
Math 396. Gauss map and scalar curvature

1. Motivation

In Gauss’ fundamental work on the geometry of surfaces in R3, he introduced an important object
of study, the Gauss map, that encodes how a surface stretches inside of R3. More specifically, if
i : S ↪→ R3 is a smooth embedded oriented surface in R3, then the Gauss map G : S → S2 is
defined as follows. Let n be the unit normal field along S determined by the orientation, so this
trivializes the orthogonal bundle (TS)⊥ to the plane bundle TS inside of i∗(T (R3)) ' S × R3;
here, on each tangent space Tx(R3) for x ∈ R3 we put the “standard” inner product arising from
the natural isomorphism jx : Tx(R3) ' R3. Gauss defined G : S → R3 to be the map that
associates to each point of the surface its unit normal vector arising from the orientation. That is,
G : x 7→ jx(n(x)) ∈ R3; traditionally one abuses notation and writes n(x) rather than jx(n(x)).

If you think about it for a minute, the map G does encode information about how S streches in
R3. (For example, if S is a translated linear subspace of R3 then G is a constant map that depends
up to sign on the orientation. Try to visualize G in the case of a cylinder by working out the image
under G of various curves on the cylinder; do the same for a torus.) We will see in §2 that G is a
C∞ map and that for any x ∈ S the tangent mapping dG(x) : Tx(S) → TG(x)(R3) ' R3 has image
contained in Tx(S) when this plane is viewed as a subspace of Tx(R3) ' R3. Hence, dG(x) may be
viewed as a linear endomorphism of the 2-dimensional space Tx(S). As such, Gauss showed that
it is self-adjoint for the inner product on the plane Tx(S) in R3, so it has real eigenvalues by the
spectral theorem, and (building on earlier results of Euler) he realized that (i) the two eigenvalues
(perhaps equal) have a geometric interpretation in terms of extremal values of the “curvature at
x” for slices of S by planes in R3 containing the normal line to S at x, and (ii) the determinant
k(x) = det(dG(x)) of this self-map of Tx(S) is intrinsic to S equipped with the Riemannian metric
it inherits from R3. That is, if we view S as a Riemannian 2-manifold equipped with an isometric
embedding into R3, then the smooth function k : S → R depends only on the Riemannian structure
on S and does not depend on the choice of isometric embedding into R3 nor on the orientation.

As a very simple example of rather different isometric embeddings of the same Riemannian 2-
manifold into R3, an open square with the standard flat metric can be put in the xy-plane as usual
or can be put on the surface of a cylinder with one pair of opposite sides along the direction of
the axis of symmetry. Since you can do this with a piece of paper, it really does not introduce
stretching. (To be rigorous, one computes the metric tensor on the radius-R cylinder with z-axis
as the axis of symmetry: in cylindrical coordinates (z, θ) it is the tensor dz⊗2 + (1/R2)dθ⊗2 =
dz⊗2 + d(θ/R)⊗2 that becomes the standard flat metric tensor in the {z, θ/R} coordinate system;
note R is a constant.)

This function k was called the scalar curvature by Gauss, and it is also called the Gaussian
curvature. The intrinsic nature of k (i.e., its dependence on only the Riemannian structure and
not on the chosen isometry into R3) was such a striking discovery that Gauss called it his Theorem
Egregium (Remarkable Theorem). Gauss did not use the language of modern coordinate-free differ-
ential geometry when stating his results, but he certainly had a clear picture of what was going on.
Our aim in this handout is to develop a bit of the theory of the Gauss map for oriented embedded
smooth hypersurfaces in any finite-dimensional inner product space (not just R3), and to study
the historically important cases of curves (in R2) and surfaces (in R3) in order to see how Gauss’
work built on earlier ideas of Euler. Along the way, we shall investigate some interesting examples.
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2. Hypersurfaces

Let (V, 〈·, ·〉) be a finite-dimensional inner product space, and S = {v ∈ V | 〈v, v〉 = 1} the unit
sphere in V . We assume n = dimV > 1, and we fix an orientation on V . For example, upon
choosing an oriented orthonormal basis of V we may suppose V = Rn with the standard inner
product and standard orientation; this is the classical formulation.

Let i : H ↪→ V be an oriented embedded hypersurface. The natural isomorphism jx : Tx(V ) ' V
puts an inner product 〈·, ·〉x on Tx(V ) for all x ∈ V ; this is a Riemannian metric on the vector
bundle TV → V . The orientation trivializes the orthogonal line bundle (TH)⊥ ⊆ i∗(TV ). More
specifically, since the vector bundle i∗(TV ) = (TH)⊥ ⊕ TH and its hyperplane subbundle TH are
oriented, there is a unique orientation on the line bundle (TH)⊥ such that the natural isomorphism

(2.1) (TH)⊥ ⊗ det(TH)
∧' det(i∗TV )

is orientation-preserving on fibers. More concretely, for each h ∈ H we take n(h) ∈ Th(H)⊥ to be
the unique unit vector such that for any positive basis {v1, . . . , vn−1} of Th(H) the ordered basis
{n(h), v1, . . . , vn−1} of Ti(h)(V ) ' V is positive. For example, in the case of an oriented surface S
in R3, the condition on the normal vector n(x) ∈ Tx(S)⊥ is that for a positive ordered basis {v, w}
of Tx(S) the 3×3 coefficient matrix for the ordered basis {n(x), v, w} of Tx(R3) ' R3 has positive
determinant. Eqiuvalently, using the vector cross-product on the oriented inner product space R3

(cf. the end of the old handout on the Hodge star operator),

n(x) =
v × w

||v × w||
.

In general, by the universal nature of Gramm-Schmidt and the smoothness of the square-root
function on (0,∞), h 7→ n(h) is a smooth section n ∈ (TH)⊥(H) that is the unit normal field
determined pointwise by the orientations on H and V . Using the natural isomorphism jx : Tx(V ) '
V that carries 〈·, ·〉x to 〈·, ·〉, for h ∈ H the vector ji(h)(n(h)) ∈ V is a unit vector and so lies in the
unit sphere S in V .

Definition 2.1. The Gauss map of the oriented smooth embedded hypersurface i : H ↪→ V is the
map G : H → S to the unit sphere in V given by G(h) = ji(h)(n(h)) ∈ S.

It is traditional to abuse notation and write n(h) for G(h). We will hold off on this abuse of
notation for a short while. Since the definition of G is pointwise, we should first check:

Lemma 2.2. The map G is C∞.

Proof. The pointwise isomorphisms jx : Tx(V ) ' V for x ∈ V fit together to define a C∞ vector
bundle isomorphism TV ' V ×V over V (using pr1 : V ×V → V ) recovering jx on fibers over each
x ∈ V . Pulling back along i : H ↪→ V gives a C∞ vector bundle isomorphism i∗(TV ) ' H × V
over H. The unit normal field n is a C∞ section of the subbundle (TH)⊥ over H, so it is also a
C∞ section of the ambient bundle i∗(TV ) ' H × V . Hence, we get a C∞ composite map

H
n→ (TH)⊥ ↪→ i∗(TV ) ' H × V

pr2→ V

that is exactly the composite of G : H → S with the inclusion j : S ↪→ V . Since j is a C∞-
embedding and j ◦G is C∞, it follows that G is also C∞. �

For h ∈ H, consider the tangent mapping dG(h) : Th(H) → TG(h)(S) between two hyperplanes
in V , namely Th(H) ⊆ Ti(h)(V ) ' V and TG(h)(S) ⊆ TG(h)(V ) ' V . I claim that the hyperplanes
Th(H) ⊆ Ti(h)(V ) and TG(h)(S) ⊆ TG(h)(V ) are “parallel”, or in other words that as hyperplanes
in V they coincide:
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Lemma 2.3. The hyperplanes Th(H) and TG(h)(S) in V are equal.

Proof. To show equality of subspaces in an inner product space, it is equivalent to show equality of
the orthogonal subspaces. Hence, we shall prove equality of the normal lines to these hyperplanes.
For any v ∈ S, the line Rv is the normal line to the hyperplane Tv(S) ⊆ Tv(V ) ' V (proof:
pass to orthonormal coordinates and do a direct calculation of the tangent hyperplane to the
standard sphere Sn−1 in Rn at the point (1, 0, . . . , 0)). Hence, taking v = G(h), we need to prove

that G(h) = ji(h)(n(h)) spans the normal line to Th(H) in Ti(h)(V )
ji(h)

' V . But by definition
n(h) spans the normal line Th(H)⊥ in Ti(h)(V ), and so applying the isometry ji(h) implies that
ji(h)(n(h)) = G(h) spans the normal line to ji(h)(Th(H)) in V . �

By the lemma, we may (and do) identify the tangent mapping dG(h) with a linear endomorphism
of Th(H). In particular, it makes sense to speak of eigenvalues for dG(h) (a concept that only makes
sense for endomorphisms of a vector space, not general linear maps between a pair of vector spaces).

Example 2.4. Choose a > 0. Let S ⊆ (0, a) × (0,∞) ×R ⊆ R3 be the Beltrami surface Ba from
Example 3.2 in the handout on metric tensors for hypersurfaces. This is the surface of revoluion of
the parametric curve (x(y), y) in the first quadrant given by x′(y) = −

√
a2 − y2/y (with 0 < y < a)

and x(y) → 0 as y →∞. That is, Ba is the image of the embedding ι : (0, a)× S1 ↪→ R3 given by
(t, θ) 7→ (x(t), t cos θ, t sin θ).

Let us compute the Gauss map G : Ba → S2 explicitly and then compute its induced tangent
mappings so as to see Lemma 2.3 worked out in this example. We fix an orientation of Ba by
trivializing the tangent bundle using the standard trivialization {∂t, ∂θ} on (0, a)×S1, and we will
use a cross-product normal field within T (R3)|Ba to define the orientation. Explicitly, under ι these
tangent fields go over to the sections of the subbundle T (Ba) ⊆ T (R3)|Ba over Ba given by

(dι)(∂t) = x′(t) · ∂x|Ba + cos θ · ∂y|Ba + sin θ · ∂z|Ba , (dι)(∂θ) = −t sin θ · ∂y|Ba + t sin θ · ∂z|Ba .

In particular, for ξ0 = ι(t0, θ0) ∈ Ba, under the isomorphism Tξ0(R
3) ' R3 the tangent plane

Tξ0(Ba) goes over to the plane in R3 spanned by the two vectors

(2.2) (x′(t0), cos θ0, sin θ0), (0,−t0 sin θ0, t0 cos θ0) ∈ R3.

The vector cross product in Tξ0(R
3) is

(dι)(∂t)ξ0 × (dι)(∂θ)ξ0 = ∂x|ξ0 − x′(t0) cos θ0 · ∂y|ξ0 − x′(t0) sin θ0 · ∂z|ξ0 .

Since x′(t) = −
√
a2 − t2/a, dividing by the length and using the usual isomorphism Tξ0(R

3) ' R3

gives the unit vector

G(t0, θ0) =

(
− t0
a
,−
√
a2 − t20
a

· cos θ0,−
√
a2 − t20
a

· sin θ0

)
∈ S2.

This is the Gauss map. To which orientation of the surface Ba does it correspond? Since Ba is
connected, there are two orientations and these correspond to the two kind of unit normal fields:
one pointing inward toward the x-axis and the one points outward. To figure out the one we’ve got,
we just have to check at one point. Working at a point ι(t0, 0) = (x(t0), t0, 0) in the first quadrant
of the xy-plane, the normal line points roughly in the northeast (outward) and southwest (inward)
directions as distinguished by the xy-components of the normal vector being positive and negative
respectively. Since G(t0, 0) has negative coordinates, we conclude that we have chosen the inward
normal orientation.
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The tangent mapping dG(t0, θ0) : T(t0,θ0)(Ba) → TG(t0,θ0)(S2) ⊆ TG(t0,θ0)(R3) is given by the
3× 2 matrix 

−1/a 0
t0 cos θ0
a
√
a2−t20

√
a2−t20 sin θ0

a

t0 sin θ0
a
√
a2−t20

−
√
a2−t20 cos θ0

a


with respect to the ordered bases

{∂t|(t0,θ0), ∂θ|(t0,θ0)}, {∂x|G(t0,θ0), ∂y|G(t0,θ0), ∂z|G(t0,θ0)}

on the source and target respectively. We have seen that when the source T(t0,θ0)(Ba) is viewed as a
plane in T(t0,θ0)(R3) ' R3, it is spanned by (2.2). The image in TG(t0,θ0)(S2) ⊆ TG(t0,θ0)(R3) ' R3

is the span of the columns of the above 3×2 matrix, and those columns are respectively t0/a
√
a2 − t20

times the first vector in (2.2) and −
√
a2 − t20/at0 times the second vector in (2.2). Hence, we recover

the “equality” of planes as predicted by Lemma 2.3.
Upon identifying the source and target planes T(t0,θ0)(Ba) and TG(t0,θ0)(S2) for dG(t0, θ0), the

above calculation shows that the resulting self-map of this plane has matrix(
t0/a

√
a2 − t20 0
0 −

√
a2 − t20/at0

)
with respect to the ordered basis {∂t|(t0,θ0), ∂θ|(t0,θ0)} of T(t0,θ0)(Ba). For example, in this case
we see that for any ξ0 ∈ Ba corresponding to (t0, θ0) ∈ (0, a) × S1, when dG(ξ0) is viewed as
an endomorphism of Tξ0(Ba) then it has eigenvalues t0/a

√
a2 − t20 and −

√
a2 − t20/at0 that only

depend on t0 (not on the angle) and it has determinant −1/a2 that is constant: independent of ξ0.
This concludes the present example.

In the definition of G we had to use an orientation on H in order to define the unit normal field
n along H. If we pass to the opposite orientation (the only other one when H is connected) then to
keep (2.1) an orientation-preserving isomorphism we must use the unit normal field −n and hence
the associated Gauss map is −G. Likewise, if we negate the orientation of V but do not change
the one on H then we must use the unit normal field −n. If both orientations are negated, then
neither G nor the unit normal field n are changed (since −(−1) = 1). We leave it to the reader to
check that the outer part of the diagram

(2.3) Th(H)
dG(h) //

d(−G)(h) %%LLLLLLLLLL
TG(h)(S)

d(−idS)

��

// TG(h)(V )

d(−idV )

��

' // V

−1

��
T−G(h)(S) // T−G(h)(V ) '

// V

commutes (check the smaller subdiagrams commute, using the Chain Rule). Hence, the self-
mapping dG(h) ∈ End(Th(H)) changes by a sign when we pass to the opposite orientation on
exactly one of H and V , and it does not change when both are negated. In particular, when
H is connected (so there are exactly two orientations on H, given that there is at least one),
dG(h) : Th(H) ' Th(H) depends on the orientations of H and V only up to a sign.

The assignment h 7→ dG(h) ∈ Hom(Th(H),Th(H)) is a set-theoretic section of the C∞ vector
bundle Hom(TH, TH) → H. As with any natural construction, it is better than just set-theoretic:



5

Lemma 2.5. The set-theoretic section h 7→ dG(h) of the vector bundle Hom(TH, TH) over H is
a C∞ section.

Proof. Since TH is a C∞ subbundle of i∗(TV ) ' H × V , Hom(TH, TH) is a C∞ subbundle of
Hom(TH, i∗(TV )) = Hom(TH,H×V ). A C∞ subbundle inclusion is a C∞ embedding, so to check
that our set-theoretic section H → Hom(TH, TH) is a smooth mapping it is equivalent to check
that the composite mapping H → Hom(TH,H × V ) is smooth. This problem is local on H, and
so we may work over open subsets U on which there are C∞ coordinates {x1, . . . , xn}. In this case
TH|U is trivialized by the sections ∂x1 , . . . , ∂xn , so we just have to show that h 7→ dG(h)(∂xi) ∈
TG(h)(V ) ' V is a smooth map from H to V for each i. Upon picking linear coordinates t1, . . . , tn
of V , and letting Gj = tj ◦G be the component functions of G : H → S ⊆ V , this mapping H → V
has component functions ∂xi(Gj). These are smooth, by Lemma 2.2. �

Definition 2.6. The extrinsic scalar curvature of the smooth embedded oriented hypersurface
i : H ↪→ V is the map k : H → R defined by k(h) = det(−dG(h) : Th(H) → Th(H)) =
(−1)dimH det(dG(h)).

For example, the calculations in Example 2.4 show that the Beltrami surface Ba ⊆ R3 has
constant negative extrinsic scalar curvature −1/a2. In the special case a = 1 we get constant
negative curvature −1. For this reason, B1 is often called the pseudosphere (as a sphere of radius
1 in R3 has constant extrinsic scalar curvature 1, to be proved in Example 4.5). The pseudosphere
provides a “model” for Lobachevsky’s non-Euclidean geometry (where a “line” is a certain kind of
length-minimizing curve on the surface).

Note that k : H → R is a smooth function. Indeed, up to the constant sign (−1)dimH it is the
composite of three maps

H
dG→ Hom(TH, TH) det→ H ×R

pr2→ R
where the middle step is the fiberwise determinant on fibers over H (not a map of vector bundles
over H) and the first step is smooth by Lemma 2.5. The smoothness of the third step is clear,
and the smoothness of the middle step is seen by direct calculation with local trivializing frames.
(More generally, replacing TH → H with an arbitrary Cp vector bundle E → X over a Cp

premanifold with corners, the fiberwise determinant mapping detE : Hom(E,E) → X × R over
X (not a map of vector bundles!) is Cp because over small opens U ⊆ X on which there is a
trivialization E|U ' U×Rn we get a Cp isomorphism Hom(E,E) ' X×Matn×n(R) over X whose
inverse composes with detE to give the visibly Cp mapping X ×Matn×n(R) → X ×R defined by
(x, (aij)) 7→ (x,det(aij)).)

Remark 2.7. Negating the orientation on both H and V simultaneously does not change G and so
does not change k. Negating exactly one of these orientations does negate G and so changes k by
a sign of (−1)dimH .

Remark 2.8. The reason for the sign in Definition 2.6 is due to compatibility with more general
constructions in the theory of curvature on Riemannian manifolds. In the case of surfaces (or
hypersurfaces in an odd-dimensional V ) one does not perceive the sign. In particular, in Gauss’
study of surfaces he did not need to pick an orientation for his surfaces. (This is fortunate, since
the phenomenon of non-orientability was not discovered until Möbius came along some time after
Gauss’ work.)

The reason for the word “extrinsic” in Definition 2.6 is because this definition uses the embed-
ding of H into V (and not just, say, the Riemannian metric and orientation on H). The reason for
calling this a “curvature” will be explained by some later examples with curves and surfaces. The
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embedding H ↪→ V puts a Riemannian structure on the oriented manifold H. It was Gauss who
first had the idea to consider the Riemannian structure on H as fixed and to contemplate different
isometric embeddings of H into V (i.e., embeddings whose induced metric on H is the one fixed
at the outset). Does k depend on the actual embedding into V (say, up to translation on V or
orthogonal orientation-preserving linear transformations of V ), or is it intrinsic to the oriented Rie-
mannian manifold H in the sense that it depends only on the Riemannian structure of the oriented
manifold H? It was a well-known (elementary) result of the classical (i.e., pre-Gauss) geometers
that an oriented curve in the plane is determined up to translation and orthogonal orientation-
preserving linear transformation of the plane by the specification of its curvature function, and so
for dimV = 2 the affirmative answer is not particularly deep. Gauss’ Theorem Egregium gives
the affirmative answer in the case dimV = 3. In the case dimV > 3, the situation becomes more
complicated: there is a higher-dimensional version of Gauss’ Theorem Egregium, but it involves
another notion, that of sectional curvature, which coincides with k for surfaces but is otherwise of
rather different nature. In particular, for dimV > 3 the extrinsic scalar curvature k depends very
much on how H is isometrically embedded into V . That is, the naive higher-dimensional version
of the Theorem Egregium is false.

Remark 2.9. To compute the extrinsic scalar curvature for surfaces exhibiting some symmetry,
we can considerably simplify computational efforts by recording the behavior of k with respect
to certain transformations of the ambient vector space. Let L : Rn ' Rn be an orthogonal
linear change of coordinates, so L respects the inner product. We endow L(H) with the orientation
“induced” by H via L : H ' L(H). By inspecting the definitions, it follows that the extrinsic scalar
curvatures kH and kL(H) are related by the identity kH = εdimHkL(H) ◦ L with ε = det(L) = ±1
the sign that encodes whether or not L is orientation-preserving. In particular, as we would expect,
an orientation-preserving orthogonal linear transformation on V does not affect the curvature.
An additive translation is similarly “harmless”. (If dimV is odd, so dimH is even, then even
orientation-reversing orthogonal L are “harmless”.) Of special interest is the case of such an L for
which L(H) = H and dimH is even. In this case we may say kH(x) = kH(L(x)) for all x ∈ H.
This is especially useful for the case of surfaces in R3.

By Remark 2.9, when trying to compute the extrinsic scalar curvature in a specific example we
may always apply a translation or an orthogonal change of coordinates (provided we keep track
of whether the coordinate change has negative determinant, at least when dimH is odd). For
example, let us return to Example 2.4. We noted by calculation that the self-maps dG(ξ0) were
“independent” of the angular parameter θ0, and in particular the eigenvalues were independent of
θ0. But this can now be seen by geometry without any calculation: rotation about the x-axis is
an orthogonal transformation of R3 that carries the surface of revolution Ba back to itself, and
so it commutes with formation of the Gauss map and hence with formation of its tangential self-
maps. Since all points on a common circular slice (for fixed t0) can be carried to each other by a
suitable such rotation, it follows that the intrinsic concept of “eigenvalues of dG(ξ0) as a self-map
of Tξ0(Ba)” is independent of the angle and must depend only on t0. What geometrical reasoning
does not predict is that the determinant, which is to say the extrinsic scalar curvature, is in fact
constant across the surface. The reason that this cannot be seen by geometry alone is that it is not
a general feature of surfaces of revolution. One has to make use of the specific definition of Ba to
verify such constancy.
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3. Curves in R2

Let us now study the most classical case of all, dimV = 2. These are smooth embedded curves
in R2 with its standard inner product. (The topic of geometry for curves in R3 is another rich and
important one in the historical development of differential geometry, and it preceded Gauss’ work
on surfaces, but we will not dwell on it here.) We now write C instead of H, since it is a curve in
the 2-dimensional V . We fix a unit vector e ∈ V and let e′ be the unique unit vector perpendicular
to e such that the ordered basis {e, e′} is positive with respect to the given orientation on V . Thus,
the unit sphere S (circle) in V is parameterized by R/2πZ via trigonometry:

t 7→ cos(t)e + sin(t)e′.

This defines a C∞ isomorphism R/2πZ ' S. For any unit vector v ∈ V , we may therefore uniquely
write v = cos(θ)e + sin(θ)e′ with θ ∈ R/2πZ, and we call θ = θ(v) the angle of v with respect to
e (given the orientation on V ). We usually choose a lift of θ(v) in R and we call this real number
an “angle” of v with respect to e (understanding that it is only well-defined up modulo 2πZ).

Let θ0 ∈ R be an angle with respect to e for a unit vector v0 ∈ V . There is a unique continuous
(and even smooth) way to extend this to an angle function at all points of any open arc in S that
contains v0 and omits at least one point of S. This is geometrically obvious, and is rigorously
proved as follows. Pick v1 6= v0 in S. The claim is that there is a unique continuous function
S − {v1} → R given by angle representatives and taking v0 to θ0, and that this function is C∞.
Uniqueness is clear because any two such have difference that is locally constant and hence constant
on the connected arc S − {v1}. For existence, compose the inverse isomorphism S ' R/2πZ with
a suitable C∞-section to R → R/2πZ over the complement of a point to arrange that v0 is carried
to θ0 ∈ R.

Let i : C → V be the inclusion of the oriented curve C into the plane V . Choose a point c ∈ C,
and let σ : (−ε, ε) → C be a C∞ parameterization by arc length near c with σ(0) = c. There are
two such parameterizations (depending on the direction of motion along C), and we fix one via the
orientation of C: we choose the one such that for all t the unit vector σ′(t) in the line Tσ(t)(C) lies
in the “positive” half-line as determined by the orientation. It is geometrically obvious that this can
be done in a unique way, and a rigorous proof goes as follows. A choice of local parameterization
by arc length σ is an open immersion, and hence the non-vanishing velocity vector field σ′ defines
a trivialization of the tangent bundle on C over the connected open neighborhood U = image(σ)
of c in C. (Since σ is C∞, by calculation in coordinates we see that t 7→ σ′(t) ∈ V is a C∞ map
from (−ε, ε) to V .) Hence, this is an orientation form for TC|U , and by connectivity of U either
this trivialization or its negative is compatible with the chosen orientation on C. If there is not
compatibility, then we switch to the parameterization t 7→ σ(−t) (whose velocity vector field is
negative that of σ; check!). Hence, we may and do uniquely parameterize C by arc length near c
such that the velocity vector is in the positive half-line of the tangent line at all points.

Because the parameterization is by arc length, σ′(t) ∈ Tσ(t)(C) ⊆ Tσ(t)(V ) ' V is a unit vector
for all t. The smooth map t 7→ σ′(t) ∈ V from (−ε, ε) to V has image contained in the unit circle
S (an embedded smooth submanifold of V ) because the velocity vectors are unit vectors, so we get
a smooth map σ′ : (−ε, ε) → S.

We have seen above that “angle” is a well-defined smooth function (up to an integral multiple of
2π) on the complement of a single point in S. By continuity of σ′, if we shrink ε then we can arrange
that for all t ∈ (−ε, ε) the point σ′(t) ∈ S is near σ′(0). In particular, the function θ : (−ε, ε) 7→ R
given by the angle of σ′(t) with respect to e is smooth in t and is well-defined up to adding an
integral multiple of 2π (and the natural choice is to require that the element θ(0) ∈ 2πZ vanishes).
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Hence, the old-fashioned calculus derivative θ′ : (−ε, ε) → R is well-defined (the additive constant
ambiguity is eliminated by the differentiation).

Changing e changes θ by an additive constant, so θ′ is also independent of this choice too. In
other words, the “rate of angle change” t 7→ θ′(t) as we traverse the curve C near c at unit speed
only depends on three things: the curve C in V , the orientation of V , and the orientation of C
(i.e., the direction of motion in which we traverse C). If we negate the orientation of exactly one of
C or V then our notion of angle gets negated, but if we negate both orientations then our notion
of angle is unaffected.

Example 3.1. Let us take C to be the circle of radius r > 0 centered at the origin in V , and give it
the “clockwise” orientation (corresponding to the trivialization by the vector field −∂θ with respect
to the standard angular parameterization using an oriented orthonormal basis of V ). In view of
the specified orientation, the parameterization at unit speed is

σ(t) = r cos(−t/r)e + r sin(−t/r)e′

with {e, e′} a positive orthonormal basis of V , since

σ′(t) = r sin(−t/r)e− r cos(−t/r)e′ = r(−∂θ|σ(t))

with r > 0. In this case locally θ(t) = −t/r (up to adding a constant integral multiple of 2π), so
θ′(t) = −1/r.

Theorem 3.2. With notation as above, k(c) = −θ′(0).

By Example 3.1, for a circle of radius r with “clockwise” orientation in V , the extrinsic scalar
curvature is the constant 1/r > 0 at all points. Since a circle with radius r has curvature 1/r (up
to sign, depending on the orientation), the circles with high curvature (in absolute value) are those
with very small radius. Anyone who has driven a car around a tight bend in the road with small
turning radius will recognize that this merits being considered highly curved (in contrast with the
case of large radius: as the radius tends to infinity, the local geometry becomes nearly linear for
motion at unit speed).

Proof. By definition of the extrinsic scalar curvature, we want −dG(c) to be multiplication by
−θ′(0), or in other words that dG(c) is multiplication by θ′(0) as a self-map on Tc(C). The line
Tc(C) = Tσ(0)(C) is spanned by the unit vector σ′(0), so it is equivalent to prove

dG(σ(0))(σ′(0)) = θ′(σ(0)) · σ′(0).

More generally, we claim that for all t ∈ (−ε, ε),
dG(σ(t))(σ′(t)) = θ′(σ(t)) · σ′(t).

Since σ′(t) = dσ(t)(∂|t) for the standard vector field ∂ on (−ε, ε), by the Chain Rule

dG(σ(t))(σ′(t)) = d(G ◦ σ)(t)(∂|t)
with G ◦ σ : (−ε, ε) → S ⊆ V the Gauss map in terms of the arc-length parameter.

We have σ(t) = x(t)e + y(t)e′ for some smooth functions x and y on (−ε, ε). The isomorphism
jσ(t) : Tσ(t)(V ) ' V carries the unit velocity vector σ′(t) to the unit vector x′(t)e + y′(t)e′ in V
(why?). By the definition of the Gauss map, G(σ(t)) ∈ V is the unique unit vector such that the
ordered basis

{G(σ(t)), x′(t)e + y′(t)e′}
is a positive orthonormal basis of V . The ordered basis

{y′(t)e− x′(t)e′, x′(t)e + y′(t)e′}
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is orthonormal and positive (since its change of basis matrix with respect to the positive ordered
basis {e, e′} is y′2 + x′2 = 1 > 0). Hence,

G(σ(t)) = y′(t)e− x′(t)e′,

and since {G(σ(t)), jσ(t)(σ′(t))} is a positive orthonormal basis of V it follows that the angles these
make against a fixed unit vector e differ by a constant amount (of the form ±π/2 + 2πZ).

Since we are interested in θ′ and not θ, changing θ by a constant amount is harmless. Hence, we
may work with the angle Θ(t) of G(σ(t)) against e rather than with the angle θ(t) of jσ(t)(σ′(t))
against e. For t near 0 we have

cos Θ(t)e + sinΘ(t)e′ = G(σ(t)) = y′(t)e− x′(t)e,

so y′ = cos Θ and x′ = − sinΘ. Since d(G◦σ)(t)(∂|t) ∈ TG(σ(t))(V ) is the “vector-valued” derivative
(G◦σ)′(t) ∈ V of the mapping G◦σ : t 7→ cos Θ(t)e+sinΘ(t)e′ in the sense of classical multivariable
calculus (componentwise differentiation), it equals

Θ′(t) · (− sinΘ(t)e + cos Θ(t)e′) = Θ′(t) · (x′(t)e + y′(t)e′) = Θ′(t) · jσ(t)(σ
′(t)).

�

Remark 3.3. It follows from the proof that k(c) 6= 0 if and only if the acceleration of the unit-speed
parameterization is nonzero at c.

As a consequence of the theorem, k(c) > 0 precisely when traversing C at unit speed in the
“positive” direction (as determined by the orientation) gives rise to a unit tangent field (of velocity
vectors) whose angle against a fixed direction is decreasing at c. To say the angle is decreasing is
exactly to say that the local trajectory through C near c is “clockwise” in the oriented plane V .
More precisely, we get the following geometric interpretation of the extrinsic scalar curvature for
oriented curves in an oriented plane at points c of the curve at which k is nonzero:

(3.1) k(c) = lim
s→0+

−`(s)
s

where `(s) is the signed length of the (nontrivial!) path σ′([0, s]) in the unit circle S, with σ the
oriented parameterization if C near c by arc length (and σ(0) = c); the sign of the length is that of
the small (nonzero!) angle of σ′(s) against the unit vector σ′(0) for small positive s. (The definition
of angle uses the orientation of V .) The formula is an immediate consequence of Theorem 3.2 and
the fact that signed arc length in the unit circle is the same as angle difference (in “radians”!).
for small arcs on the unit circle S. A moment’s reflection shows that (3.1) “justifies” the name
“curvature” in the case of oriented curves in the plane (with the sign interpreted in the manner
just explained).

4. Surfaces in R3

We now turn to the case of smooth embedded surfaces H in a 3-dimensional inner product space
V . We seek a geometric interpretation of the extrinsic scalar curvature in the spirit of (3.1), but
with the arc-length replaced by area. Also, we seek an interpretation of the sign of this scalar
curvature at points where it is not zero. The sign has a simple interpretation, as follows. Give the
unit sphere S ⊆ V the “outward normal” orientation, which is to say that for x ∈ S an ordered
basis {v, w} of Tx(S) is positive when the ordered basis {n(x), v, w} for Tx(V ) ' V is positive,
where the unit normal n(x) ∈ Tx(V ) ' V is the point on the unit sphere given by x. (Draw a
picture!) Since dimH = 2 is even, so k(h) = det(−dG(h)) = det(dG(h)) for all h ∈ H, we see
that k(h) is the determinant of the tangent map dG(h) : Th(H) → TG(h)(S) when the source
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and target are naturally identified with the same plane in V (via Lemma 2.3). In particular,
by the inverse function theorem, k is nonzero at precisely those points where G : H → S is
a local C∞ isomorphism. Near such points, we get an isomorphism of oriented vector bundles
TH ' G∗(TS), and so passing to second exterior powers we see (upon choosing orientation forms
over small opens) that if dG(h) : Th(H) → TG(h)(S) is an orientation-preserving (resp. orientation-
reversing) isomorphism then the same holds upon slightly moving h. Moreover, this condition is
exactly the property that G pulls a local oriented coordinate chart on S back to a local oriented
coordinate chart on H (resp. a local coordinate chart on H whose orientation is opposite the one
given on H). The sign of k detects how G interacts with the chosen orientation on H and the
“outward normal” orientation on S:

Theorem 4.1. The extrinsic scalar curvature k on the surface H is positive at exactly those
points near which G is an orientation-preserving local C∞ isomorphism, using the outward-normal
orientation on the unit sphere S ⊆ V .

If we change the orientation on H then G is negated, and negation on S is orientation-reversing.
Hence, the assertion in the theorem is independent of the choice of orientation on H. This is as
it must be, since we know a priori that for even-dimensional H the extrinsic scalar curvature is
independent of the choice of orientation on H (though up to sign the Gauss map certainly depends
on this choice).

Proof. The problem is a local one, and we at least know that k is nonzero precisely where G is a
local C∞ isomorphism. The problem is therefore one of comparing signs at a point h0 ∈ H where
k is nonzero (and so dG(h0) : Th0(H) → TG(h0)(S) is a linear isomorphism). One can proceed by
busting out lots of coordinates and Jacobian matrices, but an alternative to avoid such muck is to
argue as follows.

The orientation-preserving property of G near h0 is exactly the condition that the linear iso-
morphism dG(h0) respects the given orientation on Th0(H) and the “outward normal” orientation
on TG(h0)(S). Let W ⊆ V be the plane that “is” the common subspace as in Lemma 2.3 for h0.
By definition of G(h0) ∈ S, an ordered basis {w,w′} of W is positive for the orientation from
Th0(H) precisely when the ordered basis {G(h0), w, w′} of V is positive. By the definition of the
outward-normal orientation on S, when the oriented TG(h0)(S) is identified with W its positive
bases are characterized by the exact same condition (since for x ∈ S the “outward normal” in
Tx(S)⊥ ⊆ Tx(V ) goes over to the unit vector in S ⊆ V that is x when Tx(V ) is identified with V
in the usual manner). Hence, when the oriented tangent spaces Th0(H) and TG(h0)(S) (using the
given orientation on H and the “outward normal” orientation on S ⊆ V ) are identified with the
common plane W ⊆ V , both identifications put the same orientation on W . It follows that when
dG(h0) : Th0(H) ' TG(h0)(S) is identified with a self-map of W (or equivalently, of Th0(H), as in
the definition of the extrinsic scalar curvature) its determinant is positive if and only if it respects
this common orientation. That is, k(h0) > 0 if and only if dG(h0) is orientation-preserving as a
self-map of Th0(H). �

The unit sphere S ⊆ V inherits a Riemannian metric from V , as does the embedded surface H.
For points h ∈ H at which k is non-vanishing, the inverse function theorem implies that the Gauss
map G : H → S is a local C∞ isomorphism. Hence, for small rectifiable open subsets B in H
around h the image G(B) is a small rectifiable open subset of S around G(h) (say with smallness
measured by discs in the Riemannian metric, or just naively in a coordinate patch on the surfaces
H and S), and so it makes sense to consider the positive areas Area(B) and Area(G(B)). When
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we consider a limit as “B → h” what we mean is that the expression gets as close as we please to
the proposed limiting value by taking B inside of a sufficiently small open around h in H.

Theorem 4.2. If dimV = 3 and k(h0) 6= 0 for some h0 ∈ H, then

|k(h0)| = lim
B→h0

Area(G(B))
Area(B)

.

In particular, this limit exists for such h0.

If we assign G(B) a “signed area” by inserting a sign when G is orientation-reversing with
respect to the chosen orientation on H and the outward-normal orientation on S then Theorem 4.1
ensures that the above limit formula can be promoted to a formula for k(h0) and not just |k(h0)|
(when k(h0) 6= 0). This is analogous to the “signed length” condition that gives (3.1) without the
intervention of absolute values.

Proof. Let {u, v} be an oriented C∞ coordinate system on a connected open set U around h0 in H.
In order to compute the area of a small region B contained in U , we use the area form associated to
the Riemannian metric on H induced by the standard Riemannian metric on R3. For each h ∈ H,
the area form in Ω2

H(H) has h-fiber in ∧2(Th(H)∨) given by
√

det(〈vi, vj〉h)v∗1 ∧ v∗2 where {v1, v2}
is any positive basis of the oriented plane Th(H) and 〈·, ·〉h is the inner product on Th(H) induced
by the standard one on Th(R3) = R3. A frame of positive bases for TH|U is given by the ordered
pair of vector fields {∂u, ∂v}, so the area form over U is√∣∣∣∣〈∂u, ∂u〉 〈∂u, ∂v〉

〈∂u, ∂v〉 〈∂v, ∂v〉

∣∣∣∣du ∧ dv.

We let A(u, v) denote this coefficient, so the area form on U is Adu ∧ dv in {u, v} coordinates.
Recall that if W is a d-dimensional oriented inner product space, then each exterior power ∧i(W )

is endowed with an induced inner product and on the line ∧d(W ) the length of w1 ∧ · · · ∧ wd is√
det(〈wi, wj〉)} for any w1, . . . , wd ∈ W . This is related to the old fact from linear algebra that

the “volume form” on an oriented inner product space is the unique positive unit vector in the top
exterior power (with its induced orientation and inner product). The relevance of this to the present
circumstances is that when we view Th(H) and TG(h)(S) as subspaces of R3 they coincide (Lemma
2.3), and hence the induced inner products on these spaces coincide. Use this identification of planes
to view ∧2(dG(h)) as a self-map of the 1-dimensional oriented inner product space ∧2(Th(H)), so
this map is multiplication by the scalar k(h) (by definition of the extrinsic scalar curvature as
a determinant), so it follows that the map ∧2(dG(h)) : ∧2(Th(H)) → ∧2(TG(h)(S)) distorts the
length by a factor of |k(h)|: it sends unit vectors to vectors of length |k(h)|.

Shrink U around h0 so that G is a C∞ isomorphism of U onto an open G(U) around G(h0) in
S. Thus, we may use u′ = u ◦ G−1 and v′ = v ◦ G−1 as C∞ coordinates on G(U). Since G(U) is
connected, either {u′, v′} or {v′, u′} is an oriented coordinate system on S (with its outward normal
orientation). Change the orientation on H if necessary (harmless for our purposes) – which is to
say swap u and v if necessary – so that {u′, v′} is an oriented coordinate system on G(U). The
preceding discussion implies that

〈∂u′ , ∂u′〉 = |k ◦G−1| · 〈∂u, ∂u〉 ◦G−1, 〈∂u′ , ∂v′〉 = |k ◦G−1| · 〈∂u, ∂v〉 ◦G−1,

〈∂v′ , ∂v′〉 = |k ◦G−1| · 〈∂v, ∂v〉 ◦G−1,

so the area form on G(U) ⊆ S is |k ◦G−1|A ◦G−1 · du′ ∧ dv′. Let Q ⊆ R2 be the open subset that
is the common image of the coordinate systems {u, v} on U and {u′, v′} on G(U). Let φ : U ' Q
be the C∞ isomorphism defined by {u, v}, and let f = A ◦ φ−1 and K = |k| ◦ φ−1. Note that K
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and f are smooth functions on Q (as k is non-vanishing on U) and f is everywhere positive on Q.
By definition of integration of differential forms we conclude that for any rectifiable open subset
B ⊆ U , Area(B) =

∫
φ−1(B) f and Area(G(B)) =

∫
φ−1(B)Kf .

Letting q0 = φ(h0) ∈ Q, as we shrink B in U around h0 the open set φ−1(B) shrinks in Q around
q0. Hence, our problem is to prove

lim
Q′→q0

∫
Q′ Kf∫
Q′ f

= K(q0)

as Q′ ranges over rectifiable opens in Q ⊆ R2 that shrink down to q0. (That is, for any ε > 0 there
exists an open Q′0 ⊆ Q around q0 such that if Q′ ⊆ Q′0 then |(

∫
Q′ Kf/

∫
Q′ f)−K(q0)| < ε.) Since

K(q0) = (Kf)(q0)/f(q0), it therefore suffices to prove more generally that for any smooth function
g near q0,

∫
Q′ g ∼ g(q0)

∫
Q′ 1 = g(q0)Area(Q′) as Q′ → q0. Writing g = g(q0) + (g − g(q0)) we may

assume g(q0) = 0, so we want
∫
Q′ g = o(Area(Q′)) as Q′ → q0 if g(q0) = 0.

We may translate coordinates in R2 (doesn’t affect integrals!) so that q0 = (0, 0). By the 2-
variable Taylor formula for the smooth g at q0 = (0, 0), since g(0, 0) = 0 we have g = uf1 + vf2 for
smooth f1 and f2 near the origin. Hence, if |f1| and |f2| are bounded by respective constants C1

and C2 near the origin then for small Q′ around the origin we have |
∫
Q′ g| ≤ C1

∫
Q′ |u|+C2

∫
Q′ |v|.

It suffices to show
∫
[−ε,ε]2 |u| = o(ε2) as ε→ 0+, and this is trivial (the integral is ε3). �

Example 4.3. Consider the case V = R3 and H = {f(x, y, z) = c} a level set without critical points
for a smooth function f on R3. In this case, for each h ∈ H we have a non-vanishing gradient vector
(∇f)(h) ∈ Th(R3) ' R3 defined by the condition that 〈(∇f)(h), ·〉 = df(h). By the handout on
universal bundles and normal bundles, ∇f trivializes the orthogonal line bundle (TH)⊥ and so
defines an orientation on H. With this orientation the Gauss map G : H → S2 ⊆ R3 is

G(h) =
(∇f)(h)
||(∇f)(h)||

=
((∂xf)(h), (∂yf)(h), (∂zf)(h))√

(∂xf)2(h) + (∂yf)2(h) + (∂zf)2(h)
.

The “explicit calculation” of dG(h) requires a choice of oriented coordinates on H near h. By
the implicit function theorem, any smooth embedded hypersurface in R3 locally has a smooth
parameterization by two of the three standard coordinates. (That is, near any point one of {x, y},
{x, z}, or {y, z} is a local C∞ coordinate chart, depending on which partials of f are non-vanishing
on H near the point of interest, and we may need to swap the order of coordinates to make the
coordinate system be oriented with respect to the orientation that we have chosen on H by means
of the choice of f .) Using such coordinates permits a clean local formula for the scalar curvature,
as we work out in the next example.

Example 4.4. Consider surfaces of the form H = {z = g(x, y)} ⊆ U ×R for a smooth function g
on an open set U ⊆ R2. This is the zero locus of f(x, y, z) = z − g(x, y). As we saw in our initial
study of submanifolds, on the submanifold H there is a global C∞ coordinate system provided
by {x, y}. A normal vector field that corresponds to the orientation determined by the {x, y}-
coordinate system is given by the vector cross-product ∂x × ∂y in i∗(T (R3)), with i : H ↪→ R3 the
embedding. Strictly speaking, we really compute the cross product

di(ξ)(∂x|ξ)× di(ξ)(∂y|ξ) ∈ Ti(ξ)(R
3) = R3

with i(x, y) = (x, y, g(x, y)). The matrix for di(ξ) gives

(4.1) di(x0, y0)(∂x|(x0,y0)) = (1, 0, (∂xg)(x0, y0)), di(x0, y0)(∂y|(x0,y0)) = (0, 1, (∂yg)(x0, y0))
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in R3 = Ti(x0,y0)(R3) The inner products among these two vectors are easy to compute via the
standard inner product on R3, and so we see that the metric tensor on H is given as follows in
terms of {x, y}-coordinates:

ds2 = (1 + (∂xg)2)dx⊗2 + ∂xg∂yg · dx⊗ dy + ∂xg∂yg · dy ⊗ dx+ (1 + (∂yg)2)dy⊗2.

From the explicit description (4.1) of the vector fields ∂x and ∂y on H in terms of the standard
trivialization of T (R3), their cross product is the vector field (−∂xg,−∂yg, 1) in i∗(T (R3)). That
is, the orientation of H defined by the {x, y}-coordinate system is associated to the unit normal
field

n =
(−∂xg,−∂yg, 1)√
1 + (∂xg)2 + (∂yg)2

with values in R3. For f = z − g(x, y), this is exactly the unit vector field along H obtained by
dividing the associated gradient vector field by its length, so the {x, y} coordinate system is oriented
with respect to the orientation determined by using f as the smooth function with level-set H. (If
we had used −f then the orientation on H would flip and {y, x} would be an oriented coordinate
system.)

We conclude that the Gauss map associated to the oriented surface H = {z = g(x, y)} with
{x, y}-orientation is

(4.2) G(x, y) =
(−∂xg,−∂yg, 1)√
1 + (∂xg)2 + (∂yg)2

.

By Lemma 2.3, the tangent plane TG(h)(S2) to the unit sphere and the tangent plane Th(H)
coincide when they are put inside of R3 (via Th(R3) ' R3 and TG(h)(R3) ' R3). When this is
used to identify dG(h) with a self-map of the vector space Th(H) with ordered basis {∂x|h, ∂y|h}
then by computing partials of (4.2) and using (4.1) one finds

dG(x, y) =
1

(1 + g2
x + g2

y)3/2
·
(
gxygxgy − gxx(1 + g2

y) gyygxgy − gxy(1 + g2
y)

gxxgxgy − gxy(1 + g2
x) gxygxgy − gyy(1 + g2

x)

)
(with gx = ∂xg, gxy = ∂x∂yg, and so on). Hence, the determinant is

(4.3) k =
gxxgyy − g2

xy

(1 + g2
x + g2

y)3/2
;

this is the extrinsic scalar curvature on {z = g(x, y)} in terms of {x, y}-coordinates. Recall that
the function k is independent of the choice of orientation on the surface, and this accords with the
fact that (4.3) is unaffected by the roles of x and y (thanks to the equality gxy = gyx).

Example 4.5. Let us use (4.3) to compute the scalar curvatures for a couple of basic surfaces in
R3: spheres and cylinders (say with infinite length). Let us first argue by pure thought that
these surfaces must have constant curvature. By Remark 2.9, this scalar curvature is unaffected
by translation and orientation-preserving orthogonal linear transformations on R3 that carry the
surface back to itself. Hence, to do the calculation we lose no generality in supposing our sphere is
centered at the origin and that our cylinder has the x-axis as its axis of symmetry. For any two
points ξ1 and ξ2 on such a sphere, we can certainly find an orthogonal linear transformation of R3

carrying ξ1 to ξ2 (why?), so indeed the scalar curvatures at the two points must be the same (so
it is a constant function on the sphere). Likewise, by using suitable additive translation we can
bring any point of the cylinder into the yz-plane, and then we can use a rotation in that plane to
bring it to any point of the unit circle in that plane. In this way we see that suitable translations
and orientation-preserving orthgonal linear transformations on R3 that preserve the cylinder can
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be used to carry any point on the cylinder to any other point on the cylinder. Thus, again the
scalar curvature must be constant.

Let H ⊆ R3 be a sphere of radius R > 0 centered at the origin. In this case I claim k = 1/R2.
By constancy it suffices to work with the oriented chart {z =

√
R2 − x2 − y2} (for x2 + y2 < R2).

By (4.3) g(x, y) = ±
√
R2 − x2 − y2, a direct calculation gives k(x, y) = 1/R2. We conclude that

on the sphere k = 1/R2 > 0. In particular, the spheres with small radius have “large curvature”
(as they should!). This is analogous to the earlier conclusion (Example 3.1 and Theorem 3.2) that
the extrinsic scalar curvature of a circle of radius R with clockwise orientation in R2 is 1/R.

Next, consider a cylinder in R3 with radius R and infinite length, having the x-axis as the axis of
symmetry. I claim k = 0. (The vanishing of the “curvature” in the cylinder is due to that fact that
a piece of paper may be smoothly rolled up to make a cylinder without distorting local distance
on the surface – intuitively, we do not need to stretch or rip the paper.) It suffices to work in the
chart z =

√
R2 − y2 (with |y| < R), and by direct calculation we get k = 0. The example of the

cylinder drives home the fact that k measures “stretching” and not “bending”.

Example 4.6. We now study a surface in R3 whose extrinsic scalar curvature is non-constant, and
the variation reflects geometric properties of the surface. The surface we wish to consider is the
donought (or torus) T ⊆ R3 with inner radius r−|a| and outer radius r+|a|, 0 < |a| < r. Explicitly,
T is the image of the smooth closed embedding S1 × S1 → R3 defined by

(θ, ψ) 7→ ((a+ r cos θ) cosψ, (a+ r cos θ) sinψ, r sin θ).

Geometrically, θ is the angle measure for the circles of radius r that go “through the hole” and ψ
is the angle measure for the other family of circles that have radii varying from r − |a| to r + |a|.

There is a global trivialization of the tangent bundle (hence orientation of T ) specified by the
ordered pair of vector fields {∂θ, ∂ψ} (that are globally well-defined, even though θ and ψ are
not), and under the embedding i of S1 × S1 into R3 and hence of T (S1 × S1) into i∗(T (R3)) =
(S1 × S1)×R3 these go over to the vector fields

∂θ = (−r sin θ cosψ,−r sin θ sinψ, r cos θ), ∂ψ = (−(a+ r cos θ) sinψ, (a+ r cos θ) cosψ, 0).

Forming their cross product and dividing by the length (via the Riemannian metric induced from
R3) gives a formula for the Gauss map:

G(θ, ψ) = (cos θ cosψ, cos θ sinψ, sin θ) ∈ S2 ⊆ R3.

By direct computation,

∂θG = (− sin θ cosψ,− sin θ, sinψ, cos θ) = r−1∂θ,

∂ψG = (− cos θ sinψ, cos θ cosψ, 0) =
cos θ

a+ r cos θ
∂ψ,

so we compute the extrinsic scalar curvature is the determinant

(4.4) k(θ, ψ) =
∣∣∣∣1/r 0

0 cos θ
a+r cos θ

∣∣∣∣ = cos θ
r(a+ r cos θ)

.

Note that this is independent of ψ, as it should be because by rotating about the axis of symmetry
we may move ψ arbitrarily without changing θ. (Recall that the scalar curvature is invariant under
additive translation and orthogonal orientation-preserving linear transformation on the ambient
oriented inner product space.) In contrast, the circles ψ = c that pass “through the hole” encounter
varying geometry on the surface as θ varies. On the “outer half” with −π/2 < θ < π/2 we have
k > 0 by (4.4), and at such points the surface lies on one side of the tangent plane (cutting the
surface at an isolated point). On the “inner half” with π/2 < θ < 3π/2 we have k < 0 by (4.4),



15

and at such points the surface cuts through its tangent plane at an isolated point but the surface
straddles both sides of the tangent plane. The case k = 0 happens exactly along the top and bottom
circles θ = π/2, 3π/2 at which the surface is “flat” (and the tangent plane meets the surface along
a curve rather than at an isolated point).

5. Curves in R2 on surfaces in R3

We conclude by proving a wonderful theorem of Euler that relates the curvature of a surface (in
3-space) to the geometry of curves on the surface. This was apparently a big source of motivation
for Gauss when he undertook his monumental study of the geometry of surfaces in 3-space, and
the technique of studying a surface by understanding the geometry of curves on the surface is a
powerful principle in algebraic geometry. Euler’s theorem gives a very satisfying intepretation for
the extrinsic scalar curvature of a surface in R3 in terms of the curvature of curves given by oriented
planar slices of the surface. That is, it links the work in the preceding two sections.

Let i : H ⊆ R3 be a smooth embedded oriented surface, and let n be the associated unit normal
field in (TH)⊥ ⊆ i∗(T (R3)). We fix a point x ∈ H and we wish to study the geometry of H ∩ P
near x for an affine plane P in R3 passing through x and containing the (affine) normal line to H
at x (by “affine plane” we mean a translate of a 2-dimensional linear subspace; similarly for “affine
line”). In particular, the smooth embedded surfaces P and H in R3 satisfy Tx(P ) 6= Tx(H) in
Tx(R3) = R3. A pair of distinct hyperplanes in a vector space is always transverse, so P and H
have transverse intersection at x. It follows from our earlier work with transverse intersection of
submanifolds that P ∩ H is an embedded smooth curve (in H, P , and R3) near x. Let C be a
connected open around x in this smooth curve. We fix an orientation for P , so together with the
orientation on H we get (via our earlier work with orientations and normal bundles) a preferred
orientation on the transverse intersection C.

Concretely, there are exactly two smooth unit tangent fields t along the connected curve C,
corresponding to the two orientations of C, and each is determined by its value at one point of
C. Working at the point x ∈ C, the orientation on C is associated to the unique t such that
{n(x), t(x)} is a positive basis of the oriented plane P . Conversely, if we do not orient P but we
fix a choice of orientation of C dictated by a choice of unit tangent field t on C then we orient P
by requiring the ordered basis {n(x), t(x)} of P to be positive.

Since C is an embedded smooth curve in the 2-dimensional inner product space P , and a choice
of unit tangent field t picks out preferred orientations on C and P as explained above, for a given
choice of t we can speak of the extrinsic scalar curvature kt : C → R. Now we use geometric input:
since P ⊆ Tx(R3) is the span of the independent (in fact, orthogonal!) unit vectors n(x) and t(x),
we can pass back and forth between C and P : as we let t0 ∈ Tx(H) vary over all unit vectors
the oriented planes P = span(t0,n(x)) in Tx(R3) range over all oriented affine planes in R3 that
contain the (affine) normal line to H at x. Thus, the oriented curve C near x is determined by
the choice of unit tangent vector t0 ∈ Tx(H), and so we may write Ct0 and Pt0 for the resulting
oriented curve and oriented plane through x. Note that P−t0 = Pt0 as affine planes in R3, but they
have opposite orientations. The same goes for the curves C−t0 and Ct0 near x.

Consider the extrinsic scalar curvature kt0(x) of Ct0 at the point x. As we let t0 vary through
the unit circle in Tx(H), how does kt0(x) vary? In more geometric terms, as we let P vary through
the set of oriented affine planes in R3 that contain the normal line to H at x, what can we say
about the variation in the curvature at x for the resulting oriented curve P ∩ H (near x) in the
oriented 2-dimensional inner product space P? It was this problem that Euler solved, and what
he proved (in modern language) is that there is a quadratic form q on the plane Tx(H) such that
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q(t0) = kt0(x) for all unit vectors t0 ∈ Tx(H). This quadratic form is a special case of a general
construction (“second fundamental form”) that appears in the higher-dimensional case.

Remark 5.1. Since q(w) = q(−w) for any quadratic form q on a vector space W , if Euler’s result is
to be correct then it must be that k−t0(x) = kt0(x). We can see such equality a priori as follows.
By negating t0 we do not change the physical plane Pt0 nor the curve Ct0 in this plane near x,
but the orientations on both are negated. But in general we know (Remark 2.7) that negating
both the orientation on the ambient inner product space and on the hypersurface does not change
the Gauss map and so does not change the associated scalar curvature function. Thus, indeed
k−t0(x) = kt0(x).

The basic problem we need to solve is to relate the curvature kt0(x) attached to the oriented
curve Ct0 near x in the oriented plane Pt0 and the self-map dG(x) : Tx(H) → Tx(H) (upon
identifying Tx(H) and TG(x)(S2) in R3, via Lemma 2.3). The starting point is the fact that when
the derivative of the Gauss map at x is viewed as a self-map of the inner product space Tx(H), it
has a very nice interaction with the inner product structure:

Lemma 5.2. The self-map dG(x) of Tx(H) is self-adjoint for the natural inner product on Tx(H) ⊆
Tx(R3) = R3.

In the higher-dimensional case there is also such a self-adjointness result. Here, we give a proof
in the case of surfaces by a local coordinate calculation. (In the general case, one can avoid passing
to local coordinates in the proof.)

Proof. After suitable relabelling of the standard coordinates on R3 (say a cyclic permutation so as
to not affect the orienation) and working locally near x in H, we may assume that H is given by
z = g(u, v). In this case, the tangent space Tx(H) has as basis ∂u|x and ∂v|x with {u, v} a C∞

coordinate system on H at x, so the symmetry condition

〈dG(x)(w), w′〉x = 〈w,dG(x)(w′)〉x

for w,w′ ∈ Tx(H) is reduced to the special case w = ∂u|x and w′ = ∂v|x.
The vector fields ∂u and ∂v on the coordinate chart around x in H are velocity vectors along the

parameteric “coordinate lines” (one coordinate fixed, the other varying). If the parameterization
near x that is inverse to the {u, v}-coordinate system is denoted

(u, v) 7→ (f1(u, v), f2(u, v), f3(u, v)) ∈ H ⊆ R3

then in the tangent spaces to R3 we have

∂u = (∂uf1)∂t1 + (∂uf2)∂t2 + (∂uf3)∂t3

and likewise for ∂v. By the definition of the Gauss map as a normal field to the surface, we have
the pointwise identity 0 = 〈G(u, v), ∂v〉 at all points near x in H, so by applying ∂v to this identity
we get

0 = 〈dG ◦ ∂v, ∂u〉+ 〈G(u, v),
∑
j

(∂2fj/∂v∂u)∂tj 〉.

If we instead begin with the vanishing of 〈G(u, v), ∂u〉 then we get a similar identity, except the
partials with respect to u and v occur everywhere in swapped positions. By equality of mixed
partials (for the fj ’s), we get formulas for 〈dG ◦ ∂v, ∂u〉 and 〈dG ◦ ∂u, ∂v〉 that coincide. Evaluating
at x, we are done. �
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In view of the self-adjointness, 〈−dG(x)(w), w′〉x is a symmetric bilinear form on the plane Tx(H),
and we let q be the associated quadratic form. Thus, q(w) = 〈−dG(x)(w), w〉x for w ∈ Tx(H),
and by the spectral theorem the self-ajoint self-map −dG(x) of Tx(H) can be diagonalized with
some eigenvalues λ1 ≤ λ2 (with perpendicular eigenlines if λ1 6= λ2). In particular, in suitable
orthonormal linear coordinates {u1, u2} on Tx(H) we have q(u1, u2) = λ1u

2
1 + λ2u2, so for unit

vectors t0 ∈ Tx(H) we have λ1 ≤ q(t0) ≤ λ2, and if λ1 6= λ2 then the extremal values are attained
along unique lines in Tx(H) that are moreover perpendicular. Classically, these lines are the
“principal directions” at x on the surface H, and the eigenvalues λ1 and λ2 along these tangential
lines are called the “principal curvatures” due to:

Theorem 5.3 (Euler). For each unit vector t0 ∈ Tx(H), kt0(x) = q(t0). In particular, as P
varies through the oriented affine planes that contain the normal line to H at x, the oriented curve
P ∩H near x has extrinsic scalar curvature at x that ranges between the principal curvatures. If the
extremal values λ1 and λ2 are distinct, each is attained only for the associated curve C±t0 whose
tangent line in Tx(H) is the corresponding principal direction.

Moreover, the extrinsic scalar curvature k(x) of H at x is the product λ1λ2 of the principal
curvatures at x.

Proof. The final part follows from the definition of k(x) as the determinant of −dG(x) when this
is viewed as a self-map of Tx(H). Since t0 is a unit vector in Tx(H), the inner product q(t0) is
the t0-coefficient of the projection of dG(x)(t0) ∈ Tx(H) on the line Rt0. Letting Ct0 denote the
corresponding oriented curve through x (i.e., the oriented slice Pt0 ∩H near x with Pt0 the oriented
span of n(x) and t0), the oriented line Rt0 in Tx(H) is the oriented tangent line Tx(Ct0). Hence,
it suffices to prove that near x the restriction G|Ct0

of the Gauss map of H is the Gauss map of
Ct0 in the oriented plane Pt0 (with values in the unit circle of Pt0 , put inside of the unit circle of
R3 via parallel translation in the evident manner). But this compatibility of Gauss maps follows
from how Pt0 and Ct0 = Pt0 ∩H are oriented (near x) using the data of the normal field n along H
near x. More specifically, the crux is that for each point x′ in Ct0 , the unit normal vector n(x′) to
H at x′ lies in the oriented inner product space Pt0 as a unit normal vector to the oriented curve
Ct0 such that {n(x′), t(x′)} is a positive basis of Tx′(Pt0) ' Pt0 for the positive unit vector t(x′)
in Tx′(Ct0) (as we infer by connectivity of Ct0 and the special case x′ = x. �

Example 5.4. In the cases of a sphere of radiusR (say given outward normal orientation) the oriented
planar slices as in Theorem 5.3 are (great) circles of radius R with counterclockwise orientation
in an oriented plane, so these all have scalar curvature −1/R. Taking the product of two gives
(−1/R)2 = 1/R2.

For a cylinder of radius R (with a fixed choice of orientation), there is a unique planar slice
that is a straight line (with curvature 0) and all others having “varying” velocity vector and so
have nonzero curvature. Consideration the orientation, it is clear that these curvatures all have the
same sign as we vary the plane, so the vanishing curvature is one of the two extremal possibilities
(depending on how we orient the sphere). The other eigenline in the tangent space is perpendicular
to this one, so the other principal direction must correspond to the circular slice of radius R whose
tangential direction is perpendicular to the line. This has curvature ±1/R, the sign depending on
how we orient the cylinder. The product of these two principal curvatures 0 and ±1/R is 0.

Finally, consider the torus T = S1 × S1 embedded in R3 as in Example 4.6, with orientation
by {θ, ψ}. In this case we diagonalized the differential of the Gauss map in the proof of (4.3), so
the principal directions at any point are the tangent lines to integral curves for ∂θ and ∂ψ and the
respective principal curvatures are r−1 and (cos θ)/(a+r cos θ). The product is (cos θ)/r(a+r cos θ)
as it should be.
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Euler’s theorem explains the geometry of the surface H near x in terms of the sign of k(x) (when
it is nonzero): if k(x) > 0 then the principal curvatures have the same sign and so all (naturally
oriented) planar slices C by oriented planes P containing the normal line at x have scalar curvature
(in the oriented plane P ) with a common sign. That is, near x all such naturally oriented curves
through x are clockwise, or all are counterclockwise, in their natural oriented plane. In contrast,
when k(x) < 0 there are some (naturally oriented) slices that are positively curved at x and some
that are negatively curved. Since the curvature of the slice curve at x encodes the distinction
between clockwise and counterclockwise motion through x (in an oriented plane), this explains the
geometric dichotomy one sees in curve slices for Example 4.6 at points on the “outer” half (where
k > 0) and on the “inner” half (where k < 0).

Example 5.5. Let us see what Euler’s theorem tells us concerning the Beltrami surface Ba as in
Example 2.4. In that example, we worked out the explicit eigenvalues and we even saw that
the eigenlines in each tangent plane are precisely the perpendicular tangent lines along the polar
coordinate directions through each point (i.e., parallel to the x-axis and parallel to the yz-plane).
Let us now show how to see by pure geometry that the eigenlines must be these lines. In fact,
the argument we give applies to an arbitrary surface of revolution. (Note, however, that the
determination of the eigenvalues along these lines does require some calculation; it can be done for
any surface of revolution without requiring an explicit computation of the Gauss map, but to do
so requires some more geometrical input because the normal lines to the surface of revolution are
usually not perpendicular to the axis of symmetry.)

Pick a point ξ on our surface of revolution. If the differential of the Gauss mapping has equal
eigenvalues (which it actually does not in the case of Ba) then there is nothing to do because all
lines in the tangent plane at ξ are eigenlines, so we may assume the eigenvalues are distinct. By
self-adjointness of the differential of the Gauss map, it has exactly two eigenlines on each tangent
plane and they are perpendicular in the tangent plane. We have to show that these lines are the
ones along the polar coordinate directions with respect to the axis of symmetry. Suppose not.
Consider reflection through the (affine) plane Hξ containing the axis of symmetry and the point
ξ. This is an orthogonal transformation of R3 (up to an additive translation before and after),
so it respects the formation of the Gauss map. Since it fixes ξ and induces reflection through the
r-coordinate line in the tangent plane to the surface at ξ, it follows that if L is an eigenline then so
is its reflection L′ through the r-coordinate line through ξ, and moreover the line L′ must have the
same eigenvalue as the line L. But the two distinct eigenlines have distinct eigenvalues, so L = L′.
This forces the eigenlines L to satisfy L = L′, so these two lines must be the polar coordinate lines
through ξ.

Remark 5.6. Say we fix the Riemannian structure on H and we consider only those embeddings
H ↪→ R3 that are isometric embeddings (i.e., induced upon H the chosen Riemannian structure).
The geometry of the “planar slices” P ∩H near x as in Theorem 5.3 (with P containing the normal
line to H at x) depends very much on how H is embedded in R3. (Consider embedding an open
square with flat metric into either a plane in R3 or onto the surface of a cylinder with one pair of
sides parallel to the axis of symmetry.) The principal curvatures as an unordered pair of numbers
are not intrinsic to H near x considered as an oriented Riemannian 2-manifold. Gauss’ Theorem
Egregium is the remarkable assertion that the product k(x) of these principle curvatures at x is
determined solely by the Riemannian structure on H near x. (On the cylinder, the straight line
through any point has associated principal curvature equal to 0 for both orientations.) As we have
noted earlier, in the case of higher-dimensional hypersurfaces, the product of the eigenvalues (i.e.,
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the determinant of dG(x) as a self-map of Tx(H)) is generally not determined just by the induced
metric tensor on H.


