
Math 396. An application of Gram-Schmidt to prove connectedness

1. Motivation and background

Let V be an n-dimensional vector space over R, and define GL(V ) to be the set of invertible
linear maps V ' V (the notation stands for General Linear). In other words, this is the open locus
in HomR(V, V ) where the continuous (multi-variate) “polynomial” function det : HomR(V, V )→ R
is non-vanishing. When V = Rn, this is the set of invertible n by n matrices in Matn×n(R), and
it is usually called GLn(R) rather than GL(Rn).

For example, when n = 2 and we imagine the 4-dimensional space Mat2×2(R) as coordinatized
by matrix entries a, b, c, d, then GL2(R) is the complement of the hypersurface in R4 cut out by
the condition ad− bc = 0 in a 4-dimensional space. It’s quite “big”.

We make GL(V ) into a topological space by viewing it as an open in the finite-dimensional
R-vector space HomR(V, V ). The concepts of open set, closed set, limit, etc. in GL(V ) can be
expressed in terms of any choice of linear coordinates on V used to identify the situation with
GLn(R) in which two matrices are “close” when the corresponding matrix entries (ij in each) are
close in R.

Consider the determinant map

det : GL(V )→ R− {0}.
Being a polynomial function in matrix entries relative to any choice of basis of V , this is visibly
continuous and trivially surjective (think of diagonal matrices). But the target is disconnected, so
the source cannot be connected. More specifically,

U+ = {T ∈ GL(V ) | detT > 0}, U− = {T ∈ GL(V )) | detT < 0}
is a non-trivial separation of GL(V ). But is this the only obstruction to connectedness? More
specifically, if we define

GL+(V ) = {T ∈ GL(V ) | detT > 0},
then is this connected? In fact, we will even prove it is path-connected. This is hard to “see” right
away, but the proof will exhibit an explicit geometrically constructed “path of matrices” joining up
the identity map to any chosen T with positive determinant. The method will essentially amount
to a vivid geometric perspective on the Gram-Schmidt process.

A related connectedness question concerns the orthogonal matrices. Suppose we fix a choice of
an inner product 〈·, ·〉 on V . We define

O(V ) = O(V, 〈·, ·〉) = {T ∈ HomR(V, V ) | 〈T (v), T (v′)〉 = 〈v, v′〉},
called the orthogonal group for the data (V, 〈·, ·〉), though we usually suppress mention of 〈·, ·〉 in
the notation. In other words, if T ∗ is the adjoint map then the condition is TT ∗ = 1 (which forces
T ∗T = 1). In concrete terms, if we choose an orthonormal basis to identify V with Rn in such a
way that our inner product goes over to the standard one, then O(V ) becomes the “explicit”

On(R) = {M ∈ GLn(R) |MM t = 1}.
This is a closed subset of GLn(R) since the condition MM t = 1 amounts to a system of n2

polynomial conditions on the matrix entries of M . For example, when n = 2 with

M =
(
a b
c c

)
we get the conditions

a2 + b2 = 1, c2 + d2 = 1, ac+ bd = 0.
1



2

The elements of On(R) are the linear maps from Rn to Rn that preserve the standard inner product
on Rn. We know that all eigenvalues of such a matrix over C (where it is unitary) have to have
absolute value 1.

For any M ∈ Matn×n(R) we know that the real number Det(M) has absolute value equal to
|
∏
λi| where {λi} is the set of eigenvalues of M in C (counting multiplicities in terms of roots of

the characteristic polynomial). Since |λi| = 1 for all i in the orthogonal (or rather, unitary) case,
we see that |

∏
λi| = 1 for such matrices, so the determinant function on On(R) has values in {±1}.

As with GL(V ), the sign of the (continuous) determinant gives an evident non-trivial separation.
Let’s restrict our attention to

SO(V ) = SO(V, 〈·, ·〉) = {T ∈ O(V ) | detT = 1} = O(V ) ∩GL+(V ).

Here, S stands for “special”, which is the usual terminology for when one imposes a “det = 1”
condition (e.g., SL(V ) denotes the subgroup of elements in GL(V ) with determinant 1, called
the special linear group of V ; for V = Rn it is usually denoted SLn(R) ⊆ GLn(R)). Is SO(V )
connected? In fact, we’ll prove it is path-connected.

Actually, the method of proof of the two connectedness results will be to first prove path connect-
edness of SO(V ), and to then use the choice of an inner product and the Gram-Schmidt algorithm
to deduce from this that GL+(V ) is path-connected. In order to motivate things with less clutter,
we will first reduce the case of GL+(V ) to that of SO(V ), and then we’ll handle the latter case.

2. Path-connectedness of GL+(V )

Let T ∈ GL+(V ) be an element. We seek to find a continuous path in GL+(V ) which links up
T to the identity map. We now fix a choice of inner product on V , which can certainly be done (in
lots of ways), so we get a corresponding orthogonal group O(V ). What we’ll actually do is use the
Gram-Schmidt algorithm to find a path in GL(V ) joining up T to an element in SO(V ). Then the
path-connectedness of the latter (which we’ll prove in the next section) will finish the job. Here
is the basic idea. Choose an orthonormal basis {e1, . . . , en} of V . Let vj = T (ej) be the image
of the jth basis vector under the linear map T . Let {v′1, . . . , v′n} be the orthonormal basis which
results from applying the Gram-Schmidt process to the vj ’s. Let T ′ : V → V be the linear map
which sends ej to v′j (so T ′ is an isomorphism). We will “continuously deform” the ordered set
{v1, . . . , vn} into {v′1, . . . , v′n} using the Gram-Schmidt formulas, and this will lead to a path joining
up T to T ′ inside of GL+(V ). We’ll then show that T ′ ∈ SO(V ), so we’ll be done (or rather, will
be reduced to path-connectedness of SO(V )).

More explicitly, consider the formulas which define the Gram-Schmidt algorithm. We first run
through without normalizing:

w′1 = v1,

w′j = vj −
j−1∑
i=1

〈vj , w′i〉
〈w′i, w′i〉

w′i

for 2 ≤ j ≤ n. Thus, v′j = w′j/||w′j || for 1 ≤ j ≤ n. We now define visibly continuous functions

wi : [0, 1]→ V
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as follows:

w1(t) = v1

wj(t) = vj − t
j−1∑
i=1

〈vj , w′i〉
〈w′i, w′i〉

w′i

Note that for every t and 1 ≤ i ≤ n we have

span(w1(t), . . . , wi(t)) = span(v1, . . . , vi),

so {w1(t), . . . , wn(t)} is a basis of V for all t. Also, for t = 0 this is the original basis {v1, . . . } and
for t = 1 it is the non-normalized basis {w′1, . . . }.

Making one final modification, if we define functions uj : [0, 1]→ V by the rule

uj(t) =
wj(t)
||wj(t)||t

then each uj is continuous (why?) with {u1(t), . . . , un(t)} a basis of V for all t; this yields the
original basis {v1, . . . } for t = 0 and the Gram-Schmidt output {v′1, . . . } for t = 1. We conclude
that

[0, 1]→ V × · · · × V = V n

defined by
t 7→ (u1(t), . . . , un(t))

is a “continuous system of bases” which moves from {v1, . . . , vn} to {v′1, . . . }. Geometrically, we
visualize a collection of n arrows sticking out of the origin, with this collection of arrows moving
continuously from {vi} to {v′i}. Such a visualization is sometimes called a moving frame.

Now recall we began with a linear map T : V ' V determined by the condition T (ej) = vj and
we also defined a linear map T ′ : V → V by the property T ′(ej) = v′j . Note that T ′ carries an
orthonormal basis to an orthonormal basis. This at least makes T ′ orthogonal, thanks to:
Lemma 2.1. Let T ′ : (V, 〈·, ·〉) → (V ′, 〈·, ·〉′) be a map between finite-dimensional inner product
spaces, with 〈T ′(ei), T ′(ej)〉′ = 〈ei, ej〉 for a basis {e1, . . . , en} of V . Then T ′ respects the inner
products. That is,

〈T ′(v1), T ′(v2)〉′ = 〈v1, v2〉′

for all v1, v2 ∈ V .

Proof. The pairings
(v1, v2) 7→ 〈T ′(v1), T ′(v2)〉′, (v1, v2) 7→ 〈v1, v2〉

are bilinear forms on V which, by hypothesis, coincide on pairs from a basis. But by bilinearity, a
bilinear form is uniquely determined by its values on pairs from a basis. Thus, these two bilinear
forms coincide, and that’s what we needed to prove. �

Although this lemma shows that T ′ is orthogonal, it isn’t immediately clear that detT ′ = 1 (as
opposed to detT ′ = −1). The fact that T ′ ∈ SO(V ), which is to say detT ′ > 0, will follow from
our next observation: there is a continuous path in GL(V ) which begins at our initial T and ends
at T ′. Indeed, define Tt : V → V to be the linear map determined by the requirement

Tt(ej) = uj(t).

Note that T0 = T and T1 = T ′. Moreover, since {uj(t)} is a basis for all t, it follows that Tt : V → V
is invertible for all t, which is to say Tt ∈ GL(V ).
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We now show that the map [0, 1] → GL(V ) defined by t 7→ Tt is actually continuous. To see
the continuity, we impose coordinates via the orthonormal basis e = {e1, . . . , en}. In such terms,
Tt is the matrix whose jth column is the list of e-coordinates of Tt(ej) = uj(t). But recall that
t 7→ uj(t) is a continuous function [0, 1]→ V , and a map to a finite-dimensional R-vector space is
continuous if and only if the resulting component functions relative to some (and then any) basis
are continuous as maps to R. That is, the “e-coordinate functions” of the uj(t)’s are continuous
maps [0, 1]→ R. In more explicit terms, if we write

uj(t) =
∑
i

aij(t)ei

then aij : [0, 1]→ R is continuous. Thus, if we stare at the matrix

Tt = (aij(t))

in the e-coordinates, then every matrix entry is a continuous R-valued function of t. Since continuity
for a matrix-valued function is equivalent to continuity of the matrix entry functions, it follows that

[0, 1]→ HomR(V, V ) ' Matn×n(R)

defined by t 7→ Tt really is continuous. The topology on GL(V ) is induced by HomR(V, V ), which
is to say that continuity of t 7→ Tt as a GL(V )-valued map is a consequence of its continuity as a
HomR(V, V )-valued map.

Summarizing what we have done so far, given a linear isomorphism T ∈ GL(V ), we have con-
structed a continuous path inside of GL(V ) which begins at T and ends at T ′ ∈ O(V ) (where
we chose an inner product on V ). Crucial to this was the explicit nature of the Gram-Schmidt
algorithm.

This basic construction never actually needed that detT > 0. But now we use the condition
detT > 0 to prove detT ′ > 0 (and hence T ′ ∈ SO(V ), as T ′ is orthogonal). The point is simply
that the map

det : GL(V )→ R− {0}
is continuous and hence the map [0, 1] → R − {0} defined by t 7→ det(Tt) is continuous (being a
composite of continuous maps). Since a continuous map ϕ : [0, 1]→ R− {0} must have connected
(and hence interval) image, the sign of ϕ(t) must be the same throughout (Intermediate Value
Theorem!). In our situation, it follows that the function t 7→ det(Tt) has constant sign. Since the
sign is positive at t = 0, it must then be positive at t = 1. We conclude that not only is T ′ ∈ SO(V )
but in fact we have constructed a continuous path from T to T ′ entirely inside of GL+(V ). Now
we just need to prove the path-connectedness of SO(V ) to find a path in here linking up T ′ to the
identity. This is done in the next section.

3. Path-connectedness of SO(V )

Choose any T ∈ SO(V ). We will find a continuous path in SO(V ) which begins at T and ends
at the identity map. This will yield the desired path connectedness. Choose an orthonormal basis
{ej} of V , and let vj = T (ej), so by orthogonality of T we know that {vj} is an orthonormal basis
of V as well. We will define a continuous function u : [0, 1]→ V × · · · × V = V n described by

t 7→ (u1(t), . . . , un(t))

such that u(0) = {e1, . . . , en}, u(1) = {v1, . . . , vn}, and u(t) = {u1(t), . . . , un(t)} is an orthonormal
basis of V for all t ∈ [0, 1]. Suppose for a moment that we have such a continuous system of
orthonormal bases. Define the linear maps Tt : V → V by the condition Tt(ej) = uj(t). The map
Tt is orthogonal since it takes an orthonormal basis to an orthonormal basis. Note that T0 = idV
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and T1 = T . By the same method as in the previous section, the continuity of u implies that t 7→ Tt
is a continuous map from [0, 1] to GL(V ), and even into O(V ).

In particular, the function det(Tt) is a continuous non-vanishing function on [0, 1] with values
in {±1} since orthogonal maps from V to V have determinant ±1, whence this determinant is
constant. The value at t = 0 is det(T0) = det(idV ) = 1, so t 7→ Tt is a continuous path in SO(V )
connecting the identity map to T , thereby finishing the proof of path-connectedness once we have
constructed the above continuous system u of orthonormal bases moving from {ei} to {vi}. The
construction of such a continuous u must somewhere use that the orthogonal map T : V → V
sending ej to vj has determinant 1 rather than −1 (as otherwise no such T can exist!).

Now we give the construction of u. If dimV = 1, then the only orthogonal map on V with
determinant 1 is the identity, so SO(V ) consists of a single element and hence path-connectedness is
trivial. We induct on dimV , so we can assume dimV > 1. Consider the two ordered orthonormal
bases {ei} and {vi} related by the orthogonal map T with detT = 1. If e1 and v1 are linearly
independent, let W be the 2-dimensional span of e1 and v1. If we have linear dependence, let W
be a 2-dimensional subspace containing the common line spanned by e1 and v1.

We have an orthogonal decomposition V = W ⊕W⊥ (note W⊥ = 0 in case dimV = 2). Choose
an ordered orthonormal basis of W of the form {v1, v

′
1}. We have e1 = av1 +a′v′1 with a2 +a′2 = 1.

We can find θ ∈ [0, 2π) such that

(a, a′) = (cos(θ), sin(θ)),

so if we let rt : W → W be the rotation by angle tθ for 0 ≤ t ≤ 1, then r0 is the identity and r1 is
a rotation which sends v1 to e1.

Define the linear map Tt : V ' V on V = W ⊕W⊥ by the requirement that on W⊥ it acts as
the identity and on W it acts by rt. It is clear from the construction on W and W⊥ that Tt is an
orthogonal map for all t, and even has determinant 1 for all t. The continuity of the trigonometric
matrix function entries for rt makes it clear that t 7→ T ◦ Tt is a continuous map from [0, 1] to
SO(V ). Moreover, T ◦ T0 = T and T ◦ T1 sends e1 to e1. Thus, by moving along the continuous
path t 7→ T ◦ Tt in SO(V ) we link up our original map T to one which fixes e1. If we can find a
continuous path in SO(V ) from T1 to the identity map, we’ll be done by simply moving along the
concatentation of the two paths.

Since T1 fixes e1, if we let V ′ = (Re1)⊥ then V = Re1 ⊕ V ′ is an orthogonal decomposition
and the orthogonal T1 must take V ′ back into V ′. If we let T ′ : V ′ → V ′ denote the orthogonal
map induced by T1, then the action of T1 on V = Re1 ⊕ V ′ is described by idRe1 ⊕ T ′. Since
dimV ′ < dimV and

1 = detT1 = det(idRe1) detT ′ = detT ′,
we have T ′ ∈ SO(V ′), so by induction there is a continuous path [0, 1]→ SO(V ′) written as t 7→ T ′t
which begins at T ′ and ends at idV ′ . Thus, the maps idRe1 ⊕ T ′t form a continuous path in SO(V )
beginning at T1 and ending at the identity.
Remark 3.1. We conclude with a challenge question. Observe that C× is connected (in contrast
with R×). Hence, there is no determinant obstruction to connectivity of GLn(C). Thus, one may be
led to guess that if V is a nonzero finite-dimensional C-vector space then the open subset GL(V ) of
C-linear automorphisms in HomC(V, V ) is connected, and even path-connected. (Here we give any
finite-dimensional C-vector space, such as HomC(V, V ), its natural topology as a finite-dimensional
R-vector space.) Prove the correctness of this guess by using moving frames in the C-vector space
V .


