
Math 396. Connectedness of hyperplane complements

Note that the complement of a point in R is disconnected and the complement of a (trans-
lated) line in R2 is disconnected. Quite generally, we claim that the complement of a translated
hyperplane in a finite-dimensional normed vector space over R is disconnected. In fact, this discon-
nectedness phenomenon is entirely an artifact of codimension 1. Higher codimensions never cause
such problems. (Recall that if W is a subspace of a vector space V , the codimension of W in V is
defined to be dim(V/W ); this may be infinite, and it may be finite even if dimV and dimW are
infinite, but when dimV is finite it is equal to dimV − dimW .)

As an example of the situation in higher codimension, we can see that removing a translated
line (or several such) from R3 doesn’t lead to disconnectedness: we can go “around” the line when
thinking about paths linking up points. Likewise, removing the (codimension 2) origin from R2

doesn’t cause disconnectedness. Roughly speaking, there’s enough “elbow room” complementary
to codimensions > 1 to avoid disconnectedness. The aim of this handout is to explore this situation.

1. Main result

We prove a connectivity theorem even when V is infinite-dimensional. Of course, to have a
reasonable topology we suppose V is equipped with a norm, and we use the resulting metric
topology (one can consider the possibility of putting a topology on V in other ways, but we will
not discuss that here).
Theorem 1.1. Let V be a normed vector space over R. Then for any finite set of (not necessarily
distinct) closed linear subspaces W1, . . . ,Wk of (not necessarily finite) codimensions > 1 and any
v1, . . . , vk ∈ V , the complement

V −
k⋃
i=1

(vi +Wi)

is path-connected and hence is connected.
For example, the complement of any finite configuration of lines in R3 is path-connected; this is

“geometrically obvious”. Note that the theorem does not require V to be finite-dimensional, nor
the Wi’s to have finite codimension. However, we will construct the paths within well-chosen finite-
dimensional subspaces of V , so the finite-dimensional case is the essential one. Of course, in the
finite-dimensional case the closedness hypothesis on the subspaces is automatically satisfied. Also,
infinitude of codimension of Wi is not a serious problem either: in fact, the higher the codimension
of Wi gets, the more room there is complementary to Wi, and hence the easier life should be for
finding paths! Before we prove the theorem, we record an interesting consequence.
Corollary 1.2. Let V be a normed vector space over C, and W1, . . . ,Wk a finite collection of (not
necessarily distinct) proper closed linear subspaces. For any v1, . . . , vk ∈ V , the complement

V −
k⋃
i=1

(vi +Wi)

is path-connected and hence is connected.

Proof. We can view everything as R-vector spaces at the expense of doubling dimensions and
codimensions (when finite). In particular, V/Wj is a non-zero C-vector space, whence as an R-
vector space has dimension at least 2 (perhaps infinite, which is even better!). Hence, by the
theorem, we’re done. �

Now we give the proof of the theorem.
1
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Proof. The case dimV ≤ 1 is trivial. Consider the special case dimV = 2. In this case the only
linear subspace of codimension > 1 is the origin, so we’re just looking at the complement of a finite
set of points. The path-connectedness of this is left to the reader as a pleasant exercise in using
definitions.

Now consider the general case. Choose two points x, y ∈ V not in any of the vi +Wi’s. We want
to find a path connecting them which avoids the complements. Translating everything in sight
(i.e., x, y and the vi’s) by −x, we can assume x = 0 (so 0 is not in any vi +Wi, so vi 6∈ Wi for all
i). It is exactly the convenience of using such a translation (to reduce to studying paths joined to
the origin) that forces us to formulate the original theorem in the context of translated subspaces.
Since the linear subspaces Wi (and hence translates of them) are closed, the complement

V −
k⋃
i=1

(vi +Wi)

is open.
We first reduce to the finite-dimensional case. Since V/Wi has dimension at least 2, we get

vectors v′i,1, v
′
i,2 ∈ V which induce linearly independent elements in V/Wi, which is to say

av′i,1 + bv′i,2 6∈Wi

for all a, b ∈ R not both zero. Let Ṽ be the finite-dimensional subspace of V spanned by x =
0, y, v1, . . . , vk, and the vectors v′i,1, v

′
i,2 for 1 ≤ i ≤ k, say given the induced norm from V . Let

W̃i = Wi ∩ Ṽ . Since av′i,1 + bv′i,2 6∈ W̃i for all i, clearly Ṽ /W̃i has dimension at least 2 for all i (this
is why we forced the v′i,j ’s to be in Ṽ ).

Because of all of the vectors we’ve forced into Ṽ , it is easy to see that Ṽ and the W̃i’s with the
vi’s satisfy all of the original hypotheses (especially the codimension > 1 condition). Hence, if we
could settle the finite-dimensional case then we could find a continuous path in

Ṽ −
⋃

(vi + W̃i) = Ṽ
⋂(

V −
k⋃
i=1

(vi +Wi)

)

which joins x = 0 to y. Since Ṽ → V is an isometry, this path is also continuous when viewed
inside of V , and hence does the job.

Thus, we may now assume dimV < ∞, and we will argue by induction on the dimension. Of
course, in the finite-dimensional case all norms are equivalent and hence we can essentially suppress
mention of the norm. As a preliminary step to help with the induction (basically to allow us to
start the induction at dimension 2 rather than having to do an explicit argument in dimension 3
first), we reduce to the case where y is not in any of the Wi’s.

We can find a small open ball Bε(y) around y which is inside of the complement of the closed
∪(vi + Wi), and even avoids touching any of the (finitely many, closed) Wi’s which don’t contain
y. We claim there there is a y′ ∈ Bε(y) not contained in any Wi’s. Indeed, due to how we chose ε,
we can use a translation by −y to reduce to showing that inside of a given small ball around the
origin we can always find a point which avoids any specified finite collection of hyperplanes. But
any vector in V admits a non-zero scaling which is inside of Bε(0), so it is equivalent to show that
V is not the union of finitely many hyperplanes. This follows from Lemma 2.3 below.

Using such a choice of y′ ∈ Bε(y), if we can find a path from 0 to y′ in the complement of the
(vi + Wi)’s, then hooking this onto a radial path from y′ to y in the ball Bε(y) (which is likewise
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disjoint from all (vi +Wi)’s), we’ll be done. Hence, replacing y with a well-chosen sufficiently close
y′ lets us assume that y 6∈Wi for all i.

Now the idea is to take a suitably well-chosen hyperplane slice through y to drop the dimension
of V without affecting codimensions of the Wi’s. This will reduce us to the case dimV = 2 which
has already been treated. More specifically, we will find a 2-dimensional subspace V0 in V which
contains y but meets each Wi in {0} (this would not be possible if y ∈Wi!).

Now quite generally, if U,U ′ ⊆ V are linear subspaces and v, v′ ∈ V are points, then it is easy to
see that

(v + U) ∩ (v′ + U ′) =
{
∅, if v − v′ 6∈ U + U ′

(v′ + u′) + (U ∩ U ′), if v − v′ = u+ u′ ∈ U + U ′

Thus, back in our original situation, if V0 is a 2-dimensional subspace of V which contains y and
meets each Wi in {0} then V0 ∩ (vi +Wi) is either empty or a point. Thus, we have

V0 ∩ (V −
k⋃
i=1

(vi +Wi)) = V0 −
k⋃
i=1

(V0 ∩ (vi +Wi))

with each V0∩ (vi+Wi) either empty or a point. Thus, slicing with the subspace V0 which contains
0 and y brings us to a complement of a finite set in the 2-dimensional V0, and such a complement is
path-connected (and contains y and 0 = x). Our problem is now reduced to a statement in linear
algebra which we can prove over an arbitrary infinite field, as in the theorem below (in which the
“auxiliary vector” is y). The required result in linear algebra is treated in the next section. �

2. A theorem in linear algebra

To emphasize the essentially algebraic (as opposed to topological) aspect of what remains to be
done, we now work over an essentially arbitrary field.
Theorem 2.1. Let V be a finite-dimensional vector space over an infinite field F , with dimV ≥ 2,
and let W1, . . . ,Wk be (not necessarily distinct) linear subspaces of codimensions > 1. Choose an
auxiliary vector v0 ∈ V with v0 6∈Wi for all i. Then there exists a 2-dimensional subspace V0 such
that v0 ∈ V0 and V0 ∩Wi = {0} for all i.
Remark 2.2. This lemma is false over finite fields. Indeed, over a finite field a finite-dimensional
vector space V contains only finitely many vectors, so we can even find finitely many lines (e.g., the
span of each non-zero element) whose union is the entire space. Taking {Wi} to be the finite set of
lines in V , any non-zero subspace certainly contains one of these lines and so no such V0 as in the
theorem can exist. It is a characteristic of infinite fields that a vector space of finite dimension > 1
over such a field cannot be expressed as a finite union of lower-dimensional subspaces, and we will
reduce the proof of the theorem to exactly this fact, which will be proven afterwards as a separate
lemma (that was already used in earlier arguments).

Proof. We can drop any Wi’s which are equal to 0, so we may assume Wi 6= 0 for all i (and that
there actually are some Wi’s). We induct on dimV ≥ 2, the case dimV = 2 being clear (as then
the Wi’s are automatically {0}, so we may use V0 = V ). When dimV > 2, we just need to find a
codimension-1 subspace H such that v0 ∈ H and Wi 6⊆ H for all i. Indeed, in that case Wi+H = V
(as Wi then surjects onto the 1-dimensional V/H), so

dim(Wi ∩H) = dim(Wi) + dim(H)− dim(Wi +H)
= dim(Wi) + dim(H)− dim(V )
= dim(H)− dim(V/Wi)
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In other words, if we slice with a hyperplane H not containing Wi, then the codimension

dimH/(Wi ∩H) = dim(H)− dim(Wi ∩H) = dimV/Wi

of Wi ∩H in H is equal to the codimension of Wi in V , which we assumed to be > 1.
Thus, once we find an H containing v0 which does not contain any of the Wi’s, then we can

replace V with H and each Wi with Wi ∩ H without destroying any of the hypotheses (and any
Wi ∩H’s which vanish can be dropped). Since dimH = dimV − 1, by induction on the dimension
of V we’d be done. Our problem therefore is to find a codimension-1 subspace through v0 which
does not contain any of the non-zero codimension subspaces W1, . . . ,Wk whose codimension in V
is > 1.

As a concrete example, for V = R3 this says that, given any finite set of lines L1, . . . , Lk in R3

and any point v0 not on any of these lines, we can find a plane through v0 which does not contain
any of the lines. It is geometrically obvious in this case that a “random” choice of plane through
v0 will do the job (though a few “bad” planes may fail).

The general argument goes as follows. We can view the problem of constructing a hyperplane
H as the problem of finding a suitable non-zero linear functional ` : V → F (with H then taken
to be the codimension-1 kernel of `). In such terms, we seek a point ` in the dual space V ∨ with
`(v0) = 0 but ` non-zero on each of the non-zero subspaces Wi. This ensures that H = ker ` is a
hyperplane containing v0 but not any of the Wi’s. Consider the annihilator W⊥i ⊆ V ∨, which is to
say the subspace of functionals which vanish on Wi. Since linear maps V → V ′ that kill a subspace
W uniquely factor through the projection V → V/W , by taking the case V ′ = F we arrive at an
evident linear isomorphism

W⊥i ' (V/Wi)∨,

so this subspace of V ∨ has dimension dimV/Wi < dimV = dimV ∨, and hence it is a proper
subspace of V ∨ (with codimension dimWi).

LetK = (Fv0)⊥, a codimension-1 subspace of V ∨. Since v0 6∈Wi, we have Fv0 6⊆Wi, soW⊥i 6⊆ K
(as otherwise applying (·)⊥ to this via V ' V ∨∨ would yield the reverse inclusion Fv0 ⊆Wi which
we have assumed not to hold). For each i, we claim that the subspace Ki = K∩W⊥i in K is a proper
subspace. If not, so this intersection equals K, then we’d get K ⊆ W⊥i ( V ∨, forcing W⊥i = K
since K has codimension 1 in V ∨ (so there are no non-trivial intermediate subspaces between K
and V ∨). But we’ve just seen that W⊥i is not contained in K, so this would be a contradiction.

Now the task is to show that the vector space K = (Fv0)⊥ inside of V ∨ contains an element
which is not inside of any of the proper subspaces Ki = W⊥i ∩K. In other words, we want to show
that the vector space K cannot be a union of finitely many proper subspaces (which would be false
over a finite field). So far we have not used that F is an infinite field, but it is at this step that
the infinitude of F plays the crucial role. We isolate the necessary fact in the form of a lemma
below. �

Lemma 2.3. Let F be an infinite field, V a vector space, and V1, . . . , Vk finitely many proper
subspaces. Then V is not the union of the Vj’s.

Proof. The cases k = 0, 1 are clear. This also settles dimV ≤ 1. The idea now is to draw a
“random” line in V and to find a point on this line which is not on any of the Vi’s.

We may assume k > 1 and (by induction on k) the result is known for collections of < k proper
subspaces. By induction we can choose a vector v not contained in V1, . . . , Vk−1. If also v 6∈ Vk,
we’re done. Otherwise, choose another vector v′ not contained in the proper subspace Vk (so v′ 6= v).
Let L be the span of v′ − v 6= 0, so the translated line v + L = v′ + L passes through both v′ and
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v. Note that L ∩ Vi = {0} since this intersection is a proper subspace of the 1-dimensional L (as L
contains both v and v′, at least one of which is not in Vi).

Consider the intersection
(v + L) ∩ Vi = (v′ + L) ∩ Vi

for 1 ≤ i ≤ k. Since L ∩ Vi = {0}, this intersection (v + L) ∩ Vi is either empty or a point (i.e., it
cannot contain two points, as the difference would be a non-zero element in L ∩ Vi = {0}). Thus,

(v + L) ∩ (
k⋃
i=1

Vi) =
k⋃
i=1

((v + L) ∩ Vi)

is a finite (perhaps empty) union of points. But v + L is infinite since L is 1-dimensional over
an infinite field. Hence, we can find x ∈ v + L not contained in any Vi. The union of the Vi’s is
therefore not all of V . �


