
Math 396. Metric tensor on hypersurfaces

1. Motivation

Let U ⊆ Rn be a non-empty open subset and f : U → R a C∞-function. Let Γ ⊆ U ×R be the
graph of f . The closed subset Γ in U ×R projects homeomorphically onto U with inverse

(x1, . . . , xn) 7→ (x1, . . . , xn, f(x1, . . . , xn))

that is a smooth mapping from U to U ×R. In fact, this latter mapping is trivially an immersion,
so in this way its image Γ acquires a (necessarily unique) structure of closed smooth submanifold
of U × R. In particular, the coordinate functions x1, . . . , xn on Rn+1 restrict to a global C∞

coordinate system on Γ. In what follows, we let x′j = xj |Γ for 1 ≤ j ≤ n.

Example 1.1. The most classical example is n = 2, which are the old “z = f(x, y)” parametric
surfaces in R3 over open parts of the xy-plane. Whenever meeting a new concept in differential
geometry, it is always a good idea to figure out how it works in the case of such surfaces in R3,
or more generally for hypersurface graphs Γ in Rn+1 as above (as the immersion theorem tells us
that all hypersurfaces in a manifold locally have this form).

Using the standard Riemannian metric on U × R ⊆ Rn+1, we wish to compute the “induced
metric” on Γ, which is to say the induced inner product on each Tp(Γ) ⊆ Tp(Rn+1) for p ∈ Γ. We
want to express this metric tensor in terms of the coordinate system {x′1, . . . , x′n} on Γ. The metric
tensor at p ∈ Γ is ∑

i,j

〈∂x′
i
|p, ∂x′

j
|p〉p · dx′i(p)⊗ dx′j(p),

with the ij-coefficient computed as an inner product in Tp(Rn+1) (since the induced metric on Γ
is given pointwise by the inclusion of Tp(Γ) into Tp(Rn+1) for each p ∈ Γ). Since the ∂xi |p’s are an
orthonormal basis of Tp(Rn+1), the problem is therefore largely that of figuring out the image of
each ∂x′

i
|p ∈ Tp(Γ) in Tp(Rn+1) as a linear combination in {∂x1 |p, . . . , ∂xn+1 |p}.

An easy “beginner’s mistake” is to think that since x′i = xi|Γ, ∂x′
i
|p ∈ Tp(Γ) viewed in Tp(Rn+1)

should equal ∂xi |p for each i ≤ n. That this is nonsense is easy to recognize geometrically as follows:
the “xi-coordinate line” through p in Rn+1 is usually not tangent to Γ at p and so its tangent line
at p is generally not contained in the tangent hyperplane Tp(Γ) (so the nonzero tangent vector
∂xi |p in this line cannot belong to the hyperplane Tp(Γ) ⊆ Tp(Rn+1)). To better appreciate what
is happening, consider a simple example:

Example 1.2. Let p = (a, b, c) be a point on the open upper unit hemisphere

H = {z =
√

1− x2 − y2}
in R3 (with (x, y) inside the open unit disc ∆ centered at the origin in R2). Geometric intuition
suggests that away from the intersection of H with the yz-plane, the vector ∂x|p ∈ Tp(R3) is not
tangent to any curve in the sphere at p and so it certainly cannot be a velocity vector along a
coordinate line for a local coordinate system on H near p. In particular, it generally cannot equal
∂x′ |p when the latter is viewed in Tp(R3).

What is the image of ∂x′ |p ∈ Tp(H) in Tp(R3) as a linear combination of ∂x|p, ∂y|p, ∂z|p? There
is a simple geometric procedure to figure this out. On any manifold, the partial derivative operator
with respect to a coordinate parameter is just the velocity vector field for the coordinate line
with time given by the chosen coordinate. Thus, we have to take the x-coordinate line y = b
in ∆ passing through (a, b), consider it as parameterized via x, and map this parametric curve
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into H using the {x, y} parameterization of H. That is, we take the embedded parametric curve
σ(t) = (t, b,

√
1− t2 − b2) in H for t near a, and its velocity vector in Tσ(t)(H) ⊆ Tσ(t)(R3) at time

t is
σ′(t) = ∂x|σ(t) − 2t(1− t2 − b2)−1/2∂z|σ(t).

At t = a, since c =
√
c2 (as c > 0) we get ∂x′ |p = ∂x|p − 2(a/c)∂z|p in Tp(R3). Note that this is

equal to ∂x|p if and only if a = 0, which is to say along the yz-plane (exactly as we see physically).
At all other points of H, the vectors ∂x′ |p and ∂x|p in Tp(R3) are linearly independent.

2. Some tangent vectors and normal vectors

The preceding example with the sphere suggests a general method for computing the image of
∂x′

i
|p ∈ Tp(Γ) in Tp(Rn+1) in terms of the basis of ∂xj |p’s. But before we do that, we want to address

another possible beginner’s mistake, which is to think that maybe ∂x′
i
|p should be the orthogonal

projection of ∂xi |p onto Tp(Γ). A moment of geometric thought shows that this is generally false, for
two reasons: (i) the problem of computing the image of ∂x′

i
|p in Tp(Rn+1) has absolutely nothing

to do with Riemannian metrics, and so the answer cannot possibly involve the crutch of a metric
(as is implicit with notions such as “orthogonal projection”), and (ii) visualizing the case of the
sphere shows that the angle between ∂x′

i
|p and ∂xi |p in Tp(Rn+1) can be pretty much anything in

(0, π/2), so again orthogonal projection should have nothing to do with the answer. We shall sort
out the exact relationship with orthogonal projection from Tp(Rn+1) onto Tp(Γ), as an application
of solving our first problem (to compute the image of each ∂x′

i
|p in Tp(Rn+1) in terms of the basis

of ∂xj |p’s).
Let us now give the formula for ∂x′

j
|p in Tp(Rn+1):

∂x′
j
|p = ∂xj |p + ∂xjf(p) · ∂xn+1 |p.

To justify this, consider the parametric path σj(t) in Γ which (in the x′-coordinate system) has ith
coordinate fixed at pi for i 6= j, and has jth coordinate pj + t. In Rn+1 this is the path with the
same first n coordinates, and with last coordinate t 7→ f(p1, . . . , pj + t, . . . , pn). Thus, we readily
compute σ′j(t) much as we did for the hemisphere example above, and for t = 0 this gives the
asserted formula. (In the case of the upper unit hemisphere in R3, we take f(x, y) =

√
1− x2 − y2

and recover the formula found in Example 1.2.)

Theorem 2.1. The nonzero vector

Np =
∑
i≤n

∂xif(p) · ∂xi |p − ∂xn+1 |p ∈ Tp(U ×R) = Tp(Rn+1)

(i.e., (. . . , ∂xif(p), . . . , ∂xnf(p),−1) if we identify Tp(U × R) with Rn+1 in the usual way) is a
non-zero normal vector to Tp(Γ), and the vectors Np, ∂x1 |p, . . . , ∂xn |p ∈ Tp(U ×R) are a basis.

Proof. A normal vector to Tp(Γ) in Tp(Rn+1) is one that is normal to each of the n vectors ∂x′
i
|p

(as these span Tp(Γ)). The images of these n vectors in Tp(Rn+1) are given above, and Np as
defined in the theorem is clearly perpendicular to all of them. Since Np has nonzero coefficient for
∂xn+1 |p, the final part of the theorem is clear. �

Since orthogonal projection to Tp(Γ) kills Np, it follows from Theorem 2.1 that the orthogonal
projections {vj(p)} of the ∂xj |p’s (j ≤ n) are a basis of Tp(Γ) (so in particular, they are all nonzero!).
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Explicitly, the orthogonal projection vj(p) is given by

vj(p) = ∂xj |p −
〈∂xj |p, Np〉p
〈Np, Np〉p

Np

inside of Tp(Rn+1). What is this in terms of the basis of ∂x′
i
|p’s for Tp(Γ)? We know that vj(p)

must be a unique linear combination of the ∂x′
i
|p’s, and in Tp(Rn+1) the expansion of ∂x′

i
|p involves

∂xi |p with a coefficient of 1 and no ∂xk
|p’s for k ≤ n with k 6= i. Hence, by considering coefficients

of ∂xi |p’s for i ≤ n the only possibility is

vj(p) =
∑
i6=j

∂xif(p)∂xjf(p)
1 +

∑
r≤n(∂xrf(p))2

· ∂x′
i
|p +

1 +
∑

r 6=j,r≤n(∂xrf(p))2

1 +
∑

r≤n(∂xrf(p))2
· ∂x′

j
|p.

(The reader may verify as a safety check that the coefficients for ∂xn+1 |p implicit on both sides are
indeed equal, as they must be.) This is quite different from ∂x′

j
|p in general!

Using the determination of the image of ∂x′
j
|p ∈ Tp(Γ) in Tp(Rn+1) as a linear combination of

the ∂xi |p’s, we also see immediately that

〈∂x′
j
|p, ∂x′

i
|p〉p = δij + ∂xif(p)∂xjf(p),

where δij = 1 when i = j and δij = 0 when i 6= j. Hence, we arrive at the desired formula for the
metric tensor of Γ in the x′-coordinates:

n∑
i=1

(1 + (∂xif(p))2) · dx′i ⊗ dx′i +
∑
i6=j

(∂xif(p)∂xjf(p)) · dx′i ⊗ dx′j .

Example 2.2. Consider the classical case of a surface z = f(x, y) in R3. In this case, the metric
tensor on the surface in {x, y} coordinates is

(1 + f2
x) · dx⊗2 + (1 + f2

y ) · dy⊗2 + fxfy · dx⊗ dy + fxfy · dy ⊗ dx,

where we indulge in the standard shorthand fx = ∂xf and fy = ∂yf .

3. Surfaces of revolution

In addition to the graph surfaces “z = f(x, y)”, another interesting class of surfaces in R3 is the
surfaces of revolution. We shall focus on a special subclass. Let I ⊆ (0,∞) be a nontrivial interval
and let f : I → R be a positive smooth function such that f ′ is nowhere zero. Let S ⊆ I×R2 ⊆ R3

be the surface of revolution obtained from revolving the graph of f (in I ×R ⊆ R2, the xy-plane)
about the x-axis. This surface does not touch the x-axis (since f is positive). By Exercise 3 in
Homework 4 (which used an interval (a, b), but works the same with (a, b) replaced by an arbitrary
non-trivial in R), S is a smooth submanifold of R3 if I is open, and if I has endpoints then S
is a smooth submanifold with boundary in R3. Since f ′ has constant sign (as it is non-vanishing
and continuous over the interval I) the growth of f is strictly monotone. Hence, the surface either
uniformly “approaches” the central axis or “diverges” from it; it does not “wiggle”. Hence, the
surface S naturally parameterized by polar coordinates in the yz-plane.

More rigorously, by the inverse function theorem from calculus (and a moment of thought for
the endpoints) f must be a C∞ isomorphism onto a nontrivial interval J = f(I) in (0,∞) and so
it has an inverse function g : J → I ⊆ R. (Classically, g is “x as a function of y”.) We then have
a smooth map J × S1 → R3 given by

h : (r, θ) 7→ (g(r), r cos θ, r sin θ)
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that is a bijection onto S. It must therefore be a C∞ isomorphism. This can also be verified “by
hand”, as follows. The tangent mappings for h are injective (look at the y and z parts), so as maps
into the 2-dimensional tangent spaces of the embedded submanifold S the tangent mappings of the
C∞ map J×S1 → S are injective. Thus, these latter tangent maps are isomorphisms for dimension
reasons, so J × S1 → S is a bijective local C∞ isomorphism. It is therefore a C∞ isomorphism.

What is the metric tensor on S in terms of its {r, θ} parameterization? The simplest way to
solve this is to recognize that the parameterization of S is better adapted to cylindrical coordinates
(with x-axis as the axis of symmetry) rather than rectangular coordinates. Thus, we will find our
task easier if we pull back the standard metric tensor from R3 when it is expressed in cylindrical
coordinates rather than in rectangular coordinates. Let us therefore digress to compute the tensor
on R3 in such coordinates, adapted to the x-axis as the axis of symmetry (“traditionally” it is the
z-axis that is taken as the axis of symmetry, but the distinction is a triviality):

Lemma 3.1. The C∞ mapping R× (0,∞)×S1 → R3 defined by (x, r, θ) 7→ (x, r cos θ, r sin θ) is a
C∞ isomorphism onto the complement U of the x-axis in R3, and on U the standard metric tensor
of R3 has restriction dx⊗2 + dr⊗2 + r2dθ⊗2.

The absence of “cross-terms” in this formula reflects the mutual orthogonality (in tangent spaces
to R3) of the tangent lines along each of the cylindrical coordinate directions through any points
of R3 away from the axis of symmetry.

Proof. Polar coordinates provide the C∞ isomorphism (0,∞) × S1 ' R2 − {(0, 0)}, so taking the
product against R on both sides gives the first part of the lemma (as U = R × (R2 − {(0, 0)})).
On a product of Riemannian manifolds, endowed with the product Riemannian metric (via the
identification of the tangent bundle to a product manifold with the direct sum of the pullbacks
of the tangent bundles of the factors), the metric tensor is built fiberwise as the orthogonal sum
of the inner products on the tangent spaces to the factor manifolds; the same goes for manifolds
with corners. Since R3 equipped with its standard metric tensor is the product of the Riemannian
manifolds R (the x-axis) and R2 (the yz-plane) equipped with their standard metric tensors, we
get the asserted formula for the metric tensor in cylindrical coordinates by using the result from
the theory of polar coordinates that on R2 − {(0, 0)} the restriction of the standard metric tensor
on R2 is dr⊗2 + r2dθ⊗2. �

Returning to the situation with our surface of revolution the induced metric tensor is the pullback
of dx⊗2+dr⊗2+r2dθ⊗2 under the mapping (r, θ) 7→ (g(r), r, θ) in terms of the cylindrical coordinate
system on R× (R2 − {(0, 0)}). In other words, the metric tensor on S (identified with J × S1) is

ds2 = d(g(r))⊗2 + dr⊗2 + r2dθ⊗2 = (g′(r)dr)⊗2 + dr⊗2 + r2dθ⊗2 = (1 + g′(r)2)dr⊗2 + r2dθ⊗2.

Recall that g : J → I ⊆ R is the inverse function to f : I ' J ⊆ (0,∞) (so classically one would
write (1 + x′(r)2) for the coefficient of dr⊗2 in this formula). This is the most general formula
for the induced metric tensor on a surface of revolution about the x-axis when the surface admits
a parameterization by polar coordinates in the yz-plane (i.e., the graph being rotated is strictly
monotone).

Example 3.2. A very famous example of such a surface of revolution is the Beltrami surface that is
given explicitly in “inverse function” form by

x(y) = −
√
a2 − y2 +

a

2
· log

(
a+

√
a2 − y2

a−
√
a2 − y2

)
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for 0 < y < a. This is an antiderivative to −
√
a2 − y2/y < 0 and it approaches ∞ as y → 0+

and approach 0 as y → a−, so the graph in the first quadrant for the inverse y as a function of x
is strictly decreasing from the point (0, a) on the positive y-axis asymptotically down toward the
x-axis. In particular, it satisfies the above requirements. This surface is interesting because (in
terms of concepts to be introduced later) it has constant negative curvature (equal to −1/a2).

Let us compute the metric tensor on the Beltrami surface in the polar coordinate system from
the yz-plane. Since x′(r) = −

√
a2 − r2/r, clearly 1 + x′(r)2 = a2/r2. Thus, by the general formula

given above, the metric tensor is (a2/r2)dr⊗2 + r2dθ⊗2.

4. The torus

We conclude by studying a very classical example, the donought (or torus) T ⊆ R3 with inner
radius r − |a| and outer radius r + |a|, 0 < |a| < r. Explicitly, T is the image of the smooth closed
embedding S1 × S1 → R3 defined by

(θ, ψ) 7→ ((a+ r cos θ) cosψ, (a+ r cos θ) sinψ, r sin θ).

Geometrically, θ is the angle measure for the circles of radius r that go “through the hole” and ψ
is the angle measure for the other family of circles that have radii varying from r − |a| to r + |a|.

There is a global trivialization of the tangent bundle specified by the ordered pair of vector fields
{∂θ, ∂ψ} (that are globally well-defined, even though θ and ψ are not), and under the embedding i
of S1 × S1 into R3 and hence of T (S1 × S1) into i∗(T (R3)) = (S1 × S1)×R3 these go over to the
vector fields

∂θ = (−r sin θ cosψ,−r sin θ sinψ, r cos θ), ∂ψ = (−(a+ r cos θ) sinψ, (a+ r cos θ) cosψ, 0).

That is, for a point ξ ∈ S1 × S1 with angle coordinates (θ0, ψ0), the injection of Tξ(S1 × S1) into
Ti(ξ)(R3) satisfies

∂θ|ξ = −r sin θ0 cosψ0∂x|i(ξ) − r sin θ0 sinψ0∂y|i(ξ) + r cos θ0∂z|i(ξ)
and

∂ψ|ξ = −(a+ r cos θ0) sinψ0∂x|i(ξ)|(a+ r cos θ0) cosψ0∂y|i(ξ).
The lack of a ∂z-term in this final expression is suggested by the picture: the coordinate lines for
ψ are parallel to the xy-plane.

As a picture suggests and a calculation with the orthonormal frame {∂x, ∂y, ∂z} at i(ξ) confirms,
the vector fields ∂θ and ∂ψ are pairwise orthogonal with respect to the induced metric. By direct
calculation, the self inner-products are r2 for ∂θ|ξ and (a+ r cos θ0)2 for ∂ψ|ξ. Hence, the induced
metric tensor is

r2dθ⊗2 + (a+ r cos θ)2dψ⊗2.

The constancy of the first coefficient and the varying nature of the second coefficient reflect some
basic geometric properties of the surface of the torus as it sits in R3. That is, this geometry is very
sensitive to the chosen embedding, insofar as this is what determined the metric tensor.

The inherent asymmetry in the roles of θ and ψ is not apparent when considering the “bare”
manifold S1×S1, but the chosen embedding into R3 singles out different roles for these two factors
and so leads to the asymmetric nature of their appearance in the metric tensor. Can you see a
geometric “explanation” (within R3) for the varying length of ∂ψ as we vary θ, but the constant
length of ∂θ as we wander across the surface?


