
Math 396. Coordinate-free meaning for d

1. Motivation

Let (X,O) be a smooth premanifold with corners. We have given a general definition of a family
operators dkU : Ωk

X(U) → Ωk+1
X (U) for open U ⊆ X and k ≥ 0 uniquely characterized by the

conditions that the dkU ’s are compatible with shrinking on U (i.e., for U ′ ⊆ U and ω ∈ Ωk
X(U),

dkU (ω)|U ′ = dkU ′(ω|U ′) in Ωk+1
X (U ′)) and satisfy the two identities dk+1

U ◦ dkU = 0 (abbreviated to
“d2 = 0”) and the Leibnitz Rule

dk+`
U (ω ∧ η) = dkU (ω) ∧ η + (−1)kω ∧ d`U (η)

in Ωk+`+1
X (U) for ω ∈ Ωk

X(U) and η ∈ Ω`
X(U). The actual construction was given locally in terms of

local C∞ coordinates, and the above properties were used to get independence of local coordinates
and agreement on overlaps, whence “globalization” over opens not admitting coordinates.

The above conditions are certainly adequate for all computations. But it is natural to ask for
something more, as we now explain. An element ω ∈ Ωk

X(U) = (∧k(T ∗M))(U) = (∧k(TM))∨(U)
has fiber-value

ω(u) ∈ (∧k(Tu(M)))∨ = HomR(∧k(Tu(M)),R) = Altk(Tu(M),R)

at u ∈ U that is an alternating multilinear functional on Tu(M)×k. More specifically, if ~v1, . . . , ~vk
are smooth vector fields on U then we get a function

ω(~v1, . . . , ~vk) : u 7→ ω(u)(~v1(u), . . . , ~vk(u)).

If there are smooth coordinates {x1, . . . , xn} on U and ω =
∑

i1<···<ik ai1,...,ikdxi1 ∧ · · · ∧ dxik and
~vq =

∑
p hpq∂xp then

ω(~v1, . . . , ~vk) =
∑

i1<···<ik

ai1,...,ik det(hir,s),

so this is a smooth function. Hence, it is natural to ask if we can describe the smooth function
(dkUω)(~v1, . . . , ~vk+1) on U in terms of the corresponding smooth functions obtained from evaluating
ω on ordered k-tuples of smooth vector fields on U . This would provide an alternative way of
describing dkUω without requiring the crutch of coordinates. This is not meant to denigrate the
explicit formula for dkU when U is small enough to admit local coordinates, but nonetheless it
would be nice if we can use the viewpoint of multilinear functionals on vector fields to describe dkUω
without having to use explicit local coordinates (e.g., U so large that it does not admit smooth
coordinates).

One point we should emphasize at the outset is that we cannot expect to compute the fiber
(dkω)(u) ∈ ∧k+1(Tu(M)∨) in terms of ω(u) ∈ ∧k(Tu(M)∨). Indeed, dkU is a kind of derivative
and for k = 0 we know from calculus that one cannot compute the pointwise value of a partial
derivative of a function just from the knowledge of the value of the function at the point. Hence,
we have to expect to use data over open sets and not data of values at a single point.

The formula we shall give is also discussed in Theorem 13 in Chapter 7 in the course text. We
leave it to the reader to decide if our discussion is preferable to the one in the text.

2. The main formula

We shall now adopt the usual abuse of notation and write dω rather than dkUω. Here is the main
result:
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Theorem 2.1. For ω ∈ Ωk
X(U) and smooth vector fields ~v1, . . . , ~vk+1 ∈ VecX(U), (dω)(~v1, . . . , ~vk+1)

is equal to

(1)
k+1∑
i=1

(−1)i+1~vi(ω(~v1, . . . ~̂vi, . . . , ~vk+1)) +
∑
i<j

(−1)i+jω([~vi, ~vj ], ~v1, . . . , ~̂vi, . . . , ~̂vj , . . . , ~vk+1),

where ·̂ means omission of that term and for any f ∈ C∞(U) and ~v ∈ VecX(U) we write ~v(f) ∈
C∞(U) to denote the smooth function u 7→ ~v(u)(f) ∈ R given in local coordinates by

∑
hi∂xif if

~v =
∑
hi∂xi.

Remark 2.2. If we evaluate at m ∈ U , then the formula says that for any v1, . . . , vk+1 ∈ Tm(M)
and any choice of local smooth vector fields ~vi near m with ~vi(m) = vi, the value of (1) at m is
the number ((dω)(~v1, . . . , ~vk+1))(m) = (dω)(m)(v1, . . . , vk+1) that is independent of the choices of
local extensions ~v1, . . . , ~vk+1. Note that [~vi, ~vj ](m) depends very much on ~vi and ~vj near m and
not just on the values ~vi(m) = vi and ~vj(m) = vj at m, and even the functions in the first sum in
(1) depend on the ~vi’s and ω near m (not just at m), whereas the terms in the second sum in (1)
only depends on ω through ω(m). Hence, we see that the formula is consistent with the fact that
(dω)(m) depends on ω near m and not merely at m, whereas it is not at all obvious that the value
of (1) at m (in contrast with that of each of its parts) only depends on the ~vi’s through the values
~vi(m) = vi at m. This is a magical cancellation in the dependences on the extensions ~vi.

Proof. Both sides of the proposed identity are compatible with shrinking on U . We shall next
prove that (1) is multilinear over C∞(U), and this (together with localizing on X) will reduce the
problem to a calculation in a special case. The additivity in each ~vi (with all others held fixed)
is clear for (1), and so for multilinearity it remains to check that if h ∈ C∞(U) then replacing ~vi0
with h~vi0 in (1) gives output that is h times (1). This is a direct calculation, as follows.

Let us insert h~vi0 in the role of ~vi0 in (1). By the Leibnitz Rule, the first sum becomes

∑
i6=i0

(−1)i+1~vi(h · ω(~v1, . . . , ~̂vi, . . . , ~vk+1)) + (−1)i0+1h · ~vi0(ω(~v1, . . . , ~̂vi0 , . . . , ~vk+1)),

and the second sum is

h ·
∑

i<j;i,j 6=i0

(−1)i+jω([~vi, ~vj ], ~v1, . . . , ~̂vi, . . . , ~̂vj , . . . , ~vk+1)

+
∑
i<i0

(−1)i+i0ω([~vi, h~vi0 ], ~v1, . . . , ~̂vi, . . . , ~̂vi0 , . . . , ~vk+1)

+
∑
i>i0

(−1)i+i0ω([h~vi0 , ~vi], ~v1, . . . , ~̂vi0 , . . . , ~̂vi, . . . , ~vk+1)

By the Leibnitz Rule, [~vi, h~vi0 ] = h[~vi, ~vi0 ] + ~vi(h) · ~vi0 and [h~vi0 , ~vi] = h[~vi0 , ~vi]− ~vi(h) · ~vi0 .
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Letting εi,i0 = 1 for i < i0 and εi,i0 = −1 for i > i0, we add both parts to get the following
formula for (1) when h~vi0 is inserted in the role of ~vi0 :

h ·
∑
i

(−1)i+1~vi(ω(~v1, . . . , ~̂vi, . . . , ~vk+1))

+
∑
i6=i0

(−1)i0+1~vi(h) · ω(~v1, . . . , ~̂vi, . . . , ~vk+1)

+h ·
∑
i<j

(−1)i+jω([~vi, ~vj ], ~v1, . . . , ~̂vi, . . . , ~̂vj , . . . , ~vk+1)

+
∑
i6=i0

εi,i0(−1)i+i0(~vi(h))ω(~vi0 , ~v1, . . . , ~̂vi, . . . , ~̂vi0 , . . . , ~vk+1).

We have abused notation in the indication of the deleted terms: if i > i0 then the notations ~̂vi and
~̂vi0 in the final sum should be swapped.

In this final big sum of four sums, the first and third sums add to give h times (1). Thus, we
want the second and fourth terms to add to 0. In fact, we fix i 6= i0 and show that the ith terms
in the two sums add to 0. Factoring out (−1)i+1~vi(h) leaves us with

(2) ω(~v1, . . . , ~̂vi, . . . , ~vk+1)− εi,i0(−1)i0ω(~vi0 , ~v1, . . . , ~̂vi, . . . , ~̂vi0 , . . . , ~vk+1),

where it must be understood that if i > i0 then the notations ~̂vi and ~̂vi0 in the final term should
be swapped. Let us analyze the term being subtracted in (2), and more specifically the placement
of the entry ~vi0 . In the case i > i0, we can move this initial entry past the next i0 − 1 entries
~v1, . . . , ~vi0−1 to arrive at the initial term in (2) at the expense of introducing a sign of (−1)i0−1

due to the alternating nature of ω at every point of U . But εi,i0(−1)i0(−1)i0−1 = 1 for i > i0, so
we get the desired cancellation for i > i0. If instead i < i0 then to move ~vi0 “into position” (as in
the first term in (2)) we only move it past i0 − 2 terms because the term ~vi with i < i0 has been
deleted! Hence, in the calculation for i < i0 the relevant sign calculation is εi,i0(−1)i0(−1)i0−2 = 1
for i < i0. We again get the required cancellation. This completes the proof that the right side of
(1) is C∞(U)-multilinear in the ~vi’s.

Now we are ready to prove (1) holds. Since (1) is a proposed identity among smooth functions
on U , to verify it we may work locally on U . Both sides behave well with respect to shrinking on
U (i.e., the restriction to an open subset U ′ ⊆ U is given by replacing ω and the ~vi’s with their
restrictions to U ′; check!), so since U is covered by coordinate charts we may suppose U has C∞

coordinates {x1, . . . , xn}. Thus, each ~vj is a C∞(U)-linear combination of the ∂xi ’s. But both sides
of (1) are C∞(U)-multilinear in the ~vj ’s! Hence, both expand out the same way when we insert
the C∞(U)-linear expressions for the ~vj ’s in terms of the ∂xi ’s, so it suffices to treat the case when
each ~vj is equal to some ∂xi . This simplifies the nature of the input vector fields.

Next, we simplify the nature of ω. We can write

ω =
∑
I

aIdxi1 ∧ · · · ∧ dxik

for aI ∈ C∞(U), and both sides of (1) behave the same way with respect to addition in ω. Hence,
it suffices to treat the case ω = hdxi1 ∧ · · · ∧ dxik for some h ∈ C∞(U) and i1 < · · · < ik. We
have ω = hω0 with ω0 a wedge product of some dxi’s, so to reduce to treating such ω0’s (i.e., the
case h = 1) we must now check that both sides of (1) have the same behavior upon replacing ω
with hω (i.e., if the formula holds for some ω, then it holds for hω for any h ∈ C∞(U)). Since
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d(hω) = dh ∧ ω + hdω and ~vi(hg) = h~vi(g) + g~vi(h), the good behavior of (1) with respect to
multiplication by h comes down to checking

(dh ∧ ω)(~v1, . . . , ~vk+1) ?=
∑
i

(−1)i+1~vi(h) · ω(~v1, . . . , ~̂vi, . . . , ~vk+1)

in C∞(U). What does such an equality say at each point u ∈ U? Note that (~vi(h))(u) = ~vi(u)(h) =
(dh(u))(~vi(u)) by the definition of the linear functional dh(u) on Tu(X). (It is the coefficient of
∂t|h(u) for the tangent mapping dh(u) : Tu(X) → Th(u)(R) = R · ∂t|h(u).) Letting V = Tu(X),
vi = ~vi(u) ∈ V , ` = dh(u) ∈ Tu(X)∨, and ψ = ω(u) ∈ ∧k(Tu(X)∨) ' (∧kTu(X))∨ viewed as an
alternating k-multilinear functional on Tu(X) = V , the required identity of values at u becomes

(` ∧ ψ)(v1, . . . , vk+1) ?=
∑
i

(−1)i+1`(vi)ψ(v1, . . . , v̂i, . . . , vk+1)

in R for v1, . . . , vk+1 ∈ V . This is really an identity in linear algebra:

Lemma 2.3. Let V be a finite-dimensional vector space over a field F with dimension n ≥ 2,
and choose 1 ≤ k < dimV . For any v1, . . . , vk+1 ∈ V , ` ∈ V ∨, and ψ ∈ ∧k(V ∨) ' (∧kV )∨, the
alternating (k + 1)-multilinear functional ` ∧ ψ ∈ ∧k+1(V ∨) ' (∧k+1V )∨ on V is given by

(` ∧ ψ)(v1, . . . , vk+1) =
∑
i

(−1)i+1`(vi)ψ(v1, . . . , v̂i, . . . , vk+1) ∈ F.

Proof. This will ultimately come down to the formula for computing a determinant by expanding
along the first row of a matrix. Since ψ is a finite F -linear combination of elementary wedge
products (of elements of V ∨) and both sides of the proposed identity are linear in ψ, it suffices to
treat the case when ψ is an elementary wedge product. We next have to recall how the duality
between ∧rV and ∧rV ∨ was defined for any 1 ≤ r ≤ dimV : it corresponds to the unique bilinear
pairing

〈·, ·〉 : ∧rV × ∧r(V ∨)→ F

satisfying
〈v1 ∧ · · · ∧ vr, `1 ∧ · · · ∧ `r〉 = det(`i(vj)) = det(`j(vi)).

Hence, if ψ = `2 ∧ · · · ∧ `k+1 with `j ∈ V ∨ and we define `1 = ` then

(` ∧ ψ)(v1, . . . , vk+1) = det(`i(vj)),

and expanding along the first row gives

det(`i(vj)) =
∑
i

(−1)i+1`1(vi) det(`r(vs))r 6=1,s 6=i,

with the determinant in the ith term of the sum equal to ψ(v1, . . . , v̂i, . . . , vk+1). �

Resuming the proof that (1) computes dω, we have reduced ourselves to the following special
case: U admits C∞ coordinates x1, . . . , xn, each vector field ~vj is one of the ∂xi ’s, and ω is a wedge
product of k of the dxi’s. In this special case, we have dω = 0 in Ωk+1

X (U) and so we need to prove
that the right side of (1) vanishes on U . All commutators [~vi, ~vj ] vanish since the operators ∂xr and
∂xs on C∞(U) commute for any r and s. Hence, the first sum in (1) has all terms vanishing. All
terms in the second sum in (1) also vanish, since for our special ω’s and ~vi’s each smooth function
ω(~v1, . . . , ~̂vi, . . . , ~vk+1) is constant (either 0 or ±1) and so is killed by the first-order differential
operator ~vi (equal to some ∂xr).

�


