
Math 396. Determinant bundles

1. Preliminaries

If V is a finite-dimensional vector space over a field F , say with dimension n ≥ 0, the 1-
dimensional top exterior power ∧n(V ) (understood to mean F if n = 0) is sometimes called the
determinant of V , and is denoted det(V ). If T : V ′ → V is a linear map between two n-dimensional
vector spaces, there is a naturally associated map ∧n(T ) : det(V ′) → det(V ) (the identity map
on F if n = 0); in the special case V ′ = V with n > 0, this is scalar multiplication by the old
determinant det(T ) ∈ F .

In the special case F = R, it was explained in an earlier handout on orientations how the
specification of an orientation on the vector space V amounts to a choice of connected component
in det(V )−{0}. In particular, in Examples 1.7, 1.8, and 1.9 of that handout we found some natural
isomorphisms among determinants, such as

det(V ′)⊗ det(V/V ′) ' det(V )

for any subspace V ′ ⊆ V , as well as

det(V/W1)⊗ · · · ⊗ det(V/WN ) ' det(V/W )

for subspaces {Wi} in V that are mutually transverse with W = ∩Wi, and also

det(V ∨) ' (detV )∨

for any V . (Such isomorphisms were described using elementary wedge products, and were built
over an arbitrary coefficient field F .) As a consequence, we saw that if V is oriented then specifying
an orientation on either a subspace V ′ or a quotient V/V ′ determines a preferred orientation on
the other, if V and a collection of mutually transverse subspaces {Wi} are oriented then there is
a preferred orientation on W = ∩iWi, and if V is oriented then there is a preferred orientation on
V ∨. We wish to generalize these procedures to the setting of vector bundles, especially the tangent
bundle, as that will lead to the notion of orientation on manifolds, a very important bit of structure
in the theory of integration on manifolds (due to the presence of an absolute value and not just a
raw determinant in the Change of Variables formula).

Although we will later address the subject of orientations on vector bundles (and, via the special
case of the tangent bundle, orientations on premanifolds with corners), in the present handout we
wish to take up the issue of promoting the above “determinant isomorphisms” in linear algebra
to the case of vector bundles. Roughly speaking, we wish to see how these isomorphisms vary as
we let the vector spaces and subspaces and quotients range across the fibers of vector bundles and
subbundles and quotient bundles. The starting point is:
Definition 1.1. Let X be a Cp premanifold with corners, 0 ≤ p ≤ ∞, and let E → X be a Cp

vector bundle over X. On each connected component Xi of X, the bundle Ei = E|Xi has some
constant rank ri ≥ 0 over Xi. The determinant bundle det(E) → X is the line bundle given by
∧ri(Ei) over Xi (understood to mean the trivial line bundle Xi ×R if ri = 0).

For each x ∈ X we have the x-fiber description (detE)(x) = det(E(x)). If {s1, . . . , sn} is an
ordered trivializing frame for E over an open set U ⊆ X, so in particular E has constant rank n
over U , then (detE)|U = ∧n(E|U ) is trivialized by the non-vanishing global section s1 ∧ · · · ∧ sn.

Note also that if f : X ′ → X is a Cp map between Cp premanifolds with corners, then there
is a unique bundle isomorphism det(f∗E) ' f∗(detE) inducing det(E(f(x′))) ' (detE)(f(x′)) on
x′-fibers for all x′ ∈ X ′. This is a special case of the general compatibility of pullback and tensor
operations (such as exterior powers).
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In the special case E = TX, the determinant bundle det(TX) is often called the orientation
bundle of X; this line bundle is closely related to the theory of orientation on manifolds, as we
shall discuss later. For example, the triviality of the orientation bundle will be a necessary and
sufficient criterion for X to be “orientable” (which the Möbius strip is not, roughly because of its
“one-sided” nature).

2. Some bundle isomorphisms

The process of making bundle analogues of linear-algebra isomorphisms on top exterior powers
is largely a matter of computations with local trivializations. In what follows, we take X to be a
Cp premanifold with corners, 0 ≤ p ≤ ∞.

Theorem 2.1. Let E → X be a Cp vector bundle, and E′ a Cp subbundle of E with quotient E/E′.
There is a unique Cp vector bundle isomorphism det(E′) ⊗ det(E/E′) ' det(E) that recovers the
linear-algebra isomorphism det(E′(x))⊗ det(E(x)/E′(x)) ' det(E(x)) on x-fibers.

Also, there is a unique Cp vector bundle isomorphism det(E∨) ' (detE)∨ that recovers the
linear-algebra isomorphism det(E(x)∨) ' (detE(x))∨ on x-fibers.

As usual, the meaning of such a theorem is simply that the fibral isomorphisms from linear algebra
are given by “universal formulas” in terms of a trivializing frame. A case of much geometric interest
is when X is a smooth submanifold of a smooth manifold M , say with inclusion j : X → M , and
E′ = TX and E = j∗(TM). In this case the quotient bundle E/E′ = j∗(TM)/TX is what we
have defined to be the normal bundle NX/M in an earlier handout, where we saw (in the presence
of a suitably nice family of inner products along the tangent spaces) that NX/M encodes local
information about the geometry of X in M . In language to be introduced later in the course,
the first isomorphism of the theorem implies that if M is an oriented manifold then to give an
orientation on X is the same as to give an orientation of the normal bundle NX/M .

Proof. We may and do ignore connected components of X over which any of the intervening vector
bundles have rank 0 (as the problem is trivial there). Uniqueness of the isomorphism is clear,
as we are specifying the maps on fibers. Moreover, since the specified maps on fibers are linear
isomorphisms, once we make bundle mappings inducing these on fibers it is automatic that these
are isomorphisms. The fibral definitions define bijective maps of sets

det(E′)⊗ det(E/E′)→ det(E), det(E∨) ' (detE)∨

respecting projections to X and giving linear maps (even isomorphisms) on fibers over each x ∈ X.
Hence, to check that these maps are Cp it suffices to compute in terms of local Cp trivializations.
Since a local frame on a subbundle locally extends to a local frame on an ambient vector bundle,
we may cover X by open sets U such that E′|U and E|U are trivialized by frames {s1, . . . , sr}
and {s1, . . . , sr, . . . , sn} respectively, so {sr+1, . . . , sn} in E(U) lifts a trivialization of (E/E′)|U .
For r + 1 ≤ j ≤ n, let sj ∈ (E/E′)(U) be the image of sj ∈ E(U) under the bundle surjection
E → E/E′ over X.

The bundles det(E′)|U = det(E′|U ) and det(E/E′)|U = det((E/E′)|U ) are trivialized by the
U -sections s1 ∧ · · · ∧ sr and sr+1 ∧ · · · ∧ sn respectively. Also, det(E)|U = det(E|U ) is trivialized by
the U -section s1 ∧ · · · ∧ sn. By definition, since sj(x) ∈ E(x) lifts sj(x) ∈ (E/E′)(x) = E(x)/E′(x)
for r + 1 ≤ j ≤ n, the fibral isomorphism det(E′(x)) ⊗ det(E(x)/E′(x)) ' det(E(x)) from linear
algebra satisfies

(s1(x) ∧ · · · ∧ sr(x))⊗ (sr+1(x) ∧ · · · ∧ sn(x)) 7→ s1(x) ∧ . . . sn(x)
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for all x ∈ X. Hence, the set-theoretic mapping det(E′)⊗ det(E/E′)→ det(E) satisfies

(s1 ∧ · · · ∧ sr)⊗ (sr+1 ∧ · · · ∧ sn) 7→ s1 ∧ · · · ∧ sn
as we can check on x-fibers for all x ∈ X. Hence, this fiberwise-linear map takes a trivializing frame
to a trivializing frame, so it is a Cp mapping (and even an isomorphism).

The case of dual bundles goes similarly, as follows. The dual sections s∨1 , . . . , s
∨
n ∈ E∨(U) (giving

dual basis to {si(u)} on u-fibers for all u ∈ U) are a trivializing frame for E∨|U , so the fiberwise-
linear mapping det(E∨)|U → (detE)∨|U carries the trivializing section s∨1 ∧· · ·∧s∨n of the line bundle
det(E∨)|U to the trivializing section of (detE)∨|U dual to the trivializing section s1 ∧ · · · ∧ sn of
(detE)|U . Indeed, this assertion may be checked on fibers over U , where it follows from how the
linear algebra isomorphism det(E(u)∨) ' (detE(u))∨ is defined. �

3. Transversal subbundles

In order to generalize the linear algebra isomorphism

det(V/W1)⊗ · · · ⊗ det(V/WN ) ' det(V/W )

for mutually transverse subspaces {Wi} in V with W = ∩Wi, we first need to define the notion
of “transversality” for subbundles of a vector bundle. This will be a natural generalization of the
notion in linear algebra, but we first consider a motivating example: tangent bundles to mutually
transverse submanifolds of a manifold.
Example 3.1. Let Z1, . . . , ZN be mutually transverse Cp embedded subpremanifolds in a Cp pre-
manifold M , with fi : Zi →M the Cp embedding. Recall what such mutual transversality means:
for all z ∈ ∩Zj the tangent spaces Tz(Zj) in Tz(M) are mutually transverse. In such cases, it was
proved in the handout on submersions and transverse intersections that Z = ∩Zj is a Cp embedded
subpremanifold in X with Tz(Z) = ∩jTz(Zj) for all z ∈ Z.

Let j : Z → M and ji : Z → Zi be the Cp embeddings, so fi ◦ ji = j for all i. The embedding
fi identifies TZi with a subbundle of f∗i (TZ), and so by applying j∗i to the subbundle inclusion
TZi → f∗i (TZ) over Zi we get a subbundle inclusion j∗i (TZi) → j∗i (f∗i (TX)) = j∗(TM) over Z.
Hence, the subbundle TZ in j∗(TM) is a subbundle of each of the subbundles j∗i (TZi) in j∗(TM).
(On fibers over z ∈ Z, this mouthful just says that the subspace Tz(Z) in Tz(M) is contained in
each of the subspaces Tz(Zi).)

On Z, consider the Cp vector bundles E = j∗(TM) and Ei = j∗i (TZi) for all i. The subbundle
TZ in E is contained in each of the Ei’s, and on fibers over each z ∈ Z we have that inside of the
z-fiber E(z) = Tz(M) the fiber Tz(Z) of TZ is equal to the intersection ∩Ei(z) of the mutually
transverse subspaces Ei(z). In other words, in the case of a mutually transverse collection of
submanifolds of a manifold, along the intersection of the submanifolds the tangent spaces to the
given submanifolds form a mutually transverse collection of subspaces of the tangent space to the
ambient manifold. We have just seen that this aspect of mutual transversality can be expressed in
the language of fibers of the subbundles Ei in the vector bundle E over Z: the Ei(z)’s are mutually
transverse in E(z), and their common intersection is Tz(Z).
Definition 3.2. A collection of Cp subbundles {Ei} in a Cp vector bundle E over X is mutually
transverse if the subspaces Ei(x) in E(x) are mutually transverse (in the sense of linear algebra)
for all x ∈ X.

The preceding example shows that along the intersection Z of a collection of mutually transverse
embedded submanifolds Zi of a manifold M , the pullbacks of the tangent bundles of the Zi’s are
mutually transverse subbundles of the pullback (to Z) of the tangent bundle of M . Thus, many
concepts of interest for transverse intersections of submanifolds of a manifold can be defined more
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generally in the setting of mutually transverse subbundles of a vector bundle (and then be applied
to pullbacks of tangent bundles). One pleasant property of mutually transverse subbundles is that
their fiberwise intersections form a subbundle too:
Theorem 3.3. Let E1, . . . , EN be mutually transverse subbundles of a Cp vector bundle E → X.
The O-module U 7→ E1(U) ∩ · · · ∩ EN (U) ⊆ E(U) is locally free of finite rank, and its associated
Cp vector bundle is a subbundle of E whose x-fiber is ∩Ei(x) for all x ∈ X. This is the unique
subbundle of E whose x-fiber is ∩Ei(x) for all x ∈ X.

We call the subbundle in this lemma the (tranverse) intersection of the Ei’s inside of E, and it is
denoted ∩Ei. The most important case is Ei = j∗i (TZi) and E = j∗(TM) for mutually transverse
embedded submanifolds Zi ↪→M in a manifold M , with Z = ∩Zi and ji : Z → Zi and j : Z →M
the embeddings. In this case, the subbundle TZ in j∗(TX) has z-fiber Tz(Z) = ∩Tz(Zi) = ∩Ei(z)
for all z ∈ Z, so it is the intersection of the Ei’s inside of E.

Proof. The uniqueness is clear, since we are specifying the fibers of the subbundle inside of E.
(See Lemma 2.1 in the handout on subbundles and quotient bundles.) We need to prove that
U 7→ ∩Ei(U) is a locally free O-module of finite rank, and that the associated Cp vector bundle is
a subbundle of E with x-fiber ∩Ei(x) for all x ∈ X. This can be done “by hand” (using induction
to reduce to the case N = 2, and exerting some efforts for this case), but it is cleaner to use our
earlier work to avoid reinventing the wheel, as follows. Consider the bundle mapping

f : E → (E/E1)⊕ · · · ⊕ (E/EN )

over X. On x-fibers this is the mapping E(x)→ (E(x)/E1(x))⊕ · · · ⊕ (E(x)/EN (x)) whose kernel
is ∩Ei(x), and by transversality it follows that codim(∩Ei(x)) =

∑
codim(Ei(x)) (all codimensions

in E(x)), so
dim ker(f |x) = dim(∩Ei(x)) =

∑
dimEi(x)− (N − 1) dimE(x)

is locally constant in x since the fiberwise rank of a vector bundle (such as the Ei’s and E) is locally
constant on the base space.

Now comes the key: local constancy of the dimension of the fiberwise kernel allows us to use
Theorem 2.6 in the handout on subbundles and quotient bundles to infer that

U 7→ ker(f
U

: E(U)→ (⊕(E/Ei))(U) = ⊕(E/Ei)(U))

is a locally free O-module of finite rank whose associated vector bundle is a subbundle of E with
x-fiber ker(f |x) = ∩Ei(x) for all x ∈ X. It remains to explain why the kernel of f

U
is ∩Ei(U) for

all open U ⊆ X. It suffices to show that E(U)→ (E/Ei)(U) has kernel Ei(U) for all open U in X.
That is, the kernel subbundle of the bundle surjection E → E/Ei should be Ei, and this follows
from the definition of the quotient bundle E/Ei. �

With the “intersection” of mutually transverse subbundles now proved to be a good notion
(both on the level of fibers and sections over opens in the base), it is reasonable to contemplate the
formation of a line-bundle isomorphism det(E/E1) ⊗ · · · ⊗ det(E/EN ) ' det(E/E′) for mutually
transverse subbundles Ei in E with E′ = ∩Ei.
Theorem 3.4. Let {Ei} be mutually transverse subbundles of a vector bundle E over X. Let
E′ = ∩Ei be the intersection subbundle. There is a unique bundle isomorphism

det(E/E1)⊗ · · · ⊗ det(E/EN ) ' det(E/E′)

over X such that for each x ∈ X on x-fibers it is the isomorphism

det(E(x)/E1(x))⊗ · · · ⊗ det(E(x)/EN (x)) ' det(E(x)/E′(x))
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from linear algebra, with E′(x) = ∩Ei(x) the intersection of the mutually transverse subspaces Ei(x)
in E(x).

Proof. The uniqueness is immediate, since we are specifying the map on fibers. As with the other
determinant-bundle isomorphisms built in this handout (recovering ones from linear algebra on
fibers), the only real issue is to calculate that the set-theoretic map given by the specified recipe
on fibers of these line bundles carries a trivializing section to a trivializing section over a collection
of opens that cover X.

Consider opens sets U in X over which the vector bundles E/Ei are trivial. Let ci be the
constant rank of E/Ei over U . Let c =

∑
ci denote the constant codimension of ∩Ei(u) in E(u) for

all u ∈ U . Shrinking some more, we may suppose that choices of trivializing frames {si1, . . . , si,ci}
on each (E/Ei)|U lift to U -sections {si1, . . . , si,ci} of E/E′. We fix a choice of such an open U ; these
opens cover X. By passing to fibers over each u ∈ U we infer from the work involved in proving
Theorem 2.6 in the handout on tensor algebras that the sections sij ∈ (E/E′)(U) are a trivializing
frame for E/E′ over U . By using the definiton of the fibral isomorphism, our set-theoretic map
between the line bundles over X satisfies

(s11 ∧ · · · ∧ s1,c1)⊗ · · · ⊗ (sN,1 ∧ · · · ∧ sN,cN ) 7→ s11 ∧ · · · ∧ s1,c1 ∧ · · · ∧ sN,1 ∧ · · · ∧ sN,cN
on U -sections (as we may check on fibers), so it carries a trivializing U -section to a trivializing
U -section. Thus, our set-theoretic map is an isomorphism of Cp line bundles over X. �

The most important example of Theorem 3.4 arises when Z1, . . . , ZN are mutually transverse
smooth embedded submanifolds of a smooth manifold M , and X = ∩Zi. Letting E be the pullback
of TM to X, and Ei the pullback of TZi to X, the Ei’s are mutually transverse subbundles of E
with intersection ∩Ei = TX inside of E. The quotient bundles in Theorem 3.4 in this case are
determinants of normal bundles: det NX/M = E/E′ and j∗i (det NX/Zi) = E/Ei for the embedding
ji : X → Zi. Hence, the theorem gives a natural isomorphism

j∗1(det NX/Z1
)⊗ · · · ⊗ j∗N (det NX/ZN ) ' det NX/M

over X. In language to be used later, this implies that if M is oriented and the Zi’s are oriented
then the transverse intersection X = ∩Zi inherits a canonical induced orientation.


