MATH 396. LOCAL AND GLOBAL FROBENIUS THEOREMS

1. MOTIVATION

Let M be a smooth manifold, and E an integrable subbundle of TM. A particularly interesting
example is the following. Let M = G be a Lie group and h a Lie subalgebra of g = Lie(G). In
this case, we have a bundle trivialization G x g ~ T'G given by the construction of left-invariant
vector fields. This is the C*° bundle map (g,v) — (dAg(e))(v) that is an isomorphism on fibers
(the smoothness was shown in the homework), and in this way G x b inside of G x g goes over
to a subbundle E in TG given by propogating elements of b by left translation. That is, the C*°
bundle mapping G x h — T'G defined by (g,v) — (dA4(e))(v) is fiberwise injective (it puts b inside
of Ty(G) via left translation by g¢), hence it is a subbundle of T'G, and the crux is this: because b
is a Lie subalgebra (rather than an arbitrary linear subspace of g) this subbundle is integrable. To
prove this fact, first observe that by construction if X € h C g then the associated left-invariant
vector field X on G is a C™ section of the subbundle b CTG (Why7), and so if X1,..., X, is a
basis of h then X1, e Xn is clearly a global trivializing frame for f) (why?). In general, to prove
integrability of a subbundle of the tangent bundle it suffices (as we have seen in class) to prove
that the bracket operation applied to members of a trivializing frame over the constituents of an
open covering of the base space * yields output that is a section of the subbundle. In our case there
is the global trivializing frame X Ty - X of b, so to prove integrability of f) C T'GG we just have to
prove that [X;, X; il € H(G) inside of (TG)(G) Vecq(G). But X; and X are left-invariant vector
fields on G, so by the very definition of the Lie algebra structure on g = T¢(G) in terms of the
commutator operation on global left-invariant vector fields we have [X;, X il = [Xi, X;]~. That is,
the bracket of X; and X ;j is equal to the left-invariant vector field associated to the tangent vector
[Xi, X;] € g. But X;, X; € b and by hypothesis ) is a Lie subalgebra of g. Hence, [X;, X;] € b, so by
construction when this is propogated to a left-invariant vector field on G the resulting global vector
field is a section of the subbundle b in T'G (by how this subbundle was defined). This concludes
the verification that H is indeed an integrable subbundle of T'G.

We shall see later in that handout that a maximal integral submanifold H in G to the integrable
subbundle h such that H contains the identity is a connected Lie subgroup of G (by which we mean
an injective immersion of Lie groups ¢ : H — G that respects the group structures) and that its
associated Lie subalgebra Lie(H) C g is the initial choice of Lie subalgebra b.

Ezample 1.1. Let G = GL,(R). The Lie algebra is denoted gl,(R), and as a vector space is
naturally identified with the vector space Mat,, «x»(R) (as G is an open submanifold of Mat,,x,(R)).
I claim that the Lie algebra structure on gl,(R) is thereby identified with the “usual” bracket on
n X n matrices, namely [A, B] = AB — BA.

How can we prove this? There is a clever way to prove this using some general principles from the
theory of Lie groups, but in the present setting it can be proved rather concretely. Let A = (a;;)
be an element of Mat,x,(R) viewed as gl,(R), which is to say (by the realization of “matrix
entries” x;; as a linear coordinate system on the vector space Mat,, x,(R) containing G as an open
submanifold) that A corresponds to the tangent vector A = > aij0z,;le in Te(G). By using the
method of solution to Exercise 2(iv) in Homework 7 (i.e., the formula for matrix multiplication
in terms of matrix entries) each 0y, |c extends to the left-invariant vector field »_; ;0 on G.

Hence, the left-invariant vector field with value A at the identity is the corresponding R-linear
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combination
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This is really to be viewed as a vector field on the open submanifold G C Mat,x,(R), though it

makes perfectly good sense even on Mat,x,(R).

The calculation of the commutator of global vector fields A and B on G is now a matter of
algebra:
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Evaluating at the identity point (z,s) = (d,s), this collapses to
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The rs-coefficient is the rs-entry of the matrix commutator AB — BA, so passing from this vector
in T.(G) back to the language of Mat,«,(R) we obtain the desired description of the Lie algebra
structure on gl,(R) as the commutator of n x n matrices.

Since we have described the Lie algebra structure on gl,(R) = Mat,x,(R) as just the ordinary
commutator AB — BA of matrices, one Lie subalgebra jumps out at us: the subspace of trace 0
matrices. This is a hyperplane that is stable under the bracket because every bracket in the Lie
algebra lies in here (clearly AB — BA has trace 0 for any A and B). This turns out to be the
tangent space to the connected (!) closed Lie subgroup SL,(R) of matrices with determinant 1.
There are lots of other Lie subalgebras of more interesting nature. For example, since [A, B]' =
[Bt, A'] = —[At, BY] for matrices A and B, if A and B are skew-symmetric then so is [A, B]. Hence,
the subspace s0,(R) C gl,(R) of skew-symmetric matrices is a Lie subalgebra. This turns out to
be the tangent space to the connected (!) closed Lie subgroup SO, (R) of orthogonal matrices with
determinant 1.

In this handout, we wish to give a general statement of the local and global Frobenius theorems,
some discussions concerning the proofs, and work out the general application to the proof of exis-
tence and uniqueness of a connected Lie subgroup H of a Lie group G such that Lie(H) C Lie(G)
coincides with a given Lie subalgebra b C Lie(G).

2. STATEMENT OF MAIN RESULTS

Here is the local theorem:

Theorem 2.1 (Frobenius). Let E be an fiberwise nonzero integrable subbundle of TM, for M
a smooth manifold. There exists a covering of M by C* charts (U, o) with ¢ = {x1,...,2n}
a C* coordinate system with ¢(U) = [[(ai,bi)) € R™ a product of open intervals such that for
r = rank(E|y) the embedded r-dimensional slice submanifolds {xz; = c¢;i}tisr for (cr41,...,0n) €
[Lis, (@i, b;) are integral manifolds for E. Moreover, all (connected!) integral manifolds for E in U
lie in a unique such slice set-theoretically, and hence as C*° submanifolds of U due to embeddedness
of the slices in U.
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Geometrically, the local coordinates in the theorem have the property that E is the subbundle
spanned by the vector fields 0y, ,...,0s,. The proof of this local theorem proceeds by induction on
the rank of E' (which we may take to be constant by passing to connected components of M), and
to get the induction started in the case » = 1 it is necessary to prove a local theorem concerning a
non-vanishing vector field (chosen to locally trivialize the line subbundle E in TM):

Theorem 2.2. For any non-vanishing smooth vector field on an open subset of a smooth manifold,
there are local coordinate systems in which the vector field is Oy, .

We give a proof of this theorem in §3, using the technique of vector flow from the theory of
integral curves. In particular, this base case for the inductive proof of the local Frobenius theorem
uses the entire force of the theory of ODE’s, especially smooth dependence of solutions on varying
initial conditions. Given such a local coordinate system as in Theorem 2.2, it is clear from the
results we have proved in the case of integral curves for vector fields that the xi-coordinate lines in
a coordinate box (all other coordinates held fixed) do satisfy the requirements of the local Frobenius
integrability theorem in the case of rank 1. That is, Theorem 2.2 does settle the rank 1 case of the
local Frobenius theorem. The general geometric inductive proof of the local Frobenius theorem,
building on the special case for rank 1, is given in section 1.60 in the handout from Warner’s book.

We now turn to the statement of the global Frobenius theorem (see sections 1.62 and 1.64 in the
handout from Warner’s book). We state it in a slightly stronger form than in Warner’s book (but
his proof yields the stronger form, as we will explain), and it is certainly also stronger than the
version in the course text (which is why we prefer to reference Warner’s book for the proof):

Theorem 2.3 (Frobenius). Let E be an integrable subbundle of T M.

(1) For all m € M, there exists a (unique) mazimal integral submanifold i : N — M through
mo.

(2) For any C*° mapping M' — M landing in i(N) set-theoretically, the unique factorization
M’ — N is continuous and hence smooth.

(3) Any connected submanifold i’ : N' — M satisfying T,y (N') C E(i'(n’)) for alln’ € N’ lies
i a maximal integral submanifold for E.

Note that in (3), we allow for the possibility that N/ might be “low-dimensional” with respect to
the rank of F, and so it is a definite strengthening of the property of maximal integral submanifolds
for E in M (which are only required to be maximal with respect to other integral submanifolds
for £ in M, not with respect to connected submanifolds whose tangent spaces are pointwise just
contained in — rather than actually equal to — the corresponding fiber of E). Also, in (2) we do
not require that the mapping from M’ to M be injective. The deduction of smoothness from
continuity in (2) follows from an old result in class: the only obstruction to smoothness for a C'*°
map factoring set-theoretically through an injective immersion is topological (i.e., once the first
step of the factorization is known to be continuous, the immersion theorem can be used locally on
the source to infer its smoothness).

In the handout from Warner’s book, the above global theorem is proved, except that he omits
(3). However, his proof of the “maximal integral submanifold” property in (1) does not use the
“maximal dimension” condition on the connected submanifold source, and so it actually proves (3).
The method of proof of the global theorem in the course text (pages 194-7) is different from that in
Warner’s book, and it does not appear to give the result in (3). We will use (3) at one step below.

Before we turn to the task of proving Theorem 2.2, let us explain how to use the global Frobenius
theorem to prove a striking result on the existence of connected Lie subgroups realizing a given Lie
subalgebra as its Lie algebra. First, a definition:
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Definition 2.4. A Lie subgroup of a Lie group G is a subgroup H C G equipped with a C'*
submanifold structure that makes it a Lie group.

In other words, a Lie subgroup “is” (up to unique isomorphism) an injective immersioni : H — G
of Lie groups with ¢ a group homomorphism. The example of the real line densely wrapped around
the torus by the mapping i : R — S! x S! defined by ¢ — ((cost,sint), (cos(bt),sin(bt))) for b not
a rational multiple of 7 is a Lie subgroup that is not an embedded submanifold.

Remark 2.5. The passage between Lie subalgebras and Lie subgroups pervades many arguments in
the theory of Lie groups. It is in general hard to tell (in an abstract situation) whether or not the
connected Lie subgroup associated to a given Lie subalgebra is actually an embedded submanifold
(in which case it turns out to be necessarily a closed submanifold). However, there are some
convenient criteria on a Lie subalgebra h in Lie(G) that are sufficient to ensure closedness. For
example, if the subspace in h spanned by all “brackets” [z,y] with z,y € b is equal to h then it
turns out that closedness is automatic (this implication is not obvious “by hand”). It may seem
that this criterion for closedness is a peculiar one, but it is actually a rather natural one from the
perspective of the general structure theory of Lie algebras. Moreover, in practice it is a very mild
condition.

As we have seen in class, if f: H — G is a map of Lie groups (i.e., smooth map of manifolds
that is also a group homomorphism) then (df)(eq) : Te, (H) — Te,(G) respects the brackets on
both sides (i.e., it is a “Lie algebra” map). Hence, in the immersion case we get Lie(H) as a Lie
subalgebra of Lie(G). It turns out that there is a bijective correspondence between connected Lie
subgroups of G and Lie subalgebras of g = Lie(G):

Theorem 2.6. Let G be a Lie group, with Lie algebra g. For every Lie subalgebra b there exists a
unique connected Lie subgroup H in G with Lie algebra b inside of g. Moreover, if H and H' are
connected Lie subgroups then Lie(H) C Lie(H') if and only if H C H' as subsets of G, in which
case the inclusion is smooth.

Before we explain how to prove this theorem using the global Frobenius theorem, we make some
remarks. The connectivity is crucial in the theorem. For example, the closed subgroup O, (R) of
orthogonal matrices in GL,(R) for the standard inner product is a Lie subgroup (even a closed
submanifold), but it is disconnected with identity component given by the index-2 open subgroup
SO, (R) of orthogonal matrices with determinant 1. Both O,(R) and SO,(R) agree near the
identity inside of GL,(R), so they give the same Lie subalgebra of gl,(R) (consisting of the skew-
symmetric matrices in gl,(R) = Mat,x,(R)). Beware that there are non-injective immersions of
Lie groups, such as SLa(R) — SLa(R)/(—1) that induce isomorphisms of Lie algebras. Hence,
the passage between the isomorphism problem for connected Lie groups and for Lie algebras is a
little subtle and we will not get into it here. The moral of the story is that a good understanding
of the structure of Lie(G) as a Lie algebra does encode a lot of information about the Lie group
G. In this way, the structure theory of finite-dimensional Lie algebras over R (which is a purely
algebraic theory that makes sense over any field, though is best behaved in characteristic 0) plays
a fundamental role in the theory of Lie groups.

Proof. Let ¢ : H — G be an arbitrary connected Lie subgroup. Since the inclusion ¢ : H — G is a
group homomorphism and hence is compatible with left translations by elements of H, it follows that
for h € H the mapping (d\;))(eq) carries Te, (H) C Teg, (G) (inclusion via (di)(eq)) over to the
subspace Tp,(H) C Tj)(G) (inclusion via (di)(h)). In other words (since dim(Lie(H)) = dim H),
the connected submanifold H is an integral manifold for the integrable subbundle of TG ~ G x g
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given by G' x Lie(H). It therefore follows that the integral manifold H must factor smoothly through
the maximal integral submanifold through e for the subbundle G x Lie(H) in T'G. In particular,
once we know that H agrees with this maximal integral submanifold we will get the assertion that
one Lie subgroup factors smoothly through another if and only if there is a corresponding inclusion
of their Lie algebras inside of g (as an inclusion of such Lie subalgebras forces a corresponding
inclusion of subbundles of T'G, and hence a smooth inclusion of maximal integral submanifolds
through eq by the third part of the global Frobenius theorem). This gives the uniqueness (including
the manifold structure!) for a connected Lie subgroup of G' with a specified Lie algebra inside of g.

Our problem is now reduced to: given a Lie subalgebra b in g we seek to prove that the maximal
integral submanifold H for the integrable subbundle G x ) in G x g ~ T'G is the unique connected
Lie subgroup of G with b as Lie algebra. First, we prove that this maximal integral submanifold
H is in fact a Lie subgroup. That is, we must prove that H is algebraically a subgroup of G and
then that the induced group law and inversion mappings are smooth for the manifold structure on
H (and on H x H). The stability of H under the group law and inversion will use the maximality,
and the uniqueness will use a trick for connected groups.

Pick h € H. We want hH C H. In other words, if i : H — G is the inclusion for H as a
submanifold of G, we want the composite injective immersive mapping A;) 0 : H — G to factor
through i : H — G set-theoretically (but we’ll even get such a factorization smoothly). To make
the picture a little clearer, instead of considering the maps ;) that are C*° automorphisms of
the manifold G, let us consider a general smooth automorphism ¢ of a general manifold M and a
general integrable subbundle £ C T'M. The mapping dy is an automorphism of T'M over ¢, so
(dp)(E) is a subbundle of TM, and if N is an integral manifold in M for E then the submanifold
©(N) is clearly an integral manifold for (dy)(E) in M. If N is a maximal integral manifold for E
then the integral manifold ¢(N) must be mazimal for the subbundle (dg)(E). Indeed, if it is not
maximal then (by the global Frobenius theorem!) ¢(N) — M factors smoothly through a strictly
larger integral submanifold N’ — M for the subbundle (dy¢)(E), and so applying ¢! then gives
@ Y(N') as an integral submanifold for £ in M that strictly contains N, contradicting the assumed
maximality of N. (Here we have used that dy and dp~! are inverse maps on T'M, as follows from
the Chain Rule.)

def

Now in our special situation, the integrable subbundle £ = G x h in G x g ~ TG satisfies
(dXg)(E) = E for all g € G, which is to say (d)\y)(¢’) carries E(g') to E(gg’) inside of Tyy (G).
This holds because the fibers of the bundle F in TG were constructed using the left translation
maps on tangent spaces (ultimately due to how the trivialization isomorphism G x g ~ TG is
defined). Hence, the preceding generalities imply that A, carries maximal integral manifolds for
EF=GxhCGxg~TGE to maximal integral manifolds for E. In particular, for the maximal
integral manifold ¢ : H — G, we conclude that X)o7 : H — G is also a maximal integral
manifold for E. But the image of the latter contains the point he = h € i(H), so these two
integral submanifold touch! Hence, they must coincide as submanifolds, which is to say that left
multiplication by h on G carries H smoothly isomorphically back to itself (as a smooth submanifold
of G).

This not only proves that H is algebraically a subgroup, but also that for all h € H the left
multiplication mapping on G restricts to a bijective self-map (even smooth automorphism) of H.
Since the identity e lies in H, it follows that hh' = e for some h’ € H, which is to say that the
unique inverse h~! € G lies in H. That is, H is stable under inversion, and so it is algebraically
a subgroup of G. If we let inv : G >~ GG be the smooth inversion mapping, then this says that the
composite of inv with the smooth inclusion of H into G lands in the subset H C G set-theoretically.
Hence, by (2) in the global Frobenius theorem (applied to the maximal integral manifold H for F
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in G) we conclude that inv|y : H — G factors smoothly through the inclusion of H into GG, which
is to say that inversion on the subgroup H of G is a smooth self-map of the manifold H.

To conclude that H is a Lie subgroup, it remains to check smoothness for the group law. That

is, we want the composite smooth mapping

HxHZSGxG—G
(the second step being the smooth group law of G) to factor smoothly through the inclusion ¢ of
H into G. But it does factor through this inclusion set-theoretically because H is a subgroup of
G, and so again by (2) in the Frobenius theorem we get the desired smooth factorization. Hence,
H is a Lie subgroup of G.

Finally, we have to prove the uniqueness aspect: if H' is a connected Lie subgroup of H with
Lie algebra equal to the Lie algebra b of H inside of g, then we want H' = H as Lie subgroups
of G. The discussion at the beginning of the proof shows that H’ must at least smoothly factor
through the maximal integral submanifold through the identity for the integrable subbundle F =
G xh C Gxg~TG, which is to say that H' factors smoothly through H. Hence, we have a smooth
injective immersion H' < H (as submanifolds of G)) and we just need this to be an isomorphism.
Any Lie group has the same dimension at all points (due to left translation automorphisms that
identify all tangent spaces with the one at the identity), so H' and H have the same dimension at
all points (as their tangent spaces at the identity coincide inside of g). Thus, the injective tangent
mappings for the immersion H' — H are forced to be isomorphisms for dimension reasons, so the
injective map H' — H is a local C* isomorphism by the inverse function theorem! As such, it has
open image onto which it is bijective, so H' is an open submanifold of H and thus is an open Lie
subgroup of H.

Now comes the magical trick (which is actually a powerful method for proving global properties
of a connected group): I claim that a connected topological group (such as H) has no proper open
subgroups. This will certainly force the open immersion H' — H to be surjective and thus H' = H
as Lie subgroups of G. Rather more generally, I claim that an open subgroup of a topological group
is always closed (giving what we need in the connected case). To see closedness, it is equivalent
to prove openness of the complement, and by group theory we know that the complement of a
subgroup of a group is a disjoint union of left cosets. Since any coset for an open subgroup is
open (as it is an image of the open subgroup under a left-translation map that is necessarily a
homeomorphism), any union of such cosets is open. [

We conclude our tour through the dictionary between Lie groups and Lie algebras by posing a
natural question: if G and G’ are connected Lie groups, does any map of the associated Lie algebras
T : ¢’ — g (R-linear respecting the brackets) necessarily arise from a map f : G’ — G of Lie groups
(smooth map of manifolds and group homomorphism)? If such an f exists then it is unique, but
there is a topological obstruction to existence. To analyze this, we use the powerful method of
graphs.

To see the uniqueness, we note that f : G’ — G gives rise to a smooth graph mapping I'y : G’ —
G' x G (via ¢ — (¢, f(¢')) that is a connected Lie subgroup of G’ x G when the latter is made
into a group with product operations, and via the method of left-translations we also have that the
natural identification T (e ¢)(G’ x G) ~ Te/(G') © Te(G) carries the Lie bracket on the left over to
the direct sum of the Lie brackets on the right. That is, Lie(G' x G) ~ Lie(G’) @ Lie(G). In this
way, the mapping

Lie(T'y) : Lie(G') — Lie(G’ x G) ~ Lie(G') @ Lie(G)
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is identified with the linear-algebra “graph” of the map Lie(f) = (df)(¢’) : Lie(G') — Lie(G) that
is assumed to be T'. Hence, I'¢ corresponds to a connected Lie subgroup of G’ x G whose associated
Lie subalgebra in g’ @ g is the graph of the linear map 7. By the uniqueness aspect of the passage
from connected Lie subgroups to Lie subalgebras, it follows that the mapping I'y : G’ — G’ x G is
uniquely determined (if f is to exist), and so composing it with the projection G’ x G — G recovers
f. This verifies the uniqueness of f.

How about existence? To this end, we try to reverse the above procedure: we use the injective
graph mapping I'r : ¢ — ¢ @ g that is a mapping of Lie algebras precisely because T is a
map of Lie algebras (and because the direct sum is given the “componentwise” bracket). By the
general existence /uniqueness theorem, there is a unique connected Lie subgroup H C G’ x G whose
associated Lie subalgebra is the image of I'p. In particular, the first projection H — G’ induces
an isomorphism on Lie algebras, and if this mapping of connected Lie groups were an isomorphism
then we could compose its inverse with the other projection H — G to get the desired mapping.
(Conversely, it is clear that if the existence problem is to have an affirmative answer, then the
first projection H — G’ must be an isomorphism.) Hence, the problem is reduced to this: can a
mapping 7 : H — G’ between connected Lie groups induce an isomorphism on Lie algebras without
being an isomorphism?

Such a mapping must be a local isomorphism near the identities (by the inverse function theorem),
and so the image subgroup is open (as it contains an open in G’ around the identity, and hence
around all of its points via left translation in the image subgroup). But we have seen above that
connected topological groups have no proper open subgroups, so the mapping m must be surjective.
Also, ker(7) is a closed subgroup that meets a neighborhood of the identity in H in exactly the
identity point (as 7 is a local isomorphism near identity elements), so the identity is an open point
in ker(7). It follows by translations that the closed topological normal subgroup ker(7) must have
the discrete topology. But if I is a discrete closed subgroup of a connected Lie group H then the
right multiplication action by I on H is certainly free and properly discontinuous, so we know how
to make the quotient H/T' as a C°° manifold. Moreover, by mapping properties for quotients by
such group actions it is easy to check that if I' is also normal in H then the multiplication mapping
H x H — H — H/T factors smoothly through the projection H x H — (H/T') x (H/T'), and

—h~1

likewise for H "% H — H /T factoring through projection from H to H/T, so it follows that the
natural group law and C*° manifold structure on H/T" make it a Lie group. It is also clear (why?)
that if 7 : H — G is a surjective Lie group map that is an isomorphism on Lie algebras then for
the discrete subgroup I' in H the induced C* map H/I' — G is a bijective Lie group map that
is an isomorphism on Lie algebras and so (via translations!) is an isomorphism between tangent
spaces at all points, whence by the inverse function theorem it is a C° isomorphism (whence is an
isomorphism of Lie groups).

To summarize, we have found the precise topological obstruction to our problem: if H contains
non-trivial discrete normal closed subgroups I, then the projection H — H/I" induces an isomor-
phism on Lie algebras and it is not an isomorphism. Moreover, and more relevant to our initial
question, the inverse map on Lie algebras cannot arise from a map of Lie groups H/I' — H (as
the composite of such a map with the projection H — H/T" would then give a self-map of H with
nontrivial kernel inducing the identity on Lie(H), contradicting that the identity self-map on the
connected Lie group H is the only self-map that induces the identity on the Lie algebra of H).
Hence, we see that the problem of going from maps of Lie algebras to maps of Lie groups involves
a serious issue, namely the possible existence of discrete normal subgroups of H. For example,
{#id} € SLy(R) is a discrete normal closed subgroup.



3. VECTOR FIELDS AND LOCAL COORDINATES

We now turn to the task of proving Theorem 2.2. First we consider a more general situation.

Let M be a smooth manifold and let ¥y, ..., 7, be pointwise linearly independent smooth vector
fields on an open subset U C M (n > 1). One simple example of such vector fields is 0z,, ..., 0q,
on a coordinate domain for local smooth coordinates {z1,...,zx} on an open set U in M. Can all

examples be described in this way (locally) for suitable smooth coordinates?

Choose a point mg € U. It is very natural (e.g., to simplify local calculations) to ask if there
exists a local C* coordinate system {z1,...,2x} on an open subset Uy C U around mg such that
Uilu, = Ox, in Vecyr(Uy) = (TM)(Up) for 1 < i < n. The crux of the matter is to have such an
identity across an entire open neighborhood of mg. If we only work in the tangent space at the
point mg, which is to say we inquire about the identity v;(mo) = 0y, |my it Tiny (Uo) = Tiny (M) for
1 <4 < n, then the answer is trivial (and not particularly useful): we choose local C* coordinates
{y1,...,yn} near mgy and write ¥;(mo) = > ¢ijOy,|mo, 50 the N x n matrix (c;;) has independent
columns. We extend this to an invertible N x N matrix, and then make a constant linear change
of coordinates on the y;’s via the inverse matrix to get to the case ¢;; = d;; for i <n and ¢;; =0
for i > n. Of course, such new coordinates are only adapted to the situation at mg. If we try to do
the same construction by considering the matrix of functions (h;;) with ¥; = ) h;;0,, near mg, the
change of coordinates will now typically have to be non-constant, thereby leading to a big mess due
to the appearance of differentiation in the transformation formulas for 0;,’s with respect to change
of local coordinates (having “non-constant” coefficients).

There is a very good reason why the problem over an open set (as opposed to at a single point)
is complicated: usually no such coordinates exist! Indeed, if n > 2 then the question generally has
a negative answer because there is an obstruction that is often non-trivial: since the commutator
vector field [0mi,8xj] vanishes for any i, j, if such coordinates are to exist around mg then the
commutator vector fields [¢;, ¥;] must vanish near mg. (Note that the concept of commutator of
vector fields is meaningless when working on a single tangent space; it only has meaning when
working with vector fields over open sets. This is “why” we had no difficulties when working at a
single point my.)

For n > 2, the necessary condition of vanishing of commutators for pointwise independent vector
fields usually fails. For example, on an open set U C R? consider a pair of smooth vector fields

U=0;+ f0,, W=0,+ g0.
for smooth functions f and g on U. These are visibly pointwise independent vector fields but

[Uv w] = ((axg + fazg) - (8yf + gazf))az,

so a necessary condition to have ¥ = 9,, and @ = 9,, for local C*° coordinates {x1,z2,x3} near
mg € U is

a:cg + fazg = ayf + gazf
near mg. There is a special case in which the vanishing condition on the commutators [, ¥;] for
all 4, j is vacuous: n = 1. Indeed, since [¥, 7] = 0 for any smooth vector field, in the case n =1 we
see no obvious reason why our question cannot always have an affirmative answer. The technique
of vector flow along integral curves will prove such a result.

In the case n = 1, pointwise-independence for the singleton {7;} amounts to pointwise non-
vanishing. Hence, we may restate the goal we have: if ¥ is a smooth vector field on an open set
U C M and #(mg) # 0 for some mg € U (so ©(m) # 0 for m near mg, by continuity of v : U — T'M),
then there exists a local C* coordinate system {x1,...,zx} near mg in U such that ¢ = J,, near
my.
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Ezample 3.1. Consider the circular vector field @ = —yd, + 29, on M = R? with constant speed
r > 0 on the circle of radius r centered at the origin. This vector field vanishes at the origin, but
for mg # (0,0) we have ¥(mg) # 0. Let Uy = R% — L for a closed half-line L emanating from the
origin and not passing through mg. For a suitable 6y, trigonometry provides a C'*° parameterization
(0,00) % (0o, 00 + 2m) =~ Uy given by (r,6) — (rcosé,rsinf), and 9p = U|y,. Thus, in this special
case we get lucky: we already “know” the right coordinate system to solve the problem. But what
if we didn’t already know trigonometry? How would we have been able to figure out the answer in
this simple special case?

Example 3.2. In order to appreciate the non-trivial nature of the general assertion we are trying
to prove, let us try to prove it in general “by hand” (i.e., using just basic definitions, and no
substantial theoretical input such as the theory of vector flow along integral curves). We shrink U
around mg so that there exist local C*® coordinates {y1,...,yn} on U. Hence, ¥ = ) h;0,, and
since ¥(mo) = > hj(mo)9y;|m, is nonzero, we have hj(mg) # 0 for some j. By relabelling, we may
assume hj(mg) # 0. By shrinking U around mg, we may assume h; is non-vanishing on U (so ¥ is
non-vanishing on U). We wish to find a C*° coordinate system {z1,...,xy} near my inside of U
such that ¥ = J,, near my.

What conditions are imposed on the z;’s in terms of the y;’s? For any smooth coordinate system
{z;} near mo, 0y, = > _(0y,%i)0z, near my, so near mo we have

U= Z h; Z(aiji)awi = Z(Z h;0,, (:)) O, -
J { J

i

Thus, the necessary and sufficient conditions are two-fold: x1,...,xn are smooth functions near
mg such that det((d,,z;)(mo)) # O (this ensures that the x;’s are local smooth coordinates near
my, by the inverse function theorem) and

> hidy (i) = 65
j

for 1 < i < N. This is a system of linear first-order PDE’s in the N unknown functions z; =
xi(y1,-..,yn) near mg. We have already seen that the theory of first-order linear ODE’s is quite
substantial, and here were are faced with a PDE problem. Hence, our task now looks to be
considerably less straightforward than it may have seemed to be at the outset.

The apparent complications are an illusion: it is because we have written out the explicit PDE’s
in local coordinates that things look complicated. As will be seen in the proof below, when we
restate our problem in geometric language the idea for how to solve the problem essentially drops
into our lap without any pain at all. This is reminiscent of a basic principle we learned in linear
algebra: geometric language is very effective at cutting through apparent difficulties in coordinatized
problems.

The fundamental theorem is this (a restatement of Theorem 2.2):

Theorem 3.3. Let M be a smooth manifold and ¥ a smooth vector field on an open set U C M.
Let mg € U be a point such that U(mg) # 0. There exists a local C*° coordinate system {x1,...,zN}
on an open set Uy C U containing mo such that U|y, = Oy, .

This theorem is proved in the course text as Theorem 7 in Chapter 5. You may like the picture
there, and perhaps you may also prefer the proof there. (It is the same proof as we give, except we
include some more details and geometric explanation.)
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Proof. What is the geometric meaning of what we are trying to do? We are trying to find local
coordinates {z;} an open open Uy in U around mg so that the integral curves for 9|, are exactly
flow along the zi-direction at unit speed. That is, in this coordinate system for any point £ near
mg the integral curve for ¥ through £ is coordinatized as c¢(t) = (t + z1(€), z2(£), ..., zn(&)) for ¢
near 0. This suggests that we try to find a local coordinate system around mg such that the first
coordinate is “time of vector flow”. Recall from our study of openness of the domain of definition
for vector flow along integral curves in manifolds that for a sufficiently small open Uy C U around
myg there exists € > 0 such that for all £ € Uy the maximal interval of definition for the integral
curve c¢ contains (—e, ). More specifically, we proved that the vector-flow mapping

Xg:920W0) - M

defined by (t,€) — c¢(t) has open domain of definition in R x M and is a smooth mapping. Thus,
for small ¢ > 0 and small Uy C U around mg, we have that (—e,e) x Up is contained in Z(?)
(as {0} x M C 2(¥)). The mapping Xz, restricted to (—¢,&) x Uy, will be the key to creating a
coordinate system on M near mg such that the time-of-flow parameter ¢ is the first coordinate.

Here is the construction. We first choose an arbitrary smooth coordinate system ¢ : W — RN
on an open around my that “solves the problem at mgo”. That is, if {y1,...,yn} are the component
functions of ¢, then 9y, |;m, = U(mg). This is the trivial pointwise version of the problem that we
considered at the beginning of this handout (and it has an affirmative answer precisely because
the singleton {¥(mg)} in Ty, (M) is an independent set; i.e., ¥(mg) # 0). Making a constant
translation (for ease of notation), we may assume y;(mg) = 0 for all j. In general this coordinate
system will fail to “work” at any other points, and we use vector flow to fix it. Consider points on
the slice W N {y; = 0} in M near myg. In terms of y-coordinates, these are points (0, az,...,an)
with small |a;|’s. By openness of the domain of flow Z(¢) C R x M, there exists € > 0 such that,
after perhaps shrinking W around myg, (—¢,¢) x W C 2(7).

By the definition of the y;’s in terms of ¢, ¢(W N {y; = 0}) is an open subset in {0} x RV~ =
RYN~1 and ¢ restricts to a C* isomorphism from the smooth hypersurface W N {y1 = 0} onto
(W N {y1 = 0}). Consider the vector-flow mapping

U:(—g,e)xp(Wn{y1 =0}) = M
defined by
(t, as, ..., CLN) — X{;(t, ¢*1(0, as, ... ,CLN)) = C¢71(07a27._.7aN)(t).

By the theory of vector flow, this is a smooth mapping. (This is the family of solutions to a first-order
initial-value problem with varying initial parameters ag, . .., ay near 0. Thus, the smoothness of the
map is an instance of smooth dependence on varying initial conditions for solutions to first-order
ODE’s.) Geometrically, we are trying to parameterize M near mg by starting on the hypersurface
H = {y1 =0} in W (with coordinates given by the restrictions 5, ...,y of y2,...,yn to H) and
flowing away from H along the vector field v; the time ¢ of flow provides the first parameter in our
attempted parameterization of M near my.

Note that ¥(0,0,...,0) = ¢y (0) = mp. Is U a parameterization of M near my? That is, is
U a local C* isomorphism near the origin? If so, then its local inverse near mg provides a C'*°
coordinate system {x1,...,zy} with z; = t measuring time of flow along integral curves for ¥ with
their canonical parameterization (as integral curves). Thus, it is “physically obvious” that in such
a coordinate system we will have ¥ = 0,, (but we will also derive this by direct calculation below).
To check the local isomorphism property for ¥ near the origin, we use the inverse function theorem:
we have to check d¥(0,...,0) is invertible. In terms of the local C* coordinates {t,45,..., ¥y}
near the origin on the source of ¥ and {y1,...,yn} near my = ¥(0,...,0) on the target of ¥, the
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N x N Jacobian matrix for d¥(0,...,0) has lower (N — 1) x (N — 1) block given by the identity
matrix (i.e., (8y;_yi)(0, ...,0) = 0;;) because 8y;_yi = 0;; at points on W N {y; = 0} (check! It is not
true at most other points of W).

What is the left column of the Jacobian matrix at (0,...,0)? Rather generally, if ¢ is the point
with y-coordinates (tg, az,...,an) then the t-partials (9uy;)(to,ae,...,an) are the coefficients of
the velocity vector cé(to) to the integral curve c¢ of ¥ at time tp, and such a velocity vector
is equal to ¥(ce(tg)) by the definition of the concept of integral curve. Hence, setting ty = 0,
ct(0) = U(ce(0)) = v(€), so taking £ = mo = ¥(0,...,0) gives that (9;y;)(0,...,0) is the coefficient
of Oy, |m, in ¥(mg). Aha, but recall that we chose {y1,...,yn} at the outset so that ¥(mg) = Jy, |m,-
Hence, the left column of the Jacobian matrix at the origin has (1,1) entry 1 and all other entries
equal to 0. Since the lower right (N —1) x (N — 1) block of the Jacobian matrix is the identity, this
finishes the verification of invertibility of dW¥(0,...,0), so ¥ gives a local C* isomorphism between
opens around (0,...,0) and my.

Let {z1,...,2n} be the C* coordinate system near my on M given by the local inverse to
U. We claim that ¥ = 0., near mp. By definition of the z-coordinate system, (ai,...,a,) is
the tuple of x-coordinates of the point Xgz(a1,¢ (0,as9,...,a,)) € M. Thus, 8., is the field
of velocity vectors along the parameteric curves Xy(t, ¢~ (0,a,...,an)) = Cs-1(0,ay,...a,)(t) that
are the integral curves for the smooth vector field ¢ with initial positions (time 0) at points
¢ 1(0,as,...,a,) € WnN{y = 0} near mg. Thus, the velocity vectors along these parametric
curves are exactly the vectors from the smooth vector field ¢! This shows that the smooth vector
fields 0, and ¥ coincide near my. |



