MATH 396. DERIVATIONS AND VECTOR FIELDS
The aim of these notes is to work out the precise correspondence between C'*° vector fields and
derivations on C*° functions over open sets in a C'*° premanifold with corners X. Throughout what
follows, all vector fields, functions, and premanifolds are understood to be of class C*°, which we
may abbreviate by the word “smooth”.

1. MAIN RESULT

Let (X, 0) be a smooth premanifold with corners. For any open set U C X, we let Vecx(U)
be the set of smooth vector fields ¢ on U. Let Derx(U) be the set of R-linear derivations D of
Oy, by which we mean a collection R-linear derivations Dy : €(U’) — ¢ (U’) for all open U’ C U
satisfying the compatibility condition with respect to restrictions: if U” C U’ is an inclusion of
opens in U then for all f € &(U") we have Dy (f)|y» = Dyr(f|yr) in €(U").

For any v € Vecx (U) we define Dy to be the collection of maps

Dgyr: 0U') = {h:U" — R}

given by Dy (f) : v/ +— ©(u')(f) € R for open U’ C U. Roughly speaking, Dy maps a smooth
function on U’ to the function whose value at each point v’ € U’ is the directional derivative of f
in the direction v(u’) € T (U’') = Ty (X) at v/. From the definitions it is clear that for any open
U"” C U, the set-theoretic function Dy (f) on U’ restricts to Dy yn(f|yn) on U”. Tt also follows
from the R-linearity and the Leibnitz property of ¥(u) : €,, — R for each u € U that

Dyyr(cifi +eaf2) (W) = er- (Dgpr f1) (W) + ca - (Do f2) ()
for all ¢1,c0 € R and fi, fo € O(U") and
(Dgu(f9)) (W) = f(u')(Dgprg)(u') + g(u') (Do f) (W)
for all f,g € O(U’). Thus, Dy (c1fi + cafe) = c1 - (Do f1) + c2 - (D f2) and
Dy u(fg) = fDyu(9) + 9Dy v (f)

as R-valued functions on U’. Thus, f +— Dgy/(f) is an R-linear derivation from &(U’) into the
R-algebra of R-valued functions on U’. To say that the Dy ’s define an element Dy € Derx (U),
it remains to prove a smoothness condition: for all open U’ C U, Dy (f) : U' — R is a smooth
function (and not just a set-theoretic function) for all smooth f on U’. Granting such a property,
we would get a map of sets Vecx (U) — Derx (U) via ¥ +— Dj.

Going in the other direction, for any D € Derx(U), we can make a set-theoretic vector field vp
on U as follows: for each u € U we define vp(u) : 0, — R to send the germ s = [(U’, f)] for open
U’ C U around u to (Dy+f)(u) € R. Once this value at w € U is proved to depend only on the
germ s € 0, and not on the particular representive (U’, f), it will have to be proved that each
Up(u) : 0, — R thereby defined is an R-linear point derivation at u and and that the assignment
u+— vUp(u) € Ty(U) = Ty(X) is a smooth vector field over the open subset U C X. With such
a result in hand, D — ¥p would then give a map of sets Derx(U) — Vecx(U) from the set of
R-linear derivations of &y to the set of smooth vector fields on U.

Our aim is to show that the above two procedures do indeed make sense, that they are inverse
to each other, and that these bijective maps behave well with respect to (U )-linear structures. In
this precise sense, smooth vector fields on an open set U in a smooth premanifold with corners X
are “the same” as R-linear derivations of |y, and so we may (and will!) use these two points of
view interchangably when working on smooth premanifolds with corners.
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Theorem 1.1. For all open U C X, Dz is an R-linear derivation of O|y for all smooth vector
fields ¥ on U, and conversely for all D € Derx(U) the assignment w — Up(u) is a smooth vector
field on U. These maps between Vecx (U) and Derx (U) are inverse O(U)-linear bijections. More-
over, these bijections are of local nature in the following sense: for any open subset Uy C U, the
natural restriction maps Vecx (U) — Vecx (Up) and Derx (U) — Derx (Up) are compatible with the
bijections between smooth vector fields and R-linear derivations over U and over Uy.

Before we prove the theorem, we record a very important corollary that is a consequence of the
asserted € (U)-linearity and the knowledge of local descriptions of smooth vector fields in terms
of 0;,’s with respect to local C*® coordinates. Since ¢ = d,; € Vecx(U) goes over to 9/0x; in
Derx (U), we have:

Corollary 1.2. If (¢,U) is a C*-chart on the open U C X with ¢ : U — R™ a C* isomorphism
onto an open subset of a standard sector ¥ = {t; > c1,...,t, > ¢} in R™, then

"9
Derx (U) = Zaj% | aj € O(U)
j=1 J

(with x; = tjo¢ : U — R the component functions of ¢). That is, the only compatible systems
D = {Dy'}uyrcu of R-linear derivations Dy = 0(U'") — O(U') for all open subsets U' C U are
those arising from ) a;-0/0x; for smooth functions a;j on U, in which case such a;’s are uniquely
determined.

The reader may wish to contemplate giving a direct proof of this corollary entirely in the language
of derivations of &|y without passing through the theory of smooth vector fields. Such a proof
can be given by judicious use of bump functions, but such a method does not carry over to the
real-analytic or complex-analytic cases (where the corollary remains valid, by essentially the exact
same proof we are about to give via the theory of vector fields).

2. FROM VECTOR FIELDS TO DERIVATIONS

Choose ¢ € Vecx (U) a smooth vector field over U. We first have to prove that Dy v (f) : U' — R
is smooth for any open U’ C U and f € ¢(U’). The definition of Dy only depends on the vector
field 9|y € Vecx (U'), so for the well-posedness of the passage from vector fields on U to R-linear
derivations of |y we may rename U’ as U and ¥|ys as U to reduce to the case U' = U. More
specifically, for any open set U” C U we have Dy (f)|v» = Dy, .v»(flur) as R-valued functions
on U”, and so since smoothness of an R-valued function on an open set in X is a local property on
X, to prove smoothness of Dyz(f) on U we may shrink U around arbitrary points to arrange that
there exists a C°° coordinate system {z1,...,2,} on U. By smoothness of ¢ we have ¥ =} a;0,,
with a; € O(U). Thus, by definition, the point derivation ¥(u) : &, — R at u sends the germ of
a smooth function f near u to ) a;(u)(0z;lu)(f) = (3 a;0z, f)(u). By the definition of Dy, we
then get

and this lies in &'(U) since f and the a;’s are all smooth functions on U.

By the definitions, it is easy to check that the map Vecx (U) — Derx (U) is &(U)-linear and (via
natural restriction maps) compatible with shrinking U to smaller opens in X. This completes the
analysis of one direction of the desired correspondence.



3. FROM DERIVATIONS TO VECTOR FIELDS

Now choose D = {Dy}yrcy € Derx(U). Our next order of business is to prove that for all
u € U and germs s = [(U', f)] € O, the number (Dy/f)(u) only depends on s (and not on
the representative (U’, f) with U’ C U around u), and that the resulting well-defined map of
sets Up(u) : s — (Dy/f)(u') from Oy to R is an R-linear point derivation. We will then have
to show that u — Up(u) € T,(X) is a smooth vector field on U, and that the resulting map
Derx (U) — Vecx(U) gives an inverse to the map constructed above in the other direction.

For the well-definedness on germs, observe that for any open U” C U’ around u, the definition
of Derx (U) provides a compatibility condition on the Dy’s as we vary U’, from which we obtain
(Dy f)lun = Dyn(flyr) as R-valued functions on U”. Thus, the germ of the function Dy f
around u only depends on the germ of f around u. Hence, we do indeed get a well-defined map
Up(u) : O, — R via [(U', f)] — (Dy/f)(u) € R, Since any two germs in &, can be represented
by smooth functions on a common open U’ around u, the R-linearity of Dy and the derivation
property Dy/(fg) = fDy/(g) + gDy (f) for Dy as a self-map of &/(U’) for all open U’ C U implies
that evaluation at w makes vp(u) : €, — R an R-linear point derivation at u

To check that u — vp(u) € T,(X) is a smooth vector field on U, we can work locally on U
(as Up|yr only depends on the R-linear derivation D|ys € Derx(U’) on |y for any open U’ C U
around u). Thus, we may assume that there exists a C*° coordinate system {z1,...,x,} on U. We
may therefore uniquely write vp = a;0,; for R-valued functions a; : U — R, and the smootness
property of ¥p on U that we seek to prove is precisely the claim that each a; is a smooth function
on U. For any u € U we have

aj(u) = (Up(uw))(z;) = (Du(z;))(w)

(the final equality by the definition of ¥p), so a; = Dy (x;) as R-valued functions on U. However,
Dy is a self-map of (U), and so Dy (x;) is smooth on U for all j. Thus, the a;’s are all smooth
as U, and hence Up € Vecx (U). We now have the desired set-theoretic map Derx (U) — Vecx (U),
namely D +— Up. It is a straightforward check from the definitions that the map D — vp from
Derx (U) to Vecx (U) satisfies

Up.p = h - Up, Up,+D, = Up, + Up,

for all h € O(U), which is to say that this map is &'(U)-linear.

The final step, and the most important of all, is to check that our two maps Derx (U) — Vecx (U)
and Vecy(U) — Derx(U) via D +— ¥p and ¢ +— Dy are indeed inverse to each other. In other
words, for each ¥ € Vecx (U) we want to prove that the map Derx (U) — Vecx (U) carries Dy to ¥,
and likewise that for each D € Derx (U) the map Vecx (U) — Derx (U) carries ¥p to D. Since both
maps (from the set of derivations of @]y to the set of smooth vector fields over U, and vice-versa)
are compatible with localization on the open set U, the problem of checking these maps are inverse
to each other is a local problem: it suffices to check it in a sufficiently small open set around each
point in U. In particular, for both directions of the problem we may suppose U is so small that it
admits a C*° coordinate system {z1,...,z,}.

In terms of these coordinates, for any v € Vecy (U) we may uniquely write v/(u) = > a;(u)0y; |y
in Ty,(X) for aj(u) € R, and the smoothness of ¥ gives that the functions a; : U — R are smooth.
The calculations in local coordinates in the preceding section apply to show that Dy € Derx (U) is
the collection of derivations of the &'(U’)’s for open U’ C U given by > a;0/0z; acting on &(U").
Thus, the smooth vector field on U associated to Dy € Derx (U) has value at w in T, (X) given by
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the point derivation 0, — R satisfying
(U, )] = (Dspf) Zaj (Of /0u;) (u Zag () = @)U, M),

where the last equality uses the deﬁmtlon of the a;’s in terms of ¥. Hence, the map Derx (U) —
Vecx (U) indeed carries Dy back to v.

Conversely, choose D € Derx (U). We want to prove that the map Vecx (U) — Derx (U) carries
Up back to D. That is, for open U' C U and f € O(U'), we want v’ — (p((u"))([(U’, f)]) € R
to equal the function v’ +— (Dyf)(u') € R. But this is exactly the definition of ¥p (modulo the
issues of well-definedeness in its definition that we have settled above). This completes the proof
of Theorem 1.1.



