ∈ C∞(M).

By working locally on M in Rn and using that M is topologically embedded in Rn, M is closed
in an open subset U ⊆ Rn and it is not hard to check that the manifold boundary ∂M is the
topological boundary of M in U . In particular, by the simple nature of manifold boundaries, the
topological boundary of M in U has measure zero. Thus, the old theory of integration for functions
on Euclidean space attaches a meaning to

∫
M f in the sense of absolute integrability (extending

f by zero to U). Thus, it is tempting to think that essentially “by definition” ω is absolutely
integrable on M in the sense of manifold integration if and only if f is absolutely integrable on
M ⊆ U in the sense of function integration on the open subset U in Euclidean space, in which case∫
M |ω| =

∫
M |f | and that in such cases (using the induced orientation on M from Rn) we also have∫

M ω =
∫
M f

Of course such equality of theories of integration for functions and forms is true, but this is not
a tautology! The point is that {t1|M , . . . , tn|M} is not a coordinate system along the boundary
points of M . That is, M does not generally have global coordinates in the sense of manifolds with
corners; recall that “global coordinates” really refers to opens in sectors in a Euclidean space, and
in practice M is not of this type inside of Rn. Even the most basic example of restricting {x, y}
on R2 to the closed unit disc D illustrates this. The definitions of function integration and n-form
integration are really quite different, as the latter uses partitions of unity subordinary to an atlas
on the manifold and the former uses extension by zero to all of Rn (or partitions of unity when
working on an open subset of Rn). If you think about it, you’ll see that there really is something
to be checked in order to assert that

∫
M ω =

∫
M f .

In practice we have to know that we can pass between the theory of integration for functions and
n-forms as above, and this “obvious” fact is used all the time in calculations (since it is certainly
impossible to write down partitions of unity!). I do not know of a single textbook that addresses
the fact that this equality of integrals is not a rehash of the definitions of such integrals. The
preceding results fortunately make it now a very easy matter to verify the desired equalities. By
Corollary 1.2, for the n-form integration (in the absolute and oriented senses) we may replace M
with M − ∂M . By the theory of function integration, since M has rectifiable boundary in U we
can replace M with M − ∂M for the purposes of function integration on M (using the theory of
integration on U). But M − ∂M is an open submanifold of Rn and is an open subset of U with
rectifiable boundary in U , so on both sides of the desired equalities we may replace M with M−∂M
(and take this as U). Now {ti|M} is a global coordinate system on the open set M in Rn, so the
definition of absolutely convergent integration of functions on open sets in Rn (via partitions of
unity!) concludes the argument.
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Example 1.3. Let ω = (
∑
t2j )

−1/2 ·
∑n+1

i=1 (−1)i−1tidt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtn+1 in Ωn
Rn+1(Rn+1).

For n = 2, this is dθ (and this is the reason for the ugly square root in front). For n > 2, it is
an analogue of the differential of “solid angle”. Let Sn(r) be the sphere of radius r > 0 centered
at the origin; it is the boundary of the solid ball Bn+1(r) of radius r, and as such we give it
the outward normal orientation. This is the induced boundary orientation when the ball oriented
via the standard orientation on Rn+1. We wish to compute

∫
Sn(r) ω, by which we really mean∫

Sn(r) i
∗(ω) with i : Sn(r) → Rn+1 the standard inclusion. The pullback i∗(ω) is a top-degree

differential form on the sphere and the sphere is compact, so this integral makes sense. Note also
that i∗(ω) = r−1i∗(η) with η defined like ω but without the square-root factor in front.

By Stokes’ theorem,
∫
Sn(r) ω = r−1

∫
Sn(r) η = r−1

∫
Bn+1(r) dη; the abuse of notation by suppress-

ing explicit mention of pullbacks from Rn+1 is harmless because d and pullback commute (such as
for d on Bn+1(r) as is relevant for Stokes’ theorem, and d on Rn+1 as is relevant to actually com-
pute!). On Rn+1, dη = (n+ 1)dt1 ∧ · · · ∧ dtn. Thus, by the equality we have established between
integration theory for functions and forms on N -submanifolds with corners in RN , the integral∫
Bn+1(r) dη in the sense of manifolds (which is what comes out of Stokes’ theorem!) is the same as

the old-fashioned integral
∫
Bn+1(r)(n+ 1)/r for a constant function over the rectifiable solid ball of

radius r in Rn+1. Hence, our initial fancy manifold integral is equal to (n+ 1)Vol(Bn+1(r))/r > 0,
and this latter volume may be computed recursively via Fubini’s theorem.

Note in particular that since Sn(r) is a boundaryless orientable manifold, exact forms of top
degree on this sphere must have vanishing integral by Stokes’ theorem. We have exhibited an
explicit top-degree (hence closed) form on this sphere whose integral we explicitly computed to be
nonzero. Thus, Hn

dR(Sn(r)) 6= 0. In the case n = 1, this recovers the fact that dθ is a non-exact
1-form on the circle and hence represents a nonzero de Rham cohomology class.

2. Chopping up spaces

Recall one of our initial questions: can we compute an integral over the sphere as a sum of
integrals over “complementary” hemispheres? We can now give an affirmative answer, with much
more generality. We first require a lemma.

Lemma 2.1. Let f : M ′ ' M be a C∞ isomorphism between smooth manifolds with corners that
have constant positive dimension n. For ω ∈ Ωn

M (M) and ω′ = f∗ω, ω is absolutely integrable over
M if and only if ω′ is absolutely integrable over M ′, in which case

∫
M |ω| =

∫
M ′ |ω′|. Moreover, if

M and M ′ are oriented such that f is orientation-preserving at all points, then
∫
M ω =

∫
M ′ ω

′ in
the absolutely integrable case.

This lemma is used all the time to shift integration problems from one manifold to an isomorphic
manifold.

Proof. Let {(Uj , ϕj)} be a C∞ atlas for M consisting of a locally finite collection of open subsets Uj ,
and let U ′j = f−1(Uj), ϕ′j = ϕj ◦ f |U ′

j
. Let {φi} be a smooth partition of unity on M with compact

supports subordinate to the Uj ’s, say φi supported inside of Uj(i) for each i. Let φ′i = φi ◦ f , so
{φ′i} is a smooth partition of unity on M ′ with compact supports subordinate to the U ′j ’s, with φ′i
supported inside of U ′j(i) for each i. The definitions of integration (in the absolute and oriented
senses) on M and M ′ are defined in terms of integrals on sectors in Euclidean spaces as dictated
by the atlases with their subordinary partition of unity. Hence, our problem is shifted to the case
of compactly supported smooth functions on opens in sectors in Rn and an orientation-preserving
C∞ isomorphism between such opens (using the standard orientation on Rn). This orientation
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condition ensures that the Jacobian determinant for the C∞ isomorphism is everywhere positive,
and hence is equal to its own absolute value. Thus, the Change of Variables formula gives what we
need. �

Theorem 2.2. Let M1, . . . ,Mr be finitely many manifolds with corners that have constant dimen-
sion n > 0. Let fi : Mi →M be smooth injective immersions that are homeomorphisms onto their
images. Assume moreover that for the interiors M0

i = Mi − ∂Mi, the fi(M0
i )’s lie in M0 and are

pairwise disjoint. Finally, assume that the pairwise disjoint open submanifolds M0
i in M0 have

union whose closed complement is measure zero in M .
For any n-form ω on M , ω is absolutely integrable if and only if each ωi = f∗i ω is absolutely

integrable on Mi, in which case
∫
M |ω| =

∑
i

∫
Mi
|f∗i ω|. If moreover, M is oriented and each Mi is

given the pullback orientation via the bundle isomorphism TMi ' f∗i (TM) over Mi for all i then∫
M ω =

∑
i

∫
Mi
f∗i ω.

The meaning of this theorem is that if we can cover the n-manifold with corners M by finitely
many n-submanifolds with corners that only meet along their boundaries, then integration problems
over M can be reduced to ones over the Mi’s. The covering of a sphere by a pair of complementary
hemispheres is a special case. Recall also that a subset of a manifold with corners M is said to
be of measure zero if it is so under each of a collection of charts that cover M (in which case the
same holds for where the subset meets any coordinate chart on M). This allows us to perform
calculations by ignoring closed regions such as the “edge” of the spherical coordinate domain on
the sphere.

Proof. By Corollary 1.2, we may remove ∂M without affecting any of the integrals under consid-
eration (in the sense of absolute convergence or value). The same goes for removing the ∂Mi’s.
Hence, we may assume that the Mi’s are pairwise disjoint open submanifolds of M whose union
has closed complement of measure zero. By Lemma 2.1, ω|fi(Mi) is absolutely integrable over the
open submanifold fi(Mi) in M if and only if f∗i ω is absolutely integrable over Mi, in which case∫
Mi
|f∗i ω| =

∫
fi(Mi)

|ω| and moreover when M is oriented (and each Mi is compatibly oriented)∫
Mi
f∗i ω =

∫
fi(Mi)

ω.
Thus, for our purposes we may replace Mi with fi(Mi) and so we reduce ourselves to the following

question on the smooth manifold M : the Mi’s are pairwise disjoint open submanifolds, and we seek
to prove that ω is absolutely integrable overM if and only if it is absolutely integrable over each open
subset Mi, in which case

∫
M |ω| =

∑
i

∫
Mi
|ω| and moreover if M is oriented then

∫
M ω =

∑
i

∫
Mi
ω

(using the induced orientation on the open subsets Mi).
Let {ψj} be a smooth partition of unity with compact supports subordinate to an atlas on M ,

so each {ψj |Mi} has the same property on Mi except that the supports on Mi are generally non-
compact. Since we can study integration on M and the Mi’s via this partition of unity, it is clearly
enough (check!) to solve the problem for each ψjω. Hence, we can assume that ω has compact
support K contained in an open coordinate domain U in M . Letting Ui = U ∩Mi, the compactness
of K lets us argue as in the proof of Corollary 1.2 to show that replacing M and the Mi’s with U
and the Ui’s does not affect any of the integrals under consideration. Hence, we may assume M
has global coordinates. Our problem is now shifted to the setting of function integrals on opens
in sectors in Euclidean space (due to the compatibility at the end of Exercise 4(iv) in Homework
9). That is, U is open in a sector in Rn, h is a continuous compactly supported function on U ,
and U1, . . . , Ur are disjoint opens in U whose union has closed complement (in U) with measure
zero. Under these conditions, we need to prove that h is absolutely integrable on each Ui and that
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U h =

∑∫
Ui
h. Since U − (∪Ui) is closed with measure zero in U , this equality (including the

absolute integrability over Ui) follows from the theory of integration on Euclidean space. �

Example 2.3. We can compute an integral over a sphere as a sum of integrals over a pair of
“complementary” hemispheres, or over the open locus on which spherical coordinates are defined.
Likewise, for any manifold endowed with a coordinate chart complementary to a closed set of
measure zero, all integration problems on the manifold can be shifted to the coordinate chart (i.e.,
we can ignore the region off of the chart). This is used all the time when we compute integrals on
the plane using polar coordinates, or integrals on a torus using the “angle coordinatization”, etc.

Also, on Grassmannians any of the standard open subsets UI has complement that is closed with
measure zero (essentially contained in a union of zero loci of nonzero polynomial functions on a
vector space), and so any integration on a Grassmannian may be computed by working in a single
UI .

3. Non-oriented volume

In the homework we have seen how to define volume on oriented Riemannian manifolds with
corners (and without open points): we integrate the volume form. This was seen to be independent
of the choice of orientation. But surely we do not need orientability to define volume. After all, it
is obvious that a Möbius strip embedded in R3 (and given the induced metric tensor) must have an
area (just make a 1-dimensional slit to restore orientability and to undo the twist). In the absence
of orientability there is no global volume form, since the definition of the volume form required
specifying an orientantion in the fibers (to tell which of the two unit vectors in each det(Tm(M)∨)
to pick). But this cannot be a serious obstacle, since locally we can always find orientations and
the choice has no effect on the local volume. By some vague principle of additivity for volume, this
convinces us that there has to be a way around the problem.

Here is what to do. Let (M,ds2) be the given Riemannian manifold with corners (and without
open points). Let {φi} be a C∞ partition of unity with locally finite collection of compact supports
such that each φi is supported inside of an orientable open subset Ui ⊆ M (such as a coordinate
domain). Pick an orientation on Ui, and let ωi be the resulting volume form; if we change the
orientation on Ui then ωi will change by a sign on some connected components of Ui. The form
φiωi on Ui is smooth and compactly supported on Ui, so

∫
Ui
|φiωi| makes sense and is clearly

independent of the choice of orientation on Ui. If we let ω′i denote the “extension by zero” of φiωi,
then

∫
Ui
|φiωi| =

∫
M |ω′i| and so in this way we see that it only depends on φi and not the choice of

Ui. Roughly speaking,
∫
M |ω′i| is a “dampened volume” for the support of φi, with dampening due

to the decrease of φi toward 0 near the boundary of its support.
If M is orientable and ω is the volume form associated to an orientation, then it is clear that∫

M |ω′i| =
∫
M |φiω|, so

∑
i

∫
M |φiω| =

∫
M |ω| =

∫
M ω (using the orientation on M for the final

integral), in the sense that the convergence of this sum is precisely the condition for ω to be
absolutely integrable, in which case we see that it calculates the volume of M . Motivated by this,
in general we define the volume of M to be

∑
i

∫
M |ω′i| if this sum converges. Of course, it has to be

proved that the property of convergence for this sum (which a priori depends on the initial choice
of partition of unity {φi} with locally finite and compact supports) is independent of the choice
of {φi}, in which case the value of the sum is also independent of the choice. This verification is
left as an exercise; it follows the same paradigm of expanding a double sum in two different ways
exactly as in the proof of well-definedness of integrals for “absolute values” of differential forms
over manifolds with corners. Obviously volume is positive.
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It follows by the same method as used to prove Theorem 2.2 that this notion of volume has
reasonable geometric properties that we expect. For example, Vol(M) = Vol(M − ∂M) (in the
sense that one is finite if and only if the other is, in which case they are equal), and in the setup of
Theorem 2.2 we have Vol(M) =

∑
i Vol(Mi) (in the sense that M has finite volume if and only if

the Mi’s all do, in which case the equality holds). Also, if U ⊆M is an open subset with compact
closure, then Vol(U) is finite (can you prove this?). Such manipulations are used all the time
when computing the volume of specific Riemannian manifolds with corners. From the viewpoint
of measure theory, it can be proved that the assignment of volume to open sets in M uniquely
extends to a (reasonable) measure on M . In this sense, via the method of integration of differential
forms we see that Riemannian manifolds always admit a canonical measure (even in the absence
of an orientation). In the special case M = Rn with its standard flat metric, we recover Lebesgue
measure.

4. Deciphering classical notation

Let S be an embedded oriented smooth surface with boundary in R3 and C an embedded oriented
curve with boundary in Rn. One often sees the following expressions:

(1)
∫

S
(Pdxdy +Qdxdz +Rdzdy),

∫
C

∑
fjdxj

for smooth functions P,Q,R on an open U ⊆ R3 containing S and smooth functions f1, . . . , fn on
an open U ′ containing C. What do such notations mean?!? From the modern point of view, if we
let i : S ↪→ U ⊆ R3 and σ : C ↪→ U ′ ⊆ Rn denote the embedding maps then such integrals should
be understood to mean∫

S
i∗(Pdx ∧ dy +Qdx ∧ dz +Rdz ∧ dy),

∫
C
σ∗(

∑
fjdxj).

The suppression of the pullback notation fortunately does not create problems with applications of
Stokes’ theorem, because the d operator commutes with pullback (so whether we compute d on an
ambient Euclidean space and then apply pullback, or compute d on the submanifold after pullback,
it all comes to the same thing as far as the end result on the submanifold is concerned).

This is all fine and well, but it avoids the real issue: does our modern definition for the meaning of
(1) compute what the old-timers worked with in the setting of embedded submanifolds (with corners)
in Euclidean space? After all, in the 19th century nobody used partitions of unity. Likewise, in
multivariable calculus books one does not see partitions of unity. What one does see in the old books
and modern textbooks for physics students are parametric curves in Rn and parametric surfaces in
R3. The classical method of computation of the integrals in (1) (by whatever method of “definition”
is employed) consists of two steps. First, away from certain closed subsets of measure zero, the
manifold is expressed as a disjoint union of finitely many subsets that are explicitly presented as
the images under embeddings from open regions in a Euclidean space. (For example, on a sphere
Sn−1 we ignore the equator and express the remaining two hemispheres as images of the open unit
ball in Rn−1. On a surface of revolution we make a slit and parameterize by angle and x.) In
other words, we cover the manifold (with corners) by coordinate charts that have minimal overlap.
Once this is done, the problem classically is “reduced” to computing integrals (in whatever sense
has been defined) over the specified parametric charts. We also have an analogue of this first step,
namely Theorem 2.2! Hence, everyone agrees that in classical situations the problem of actually
computing an integral is reduced to the case when the submanifold with corners admits global
coordinates. By passing to connected components so that there are exactly two orientations, we
can always choose the coordinate chart to be positive for the chosen orientation.
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Now comes the second step, assuming that there is an open domain D in a sector in Rk and
a smooth embedding f : D → RN such that M = f(D) is the submanifold under consideration
and f is orientation-preserving with respect to the given orientation on M and the orientation on
D from Rk. (In the case of oriented curves, this amounts to taking f so that the velocity vectors
f ′(t) along the curve always lie in the positive half-line for the orientation on the curve.) If ω is the
differential form being “integrated” (in whatever sense) over M , then the orientation compatibility
for f allows us to use Lemma 2.1 to infer that

∫
M ω =

∫
D f

∗ω when D is oriented from Rk. Since
D is open in a sector in Rk, it is a k-submanifold with corners in Rk. Hence, if {y1, . . . , yk} are
the standard coordinates on Rk, we can uniquely write f∗ω = hdy1 ∧ · · · ∧ dyk for h ∈ C∞(D). By
the discussion following the proof of Corollary 1.2, our fancy manifold integral

∫
D f

∗ω is equal to
the old-fashioned function integral

∫
D h.

Our task is to show that
∫
D h is exactly how the old-timers and modern-day physics students

compute their “integral” (however it is defined) over the image M of the embedding f : D → RN ,
at least for curves in space and surfaces in R3 (as these are the only cases used by people who don’t
know the modern theory of differential forms). Let us return to the mysterious surface integral in
(1), in the case when there is a mapping f : D ' S ⊆ R3 with f(u, v) = (f1(u, v), f2(u, v), f3(u, v))
for smooth functions f1, f2, f3 on D. The classical recipe to perform the calculation begins by
replacing the given “surface element” in x, y, z with one in terms of u and v. What this means
in practice is the following. First, formally replace P (x, y, z) with P (u, v) (which really means
P ◦ f = f∗(P )) and similarly for Q and R. Next, replace the differential dx with the “total
differential” ∆f1 = ∂uf1du+ ∂vf2dv (which really means df1 = f∗(dx)). There are also the formal
rules for manipulation: dudu = 0 = dvdv and dudv = −dvdu (justified by some hocus-pocus with
infinitesimals), which we recognize as the algebraic properties of wedge products. To summarize,
once the algebra of substitution is done the classical integrand

P (x, y, z)dxdy +Q(x, y, z)dzdx+R(x, y, z)dzdy

(whatever it is supposed to mean) is formally replaced with

((P ◦f)·(∂uf1∂vf2−∂vf1∂uf2)+(Q◦f)·(∂uf3∂vf1−∂vf3∂uf1)+(R◦f)·(∂uf3∂vf2−∂vf3∂uf2))dudv

considered as a “surface element” on the domain D in R2. If this is written as gdudv, then what
the old-timers compute is

∫
D g. But a review of the meaning of the various substitutions shows

that f∗(Pdx ∧ dy +Qdz ∧ dx+Rdz ∧ dy) = gdu ∧ dv, so indeed we’re computing the same thing!
The case of parametric curves goes almost exactly the same way, except that the algebra is a

lot easier: there are no wedge products and so no mystical “rules” on how to manipulate products
of infinitesimals. If σ(t) = (σ1(t), . . . , σn(t)) is the mapping that parameterizes our oriented curve
in Rn with non-vanishing velocity vectors such that σ′(t) ∈ Tσ(t)(C) “points the right way” (i.e.,
motion in the direction specified by the orientation of the curve) then {t} is an oriented coordinate
chart for the submanifold C ⊆ Rn. Hence, if t ranges through a nontrivial interval I in R (given
the standard orientation) then our calculation of the line integral in (1) proceeds as follows:∫

I
σ∗(

∑
fjdxj) =

∑ ∫
I
(fj ◦ σ)σ′jdt =

∑ ∫
I
(fj ◦ σ)σ′j

where the final integrals are old calculus-style integrals of functions on an interval. The way the
old-timers integrate the “line elements”

∑
fjdxj along the parameterized curve C is to replace fj

with fj(t) (i.e., fj ◦ σ) and to replace dxj with dσj(t) = σ′j(t)dt (i.e., σ′jdt = σ∗j (dxj)) to get the
infinitesimal

∑
(fj ◦ σ)σ′jdt, and they integrate the coefficient function

∑
(fj ◦ σ)σ′j (and also keep
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the symbol dt that has some vague meaning to them). This is exactly the integral we wound up
with in the end.

Hence, for line integrals in space and surface integrals in R3, our modern definition gives the
same answers as in earlier approaches to integration on such manifolds. Moreover, even the formal
mechanics of the method of calculation is essentially the same. The main difference is that we have
given vastly more general definitions via partitions of unity and so on, and we have given genuine
meaning to every step of the calculation. In any concrete situation where one wants to compute
a number, one must use the “chopping up the space” method to reduce to calculations in charts
since it is impossible to actually do an explicit calculation with partitions of unity.


