MATH 396. CONNECTEDNESS OF HYPERPLANE COMPLEMENTS

Note that the complement of a point in \mathbf{R} is disconnected and the complement of a (translated) line in \mathbf{R}^2 is disconnected. Quite generally, we claim that the complement of a translated hyperplane in a finite-dimensional normed vector space over \mathbf{R} is disconnected. In fact, this disconnectedness phenomenon is entirely an artifact of codimension 1. Higher codimensions never cause such problems. (Recall that if W is a subspace of a vector space V, the codimension of W in V is defined to be $\dim(V/W)$; this may be infinite, and it may be finite even if $\dim V$ and $\dim W$ are infinite, but when $\dim V$ is finite it is equal to $\dim V - \dim W$.)

As an example of the situation in higher codimension, we can see that removing a translated line (or several such) from \mathbb{R}^3 doesn't lead to disconnectedness: we can go "around" the line when thinking about paths linking up points. Likewise, removing the (codimension 2) origin from \mathbb{R}^2 doesn't cause disconnectedness. Roughly speaking, there's enough "elbow room" complementary to codimensions > 1 to avoid disconnectedness. The aim of this handout is to explore this situation.

1. Main result

We prove a connectivity theorem even when V is infinite-dimensional. Of course, to have a reasonable topology we suppose V is equipped with a norm, and we use the resulting metric topology (one can consider the possibility of putting a topology on V in other ways, but we will not discuss that here).

Theorem 1.1. Let V be a normed vector space over \mathbf{R} . Then for any finite set of (not necessarily distinct) closed linear subspaces W_1, \ldots, W_k of (not necessarily finite) codimensions > 1 and any $v_1, \ldots, v_k \in V$, the complement

$$V - \bigcup_{i=1}^{k} (v_i + W_i)$$

is path-connected and hence is connected.

For example, the complement of any finite configuration of lines in \mathbb{R}^3 is path-connected; this is "geometrically obvious". Note that the theorem does not require V to be finite-dimensional, nor the W_i 's to have finite codimension. However, we will construct the paths within well-chosen finite-dimensional subspaces of V, so the finite-dimensional case is the essential one. Of course, in the finite-dimensional case the closedness hypothesis on the subspaces is automatically satisfied. Also, infinitude of codimension of W_i is not a serious problem either: in fact, the higher the codimension of W_i gets, the more room there is complementary to W_i , and hence the easier life should be for finding paths! Before we prove the theorem, we record an interesting consequence.

Corollary 1.2. Let V be a normed vector space over C, and W_1, \ldots, W_k a finite collection of (not necessarily distinct) proper closed linear subspaces. For any $v_1, \ldots, v_k \in V$, the complement

$$V - \bigcup_{i=1}^{k} (v_i + W_i)$$

is path-connected and hence is connected.

Proof. We can view everything as \mathbf{R} -vector spaces at the expense of doubling dimensions and codimensions (when finite). In particular, V/W_j is a non-zero \mathbf{C} -vector space, whence as an \mathbf{R} -vector space has dimension at least 2 (perhaps infinite, which is even better!). Hence, by the theorem, we're done.

Now we give the proof of the theorem.

Proof. The case $\dim V \leq 1$ is trivial. Consider the special case $\dim V = 2$. In this case the only linear subspace of codimension > 1 is the origin, so we're just looking at the complement of a finite set of points. The path-connectedness of this is left to the reader as a pleasant exercise in using definitions.

Now consider the general case. Choose two points $x, y \in V$ not in any of the $v_i + W_i$'s. We want to find a path connecting them which avoids the complements. Translating everything in sight (i.e., x, y and the v_i 's) by -x, we can assume x = 0 (so 0 is not in any $v_i + W_i$, so $v_i \notin W_i$ for all i). It is exactly the convenience of using such a translation (to reduce to studying paths joined to the origin) that forces us to formulate the original theorem in the context of translated subspaces. Since the linear subspaces W_i (and hence translates of them) are closed, the complement

$$V - \bigcup_{i=1}^{k} (v_i + W_i)$$

is open.

We first reduce to the finite-dimensional case. Since V/W_i has dimension at least 2, we get vectors $v'_{i,1}, v'_{i,2} \in V$ which induce linearly independent elements in V/W_i , which is to say

$$av'_{i,1} + bv'_{i,2} \not\in W_i$$

for all $a,b \in \mathbf{R}$ not both zero. Let \widetilde{V} be the *finite-dimensional* subspace of V spanned by $x = 0, y, v_1, \ldots, v_k$, and the vectors $v'_{i,1}, v'_{i,2}$ for $1 \le i \le k$, say given the induced norm from V. Let $\widetilde{W}_i = W_i \cap \widetilde{V}$. Since $av'_{i,1} + bv'_{i,2} \notin \widetilde{W}_i$ for all i, clearly $\widetilde{V}/\widetilde{W}_i$ has dimension at least 2 for all i (this is why we forced the $v'_{i,j}$'s to be in \widetilde{V}).

Because of all of the vectors we've forced into \widetilde{V} , it is easy to see that \widetilde{V} and the \widetilde{W}_i 's with the v_i 's satisfy all of the original hypotheses (especially the codimension > 1 condition). Hence, if we could settle the finite-dimensional case then we could find a continuous path in

$$\widetilde{V} - \bigcup (v_i + \widetilde{W}_i) = \widetilde{V} \cap \left(V - \bigcup_{i=1}^k (v_i + W_i)\right)$$

which joins x = 0 to y. Since $\widetilde{V} \to V$ is an isometry, this path is also continuous when viewed inside of V, and hence does the job.

Thus, we may now assume $\dim V < \infty$, and we will argue by induction on the dimension. Of course, in the finite-dimensional case all norms are equivalent and hence we can essentially suppress mention of the norm. As a preliminary step to help with the induction (basically to allow us to start the induction at dimension 2 rather than having to do an explicit argument in dimension 3 first), we reduce to the case where y is not in any of the W_i 's.

We can find a small open ball $B_{\varepsilon}(y)$ around y which is inside of the complement of the closed $\cup (v_i + W_i)$, and even avoids touching any of the (finitely many, closed) W_i 's which don't contain y. We claim there there is a $y' \in B_{\varepsilon}(y)$ not contained in any W_i 's. Indeed, due to how we chose ε , we can use a translation by -y to reduce to showing that inside of a given small ball around the origin we can always find a point which avoids any specified finite collection of hyperplanes. But any vector in V admits a non-zero scaling which is inside of $B_{\varepsilon}(0)$, so it is equivalent to show that V is not the union of finitely many hyperplanes. This follows from Lemma 2.3 below.

Using such a choice of $y' \in B_{\varepsilon}(y)$, if we can find a path from 0 to y' in the complement of the $(v_i + W_i)$'s, then hooking this onto a radial path from y' to y in the ball $B_{\varepsilon}(y)$ (which is likewise

disjoint from all $(v_i + W_i)$'s), we'll be done. Hence, replacing y with a well-chosen sufficiently close y' lets us assume that $y \notin W_i$ for all i.

Now the idea is to take a suitably well-chosen hyperplane slice through y to drop the dimension of V without affecting codimensions of the W_i 's. This will reduce us to the case dim V=2 which has already been treated. More specifically, we will find a 2-dimensional subspace V_0 in V which contains y but meets each W_i in $\{0\}$ (this would not be possible if $y \in W_i$!).

Now quite generally, if $U, U' \subseteq V$ are linear subspaces and $v, v' \in V$ are points, then it is easy to see that

$$(v+U) \cap (v'+U') = \begin{cases} \emptyset, & \text{if } v-v' \not\in U+U' \\ (v'+u') + (U \cap U'), & \text{if } v-v' = u+u' \in U+U' \end{cases}$$

Thus, back in our original situation, if V_0 is a 2-dimensional subspace of V which contains y and meets each W_i in $\{0\}$ then $V_0 \cap (v_i + W_i)$ is either empty or a point. Thus, we have

$$V_0 \cap (V - \bigcup_{i=1}^k (v_i + W_i)) = V_0 - \bigcup_{i=1}^k (V_0 \cap (v_i + W_i))$$

with each $V_0 \cap (v_i + W_i)$ either empty or a point. Thus, slicing with the subspace V_0 which contains 0 and y brings us to a complement of a finite set in the 2-dimensional V_0 , and such a complement is path-connected (and contains y and 0 = x). Our problem is now reduced to a statement in linear algebra which we can prove over an arbitrary *infinite* field, as in the theorem below (in which the "auxiliary vector" is y). The required result in linear algebra is treated in the next section.

2. A THEOREM IN LINEAR ALGEBRA

To emphasize the essentially algebraic (as opposed to topological) aspect of what remains to be done, we now work over an essentially arbitrary field.

Theorem 2.1. Let V be a finite-dimensional vector space over an infinite field F, with dim $V \geq 2$, and let W_1, \ldots, W_k be (not necessarily distinct) linear subspaces of codimensions > 1. Choose an auxiliary vector $v_0 \in V$ with $v_0 \notin W_i$ for all i. Then there exists a 2-dimensional subspace V_0 such that $v_0 \in V_0$ and $V_0 \cap W_i = \{0\}$ for all i.

Remark 2.2. This lemma is false over finite fields. Indeed, over a finite field a finite-dimensional vector space V contains only finitely many vectors, so we can even find finitely many lines (e.g., the span of each non-zero element) whose union is the entire space. Taking $\{W_i\}$ to be the finite set of lines in V, any non-zero subspace certainly contains one of these lines and so no such V_0 as in the theorem can exist. It is a characteristic of infinite fields that a vector space of finite dimension > 1 over such a field cannot be expressed as a finite union of lower-dimensional subspaces, and we will reduce the proof of the theorem to exactly this fact, which will be proven afterwards as a separate lemma (that was already used in earlier arguments).

Proof. We can drop any W_i 's which are equal to 0, so we may assume $W_i \neq 0$ for all i (and that there actually are some W_i 's). We induct on $\dim V \geq 2$, the case $\dim V = 2$ being clear (as then the W_i 's are automatically $\{0\}$, so we may use $V_0 = V$). When $\dim V > 2$, we just need to find a codimension-1 subspace H such that $v_0 \in H$ and $W_i \not\subseteq H$ for all i. Indeed, in that case $W_i + H = V$ (as W_i then surjects onto the 1-dimensional V/H), so

$$\dim(W_i \cap H) = \dim(W_i) + \dim(H) - \dim(W_i + H)$$
$$= \dim(W_i) + \dim(H) - \dim(V)$$
$$= \dim(H) - \dim(V/W_i)$$

In other words, if we slice with a hyperplane H not containing W_i , then the codimension

$$\dim H/(W_i \cap H) = \dim(H) - \dim(W_i \cap H) = \dim V/W_i$$

of $W_i \cap H$ in H is equal to the codimension of W_i in V, which we assumed to be > 1.

Thus, once we find an H containing v_0 which does not contain any of the W_i 's, then we can replace V with H and each W_i with $W_i \cap H$ without destroying any of the hypotheses (and any $W_i \cap H$'s which vanish can be dropped). Since $\dim H = \dim V - 1$, by induction on the dimension of V we'd be done. Our problem therefore is to find a codimension-1 subspace through v_0 which does not contain any of the *non-zero* codimension subspaces W_1, \ldots, W_k whose codimension in V is > 1.

As a concrete example, for $V = \mathbf{R}^3$ this says that, given any finite set of lines L_1, \ldots, L_k in \mathbf{R}^3 and any point v_0 not on any of these lines, we can find a plane through v_0 which does not contain any of the lines. It is geometrically obvious in this case that a "random" choice of plane through v_0 will do the job (though a few "bad" planes may fail).

The general argument goes as follows. We can view the problem of constructing a hyperplane H as the problem of finding a suitable non-zero linear functional $\ell: V \to F$ (with H then taken to be the codimension-1 kernel of ℓ). In such terms, we seek a point ℓ in the dual space V^{\vee} with $\ell(v_0) = 0$ but ℓ non-zero on each of the non-zero subspaces W_i . This ensures that $H = \ker \ell$ is a hyperplane containing v_0 but not any of the W_i 's. Consider the annihilator $W_i^{\perp} \subseteq V^{\vee}$, which is to say the subspace of functionals which vanish on W_i . Since linear maps $V \to V'$ that kill a subspace W uniquely factor through the projection $V \to V/W$, by taking the case V' = F we arrive at an evident linear isomorphism

$$W_i^{\perp} \simeq (V/W_i)^{\vee}$$
,

so this subspace of V^{\vee} has dimension $\dim V/W_i < \dim V = \dim V^{\vee}$, and hence it is a proper subspace of V^{\vee} (with codimension $\dim W_i$).

Let $K = (Fv_0)^{\perp}$, a codimension-1 subspace of V^{\vee} . Since $v_0 \notin W_i$, we have $Fv_0 \nsubseteq W_i$, so $W_i^{\perp} \nsubseteq K$ (as otherwise applying $(\cdot)^{\perp}$ to this via $V \simeq V^{\vee\vee}$ would yield the reverse inclusion $Fv_0 \subseteq W_i$ which we have assumed not to hold). For each i, we claim that the subspace $K_i = K \cap W_i^{\perp}$ in K is a proper subspace. If not, so this intersection equals K, then we'd get $K \subseteq W_i^{\perp} \subsetneq V^{\vee}$, forcing $W_i^{\perp} = K$ since K has codimension 1 in V^{\vee} (so there are no non-trivial intermediate subspaces between K and V^{\vee}). But we've just seen that W_i^{\perp} is not contained in K, so this would be a contradiction.

Now the task is to show that the vector space $K = (Fv_0)^{\perp}$ inside of V^{\vee} contains an element which is *not* inside of any of the proper subspaces $K_i = W_i^{\perp} \cap K$. In other words, we want to show that the vector space K cannot be a union of finitely many proper subspaces (which would be false over a finite field). So far we have not used that F is an infinite field, but it is at this step that the infinitude of F plays the crucial role. We isolate the necessary fact in the form of a lemma below.

Lemma 2.3. Let F be an infinite field, V a vector space, and V_1, \ldots, V_k finitely many proper subspaces. Then V is not the union of the V_i 's.

Proof. The cases k = 0, 1 are clear. This also settles dim $V \leq 1$. The idea now is to draw a "random" line in V and to find a point on this line which is not on any of the V_i 's.

We may assume k > 1 and (by induction on k) the result is known for collections of k proper subspaces. By induction we can choose a vector k not contained in k, ..., k. If also k we're done. Otherwise, choose another vector k not contained in the proper subspace k (so k v). Let k be the span of k v k 0, so the translated line k to k 1 passes through both k and

v. Note that $L \cap V_i = \{0\}$ since this intersection is a *proper* subspace of the 1-dimensional L (as L contains both v and v', at least one of which is not in V_i).

Consider the intersection

$$(v+L) \cap V_i = (v'+L) \cap V_i$$

for $1 \le i \le k$. Since $L \cap V_i = \{0\}$, this intersection $(v + L) \cap V_i$ is either empty or a point (i.e., it cannot contain two points, as the difference would be a non-zero element in $L \cap V_i = \{0\}$). Thus,

$$(v+L) \cap (\bigcup_{i=1}^{k} V_i) = \bigcup_{i=1}^{k} ((v+L) \cap V_i)$$

is a *finite* (perhaps empty) union of points. But v + L is *infinite* since L is 1-dimensional over an infinite field. Hence, we can find $x \in v + L$ not contained in any V_i . The union of the V_i 's is therefore not all of V.